
Tile-Based Modular Architecture for
Accelerating Homomorphic Function Evaluation

on FPGA

Mustafa Khairallah1 and Maged Ghoneima1

Ain Shams University, Cairo, Egypt
khairallah@ieee.org,m ghoneima@ieee.org

Abstract. Fully Homomorphic Encryption is a powerful cryptographic
tool that enables performing arbitrary meaningful computations over en-
crypted data. Despite its evolution over the past 7 years, FHE schemes
are still not suitable for practical use due to performance inefficiencies,
where a simple operation can be performed in several seconds. In this
paper, a new architecture for accelerating homomorphic function evalu-
ation on FPGA is proposed. While ideas such as the small/large-CRT
representation are reused from previous architectures, a modified version
of the cached NTT algorithm is presented in this paper, allowing it to be
efficiently computed in a multi-core environment. In order to compute
an N -point NTT, the architecture consists of

√
N cores, each capable of

computing a
√
N -point NTT, with a special purpose Network-on-Chip

(NoC) for coefficient reordering. The proposed NoC enables reordering
coefficients in time O(

√
N), leading to an overall parallel NTT algorithm

of time complexity O(
√
N log

√
N). The architecture has been imple-

mented on Xilinx Virtex 7 XC7V1140T FPGA. The design consumes
22% of the registers, 95% of the LUTs, 91% of the DSPs and 85% of
the Block RAMs. The implementation performs 32-bit 216-point NTT
algorithm in 23.8µs, achieving speed-up of 14x over the state of the art
architecture in this crucial operation. The architecture has been evalu-
ated by computing a block of each of the AES and SIMON-64/128 on the
LTV and YASHE schemes. The proposed architecture can evaluate the
AES circuit using the LTV scheme in 4 minutes, processing 2048 blocks
in parallel, which leads to an amortized performance of 117 ms/block,
which is the fastest performance reported to the best of our knowledge.

Keywords: FHE, Homomorphic, FPGA, Virtex, NTT, CRT

1 Introduction

In 1978, the concept of Fully Homomorphic Encryption (FHE) was introduced
by Rivest, Adleman and Dertouzos [1]. It is a form of encryption that allows
meaningful computations to be performed on the ciphertext, so that when the
results are decrypted, they match the results of performing the same computa-
tions on the plaintext. While cloud computing has become a wide-spread tech-
nology, a lot of applications that require FHE have emerged. Despite the need

for FHE in many applications, FHE remained an open problem until 2009, when
Gentry [2] proposed the first FHE scheme based on ideal lattices. However,
his solution was not practical and had very low performance. Since then, a lot
of efforts have been directed towards constructing practical FHE schemes. De-
spite its drawbacks, Gentry’s scheme represented the blueprint for all subsequent
schemes [3][4][5][6][7][8][9][10][11][12]. The recently proposed FHE schemes are
either based on the Learning with Errors (LWE)[6][8][9][10], Ring-LWE[11][5],
N -th degree Truncated Polynomial Ring (NTRU) [3][7] or the Approximate
Greatest Common Divisor (AGCD)[12] problems.

Due to the enormous cost of the bootstrapping procedure used in FHE
schemes, it is preferred to use Somewhat Homomorphic Encryption (SHE) or
leveled FHE, where the maximum number of levels of operations that can be per-
formed on encrypted data has to be decided in advance. For many applications
the definition of SHE is sufficient. Ring-based SHE schemes, such as BGV[11],
FV[5], YASHE[3] and LTV[7], achieve the best performance results, due to the
possibility to use the Single-Instruction-Multiple-Data (SIMD) technique[13],
where you can process the same operation on multiple plaintexts using only
one operation on a ciphertext that packs these plaintexts. Two comprehensive
studies have been published comparing the different ring-based SHE schemes.
In [14], a comparison between the YASHE scheme and the FV scheme has been
presented, showing that the homomorphic evaluation of the low weight block
cipher SIMON-64/128 [15] requires 12418 s using the FV scheme and 4193 s
using YASHE scheme both on a 4-core Intel Core i7 CPU at 3.4 GHz. Although
these results show that the YASHE scheme has much better performance, they
also show that the software evaluation on CPUs is not sufficient for practical
applications. A more recent study[16] has expanded the comparison to all the
4 ring-based schemes: BGV, LTV, YASHE and FV. It has shown the YASHE
scheme has the best performance results for small plaintext moduli, while BGV
is more efficient for large plaintext moduli.

In 2015, three implementations, [17], [18] and [19], have been published tar-
geting the acceleration of the whole operation of homomorphic function evalua-
tion using FPGA. The design proposed in [19] uses an efficient double-buffered
memory access scheme and a polynomial multiplier based on the Number The-
oretic Transform (NTT). For the parameter set (n = 16384, dlog2(q)e = 512) of
YASHE scheme capable of evaluating 9 levels of multiplications, homomorphic
addition can be performed in 0.94 ms and homomorphic multiplication can be
performed in 48.67 ms. However, the authors failed to implement the design
for larger parameter sets. Despite its drawbacks, it is the first design to use
cached-NTT to enhance external memory access. In [18], a hardware/software
implementation is designed, including a large NTT based multiplier capable of
multiplying very large degree polynomials. With the implementation of a CRT
representation on the coefficients, a custom core capable of supporting polyno-
mial multiplications with very large degree and very large coefficient polynomials
is implemented. The design is highly optimized using numerous techniques to
speedup the NTT computations, and to reduce the burden on the PC/FPGA

