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ABSTRACT: 

 

Hyperspectral LiDAR (HSL) is a novel tool in the field of active remote sensing, which has been widely used in many domains 

because of its advantageous ability of spectrum-gained. Especially in the precise monitoring of nitrogen in green plants, the HSL 

plays a dispensable role. The exiting HSL system used for nitrogen status monitoring has a multi-channel detector, which can 

improve the spectral resolution and receiving range, but maybe result in data redundancy, difficulty in system integration and high 

cost as well. Thus, it is necessary and urgent to pick out the nitrogen-sensitive feature wavelengths among the spectral range. The 

present study, aiming at solving this problem, assigns a feature weighting to each centre wavelength of HSL system by using matrix 

coefficient analysis and divergence threshold. The feature weighting is a criterion to amend the centre wavelength of the detector to 

accommodate different purpose, especially the estimation of leaf nitrogen content (LNC) in rice. By this way, the wavelengths high-

correlated to the LNC can be ranked in a descending order, which are used to estimate rice LNC sequentially. In this paper, a HSL 

system which works based on a wide spectrum emission and a 32-channel detector is conducted to collect the reflectance spectra of 

rice leaf. These spectra collected by HSL cover a range of 538 nm – 910 nm with a resolution of 12 nm. These 32 wavelengths are 

strong absorbed by chlorophyll in green plant among this range. The relationship between the rice LNC and reflectance-based 

spectra is modeled using partial least squares (PLS) and support vector machines (SVMs) based on calibration and validation 

datasets respectively. The results indicate that I) wavelength selection method of HSL based on feature weighting is effective to 

choose the nitrogen-sensitive wavelengths, which can also be co-adapted with the hardware of HSL system friendly. II) The chosen 

wavelength has a high correlation with rice LNC which can be retrieved by using PLS and SVMs regression methods. 
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1. INTRODUCTION 

Nitrogen is an important nutrient element mainly linked to the 

crop photosynthesis. Nitrogen availability is also a 

determinative factor of crop productivity (Van, K. H. et al., 

1989). Adequate supply of nitrogen for crops insure the 

optimized yields, however it can in turn contribute to some 

other issues we should deal with, such as nitrate contamination 

of surface and ground water (Errebhi, M. et al., 1998; Zvomuya, 

F. et al., 2003). Additionally, over-fertilization with nitrogen 

will be a waste of resource and can also increase the cost of 

nitrogen fertilizer. Thus, efficient detection of nitrogen content 

and appropriate management of nitrogen fertilizer of crop in 

both canopy and leaf levels are essential to balance these factors.  

 

In the past decades, the efficient methods of detecting growing 

status of crops is the multi- and hyperspectral remote sensing 

(Dalponte et al., 2013; Schlemmer et al., 2013). This method 

can offer researchers about biochemical parameters of crops 

such as the nitrogen content. Nevertheless, this passive 

technology can be effected by outside illumination conditions 

and is strongly sensitive with its change (Nevalainen, O. et al., 

2013). In addition, the growing structure which is another 

important parameter used to indicate the crop growing status, 

can not be got by this method. LiDAR has been used in many 

fields since the laser has been first introduced. It can be a 

powerful tool for crop structure and biomass detection because 

it can penetrate the crop canopy and receive some more useful 

information reflected by numerous layers of crops (Morsdorf et 

al., 2006). However LiDAR with only single wavelength is 

weak in collecting spectral properties, which limits its 

application in estimation of crop biochemical parameters. In 

recent years, attempts to combine the passive multi- and 

hyperspectral remote sensing technologies and LiDAR have 

been made in the field of remote sensing for precision nitrogen 

management (Wei, Gong et al., 2012; Nevalainen, O. et al., 

2014; Niu Zheng et al., 2015). 

 

Combining these two technologies requires different types of 

instruments such as the laser sources, waveform receiving 

components, which maybe increase the development cost of a 

new attempt to estimate the crop nitrogen content. Du Lin et al. 

