
Improvements on the Individual Logarithm Step in exTNFS

Yuqing Zhu1,2, Jincheng Zhuang1, Chang Lv1, and Dongdai Lin1

1 State Key Laboratory of Information Security, Institute of Information Engineering
Chinese Academy of Sciences, Beijing 100093, China

zhuyuqing@iie.ac.cn, zhuangjincheng@iie.ac.cn, lvchang@iie.ac.cn, ddlin@iie.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. The hardness of discrete logarithm problem over finite fields is the foundation of
many cryptographic protocols. When the characteristic of the finite field is medium or large,
the state-of-art algorithms for solving the corresponding problem are the number field sieve
and its variants. There are mainly three steps in such algorithms: polynomial selection, factor
base logarithms computation, and individual logarithm computation. Note that the former
two steps can be precomputed for fixed finite field, and the database containing factor base
logarithms can be used by the last step for many times. In certain application circumstances,
such as Logjam attack, speeding up the individual logarithm step is vital.

In this paper, we devise a method to improve the individual logarithm step by exploring
certain subfield structure. Our technique is based on the extended tower number field sieve
method and generalizes the idea used by Guillevic. The method achieves more significant
improvement when the extension degree has a large proper factor. We also perform some
experiments to illustrate our algorithm and confirm the result.

Keywords: Discrete logarithm problem, extended tower number field sieve, individual log-
arithm, smoothing phase.

1 Introduction

The discrete logarithm problem (DLP) in finite fields has played an important role in public key
cryptography, firstly used to construct Diffie-Hellman key exchange protocol [9], later used as an
important ingredient to build torus-based [24] and pairing-based cryptographic schemes [16,7]. The
Diffie-Hellman key exchange protocol makes use of a prime field Fp, while the torus-based and
pairing-based cryptosystem make use of finite fields Fpn and Fqn respectively.

It has long been realized that the characteristic of the underlying finite field affects the hard-
ness of the corresponding discrete logarithm problem. When the characteristic is small, the recent
breakthrough algorithms to solve DLP run in heuristic quasi-polynomial time [3,11,12]. When the
characteristic is medium to high, the state-of-art fastest algorithms are still number field sieve
(NFS) and its variants. They run in heuristic L(1/3) time, where

LQ(α, c) = exp((c+ o(1))(logQ)α(log logQ)1−α),

and Q is the cardinality of the field Fpn . For simplicity, we omit Q and c when there is no confusion.

The NFS-DL algorithm was firstly proposed by Gordon [10] and Schirokauer [27] as an adap-
tation of the NFS for factoring integers [21]. In 2006, Joux, Lercier, Smart and Vercauteren [17]



presented a variant of NFS which applies to all the finite fields Fpn of characteristic from medi-

um to high. Let p = LQ(αp, cp). The complexity is LQ(1/3, 3

√
128
9 ) in the medium prime case

(1/3 < cp < 2/3) and LQ(1/3, 3

√
64
9 ) in the high prime case (cp > 2/3).

Briefly, NFS consists of three steps in general: polynomial selection, factor base logarithm com-
putation, and individual logarithm computation. Note that the first two steps needs to be done
only once for fixed finite field. Then one can compute logarithms of different targets based on the
database of factor base elements logarithms. Also, the property of the selected polynomial affected
the efficiency of the latter two steps. Further, the factor based logarithm step includes two phas-
es: relation generation and linear algebra. The individual logarithm step includes three phases:
smoothing, descent, and combination of logarithms.

1.1 Related work

Efforts have been made to improve different components of NFS-DL algorithms.
In recent years, some efficient polynomial selection methods have been proposed, such as Conju-

gation method [2], generalized Joux-Lercier (GJL) method [22,2], and Sarkar-Singh (SS) method [26].

They reduced the complexity in the medium prime case to LQ(1/3, 3

√
96
9 ). Especially, in the bound-

ary case (cp = 2/3), the complexity was reduced to LQ(1/3, 3

√
48
9 ) [2]. When the characteristic has

a special form [29,18] or we use multiple fields [5,23], the complexity can be further reduced.
In 2016, Kim and Barbulescu [20] presented the extended tower number field sieve (exTNFS)

and achieved a new complexity in the medium prime case. When the extension degree n can factor
into two coprime integers and some other conditions are satisfied, the best complexity of exTNFS in

the medium prime case is LQ(1/3, 3

√
48
9 ). Later, Jeong and Kim [15] removed the coprime condition.

Sarkar and Singh [25] combined the SS polynomial selection methods and exTNFS to further loosen
the conditions.

Note that the polynomial selection step and factor base DL step can be computed once for a
fixed finite field. If we want to compute several discrete logarithms, such as batch-DLP and delayed-
target DLP, the complexity of the individual logarithm step plays an important role. For instance,
the Logjam attack [1] against the real-world Diffie-Hellman key exchange protocol highlights the
necessity of faster individual DL method. In Asiacrypt 2015, Guillevic [13] took advantage of the
subfield structure and reduced the complexity of the smoothing phase in individual logarithm step.
The improvement is significant especially when n is small.

1.2 Our contribution

In this paper, we aim at speeding up the smoothing phase further. Our method is a combination
of exTNFS and generalization of Guillevic’s idea. The main technique is to make full usage of the
subfield structure.

Let the target finite field be Fpn with cardinality Q. Assume m is the largest factor of n and
` is the largest prime factor of #F×pn . Let s be a random element in Fpn other than in a proper
subfield of Fpn (otherwise, the DLP w.r.t s will be much easier). Let Kf be the number field where
the smoothing phase will be done.