2

interface. The resulting architecture dramatically improves the modular multi-
plication and relinearization speeds of the LTV SHE scheme over a comparable
software implementations. However, the architecture presented in[17] is the first
complete hardware accelerator to be able to process the polynomial ring oper-
ations for degree n = 32768. A modular implementation for all building blocks
required in polynomial ring based fully homomorphic schemes is presented and
used to instantiate the somewhat homomorphic encryption scheme YASHE. The
implementation provides a fast polynomial operations unit using CRT and NTT
for multiplication combined with an optimized memory access scheme, a fast
Barrett like polynomial reduction method, an efficient division and rounding
unit required in the multiplication of cipher-texts and an efficient CRT unit.
Despite its performance gain, the implementation of the architecture in[17] on
Xilinx Virtex-7 XC7V1140T FPGA uses less than 50% of the FPGA resources
available. The complexity of the NTT algorithm for very large polynomial de-
grees leads to routing congestion, limiting the butterfly cores that can be used.

The main contribution in this paper is a modified version of the cached-FFT
algorithm suitable for multi-core environments with distributed memories, which
enables executing the NTT algorithm with time complexity of O(

√
N log

√
N)

(Section 3). This algorithm inspired the design of the multi-core processor ar-
chitecture presented in Section 4, which has been implemented on FPGA. The
AES-128 and SIMON-64/128 circuits have been homomorphically evaluated us-
ing the LTV and YASHE schemes (Section 5). The AES-128 circuit has been
evaluated in 4 minutes using the LTV scheme, with parameters that enable
processing 2048 blocks in parallel, leading to an amortized performance of 117
ms. To the best of our knowledge this is the fastest performance result for the
homomorphic evaluation of the AES circuit.

2 Background

2.1 LTV

The LTV scheme (Lopez-Tromer-Vaikuntanathan Leveled Fully Homomorphic
Encryption Scheme) [7] was introduced in 2012 as the first fully-fledged fully
homomorphic encryption scheme based on NTRU. It works in the ring R =
Z[x]/f(x), where f(x) is the d-th cyclotomic polynomial. The plain-text space is
Rt, where t is small (typically, t = 2) and the cipher-text space is Rq, where q is
a large integer (a more than 1000-bit integer). The scheme is described below as
an example of the ring-based SHE schemes. It is also used in the evaluation of
the proposed architecture. In this paper, only the routines of the scheme related
to homomorphic function evaluation are discussed1, which are:

1. LTV.Add:

To add two ciphertext c
(i)
add = c

(i)
1 + c

(i)
2 is computed.

1 For the complete list of routines included in the LTV scheme, refer to [7]

3

2. LTV.Mult:
To multiply two ciphertext c

(i−1)
mult = ModSwitch(Relinearize(c

(i)
1 ∗ c

(i)
2)) is

computed. To relinearize (switch the key of) a ciphertext, c(i) = Στζ
(i)
τ c

(i−1)
τ

is computed, where c(i−1) = Στ2τ c
(i−1)
τ . To perform modulus switching,

c(i) = b qi
qi−1

c(i)e2 is computed, where b·e2 means matching parity bits.

Parameter Set The parameter set used in this paper to evaluate the LTV
scheme is the same parameter set used in [18] and is presented in Table 1.

d n = Φ(d) log2(q) ra lb

65536 32768 1271 16 41

Table 1: The parameter set used to evaluate the LTV scheme

a The relinearization window[18]
b Number of levels

2.2 YASHE

The YASHE scheme (Yet Another Somewhat Homomorphic Encryption Scheme)
[3] was introduced in 2013. It works in the ring R = Z[x]/f(x), where f(x) is
the d-th cyclotomic polynomial. The plain-text space is Rt, where t is small
(typically, t = 2) and the cipher-text space is Rq, where q is a large integer (a
more than 1000-bit integer). The scheme is described below as an example of the
ring-based SHE scheme. It is also used in the evaluation of the proposed archi-
tecture. In this paper, only the routines of the scheme related to homomorphic
function evaluation are discussed2, which are:

1. YASHE.Add(c1, c2):
Return c1 + c2 ∈ Rq.

2. YASHE.Mult(c1, c2, evk):
Return c =YASHE.KeySwitch(c0, evk) with c0 = b tq c1c2e ∈ Rq. The KeySwitch

operation returns 〈WordDecompw,q(c), evk〉 ∈ Rq, where 〈·, ·〉 is the inner
product of two vectors and WordDecompw,q(a) means decomposing a into
its base w components (ai)

u
i=0) such that a =

∑u
i=0 aiw

i.

Parameter Set In [14] a group of parameters for the YASHE scheme have been
presented with the results of their software implementations and security analy-
sis. In this paper, we use the same parameter set used in [17], which is parameter
set III in [14]. Table 2 presents the values of parameters in this parameter set.

2 For the complete list of routines included in the YASHE scheme, refer to [3]

4

d n = Φ(d) log2(q) log2(w)

65536 32768 1225 205

Table 2: The parameter set used to evaluate the YASHE scheme

2.3 Chinese Remainder Theorem

During a homomorphic operation, computations are performed on polynomials
of degree 215 or 216, and coefficients consisting of thousands of bits. In [19], the
authors failed to synthesize a 1040-bit parallel multiplier. In addition, synthe-
sizing such a large multiplier will lead to a large critical path and low operating
frequency. In order to overcome this issue, the Chinese Remainder Theorem and
Residue Number System are used. CRT has proven to be efficient in several
FPGA implementations, such as [17], [18], [20], [21] and [22].