(Du Lin et al., 2016) developed a hyperspectral LiDAR (HSL) 

by using a laser with wide spectrum range of about 600 nm to 

2000 nm, and 100 mW average out-put power, which was 

applied in some practical fields, such as in estimating the 

vegetation nitrogen content. This HSL system has a multi-
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channel detector for receiving echo signals and can precisely 

measure distance and abundant spectral properties.  

 

Although this HSL system has a wide emission range, receiving 

all of those echo is usually difficult and unnecessary. Seeing 

from the biological knowledge, the reflectance spectrum can 

perform different properties in visible and infrared bands 

dependent on the absorption and reflectance ratio by 

chlorophyll (a and b). In addition, the so-called＂red-edge＂
located in 700 nm can be more useful for detection of crop 

nitrogen content (Gitelson et al., 1996). Thus, selecting some 

nitrogen-sensitive wavelengths from these feature spectral 

ranges can be a efficient method of finding the great potential 

and flexibility of HSL in biochemical parameters estimation. 

 

In this study,  a wavelength selection method based on feather 

weighting (Huang, Rui et al., 2005) is proposed to characterize 

each channel of the HSL system. By this way some feature 

wavelengths related to nitrogen content can be picked up. This 

wavelength selection method can avoid some inherent 

limitations of the HSL hardware, such as signals obstructing  by 

a geometry gap of the detector,＂edge effect＂of the detector 

channel and the signals interference in the adjacent or even the 

same channel. The regression results by using PLS and SVMs 

methods indicate that wavelength selected based on the feather 

weighting algorithm is strongly sensitive with nitrogen content 

and these feature wavelength can be used to estimate leaf 

nitrogen content (LNC) of rice. 

 

2. MATERIALS AND METHODS 

2.1 Materials and experiments 

The rice samples were grown in an agricultural production base 

located in SuiZhou city of China. Reflectance spectral 

properties of rice leaf differ from one growing stage to another 

after fertilization, especially in the stage of booting and heading. 

Thus, 240 samples (120 samples each stage) in these two stages 

were collected on July 16, 2014 and August 1, 2014 

respectively.  

 

The instrument used to collect reflectance spectrum of rice in 

leaf level is the HSL system developed by Du Lin et al (Du Lin 

et al., 2016). The HSL emits a wide-band “white” laser and 

collected echo signals with a high-precision grating 

spectrometer. The rice leaf samples are measured with 32 

channels whose centre wavelength are listed in Table 1. 

Reflective factor (RF) of a white reference panel (>99% 

reflectance, Spectralon, Labsphere, Inc., North Sutton, NH) is 

first captured, then getting the reflectance of the rice leaf 

samples calculated as Rλ=leaf radiance / reference reflectance 

radiance at wavelength λ. Three separate spectra are measured 

and averaged as the characteristic spectra of each sample in a 

dark laboratory condition. On the same point of each 

measurement, five separate scans are made. After that the 

nitrogen contents of rice leaf samples are measured with a 

chemical extraction solvent. 

 

Channel 

number 

1 2 3 4 5 6 7 8 

Central 

wavelength 

(nm) 

538 550 562 574 586 598 610 622 

Channel 

number 

9 10 11 10 13 14 15 16 

Central 

wavelength 

(nm) 

634 646 658 670 682 694 706 718 

Channel 

number 

17 18 19 20 21 22 23 24 

Central 

wavelength 

(nm) 

730 742 754 766 778 790 802 814 

Channel 

number 

25 26 27 28 29 30 31 32 

Central 

wavelength 

(nm) 

826 838 850 862 874 886 898 910 

Table 1. Central wavelengths of the HSL system. 

 

2.2 Feature weightings for each channel of HSL system  

The wavelengths position located on the detector array is related 

to the type of grating spectrograph and the blazed wavelength of 

the grating. By controlling the rotator of  the grating, 

wavelengths will be adapted to the detector channel well. 