Theorem 1. In the high prime case, i.e. cp > 2/3, there exists an element s′ in Kf with norm
bounded by O(Q1−mn ) such that log s′ ≡ log s mod `.
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Theorem 2. In the medium prime or boundary case, i.e. 1/3 < cp ≤ 2/3, there also exists an
element s′ in Kf with norm bounded by O(Q1−mn ) such that log s′ ≡ log s mod `, if one of the
following conditions holds:

(1) there is no k|n s.t. pk = LQ(2/3);

(2) pm = LQ(2/3);

(3) Kf satisfies the conditions in Lemma 4.

For the remaining minor case, there exists an element s′ with norm bounded by{
O(Q1− 2k

n ), if Fpn satisfies the conditions in Lemma 3

O(Q1− kn ), otherwise

When n is composite, the previous best result is 1− 2/n. Here, our result is 1−m/n, where m
is the largest factor of n.

Remark 1. Very recently, Guillevic [14] has independently improved the individual discrete loga-
rithm step by exploring the subfield structure. Our result is essentially the same as Guillevic’s result
when the characteristic is medium or large. However, there are some differences between the two
methods:

– Since exTNFS performs better than traditional NFS when the extension degree is composite,
we base our work on exTNFS. Guillevic’s approach works also in the traditional NFS method.

– Although the basic idea of our work and Guillevic’s work is to take usage of the largest subfield,
the details differ. Particularly, in our work, we construct the subfield explicitly according to
the exTNFS method; while in Guillevic’s method, a different approach is taken to construct a
polynomial basis of such subfield.

The rest of the paper is organized as follows. In Section 2, we introduce the extended tower
number field sieve and Guillevic’s work in Asiacrypt 15. In Section 3, we give the main idea of our
improvement by taking advantage of the exTNFS. In Section 4, we give a careful analysis to illustrate
how our method operate in different cases. In Section 5, we give some numerical experiments to
illustrate our method. In Section 6, we conclude the paper.

2 Preliminaries

2.1 The extended Tower Number Field Sieve

The tower number field sieve was first introduced by [28], and then rehabilitated by [4], and extended
by [20]. Here, we briefly recall the exTNFS algorithm.

Setup. Let the target field be FQ, where Q = pn and p = LQ(αp, cp) with αp > 1/3. Assume
n = n1n2. Unlike the classical NFS algorithms, which usually involve two number fields over rational
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fields Q, here in (extended) TNFS, we consider two field extensions over a number field. That is

Kf

f

Kg

g

Q(r)

h

Q

In this tower number field extension, Q(r) is a number field over Q by a monic irreducible polynomial
h of degree n1 with integer coefficients. Kf and Kg are two number fields above Q(r) defined by
irreducible polynomials f and g over a ring R, where R = Z[r]/h(r). Compared with the classical
NFS algorithms, in extended TNFS we can freely choose suitable number field Q(r) as the base
field.

Using NFS algorithms to solve DLP in finite fields, we need to establish relations between the
number fields and the target finite fields. To this end, we need that h remains irreducible modulo
p such that p is inertia in R and R/pR ∼= Fpn1 . We also need the following commutative diagram

R[x]

((vv
R[x]/〈f(x)〉

mod p
mod ψ(x) ((

R[x]/〈g(x)〉

mod p
mod ψ(x)vv

(R/pR)[x]/〈ψ(x)〉

to hold, where ψ(x) is the common factor of f and g over R/pR of degree n2. To obtain the target
finite field, (R/pR)[x]/〈ψ(x)〉 needs to be isomorphic to Fpn . In this case, (R/pR)[x]/〈ψ(x)〉 is
isomorphic to Fpn , and we can view Fpn1 as Fp and n2 as n comparing to the classical case.

Polynomial selection. The complexity of recent NFS algorithm and its variants highly rely on
the size of the coefficients of the defining polynomials. To reduce the complexity, we have to select
f, g and h with the coefficients as small as possible. To this end, we select h to be a polynomial
over Z of degree n1 and irreducible modulo p with coefficients of constant bound. Heuristically, we
can find a suitable h with ||h||∞ = 1.

To select suitable f and g, which is similar to the classical case, there are several effective
methods [17,22,2,26]. The Table 1 lists the results.

These results can be modified to adapt for exTNFS by replacing n by n2 and Q by pn2 . Another
difference need to note is that the common factor of f and g is require to be irreducible over Fpn1

other than Fp.
For medium prime and boundary case, we can use JLSV1 and Conjugation methods. For high

prime case, we can use JLSV2 and GJL methods. The SS is a generalization of Conjugation and
GJL which relies on the existence of nontrivial subfields.

4



Table 1. The polynomial selection methods for NFS, where f and g are irreducible over Z with a common
factor modulo p of degree n.

Method deg f deg g ||f ||∞ ||g||∞
JLSV1[17] n n O(Q1/2n) O(Q1/2n)

JLSV2(D ≥ n)[17] n D O(Q1/D+1) O(Q1/D+1)

Conj.[2] 2n n O(log p) O(Q1/2n)

GJL(D ≥ n)[22,2] D + 1 D O(log p) O(Q1/(D+1))

SS(e|n, d ≥ n/e)[26] e(d+ 1) de O(log p) O(Q1/e(d+1))

Relation collection and linear algebra. In the classical NFS, we need to sieve polynomials of
degree t − 1 in the medium prime case, where t satisfies pt = LQ(2/3). While in the boundary or
high prime case, simply taking t to be 2 is enough. The large value of t is the main reason that
the complexity of NFS in the medium characteristic case is higher than that in the boundary or
large characteristic case. We will give details for this in section 4.1. Thus in the exTNFS, we set n1,
the degree of h, such that pn1 ≥ LQ(2/3). Then we only need to sieve the polynomials of the form
a(r) + b(r)x, where a(r) and b(r) are coprime polynomials in R = Z[x]/h(x) of degree less than n1.