In [17], the authors showed how apply the CRT in a similar way to how it is
used in RSA cryptosystems. Two moduli are chosen, q and Q as the product of
many small prime moduli qi, such that q =

∏l−1
i=0 qi and Q =

∏L−1
i=0 qi, l < L. Any

computation in Rq can be converted into l computations in Rqi . Additionally,
if Q ≥ q2, then an operation in R can be regarded as an operation in RQ as
long as the coefficients of the inputs are less than q. Hence, the polynomial
multiplication step in the YASHE.Mult operation, which is performed in R, can
be performed as L polynomial multiplications in Rqi . The moduli q used in this
paper for modular operations of both the YASHE and LTV schemes are the
product of 41 30-bit and 32-bit primes, respectively. In addition, the polynomial
multiplication in YASHE is performed in R instead of Rq. In order to make use
of the NTT algorithm for polynomial multiplication, it is performed in RQ where
log (Q) ≥ 2 log (q). In this paper, Q is a product of 84 30-bit primes.

2.4 Cached Number Theoretic Transform

Although the complexity of straight-forward implementation of polynomial mul-
tiplication is O(n2), it can be decreased to O(n log n) using the Number Theo-
retic Transform (NTT), which is the Fast Fourier Transform (FFT) defined over
a finite field or ring. A detailed discussion of the NTT algorithm can be found
in[20]. The bottleneck of NTT hardware design is represented in the external
memory access frequency. It ranges from loading and storing coefficients in the
external memory after each butterfly operation to loading the entire polynomial
inside the on-chip data cache, and computing the whole operation at once. Al-
though it is tempting to choose the latter option, it was shown in [17] that due
to the increasing gap between addresses accessed simultaneously by the NTT al-
gorithm, different cores need to access each others caches, which leads to routing
congestion.

In order to overcome this problem, the cached-FFT algorithm presented in
[23] is used. It was proposed to enhance FFT performance on devices with hi-
erarchical memory systems. The idea behind the algorithm is to load as many

5

coefficients as possible into the data cache and perform as many butterflies as
possible on this set of coefficients. The operations between 2 memory access op-
erations are called an epoch. In this paper, the 2-epoch implementation of the
cached-FFT algorithm [23] is chosen, where the N -point NTT is computed using
a series of

√
N -point NTTs.

3 Parallel Cached NTTN

While the NTT algorithm can be used to speed up polynomial multiplication
over rings from O(N2) to O(N logN), it can still be time consuming for large
values of N (e.g. for N = 216, N logN = 219 = 524, 288). In order to further
speed up the computations, a parallel NTT algorithm is needed. In [18] and
[17], the authors tried to adapt the iterative NTT algorithm to a multi-core
environment. However, the performance gain for 216-point NTT on a 128 or 256
cores environment was not as expected due to bottlenecks in memory access.

In order to overcome these bottlenecks, a parallel-NTT algorithm is pro-
posed. The proposed algorithm targets a specific processing environment with
configurations that match the requirements of the algorithm. For an application
that uses an N -point NTT algorithm, the proposed environment consists of

√
N

processing tiles. Each tile includes, but not restricted to:

1. A 3
2

√
N -location data cache.

2. A
√
N -location twiddle factors cache.

3. A butterfly data path (a modular multiplier, modular adder and modular
subtractor).

The idea behind the proposed algorithm, Algorithm 1, is to treat each tile as
a separate 2-epoch cached-NTT processing element (For a complete description
of the cached NTT algorithm, refer to [19], [23] and [24]). However, instead of
writing the coefficients back to the external memory, a simple 4

√
N -channel ring

network on chip with 2 4
√
N switches is used to reorder the coefficients in time

O(
√
N).

3.1
√
N-point NTT (NTT√

N)

Algorithm 2 is a modified version of the compact memory efficient NTT algo-
rithm proposed in [20]. The main contribution in [20] is an advanced memory
addressing scheme that enables packing the two coefficients related to the same
butterfly into one memory location, such that there is only one read and one
write memory accesses during a butterfly. These two coefficients are A[k+j] and
A[k+ j+m/2]. The idea behind the algorithm is simple; since in the outer-most
loop mi+ 1 = 2∗mi, the coefficient A[k+ j] should be packed with A[k+ j+m]
for the next iteration. Therefore, the next butterfly executed is that between
A[k+ j+m] and A[k+ j+3∗m/2]. While the algorithm in [20] is well-suited for
memory constrained devices, it needs two modification to fit in our algorithm:

6

Algorithm 1 Parallel NTTN
Input: Polynomial a(x) ∈ Zq[x] of degree N − 1, Array ω[N/2 ∗ log (N) − 1 : 0] of

pre-computed twiddle factors
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)
A(x)← bit reverse(a(x))
for i = 0 to 1 do

for j = 0 to
√
N − 1 do

NTT√
N (a[(j + 1) ∗

√
N − 1 : j ∗

√
N], w[i ∗

√
N + (j + 1) ∗

√
N/2 − 1 :

i ∗
√
N + j ∗

√
N/2]);

end for
Reorder;

end for

1. In our algorithm, Algorithm 2 acts as the cached-NTT algorithm, which is
used 2

√
N times, twice on each core. The twiddle factors for the first

√
N

times are the same, while they are different for each of the second
√
N times.