Meanwhile, some other factors should be considered when 

using this HSL system in practise. The first considerable factor 

is that some sensitive wavelengths appear near the edge or be 

obstructed by the inherent gap of the detector array. Another is 

the signals interference from the neighbour or even the same 

channel. To solve these problems above, a wavelength selection 

method based on the feature weighing (Huang, Rui et al., 2005) 

is adopted in this study. By characterising each channel of HSL 

system with their corresponding feature weightings, the 

wavelengths being adverse to spectrum collection will be 

replaced by those that have a high feature weighting.  

 

The feature weighting is calculated in two steps. The first is to 

calculate the divergence (D) of the same classes. Because the 

first principal components have explained the most information 

of the target, thus D can be modified as 

 

1

( )
N

r

D D r


 
                                     (1) 

 

where   N = channel number  

 ( )D r = divergence of the rth channel, ( 1,2,3...r N ) 

    = function related to the rth eigenvalue of 

correlation matrix of this class 
 

Secondly, calculate the feature weighting of each wavelength in 

this class.  
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where   ( )
j

D j

D
 

 = ratio of divergence, 1,2,3...j N  

    
rjU = a eigenvector matrix element of the correlation 

matrix of the cth class, 1,2,3...c n   

 
Equation (2) expresses the significant coefficient of the 

band r corresponding to class c, which is then sorted in a 

descending order. Seeking the rth channel position in this 

descending sequence in all classes (the number of class is n), 

the rth channel feature weight can be written as  
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where   r

cV  =  position of band r in the descending sequence 

( )c r  of class c.  

 
In this study, the wavelengths with a higher ( )r represent that 

this wavelengths are high correlated to LNC, and then they will 

be used to estimate the nitrogen status of rice. 

 

2.3 Regression methods 

Vapnick’s theory stated that SVMs could find a hyper-plane 

which was not only used to separate all of classes but also used 

for regression problems with a function (Vapnick, Vladimir N., 

1998). A small corresponds to a small regression error, which 

can be optimised by choosing penalty parameter(c) and the 

kernel parameter( ) in the sets [-5, -4,…, 0,…, 4, 5] and [-10, -

9,…, 0,…, 9, 10] respectively. Unlike SVMs, PLS is based on 

the principal component analysis (PCA), and it relates the input 

variables (X) and the responding variables (Y) with a linear 

relationship using a few independent principal components 

(PCs) (P. Hansen et al., 2003; Li Fei et al., 2014).  

 

3. RESULTS AND DISCUSSION  

Nitrogen effects the process of vegetation photosynthesis, and is 

also related to chlorophyll synthesis. Thus, in different nitrogen 

levels, the reflectance spectrum of rice leaf are different 

(Gitelson et al., 1996; Broge and Leblanc, 2001; Zhu et al., 

2008). According to this relationship, LNC of rice can be 

retrieved from reflectance spectra collected by the 32-channel 

HSL system. Figure 1 shows the reflectance spectrum in visible 

and near infrared band collected by this HSL system. The 32 

channels position showed in Figure 1 is separated with dashed 

lines.  

 

 
 

Figure 1.  The reflectance spectrum and the channel position of 

the HSL system. 

 

Figure 2 shows the coefficient of determination (R2) between 

the observed and estimated LNC by using SVMs and PLS 

methods after selecting feature wavelengths from 32 

wavelengths of the HSL system. The results indicate that these 

selected feature wavelengths are high correlated to LNC of rice, 

and they can be used  to estimate biochemical parameters, 

especially the nitrogen. Generally, the R2 of regression models 

are > 0.7 with PLS and >0.9 with SVMs. 

 

 
(a)   

 
(b) 

 

Figure 2.  R2 and RMSE of estimation models using SVMs and 

PLS to estimate the LNC of rice in (a) booting and (b) heading 

stages. 