Let αf and αg be the roots of f and g respectively. To keep the norm of a(r) + b(r)αf (resp.
a(r) + b(r)αg) bounded by LQ(2/3), we need to set a sieving bound A for ||a||∞ and ||b||∞. We say
that we obtain a relation if both

Nf (a, b) = Resr(Resx(a(r) + b(r)x, f(x)), h(r)) and

Ng(a, b) = Resr(Resx(a(r) + b(r)x, g(x)), h(r))

are B-smooth for a smooth bound B. Actually, Nf (a, b) (resp. Ng(a, b)) is equal to NKf/Q(a(r) +
b(r)αf ) (resp. NKg/Q(a(r)+b(r)αg)) up to a constant. We set the factor base to consist of B-smooth

prime ideals of degree one in Kf and Kg. The cardinality of the factor base is (2 + o(1)) B
logB . In

practice, we can require the field Kf (resp. Kg) to have a large automorphism group which can
reduce the cardinality of the factor base [17,4].

After collecting enough relations among the factor base, we can form a sparse linear system.
Using Wiedemann’s algorithm [30], we solve the linear equations in time B2+o(1) and obtain the
virtual logarithms of the elements in the factor base.

Individual logarithm. To compute the logarithm of an element in F×pn , in general it requires 2
phases. The first phase is smoothing phase, in which we randomize the target element s and test
for LQ(2/3)-smoothness with the ECM algorithm. We repeat this process until the principal ideal
generated by s factors into prime ideals of small norm. Some of the prime ideals may not be in the
factor base. So in the second phase, special-q descent phase, we search for a relation between the
prime ideal and other smaller ideals. We continue this process recursively until they all fall in the
factor base.

Complexity. To achieve the optimal complexity, we usually balance the complexities of the relation
collection step and the linear algebra step. The total complexity mainly depends on the sizes of the
coefficients and degrees of f and g. The Table 2 lists the results.

In [20], there is a requirement that n1 and n2 are coprime. Actually, it is not necessary. The
coprime condition was raised merely to simplify the selection of f and g. Under this condition, we
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Table 2. Complexity of exTNFS variants of the form LQ(1/3, 3
√

c
9
).

algorithm c conditions

exTNFS-JLSV2 64 n2 = o(( logQ
log logQ

)
1
3 )

exTNFS-GJL 64 n2 ≤ ( 8
3
)−

1
3 ( logQ

log logQ
)
1
3 )

exTNFS-Conj. 48
αp < 2/3 or αp = 2/3 and cp < 12

1
3

n2 = 12−
1
3 ( logQ

log logQ
)
1
3 )

only need to select f and g over Z instead of R. This coprime restriction can be removed, see [15].
Of course, one can combine the exTNFS and SS polynomial selection method, which can loosen the
above conditions in some sense, see [25]. When the characteristic of the field has a special form and
if we use multiple fields, we can also achieve some better results. Here we omit it. In section 4.1,
we will interpret the key improvement of exTNFS in the aspect of complexity.

2.2 Guillevic’s work in Asiacrypt 15

In this section, we will recall Guillevic’s work in Asiacrypt 15. Computing an individual logarithm
contain two phases, the smoothing phase and the descent phase. In the first phase, the element s
is randomized and tested for L(2/3)-smooth with the ECM algorithm. Compared with the descent
phase, the smoothing phase costs more time. The table in [13, Section 3.2] gave a survey of the
complexities of the individual logarithm steps of NFS variants.

In [13], Guillevic gave the following lemma and demonstrated the relation between the complex-
ity of smoothing phase and the target’s norm.

Lemma 1. ([13]) Let s be a random element in FQ. View s as a preimage of s in the number field
Kf in the natural way. Assume the norm of s is bounded by Qe = LQ(1, e). Denote the smoothness
bound for s by B′ = LQ(αB′ , cB′). Then the lower bound of the expected running time for finding
random k such that sk is B′-smooth is LQ(1/3, (3e)1/3), where αB′ = 2/3 and cB′ = (e2/3)1/3.

According to the above lemma, the complexity of the smoothing phase is LQ(1/3, (3e)1/3) where
e is the exponent of the norm bound. Thus, if one can reduce the norm bound of the target, one
can reduce the complexity of the individual logarithm phase.

We remark that one can express s as the quotient of two polynomials, namely s = z
w , such that

||z||∞ and ||w||∞ are both O(
√
p). It doesn’t change the complexity in theory when the polynomial

selection method is Conjugation, GJL or SS method, but it is helpful in practice.
Guillevic [13] exploited the subfield structure of FQ and improved the previous results. We

describe the method in the following.
If s, s′ ∈ F×pn and s = u · s′ with u belonging to a proper subfield of Fpn , then

log s ≡ log s′ mod `,

where ` is the largest prime factor of #F×pn . This is because in practice we only consider the DLP in

the multiplicative group of F×pn other than the groups of any proper subfields. Using this observation,

we can take the leading term of s to be 1, i.e. s =
∑n−1
i=0 six

i ∈ Fpn with sn−1 = 1. Since si is O(p)
for i ≤ n − 2 and sn−1 = 1, ||s||∞ is O(p). To reduce ||s||∞ and achieve a lower norm, one can
balance the coefficients of s.
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In the JLSV1 case, Guillevic formed the following lattice of dimension n.