To avoid costly twiddle factors calculations, it is assumed that for each core,
the corresponding

√
N ∗ log (

√
) twiddle factors are precomputed.

2. In [20], the final stage of the algorithm does not produce ordered coeffi-
cients. Additionally, it is hard to order them with the memory constraint
in [20]. For example, (A[

√
N/2], A[0]) (stored in Data Cache[0]) should be

swapped with (A[
√
N/2 + 1], A[1]) (stored in Data Cache[1]) and the out-

puts should be stored in Data Cache[0] and Data Cache[
√
N/2]. However,

Data Cache[
√
N/2] holds a value that will be used later. In the proposed

parallel-NTT algorithm, the final loop is not the final stage of the algorithm,
so the coefficients need to be in the correct order. On the other hand, during
coefficient reordering, a core may receive a pair of coefficients targetting a
memory location that holds a pair that should yet be sent to another core.
To solve these two problems, the final loop in Algorithm 2 stores coefficients
in a group of memory locations that are not used by this algorithm, in the
correct order.

3.2 Coefficient Reordering

In this section, the structure and operation of the NoC used for coefficient re-
ordering is described. The 2-epoch N-point cached-NTT the reordering function
works as follows: coefficient i in group j of the first epoch becomes coefficient j
in group i, where i, j ∈ [0 :

√
N − 1].

In order to implement this function, the
√
N are divided into 2

√
N clusters,

each contains 1
2

√
N tiles. Each cluster is responsible for performing reordering

in two steps:

1. Reordering between tiles of the same cluster.
2. Reordering between different clusters.

7

Algorithm 2 Memory Efficient Iterative NTT√N

Input: Polynomial a(x) ∈ Zq[x] of degree
√
N−1, Array ω[(

√
N/2)∗(log (

√
N))−1 : 0]

of pre-computed twiddle factors
Output: Polynomial A(x) ∈ Zq[x] = NTT(a)
A← bit reverse(a(x)) or a(x); /*According to whether the first of second epoch*/
i = 0 or 1/2 ∗

√
N ; /*According to whether the first of second epoch*/

for m = 2 to
√
N/2 by m = 2m do

for j = 0 to m/2− 1 do
for k = 0 to

√
N/2− 1 do

(t1, u1)← (A[k + j +m/2], A[k + j]); /*Stored in Data Cache[k + j]*/
(t2, u2)← (A[k+j+3∗m/2], A[k+j+m]); /*[Data Cache[k+j+m/2]*/
t1 ← t1 ∗ ω[i];
t2 ← t2 ∗ ω[i+ 1];
(A[k + j +m/2], A[k + j])← (u1 − t1, u1 + t1);
(A[k + j + 3 ∗m/2], A[k + j +m])← (u2 − t2, u2 + t2);
Data Cache[k + j]← (A[k + j +m], A[k + j]);
Data Cache[k + j +m/2]← (A[k + j + 3 ∗m/], A[k + j +m/2]);
i = i+ 2;

end for
end for

end for
m←

√
N ;

k ← 0;
for j = 0 to m/2− 1 do

(t1, u1)← (A[k + j +m/2], A[k + j]); /*Stored in Data Cache[k + j]*/
(t2, u2)← (A[k + j +m/2 + 1], A[k + j + 1]); /*[Data Cache[k + j + 1]*/
t1 ← t1 ∗ ω[i];
t2 ← t2 ∗ ω[i+ 1];
(A[k + j +m/2], A[k + j])← (u1 − t1, u1 + t1);
(A[k + j +m/2 + 1], A[k + j + 1])← (u1 − t1, u1 + t1);
Data Cache[k + j +

√
N/2]← (A[k + j + 1], A[k + j]);

Data Cache[k + j +m/2 +
√
N/2]← (A[k + j +m/2 + 1], A[k + j +m/2]);

i = i+ 2;
end for

The algorithm responsible for reordering coefficients between tiles of the same
cluster should read the pair of coefficients stored Data CacheT [12

4
√
I + j], which

are A[
√
N(T + 1

2I
4
√
N) + 2 ∗ j] and A[

√
N(T + 1

2I
4
√
N) + 2 ∗ j + 1] and store

these coefficients in Data Cache(2j)[
1
2

4
√
I + T] and Data Cache(2j+1)[

1
2

4
√
I + T],

where I is the cluster id ∈ [0, 2 4
√
N − 1] and T is the tile id ∈ [0, 12

4
√
N − 1].

If T is even, then the loaded coefficients are stored in the lower part of target
memory location, and vice versa. Since the NoC consists of 4

√
N channels, 4

√
N

can be ordered in parallel.
First, a reordering square matrix O 1

4
4√
N∗ 1

4
4√
N is precomputed. This matrix

is not a unique matrix but it must satisfy the following properties:

1. oij ∈ [0, 14
4
√
N − 1].

8

2. oij 6= oik∀j 6= k.
3. oik 6= ojk∀i 6= j.
4. If oik = j, then oij = k.