 

Du Lin et al. (Du Lin et al., 2016) adopted SVMs to retrieve 

rice LNC and the R2 of retrieval models could be more than 0.7 

by using all of the feature wavelengths. According to the 

method of wavelength selection introduced in this study, 32 

feature wavelengths are characterised with their corresponding 

feature weightings. Instead using  all of the feature wavelengths, 

those with a higher weighting are chosen as the inputs of 

regression models. Both in the booting and heading stages, 

SVMs with BRF kernel function behave great ability in 

estimating rice LNC, namely, R2=0.963, RMSE=0.093 in 

booting stage, and R2=0.932, RMSE=0.1 in heading stage. In 

addition, the predicted LNC values disperse on both sides of the 

1:1 line, which means that SVMs and PLS models with the 

characterised wavelengths have a higher reliability in rice LNC 

estimation. The maximum R2 of PLS models are >0.8. 

Compared with the results of PLS models, it can be found the 

SVMs with RBF function show a good estimation performance 

of rice LNC, thus a non-linear relationship maybe more suitable 

between the LNC and reflectance spectrum.  

 

Some wavelength being poorly correlated with the rice LNC 

will not be helpful for LNC retrieval, thus they have been 
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picked up when modeling the relationship between LNC of rice 

and reflectance spectrum. The remaining feature wavelength 

combinations with high feature weightings are conducted to 

estimate the rice LNC. After experiments the chosen 

wavelength combinations using SVMs method with a R2 of >0.8 

in booting stage are 754 nm and 694 nm. In heading stage, 910 

nm and 634 nm can be used to retrieve LNC of rice with a R2 

of >0.9. When using the PLS method with a maximum R2, the 

wavelength combinations become 682 nm,  850 nm,  754 nm,  

838 nm,  802 nm,  634 nm,  658 nm,  730 nm, 646 nm in 

booting stage and 910 nm,  589 nm,  802 nm,  838 nm,  706 nm,  

622 nm,  874 nm,  646 nm,  586 nm,  682 nm,  658 nm,  610 

nm, 694 nm in heading stage. These bands located in visible 

and near-infrared range, in which exists strong absorption by 

chlorophyll of green plant.  

 

These results indicate that although the centre wavelengths of 

HSL are chosen based on the sensitivity to LNC of rice, we can 

pick up some of them to estimate LNC without decrease the 

retrieval accuracy using a weighting criterion. Thus, the 

selection method of feature wavelength introduced in this study 

are efficient for finding nitrogen-sensitive bands for LNC 

retrieval. As we all known, chlorophyll in plant is also an 

important indicator of crops growing status, and the nitrogen 

content and chlorophyll are linked each other, so to find some 

spectral indices related to chlorophylls absorption maybe 

helpful in LNC estimation. Besides, the relationship between 

LNC and reflectance spectrum is complex, a typical model, such 

as the PROSPECT (Gastellu-Etchegorry and Bruniquel-Pinel 

2001; Tucker, 1979) maybe tell us more about the biophysical 

process in plant.  

 

In the future, HSL will be developed and applied in many more 

fields because of its flexibility and great advantage of spectrum 

collection combined with structure parameters of the targets. 

Like the passive remote sensing technology, such as some 

airborne sensors, MODIS and AVHRR, HSL may be carried by 

a airborne platform and used for global environment monitoring. 

 

4. CONCLUSION 

HSL system has great potential in LNC estimation of rice. This 

study assigns a feature weighting to each channel of HSL 

system by using matrix coefficient analysis and divergence 

threshold. By re-ranking the feature wavelength of HSL system, 

the wavelengths high-correlated to the LNC will be used to 

estimate rice LNC sequentially by the means of SVMs and PLS 

regression.  The experiment gain a R2 of >0.8, which shows that 

these chosen wavelength has a high correlation with rice LNC, 

and the wavelength selection method of HSL based on feature 

weighting is effective in choosing the nitrogen-sensitive 

wavelengths, which can also be co-adapted with the hardware of 

HSL system friendly.  
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