L =


p

. . .

p
s0 . . . sn−2 1


0

...
n−2

n−1
n×n

n− 1 rows

}coef. of s

Applying the LLL algorithm to L, one obtains a reduced element s′ =
∑n−1
i=0 s

′
ix
i satisfying

log s′ ≡ log s mod `

and
||s′||∞ ≤ Cp(n−1)/n,

where C is a small constant. According to [19], we have

|NKf/Q(s)| ≤ (deg f + deg s)!||f ||deg s∞ ||s||deg f∞ . (1)

Then the norm of s′ satisfies

NKf/Q(s′) = O
(
p

3
2 (n−1)

)
= O

(
Q

3
2−

3
2n

)
.

In the GJL and Conjugation cases, let df denote the degree of f , where df = d+ 1 ≥ n+ 1 in
GJL case and df = 2n in Conjugation case. And ψ is the common factor of f and g modulo p of
degree of n. One can form the following lattice of dimension df .

L =



p
. . .

p
s0 . . . sn−2 1
ψ0 ψ1 · · · ψn−1 1

. . .
. . .

. . .
. . .

ψ0 ψ1 · · · ψn−1 1



0

...
n−2

n−1

n

...
df−1
df×df

n− 1 rows

}coef. of sdf − n rows with coef. of ψ

Applying the LLL algorithm to L, one obtains a reduced element s′ =
∑n−1
i=0 s

′
ix
i satisfying

log s′ ≡ log s mod `

and
||s′||∞ ≤ Cp(n−1)/df ,

where C is a small constant. The norm of s′ satisfies

NKf/Q(s′) = O
(
pn−1

)
= O

(
Q1−1/n).

Next, when n is even, Guillevic exploited the quadratic subfield to construct a preimage with
small norm.
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Lemma 2. ([13]) Let ψ(X) be a monic irreducible polynomial of Fp[X] of even degree n with a
quadratic subfield Fp2 = Fp[Y ]/(A(Y )). Moreover, assume that ψ splits over Fp[Y ]/(A(Y )) as

ψ(X) = (B(X)− Y )(B(X)− Y p)
or ψ(X) = (B(X)− Y X)(B(X)− Y pX)

with B monic, of degree n/2 and coefficients in Fp. Let s ∈ Fp[X]/(ψ(X)) a random element,

s =
∑n−1
i=0 siX

i.

Then there exists s′ ∈ Fpn ,monic and of degree n− 2 in X, and u ∈ Fp2 , such that s = u · s′ in
Fpn .

According to the lemma, if the field contains a certain quadratic subfield, we can find two
preimages s =

∑n−1
i=0 six

i and s′ =
∑n−2
i=0 s

′
ix
i. Here, a preimage means its logarithm is congruent

to the logarithm of s modulo `. Then we define the following lattice

L =


p

. . .

p
s′0 . . . s

′
n−3 1

s0 . . . sn−3 sn−2 1


0

...
n−3

n−2

n−1
n×n

n− 2 rows

} coef. of s′

} coef. of s

Using it in place of the upper-left part of the lattice in the GJL and Conjugation cases, we can find
a preimage with norm O(Q1−2/n). This improvement is significant when n is small.

3 Constructing a preimage with small norm: main idea

Assume m is the largest proper factor of n, where n is the extension degree of the finite field. In
this section, we will use a tower of fields to construct a preimage with norm O(Q1−m/n). If n is
even, the best result is to reduce the norm to O(Q1/2).

Since m is the largest proper factor of n, the largest proper subfield of Fpn is Fpm . We set the
degree of h in exTNFS to be m and the degree of ψ (the common factor of f and g over Fpm) to be
n′ = n/m. Other settings are the same as section 2.1. Let df and dg denote the degrees of f and g
respectively.

For s ∈ F×pn , each preimage of s in Kf is
∑n′−1
i=0 si(r)x

i, where si(r) is a polynomial in r of
degree less than m. When sn′−1(r) 6= 0, dividing each term by sn′−1(r), we obtain a preimage of

s of the form
∑n′−2
i=0 si(r)x

i + xn
′−1. When sn′−1(r) = 0, we can do the same thing to the highest

nonzero term and obtain a shorter form, which is more advantageous for us to reduce the norm.
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Next, we form the following lattice of dimension mdf :

p

. . .

p

. . .

p

. . .

p
s0(r)
rs0(r)

.

.

.

rm−1s0(r)

. . .

. . .

.

.

.
. . .

sn′−2(r)
rsn′−2(r)

.

.

.

rm−1sn′−2(r)

1
1

. . .

1

ψ0(r)
rψ0(r)

.

.

.

rm−1ψ0(r)

ψ1(r)
rψ1(r)

.

.

.

rm−1ψ1(r)

. . .

. . .

.

.

.
. . .

ψn′−1(r)
rψn′−1(r)

.

.

.

rm−1ψn′−1(r)

1
1

. . .

1

. . .
. . .

. . .
. . .

ψ0(r)
rψ0(r)

.

.

.

rm−1ψ0(r)

ψ1(r)
rψ1(r)

.

.

.

rm−1ψ1(r)

· · ·

ψn′−1(r)
rψn′−1(r)

.

.

.

rm−1ψn′−1(r)

1
1

. . .