The row index i represents the reordering step, while the column index
j = T/2. Each values of j is associated, with two tiles: 2T and 2T + 1. Al-
gorithm 3 describes how this matrix is used to reorder coefficients within the
same cluster I, where CHx represents channel number x of the NoC. The prop-
erties of O ensure that reordering is performed correctly and that the maximum
bandwidth of the NoC is used. After executing Algorithm 3 by all clusters in
parallel, 1

2

√
N 4
√
N coefficients are in their correct place, while the algorithm

consumes time 1
2

4
√
N (The outer loop consumes two steps, as the iterations of

the inner loops are executed in parallel). Algorithm 4 describes how inter-cluster
reordering is performed. Clusters need to exchange (1

2
4
√
N)2 = 1

4

√
N coefficients

between each two of them. However, in order to maximize the throughput of the
NoC, at each step of the algorithm each cluster needs to send a packet of 4

√
N

coefficients. Thus, the communication is organized as follows: at iteration i of
the outermost loop of Algorithm 4, cluster I sends 1

4
4
√
N packets to cluster I+ i

and receives 1
4

4
√
N packets from cluster I + (32 − i). Each packet takes 1 step

to be loaded into the NoC, i steps inside the network and 1
4

4
√
N steps to store

in the correct locations. Notice that each packet can be loaded into the NoC in
parallel as each pair of coefficients is loaded from a different tile. However, each
packet is stored in a single tile.

Algorithm 3 Intra-cluster NTTN Coefficient Reordering

Input: Reordering Matrix O
for i in 0 to 1

4
4
√
N − 1 do

for j in 0 to 1
4

4
√
N − 1 do

CH4j ← Data Cache2j [
1
4

4
√
NI +Oij][0];

CH4j+1 ← Data Cache2j [
1
4

4
√
NI +Oij][1];

CH4j+2 ← Data Cache2j+1[1
4

4
√
NI +Oij][0];

CH4j+3 ← Data Cache2j+1[1
4

4
√
NI +Oij][1];

end for
for j in 0 to 1

4
4
√
N − 1 do

Data Cache2Oij [1
4

4
√
NI + j]← (CH4j+2, CH4j);

Data Cache2Oij+1[1
4

4
√
NI + j]← (CH4j+3, CH4j+1);

end for
end for

3.3 Time Complexity Analysis

Algorithm 1, NTTN consists of three main parts, repeated twice:

9

Algorithm 4 Inter-cluster NTTN Coefficient Reordering

for i in 0 to 2 4
√
N − 1 do

for K in 0 to 1
4

4
√
N − 1 do

for j in 0 to 1
4

4
√
N − 1 do

CH4j ← Data Cache2j [
1
4

4
√
N(I + i) + k][0];

CH4j+1 ← Data Cache2j [
1
4

4
√
N(I + i) + k][1];

CH4j+2 ← Data Cache2j+1[1
4

4
√
N(I + i) + k][0];

CH4j+3 ← Data Cache2j+1[1
4

4
√
N(I + i) + k][1];

end for
for s in 1 to i do

advance ring;
end for
for j in 0 to 1

4
4
√
N − 1 do

Data Cache2k[1
4

4
√
N(I − i+ 32) + j]← (CH4j+2, CH4j);

Data Cache2k+1[1
4

4
√
N(I − i+ 32) + j]← (CH4j+3, CH4j+1);

end for
end for

end for

1. NTT√N : has time complexity of O(
√
N log

√
N).

2. Intra-cluster Reordering: has time complexity of O(4
√
N).

3. Inter-cluster Reordering: The number of steps in this part is
∑ 1

4
4√
N

i=0 i +
1
4

4
√
N =

1
4

4√
N−1
2 (2(1

4
4
√
N + 1) + 1

4
4
√
N − 2). Thus, this part of the algorithm

has time complexity of O(
√
N).

Therefore, the overall time complexity of the proposed algorithm is O(
√
N

log
√
N). The dominant part of the algorithm is the NTT√N . When the initial

load and final store operations are added, the complexity becomes O(N).

3.4 Valid values of N

The proposed algorithm works only for N = 24k+8 and needs modifications to
work for any value of N . However, for k = 2, N = 216, which is suitable for the
target applications of FHE.

4 Hardware Architecture

The proposed architecture, shown in Figure 1, targets evaluating FHE schemes
based on Rings of dimension, i.e. the degree of polynomials involved in the NTT
operation is N = 216 − 1. In compliance with Algorithm 1, the architecture
consists of 32 clusters, each cluster consists of 8 tiles. Each tile performs Algo-
rithm 2. Each tile is also capable of performing polynomial addition/subtraction
and coefficient-wise multiplication, in addition to the small CRT, large CRT and

10

Divide-and-Round operations described in [17]. The rest of this section describes
the features of each of the building blocks of the proposed tile in addition to the
NoC switch.

Fig. 1: The overall proposed architecture

4.1 Configurable Arithmetic Unit (CAU)

Each tile includes a configurable arithmetic unit (CAU) is responsible for per-
forming the arithmetic operations used in the evaluated encryption schemes.
These operations are:

1. Modular multiplication, based on Barrett reduction.
2. Barrett reduction.
3. Modular addition/subtraction.
4. The butterfly operation of the NTT algorithm.
5. Modular multiply-and-accumulate (MAC) operations.
6. Serial integer multiplication.

To perform these operations, the CAU unit includes three 32-bit integer mul-
tipliers, two 64-bit integer adders/subtractors and four 32-bit integer adders/subtractors,
in addition to a group of registers. The CAU unit is organized as shown in Figure
2. A group of comparators and multiplexers are used to select the outputs, which
are not shown in Figure 2. Additionally, the signal named barret out refers to
the output of the Barrett reducer.

