Analysis of a Secure and Verifiable Policy Update
Outsourcing Scheme for Big Data Access Control in the
Cloud

Wei Yuan

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences, Beijing 100093, China. Email: yuanwei@iie.ac.cn

Abstract. How to flexibly change the access policy after the initial data access policy has
been set is a critical problem to promote attribute-based encryption (ABE) from a theoret-
ical tool to a practical tool. Since the first ABE scheme emerges, many schemes have been
proposed to solve the problem but the problem remains unsolved yet. The reason is that
the overheads of changing an old access policy to a new one are larger than that of gener-
ating a ciphertext with the new access policy directly. Recently, in IEEE Transactions on
Parallel and Distributed Systems (DOI:10.1109/TPDS.2014.2380373), Yang et al. proposed a
multi-authority ciphertext-policy (CP) ABE scheme with ciphertext updating function. The
authors declared that the access policy of the ciphertext can be dynamically modified with
the old ciphertext and the scheme is correct, complete, secure, and efficient. However, after
revisiting this paper, we found that the scheme is not correct under the system model defined
by the authors. Some necessary algorithms are missing such that users cannot decrypt the
updated ciphertexts. Moreover, if new algorithms are added into the system model to ensure
that the scheme is correct, complete, and secure, the scheme will be not as efficient as the
authors declared. Consequently, the scheme fails to achieve the claimed results.

Keywords: Access Control, Attribute-based Encryption, Policy Updating

1 Introduction

Attribute-based encryption is a promising technique to control access policy for the data
stored on remote cloud servers. However, when the data access policy needs to be updated,
the efficiency of current policy update methods [1, 2] cannot satisfy practical demands. Data
owners have to retrieve their data from the cloud servers and re-encrypt them under the
new access policy, and then upload them back to the cloud server. Many computation and
communication resources are wasted in this procedure. Recently, Yang et al. proposed a new
ciphertext update scheme [3] based on a multi-authority CP-ABE scheme [4]. The authors
declared that their scheme enable efficient access control with dynamic policy updating.
The ciphertext corresponding to the new access policy can be directly transformed from
the old ciphertext with the old and the new access policies and the scheme is correct,
complete, secure, and efficient. However, they do not provide the strict proof to show the
claimed properties. Only some informal explanations were given. In this paper, we show
that the scheme proposed in [3] is not correct under its system model. It lacks necessary
algorithms to achieve the claimed properties. If the necessary algorithms are added, the
scheme will be not as efficient as the authors declared.



2 Brief Review of the Scheme

There are four kinds of entities in the scheme [3]: Authorities, the cloud server, data owners
and users.

An authority generates public/secret key pairs for the attributes in its domain and
provides secret keys for users. The cloud server stores data and updates ciphertexts for
changing the data access policy. A data owner generates ciphertexts for his/her data and
provides ciphertext update keys for the cloud server. A user is able to freely get ciphertexts
from the cloud server and tries to obtain corresponding data with his/her own secret key.

The scheme includes 5 phases: System Initialization, Key Generation, Data Encryption,
Data Decryption and Policy Updating.

During the system initialization phase, the global setup algorithm and the authority
setup algorithm are executed. The global setup algorithm outputs the global parameters
for all the other algorithms. Then the authority setup algorithm generates the public/secret
key pairs of the authority. During the key generation phase, the key generation algorithm
is executed to output a secret key for each user. During the data encryption phase, the
encryption algorithm is executed to generate ciphertext from the data under the given
access policy. During the data decryption phase, the ciphertext is decrypted to recover the
data. Above 4 phases are the same as in [4].

During the policy updating phase, the update key generation algorithm and the cipher-
text updating algorithm are executed. The update key generation algorithm produces the
update key with the old and the new access policies as well as some random numbers kept
in the encryption phase and then the update key is used as the input of the ciphertext
updating algorithm to update the ciphertext. Due to the limited space, we do not list the
details of [3] in this paper.

3 Analysis of the Scheme

First, the scheme is not correct under the current system model defined in section 2. In the
data encryption phase described in section 3.4, a group of constants (¢;) € Z, should be
chosen to ensure ) . ¢;M; = (1,0,---,0) such that the decryption result is correct. If the
ciphertext is generated by the encryption algorithm, the condition is easy to be satisfied. For
the ciphertext generated by the ciphertext updating algorithm, the authors declared that
the constant ¢, 1, which corresponds to the newly added attribute x,1, can be obtained
by ¢nt1 = ¢j/an, for the Attr20R operation and can be obtained by ¢,41 = —¢;j/an, for the
Attr2AND operation in section 6.1. However, a,, is a random number chosen by the data
owner as a part of the update key UK, for the data m (described in section 4.1). In section
2, the system model clearly indicates that UK, is generated by the data owner with the
update key generation algorithm and transmitted to the cloud server as the input of the
ciphertext updating algorithm. That is to say, users do not know a,,. As a result, users
cannot compute c,4+1 and decrypt the updated ciphertexts with the decryption algorithm
defined in section 3.4. The correctness proof in section 6.1 fails under the system model
defined in section 2.