1


where the algebraic numbers in bold stand for the row vectors of their coordinates. Applying the

LLL algorithm to the lattice, we obtain a reduced element s′ =
∑df−1
i=0 s′i(r)x

i with

log s′ ≡ log s mod `.

Since the determinant of the lattice is pm(n′−1) = pn−m and the dimension is mdf , we have

||s′||∞ ≤ Cp
n−m
mdf ,

where C is a small constant. According to [19,6], we have

NKf/Q(s′) = O
(
||s′||mdf∞ ||f ||mds′∞

)
.

The value is
O
(
Q1−m/n)

in Conjugation, GJL or SS case, since the coefficients of f in these cases are small. In JLSV1 and
JLSV2 cases, they are

O
(
Q3/2−m/n) and O

(
Q2−m/n)

respectively.
Thus, if there is no restriction on the degree of h, following the method above, we can construct

a preimage of target element with norm O
(
Q1−m/n), where m is the largest factor of n. Especially,

when n is even, we can construct a preimage with norm O
(
Q1/2

)
. Then the complexity of the

smoothing phase is reduced to LQ(1/3, 3

√
3
2 ).

However, in exTNFS, to achieve the optimal complexity, there are some restrictions on the
choice of deg(h). In the next section, we will analyze the restriction on h and show how to reduce
the norm to O

(
Q1−m/n) while maintain the total complexity.
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4 Constructing a preimage with small norm: more details

4.1 A brief analysis to recent results about exTNFS

In this section, we revisit the relation between deg(h) and the complexity of the exTNFS algorithm
to obtain the range for the choice of deg h.

In exTNFS, we pick m|n such that pm = LQ(αq, cq), where αq ≥ 2
3 . Then n′ = 1

cq
( logQ
log logQ )1−αq .

Intuitively, we can view q = pm as a new p and n′ as a new n. Other things are very similar.
For a more general analysis, we assume we sieve polynomials of degree t − 1 , denoted by

φ(x) = a0(r) + a1(r)x + · · · + at−1(r)xt−1. We set the smooth bound B = LQ(1/3, cb) and the
sieving bound A such that Amt = LQ(1/3, ca). Since pm ≥ LQ(2/3), the degree of f and g should

be compared with ( logQ
log logQ )

1
3 . We let d = cd(

logQ
log logQ )

1
3 . In the relation collection step, we will sieve

different φ(x) within the sieving bound A. It costs Amt time. The cardinality of the factor base is
about (2 + o(1)) B

logB . It follows that the linear algebra step will cost about B2 time. To balance
the complexities of the first two steps, we need

Amt = B2. (2)

To collect enough relations, we need obtain at least B relations in the first step, namely

AmtP = B, (3)

where P denote the probability to collect a relation of a random polynomial φ.
The probability to collect a relation relies on the norms of φ both in Kf and Kg. We let

Nf (φ) = Resr(Resx(φ(x), f(x)), h(r)) and

Ng(φ) = Resr(Resx(φ(x), g(x)), h(r)).

According to [19,6], similar to [4,20], we have

|Nf (φ) ·Ng(φ)| ≤ C(m, t, df , dg)||f ||m(t−1)
∞ Amdf ||g||m(t−1)

∞ Amdg

= C(m, t, df , dg)(||f ||∞||g||∞)m(t−1)Am(df+dg),

where C(m, t, df , dg) is a function in m, t, df and dg with value negligible to LQ(2/3). In conjugation,
GJL or SS method, which are the recent best polynomial selection methods, the coefficients of f
are O(log p) and those of g are O(pn

′/df ). For a more general result, we assume the coefficients of
g are O(pn

′/ng ), where ng is compared with df . Thus, we have

|Nf (φ) ·Ng(φ)| ≤ (||g||∞)m(t−1)Am(df+dg),

= Q
t−1
ng Amtd

df+dg

td ,

= LQ(2/3,
(t− 1)d

cdng
)LQ(2/3,

cacd(df + dg)

td
),

= LQ(2/3,
(t− 1)d

cdng
+
cacd(df + dg)

td
).

According to [8], P, the B-smooth probability satisfies

1/P = LQ(1/3,
1

3cb
· ( (t− 1)d

cdng
+
cacd(df + dg)

td
)).
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According to Equation (2) and (3), we obtain

ca = 2cb,

and

B = 1/P.

Thus combining above equations, we have

3c2b =
(t− 1)d

cdng
+

2cbcd(df + dg)

td

≥ 2

√
2cb

t− 1

t

df + dg
ng

.

It follows that 9c3b ≥ 8 t−1t
df+dg
ng

. Hence the total complexity is

LQ(1/3, 2cb) = LQ(1/3, 3

√
c

9
),

where

c = 72c3b ≥ 64
t− 1

t

df + dg
ng

.

In classic NFS, we can achieve the analogous result by similar deduction. Let’s first pay attention
to the term t−1

t . Here in exTNFS, we can let t = 2 to achieve the best result provided pm ≥ LQ(2/3).
However in classic NFS, when p < LQ(2/3), t will be much bigger and t−1

t will be close to 1. This
is the key improvement of exTNFS in the aspect of complexity.

For the term
df+dg
ng

, it depends on the polynomial selection methods. When pm = LQ(2/3),

the best result is 3
2 achieved by Conjugation or SS method. In this case, the total complexity is

LQ(1/3, 3

√
48
9 ). However, when pm > LQ(2/3) we cannot apply Conjugation method. The Table 1

shows the minimal value for
df+dg
ng

is 2 achieved by GJL or SS method. Then the total complexity

is LQ(1/3, 3

√
64
9 ).