11

Fig. 2: Configurable Arithmetic Unit (CAU)

4.2 Data Cache

Each tile includes two dual port 64-bit 256 RAMs. The overall size of the avail-
able data cache in the architecture is enough to store four polynomials of degree
216. This makes it possible to perform more than one instruction with reduced
memory overhead. For example, it is possible to perform one complete polyno-
mial multiplication operation, which consists of 2 NTTN , 1 point-wise multipli-
cation and 1 INTTN , with only 2 load and 1 store operations, minimizing the
memory overhead.

4.3 Precomputed Constants

The architecture uses two types of constants:

1. Full width large constants: The constant of the Divide-and-Round operations
(2
q) - The constants of the large CRT operations for both q (41 residues) and

Q (84 residues).
2. 32-bit constants: The NTT operation twiddle factors - The CRT moduli qi

- The Barrett reduction constants xi corresponding to each qi - The INTT
scaling factors N−1modqi - The small CRT constants: 41∗84 to convert from
q to Q.

The full width constants are stored as 32 bit words in a 256 word ROM
in each tile. On the other hand, the 32-bit constants cannot be stored using
the same approach as their number is very large. For example, the small CRT
need 3444 locations, while the NTT/INTT operation requires 86100 locations
for each tile. Instead, each tile includes another 32-bit 1024 word RAM that is
loaded with the 32-bit constants currently being used. A smart way to organize

12

operations to reduce memory overhead is to batch similar operations together.
For example, do as many NTT operations as possible before doing the large CRT
of Divide-and-Round operations.

4.4 Cluster NoC Switch

Each cluster includes a ring NoC switch (shown in Figure 3) and a switch con-
troller. The switch consists of 16 channels, each of 32 bits. It is responsible of
the following operations:

1. Storing the values inside the NoC registers into the local tiles.
2. Loading the NoC registers with values read from the local tiles.
3. Passing the values at the inputs of the switch to its outputs.

Fig. 3: The ring NoC switch

Switch controllers synchronize all the switches to do the same operations at
the same time. Controllers are also responsible for executing Algorithms 3 and
4, where the matrix O4x4 is given by:

O4x4 =


0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


4.5 Memory Interface

The external memory is assumed to be a dual-port RAM. Thus, the clusters
are divided into two groups of 16 clusters each. The 128 tiles in each group
share the same memory bus that is connected to one of the RAM ports. It is the
responsibility of the main CPU to organize data inside the RAM into blocks to be
read by the tiles. This simplifies the amount of logic required by the architecture
in order to interface with the external memory.

13

5 Results and Comparison

The proposed design has been implemented using Xilinx ISE 14.2 Design Suite,
with the target device Virtex-7 XC7VX1140T-2 which is the same device used
in [17] and the largest device in the Virtex-7 FPGA family. The design achieves
an overall utilization ratio of 60%. The amount of resources used is presented
in Table 3. The regularity of the proposed architecture makes it possible to
increase the utilization ratio in comparison to [17]. One sign of this regularity
is percentage of LUT-FF paired registers out of all the registers used (61.6%),
which indicates that most of the registers are placed as closely as possible to the
combinational logic blocks, which simplifies placement and routing, which was
the main problem preventing increasing the utilization ratio in [17]. On the other
hand, a lot of low level optimizations have been performed to make it possible
for the architecture to fit on a single FPGA. These optimizations include:

1. Since the implementation targets the evaluation of both the LTV and YASHE
schemes for the equal dimensions, the NoC switch control unit has been im-
plemented as a micro-coded ROM. This is due to the following observations:
(a) The percentage of unused Block Rams is greater than the percentage of

unused LUTs.
(b) Block Rams are more compact and easier to place in the design than a

logic control unit.
(c) The 32 NoC switches required can be implemented using less than 2%

of Block Rams.
(d) The reordering algorithm is the only algorithm that requires on-chip

communications between different tiles and it can easily be implemented
as a fixed length parametrized microprogram (with the cluster id as a
parameter).

2. Whenever values need to be moved within the external memory, the archi-
tecture relies on the main CPU to perform this task. Each additional mode
of load and store operations in the external memory needs around 100 addi-
tional LUTs of control logic, which corresponds to around 25600 LUTs for
the overall design (3.5% of the available LUTs).

Clock Fre-
quency

Registers LUTs Fully used
LUT-FF
pairs

BRAMs DSP48E1

Value 209 MHz 324736 678368 200032 1600 3072

Percentage 22% 95% 61.6%a 85% 91%

Table 3: The implementation results on Xilinx Virtex-7

a Percentage of LUT-FF paired registers out of all the registers used.

Table 4 shows the time consumed by each of the primitive operations per-
formed by the design. It is noticeable that all operations have been accelerated

14

due to two reasons; the increased clock frequency (e.g. 209 MHz vs. 143 MHz in
[17]) and the increased number of processing cores (256 vs. 128 in [17]). However,
the major gain in the proposed implementation is in the NTT/INTT operations,
with a speed-up factor of 14x. This is due to the asymptotic performance gain of
Algorithm 1. On the other hand, the proposed design achieves 12.25x and 11.5x
speed-up over the design in [18] in both the NTT and large CRT operations
respectively.