Second, the system model is not complete. In the encryption algorithm of [4], > . ¢;M; =
(1,0,---,0) is to ensure ) . c;A\; = s and ), c;w; = 0. The encryption algorithm in [4] is
directly re-used in [3] and the policy updating algorithm is constructed on this ciphertext
structure. The operation Attr20R adds a new ciphertext component C,41 corresponding
to the new attribute x, 1. The random number a,, and two new shares A\, ;1 = an,-Aj and
W41 = am-wj are introduced to generate C, 1. To let ¢;j\; equal ¢,,41 A1 and cjw; equal
Cn+1Wn+1 such that the decryption succeeds, the authors define ¢, 1 = ¢;/ap,. Similarly, the
authors define ¢,41 = —c¢j/an, to let the decryption succeed for the operation Attr2AND.
However, users do not know the random number and new shares. Consequently, a user-key
update key transmission algorithm is missing in the system model.

Suppose a ciphertext is generated with an access policy (A and z;) by the encryption
algorithm and a user Alice is exactly able to decrypt the ciphertext. If the data owner
adds an attribute z,.1 to the access policy with Attr2AND or adds an attribute 1 to
the access policy with Attr20R and then removes the attribute z; from the policy with
AttrRmOR, Alice should lose the ability to decrypt the new ciphertext. However, if Alice
receives U K, as the cloud server, she is able to transform the new ciphertext component
Ch41 back to C; with UK, and thus recovers her decryption ability. Then, the scheme is
not secure. That is to say, the user-key update key should be different from the ciphertext
update key UK,,. Therefore, a user-key update key generation algorithm and a secure
ciphertext update key transmission algorithm are missing in the system model.

Actually, the original constants (¢;) are decided by the access policy and the attribute
set in LSS schemes [5]. These constants are chosen independently. However, the added
constants are dependent on some existing constants in [3]. Thus, the updated ciphertext
should be given a clear indication that which attributes are updated. In such a way that
users are able to know which constants should be obtained from the access policy and
the attribute set and which constants should be obtained from existing constants. As a
result, another decryption algorithm to decrypt the ciphertexts generated by the ciphertext
updating algorithm is missing in the system model.

Third, the scheme is not as efficient as the authors declared. If the authors modify the
system model and add the algorithms mentioned above such that the correctness condition
is satisfied, the efficiency of the scheme should be in the same level as the attribute-based
proxy re-encryption (ABPRE) schemes [1, 2]. The difference is that ABPRE mainly updates
ciphertext while the scheme in [3] mainly updates secret key. ABPRE produces ciphertext
update keys by means of user secret keys and generates new ciphertexts according to the
ciphertext update keys. Then the user secret keys do not change. The scheme in [3] only
generates a ciphertext update key and updates the ciphertext employing it. But each league
user needs a new user-key update key to decrypt the new ciphertext. That is to say, each
time the ciphertext is updated in [3], a new ciphertext update key should be given to the
cloud server and new user-key update keys should be given to all the league users in the
system. To avoid the overheads of transmitting and re-encrypting the ciphertext, many
update keys (in the same level of the number of the users in the system) need generating
and transmitting. Since transmitting update keys needs private channels between the data



owner and the users, the efficiency of the scheme is not better than that of the previous
methods. We believe that the scheme cannot be efficient as the authors declared even if it
can be modified to satisfy the claimed properties of correctness, completeness, and security.

4 Conclusions

We analyzed the CP-ABE scheme proposed by Yang et al. and showed that their scheme
is not correct. Even if the scheme can be modified to satisfy the claimed properties of
correctness, completeness, and security, it cannot be efficient as the authors declared. Thus,
the problem of flexibly changing access policy after the initial data access policy has been
set is still open.

References

1. K.T. Liang, L.M. Fang, W. Susilo, D. S. Wong, “A Ciphertext-Policy Attribute-Based Proxy Re-
encryption with Chosen-Ciphertext Security,” INCoS 2013: 552-559.

2. S. Yu, C. Wang, K. Ren, “Attribute Based Data Sharing with Attribute Revocation,” ACM ASIACCS
2010,pp.261-270, 2010.

3. K. Yang, X.H. Jia, K. Ren, “Secure and Verifiable Policy Update Outsourcing for Big Data Access
Control in the Cloud,” IEEE Trans. Parallel Distrib. Syst., vol.26, no.12, pp.3461-3470, 2015.

4. A. Lewko and B. Waters, “Decentralizing Attribute-Based Encryption,” EUROCRYPT 2011, LNCS
6632, pp.568-588, 2011.

5. A. Beimel, “Secure Schemes for Secret Sharing and Key Distribution,” PhD thesis, Israel Institute of
Technology, Technion, Haifa, Israel, 1996.