Based on the analysis above, in the rest of the paper we only discuss the Conjugation, GJL
and SS polynomial selection methods, since they are more efficient. When pm = LQ(2/3), we use
Conjugation and SS methods. When pm > LQ(2/3), we use GJL and SS methods.

Also, the analysis can be applied to special NFS and its variants, since their essential advan-
tages are that we can select polynomials with smaller coefficients due to the special form of the
characteristic.

4.2 Reducing the norm in different cases

Let’s go back to the remaining problem in section 3. We deal with it in two main cases. Let m be
the largest proper factor of n.

11



Case 1 pm = LQ(2/3) or there is no factor k of n such that pk = LQ(2/3).
In this case, when pm ≥ LQ(2/3), we follow the strategy in the previous section. We can reduce

the norm to O
(
Q1−m/n) while maintaining the total complexity. When pm < LQ(2/3), we claim

that m must be equal to 1 and n is a prime. Since p ≥ LQ(1/3) and pn = LQ(1), if n is composite,

then pm ≥ p
√
n ≥ LQ(2/3), which yields a contradiction. Thus when pm < LQ(2/3), m is equal to

1. We can use the trivial subfield Fp to reduce the norm to O
(
Q1−m/n).

Case 2 There is a factor k of n such that pk = LQ(2/3) and pm > LQ(2/3).
Let q = pk and n′′ = n/k. In this case, we need to set deg(h) to be k, and f, g to have a common

irreducible factor ψ of degree n′′ over Fq. Then we can achieve the LQ(1/3, 3

√
48
9 ) complexity by

exTNFS algorithm. Note that, in this case, if we use the subfield Fq, we can only reduce the norm
to O

(
Q1−k/n) other than O

(
Q1−m/n).

Firstly, we give a generalized version of the Lemma 2 to obtain a slightly better result.

Lemma 3. Assume there is a proper subfield Fqλ = Fq[Y ]/A(Y ) of Fqn′′ with λ > 1 such that ψ
splits over Fqλ as

ψ(X) =

λ−1∏
i=0

(B(X)− Y q
i

),

where B(X) is a polynomial of degree n′′/λ with coefficients in Fq. Let s =
∑n′′−1
i=0 siX

i be a random
element in Fq[X]/ψ(X). We can find an element s′ in Fq[X]/ψ(X) of degree at most n′′−2 satisfying
s = u · s′ with u ∈ Fqλ .

Proof. The proof is similar. We set the tower of fields as follows.

Fqn′′ = Fq[X]/ψ(X) = Fq[X,Y ]/(A(Y ), B(X)− Y )

Fqλ = Fq[Y ]/A(Y )

Fq

We represent s as

s =

n′′/λ−1∑
i=0

ci(Y )Xi.

with ci(Y ) of degree in Y at most λ− 1. Dividing s by cn′′/λ−1(Y )(∈ Fqλ), we obtain

s

cn′′/λ−1(Y )
=

n′′/λ−2∑
i=0

di(Y )Xi +Xn′′/λ−1,

with di(Y ) of degree at most λ− 1. Substituting Y with B(X), we obtain the right hand side is

n′′/λ−2∑
i=0

di(B(X))Xi +Xn′′/λ−1,

12



which is of degree at most n′′

λ (λ− 1) + n′′

λ − 2 = n′′ − 2. ut

Following the lemma, if the field has certain form, we can construct a preimage of degree at
most n′′ − 2. Then we can apply the LLL algorithm to obtain a preimage of norm O

(
Q1−2k/n).

Next, we will show if some requirements for Kf can be met, we can construct a preimage with
norm O

(
Q1−m/n).

Note that since k, the degree of h, satisfies pk = LQ(2/3), we should use Conjugation method
or SS method for polynomial selection. For simplicity, we consider the Conjugation method case
while the other case is similar. In this case, the degree of f is 2n/k = 2n′′.

Lemma 4. Let Kf = Q(r)[X]/f(X) = Q(r, x). Assume there is a subfield Q(r, y) ⊆ Kf of index
2n′ such that the coefficients of the minimal polynomials of y over Q(r) and x over Q(r, y) are both
small, i.e. are bounded by O(log p). Let s be a random element in Fpn . We can construct a preimage
of s in Kf with norm O

(
Q1−m/n).

Proof. Under this condition, we can view Kf as the extension field of Q(r, y) by adding x and
Q(r, y) as the extension field of Q(r) by adding y. Every element s in Kf can also be expressed as

s̃ =

n′−1∑
i=0

s̃i(r, y)xi

where we use s̃ to denote s in this expression. Note that, although s̃ and s are the same element in
Kf , ||s̃||∞ and ||s||∞ are totally different.

Since the coefficients of the minimal polynomials of x and y are small, one can check the norm
of s will be

NKf/Q(s) = NKf/Q(s̃) = O
(
||s̃||mdf∞

)
,

whose form is the same as before.
Now, let s̃ ∈ Kf be a preimage of an element in FQ. Assume s̃ =

∑n′−1
i=0 s̃i(r, y)xi with

s̃n′−1(r, y) 6= 0. We divide each term by s̃n′−1(r, y), and obtain

s̃′ =

n′−1∑
i=0

s̃′i(r, y)xi + xn
′−1.

We can view it as a polynomial in x and y with coefficients in r. Then we can construct a vector
whose components are the coefficients of yixj . If we use the vector to replace the corresponding row
of the lattice in section 3 and change the expression of ψ, then we can form a new lattice. Applying
the LLL algorithm to the lattice, we can obtain a preimage s̃′′ with

||s̃′′||∞ ≤ Cp
n−m
mdf .