Operation Clock Cycles Time Time[17] Timea Time[18]b

ADD/SUB(nc=215) 133 0.63µs 15µsd 111µs

ADD/SUB(n=216) 261 1.3µs 29µs 221.5µs

Point-wise MULT 273 1.31µs 29µs 223.5µs

NTT 4,964 23.8µs 334µs 245µs ∼ 3mse

INTT 5,237 25.1µs 363µs 258.47µs

Small-CRT 209,920 1ms 0.8ms 1.35ms

Large-CRT(l = 41) 1,178,368 5.65ms N/Af 7.75ms 89ms

Large-CRT(l = 84) 2,414,218 11.5ms 19.248ms 15.05ms

Divide-and-Round 3,666,304 17.6ms 19.678ms 23.18ms

Table 4: Timing Results

a With memory overhead
b The design in [18] does not include all the operations implemented in this paper. In

addition, the results published in [18] include the timing performance of dominant
operations.

c Polynomial degree.
d The authors of [17] did not clarify for which degree this result is. The degree n =

215 is used for operations such as YASHE/LTV.ADD, while the degree n = 216

is required for the polynomial multiplication operation. This number is estimated,
because the point-wise multiplication (which consumes the same amount of time) is
used only for n = 216.

e In [18], it is mentioned that 1 polynomial multiplication operation consumes 9.51ms
and consists of 2 NTT transforms, 1 INTT transform and 1 point-wise multiplication.

f This operation is needed for the LTV scheme, which is not evaluated in [17].

Table 5 includes the evaluation results of the YASHE scheme and the time
consumed to evaluate 1 block of the SIMON-64/128. The YASHE.MULT oper-
ation consists of the following steps:

1. The input polynomials are lifted from Rq to RQ using the small-CRT oper-
ation.

2. Polynomial multiplication is computed, using Barrett reduction, which needs
4 NTT operations, 3 INTT operations, 3 point-wise multiplications and 1
polynomial subtraction operation.

3. Large-CRT operation for (l = 84) and divide-and-round operations are per-
formed once.

15

4. Key Switching is performed:

– 22 NTT operations, 22 point-wise multiplications, 21 polynomial addi-
tions and 1 INTT are performed, in addition to 2 NTT, 2 INTT and
2 point-wise multiplications and 1 polynomial subtraction for Barrett
reduction.

The SIMON-64/128 block cipher consists of 44 Rounds, each includes 32
AND Gates and 96 XOR Gates. For comparison purposes, the results in Table 5
exclude the time consumed to load and store coefficients in the external memory.
The proposed architecture is 1.5x faster than the estimates in [17] for evaluating
one block of the SIMON-64/128 faster. Although it has been shown earlier that
the NTT operation is 14x faster on this architecture, other dominant operations
does not experience the same speed up. Additionally, in [17] the divide-and-
round and large CRT operations are executed in parallel, which is not the case
in the proposed architecture. It is also important to mention that it may be
misleading to compare the performance with neglecting the memory overhead,
which can be critical for some operations as shown in Table 4.

Operation Timea Time[17]

YASHE.ADD 25.83µs 172µs

YASHE.MULT 74.51ms 112.025ms

SIMON-64/128 105s 157.731s

Table 5: Evaluation results of the YASHE Scheme and homomorphic evaluation
of the SIMON-64/128 block cipher

a Without memory overhead.

The other scheme that is used to evaluate this architecture is the LTV scheme,
which used to evaluate 1 block of the AES block cipher. Table 6 includes the
evaluation results of the LTV scheme. The LTV.ModSwitch operation consists
of one large CRT operation, where l = 41, followed by a group of polynomial
additions whose number is l− 1, depending on the level of the computation. For
l = 41 the relinearization operation consists of one large CRT operation, 80 NTT
operations, 41 INTT operations and 3280 point-wise addition and multiplication
operations. These results indicate that the proposed architecture achieves a speed
up of ∼11-14x, which is near the gain obtained by the new proposed NTT
algorithm over the design proposed in [18].

The AES circuit evaluated in this paper includes the S-Box design proposed
in [25] and consists of 18448 XOR gates and 5440 AND gates. The homomorphic
evaluation of the AES circuit takes 4 minutes (3.7x faster than the estimates in
[18]), at an amortized AES evaluation time of 117 ms/block. According to the
estimation methodology in [18] and [26], the proposed architecture should have
consumed ∼ 2.4 minutes, which agrees with the 7x speed up factor measured on

16

Operation LTV.ADD LTV.Relinearize LTV.ModSwitch LTV.MULT

Time 4.55ms 36.34ms 7.86ms 72.3ms

Time[18] 526ms 89ms
a

Table 6: Evaluation results of the LTV Scheme

a The results for LTV operations are for the worst-case (Level 0 of the computation)

the level of the LTV scheme. However, it can be easily detected that the difference
between the estimated and measured performance is due to the following factors:

1. The difference in the AES circuits: In [26] and [18], the estimations were done
for a circuit that needed only 2880 relinearization operations, as opposed to
5440 in this paper. It is believed that the performance can be enhanced by
implementing the appropriate circuit/optimizations.

2. The estimation methodology: In [18], the authors provide a rough estimate
for the evaluation time of the AES circuit based on only the number of
relinearizations (AND gates) that should be performed. Despite their high
speed compared to AND gates, the number of XOR gates in the design
affects the overall execution time significantly.

3. The estimation methodology also neglects the 41 polynomial multiplication
operations performed for each AND gate before relinearization.

However, the proposed results show that hardware acceleration is crucial for
accelerating FHE schemes. The overall results for evaluating AES and SIMON-
64/128 on both YASHE and LTV scheme is presented in Table 7.