Thus the norm of s̃′′ is bounded by O
(
Q1−m/n). ut

We give an example in which the condition are satisfied. We consider the finite field Fp30 , where
p = 39614081257132168796771975177. The largest proper factor of 30 is 15. If we set deg(h) = 5, we
should set deg(f) = 12 in Conjugation method. Since 5 and 12 are coprime, it is sufficient to select
f over Z. Firstly, we choose two small coefficients polynomial x6 − 1 and x3. Next, we choose the
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irreducible polynomial Y 2+1 over Z which has a root modulo p. Let f = ResY (Y 2+1, x6−1−x3Y ) =
x12−x6+1. One can check f is irreducible over Z and thus has a degree 6 irreducible factor modulo
p. Let y be a root of the equation y3 − 3y + 1. One can check f splits into 3 irreducible factor over
Q(y). One of the factor is x4 +yx2 +1 with small coefficients. Hence in this example, the conditions
in Lemma 4 are all satisfied.

We summarize the results in the Table 4.2.

Table 3. The norm bound of the preimage and the complexity of the smoothing phase. The polynomial
selection method we use is Conjugation, GJL or SS method depending on the target field. Assume m is the
largest factor of n.

Conditions Norm bound
Smoothing phase LQ( 1

3
, c)

c in this work

pm = LQ(2/3) or
Q1−m/n (3(1− m

n
))1/3

no k|n s.t. pk = LQ(2/3)

otherwise if
Q1−m/n (3(1− m

n
))1/3

Kf has a certain form

else if
Q1−2k/n (3(1− 2k

n
))1/3Fpn has a certain form

the left case Q1−k/n (3(1− k
n

))1/3

Our method is a generalization of the method in [13] and is advanced when n is composite and
not very small. Especially, when n has large proper factor (or equivalently small proper factor), our
method is very efficient. For example, when 2|n, we can reduce the complexity of the smoothing

phase to LQ( 1
3 ,

3

√
3
2 ≈ 1.14).

5 Numerical Experiments

In this section, we give some numerical experiments to illustrate the validity of our method. For
n = 2, 3, 4 or 5, our results are the same as those in [13]. Here we give examples for n = 6 and
n = 12.

5.1 Examples for Fp6

Example 1 for n = 6 with GJL method. We take a random prime number p of about 100-bit
(30 decimal digit), and n = 6. The size of the field Fp6 is about 180 decimal digits (dd). Since
largest proper factor of n is 3, we set h to be a polynomial of degree 3 with small coefficients and
irreducible modulo p. Let r be a root of h. We take f to be a degree 4 irreducible polynomial over
Z with small integer coefficients. Moreover we require that f has a degree 2 irreducible factor ψ
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modulo p. Since 2 and 3 are prime, ψ is still irreducible over Fp3 . At last we pick a random s in Fp6 .

p =1267650600228229401496703205653

h =r3 − r2 + 1

f =x4 + 1

ψ =x2 + 266892166039080060530265635980

g =81918998706487x2 + 1122915792871022

s =(770996322275293048913407867893r2 + 176890373159319570424980826427r + 1160569386245587035814582189227)x

+ 935836514622535375852962122149r2 + 707940155816471541960680236692r + 203370792026598947471097543375

with p a 31 dd prime number and p6 of 181 dd.

Taking s′ = 1
s1
s, we have

s′ = x+ 903148587808476041011875748734r2 + 1258489317074214699144650431856r + 922893237103555904448793411796.

We use LLL algorithm to reduce the lattice

p
p
p

s′0
rs′0
r2s′0

1
1

1
ψ0

rψ0

r2ψ0

0
1

1
1

ψ0

rψ0

r2ψ0

0
1

1
1


The returned short element s′′ is

(−654596r2 − 25066478r + 8079577)x3 + (7089818r2 + 1960648r + 1047289)x2+

(5995809r2 − 9170200r − 9594102)x+ 26292350r2 − 7675630r + 1535300,

with coefficient at most 8 dd. Its norm is

NKf/Q(s′′) = 4248798334960557244412392769828417173736921202329989260540205222267760951710588002882574241

which is a 91 dd number. Its length is about 91/181 ≈ 0.502 of that of p6, as expect.

Example 2 for n = 6 with Conjugation method. We take another random prime number p of
about 30 dd. We select h in the same way. Let r be a root of h. Using Conjugation method. We take
a degree 2 irreducible polynomial Y 2+1 which has a root y modulo p. Let f = ResY (Y 2+1, x2+Y ).
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Then f is irreducible over Z and has an irreducible factor ψ(x) = x2 − y over Fp.

p =7170914684772626399787694948453

h =r3 + r + 1

f =x4 + 1

ψ =x2 + 294838925512229337898309576527

g =966642759457218x2 + 2497301836054577

s =(2767660019267865248076151275104r2 + 357970798563045003813528394260r + 6311123219907587664235529021977)x

+ 2234776892532612450942592349739r2 + 5963032404036223471843728113344r + 2280716845436119385331170350884

with p a 31 dd prime number and p6 of 186 dd.
Taking s′ = 1

s1
s, we have

s′ = x+ 6829187035664634928218051355972r2 + 2356513401811425063371831680423x+ 7055298630876009777096508302136.