Algorithm NTT INTT Add Mult lCRT (41) lCRT(84) sCRT DIV Execution Time

YASHE/
AND Gate

1320 375 986 1236 0 1 1 1 461.06 ms

YASHE/
XOR Gate

0 0 0 41 0 0 0 0 4.55 ms

YASHE/ SIMON-64/128 11.14 minutes

YASHE/ AES-128 43.2 minutes

LTV/ AND
Gate (Level
0)

244 164 3280 3280 2 0 0 0 72.3 ms

LTV/ XOR
Gate (Level
0)

0 0 0 41 0 0 0 0 4.55 ms

LTV/ SIMON-64/128 1 minutes

LTV/ AES-128 4 minutes

Table 7: The overall results for evaluating AES and SIMON-64/128 on both
YASHE and LTV schemes using the proposed architecture

17

6 Conclusions and Future Work

In this paper, a new algorithm for executing the NTT operation in distributed-
memory multi-core environments in time O(

√
N log (

√
N)) has been proposed.

An architecture for homomorphic function evaluation using this algorithm has
also been presented. The architecture has been implemented on Virtex 7 FPGA
and has been studied using both the YASHE and LTV FHE schemes. This study
has led to the following conclusions:

1. From a hardware perspective, the LTV scheme is ∼ 10x faster than the
YASHE scheme. This is due to the complex rounding operation used in the
YASHE. MULT operation, which requires polynomial multiplication in R
instead of Rq and a full-width integer division operation for each AND gate
evaluated. Additionally, the performance of the LTV scheme increases with
the increase of circuit level, while the performance of the YASHE scheme is
constant over the whole operation.

2. Although some papers have estimated the time required for different circuits
to be evaluated, the actual practical numbers are sometimes much larger
than these estimates. The reason for this is that the estimation methodolo-
gies sometimes neglect crucial time consuming operations, such as memory
interfacing.

The future work includes evaluating the proposed architecture using ASIC.
While the proposed results show that hardware acceleration can achieve a signif-
icant speed-up over software implementations, the performance is not yet within
the practical bounds (the amortized time for evaluating 1 block of AES-128 takes
117 ms). Our target is to reach an amortized performance of 20 ms per block.
Another direction is to design a multi-FPGA environment. The foreseen chal-
lenge in these direction is to evaluate their cost (in terms of money) as opposed
to the performance gain. On the other hand, the study of performance of FHE
schemes presented in section 5 has to be extended to other schemes, such as
BGV and FV. Additionally, it has to be extended to other types of schemes that
rely on Ring operations, such as [27], which will take the performance of the
bootstrapping operation up to a few milliseconds.

References

1. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homo-
morphisms. Foundations of secure computation 4 (1978) 169–180

2. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC.
Volume 9. (2009) 169–178

3. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Cryptography and Coding. Springer
(2013) 45–64

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapsvp. In: Advances in Cryptology–CRYPTO 2012. Springer (2012)
868–886

18

5. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012 (2012) 144

6. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology–CRYPTO 2013. Springer (2013) 75–92

7. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, ACM (2012) 1219–
1234

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing 43 (2014) 831–871

9. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Public Key Cryptography–PKC 2012. Springer (2012) 1–16

10. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Advances in Cryptology–EUROCRYPT 2012. Springer (2012) 465–
482

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ACM (2012) 309–325

12. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Advances in cryptology–EUROCRYPT 2010.
Springer (2010) 24–43

13. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs, codes
and cryptography 71 (2014) 57–81

14. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
fv and yashe. In: Progress in Cryptology–AFRICACRYPT 2014. Springer (2014)
318–335

15. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The simon and speck families of lightweight block ciphers. IACR Cryptology ePrint
Archive 2013 (2013) 404

16. Costache, A., Smart, N.P.: (Which ring based somewhat homomorphic encryption
scheme is best?)

17. Dimitrov, V., Verbauwhede, I.: Modular hardware architecture for somewhat
homomorphic function evaluation. In: Cryptographic Hardware and Embedded
Systems–CHES 2015: 17th International Workshop, Saint-Malo, France, Septem-
ber 13-16, 2015, Proceedings. Volume 9293., Springer (2015) 164

18. Öztürk, E., Doröz, Y., Sunar, B., Savaş, E.: Accelerating somewhat homomor-
phic evaluation using fpgas. Technical report, Cryptology ePrint Archive, Report
2015/294 (2015)

19. Putnam, A., Macias, A.: Accelerating homomorphic evaluation on reconfigurable
hardware. In: Cryptographic Hardware and Embedded Systems–CHES 2015: 17th
International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings.
Volume 9293., Springer (2015) 143

20. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: (Compact
ring-lwe based cryptoprocessor)

21. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Selected Areas in Cryptography–SAC 2013.
Springer (2013) 68–85

22. Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient fpga implemen-
tations of lattice-based cryptography. In: Hardware-Oriented Security and Trust
(HOST), 2013 IEEE International Symposium on, IEEE (2013) 81–86

19

23. Baas, B.M.: A generalized cached-fft algorithm. In: Acoustics, Speech, and Signal
Processing, 2005. Proceedings.(ICASSP’05). IEEE International Conference on.
Volume 5., IEEE (2005) v–89

24. Baas, B.M.: An approach to low-power, high-performance, fast Fourier transform
processor design. PhD thesis, Citeseer (1999)

25. Boyar, J., Peralta, R.: A depth-16 circuit for the aes s-box. IACR Cryptology
ePrint Archive 2011 (2011) 332

26. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic aes evaluation using ntru. IACR
Cryptology ePrint Archive 2014 (2014) 39

27. Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption in less
than a second. In: Advances in Cryptology–EUROCRYPT 2015. Springer (2015)
617–640

20