Since ψ doesn’t have degree 1 term, we form a similar lattice in Example 1. Here we omit it. We
use LLL algorithm to reduce the lattice and the returned short element s′′ is

(−243030r2 − 1609858r − 14170476)x3 + (17026360r2 + 19611969r + 40385280)x2+

(−21368270r2 − 25460768r + 45578231)x+ 4785869r2 − 5442349r − 3676839,

with coefficient at most 8 dd. Its norm is

NKf/Q(s′′) = 9408692079257501461183742234523910224598901984786177574687834188371565707188019033831132562049,

which is a 94 dd number. Its length is 94/186 ≈ 0.505 of that of p6.

5.2 Examples for Fp12

Example 3 for n = 12 with GJL method. In this example, we consider the case for n = 12. We
want to take a 600-bit finite field. Then the characteristic p will be about 15 dd. The largest proper
factor of n is 6, we set h to be a polynomial of degree 6 with small coefficients and irreducible
modulo p. Let r be a root of h and R be the ring Z[r]. We take f to be a degree 4 irreducible
polynomial over R with small coefficients. Moreover we require that f has degree 2 irreducible
factor ψ over Fp6 . At last, we randomly pick an element s in Fp6 .

p =2251799813685269

h =r6 + r − 1

f =x4 + r

ψ =x2 + 1993972645314362r5 + 2014524994046034r4 + 775349557393539r3 + 2239410057339674r2 + 1611508501046572r + 723760306664988

s =(664609958516367r5 + 696970620962968r4 + 772196105657867r3 + 663786159251904r2 + 1018587115350r + 871785303785789)x

+ 1254825522464853r5 + 163391769589048r4 + 1440697992754427r3 + 833042729041497r2 + 1146684997003032r + 2084950047673640

with p a 16 dd prime number and p12 of 185 dd. Here we omit the expression of g, since our
computation doesn’t involve g.
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Taking s′ = 1
s1
s, we have

s′ = x+ 234049405977480r5 + 1765403141103884r4 + 630709406564539r3 + 176355858132932r2 + 1701204684849980r + 1626756316867936.

We use LLL algorithm to reduce the lattice

p
. . .

p
s′0
...

r5s′0

1
. . .

1
ψ0

...
r5ψ0

0

1
. . .

1
ψ0

...
r5ψ0

0

1
. . .

1


The returned short element s′′ is

(−7r5 − 2614r4 − 222r3 + 4628r2 + 312r − 709)x3 + (−4300r5 − 4266r4 + 3920r3 + 1798r2 + 707r − 2828)x2+

(2175r5 + 562r4 − 2736r3 + 1424r2 + 101r + 4279)x+ 1177r5 + 1899r4 + 1716r3 + 2547r2 + 617r − 4199

with coefficient at most 4 dd. Its norm is

NKf/Q(s′′) = 372487549410149008233968185650362611811865648277418284310197911695670133050753371949466198397479,

which is a 96 dd number. Its length is 96/185 ≈ 0.519 of that of p12.

Example 4 for n = 12 with Conjugation method. We take n, p, h the same as Example 3. We
use Conjugation method to select another f . We take the degree 2 irreducible polynomial Y 2 +r+1
over R which has a root y modulo p. Let f = ResY (Y 2 + r+ 1, x2 + Y ). Then f is irreducible over
R have an irreducible factor ψ(x) = x2 − y over Fp6 .

p =2251799813685269

h =r6 + r − 1

f =x4 + r + 1

ψ =x2 + 1393011884796690r5 + 59969310637491r4 + 919511363925453r3 + 1390071113864919r2 + 527241010054474r + 206790248742725

s =(675688506111714r5 + 71129290300099r4 + 557484538944572r3 + 1005641832848766r2 + 1890428537462931r + 1965692533792037)x

+ 939495520213432r5 + 2062172030826571r4 + 497471116144056r3 + 2030726831698333r2 + 1437854873482680r + 1015489052888070.

Taking s′ = 1
s1
s, we have

s′ = x+ 1393011884796690x5 + 59969310637491x4 + 919511363925453x3 + 1390071113864919x2 + 527241010054474x+ 206790248742725.
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We form a similar lattice in Example 3 and use LLL algorithm to reduce the lattice and the returned
short element s′′ is

(659r5 + 1992r4 + 4052r3 − 955r2 − 2736r − 924)x3 + (−1727r5 + 45r4 − 1026r3 + 378r2 + 4423r − 2048)x2+

(64r5 + 2363r4 + 757r3 − 268r2 − 1412r − 2056)x+ 2352r5 − 981r4 − 2777r3 + 2597r2 + 1979r − 3266

with coefficient at most 4 dd. Its norm is

NKf/Q(s′′) = 43137934863912977025654160952364206725911654116936172192844546482651273856814881962231733469551,

which is a 95 dd number. Its length is 95/185 ≈ 0.514 of that of p12.
We summarize our experimental results in the following table.

Table 4. The experimental results.

Extension degree experiments exponent of the target’s norm Qe ideal values in [13]

n = 6
1 0.502

2/3
2 0.505

n = 12
3 0.519

5/6
4 0.514

Our experimental values are close to the theoretical value 1/2, which is better than the values
in [13].

6 Conclusion

In this work, we improve the individual logarithm computation in NFS-DL algorithm by combin-
ing the exTNFS and generalizing Guillevic’s idea to explore subfield structure. Our method can
construct a preimage of the target element with norm O(Q1−m/n) in most cases when the charac-
teristic is medium to large. Also we give experimental results to confirm our theoretical results. Due
to our results, when n has relatively large proper factor, the complexity of the smoothing phase
will be reduced below that of special-q phase. Then the key to further reduce the complexity of the
individual logarithm step may turn to find new improvements on the special-q phase.
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