
Accelerating Homomorphic Computations on

Rational Numbers
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Abstract

Fully Homomorphic Encryption (FHE) schemes are conceptually very
powerful tools for outsourcing computations on confidential data. How-
ever, experience shows that FHE-based solutions are not sufficiently ef-
ficient for practical applications yet. Hence, there is a huge interest in
improving the performance of applying FHE to concrete use cases. What
has been mainly overlooked so far is that not only the FHE schemes them-
selves contribute to the slowdown, but also the choice of data encoding.
While FHE schemes usually allow for homomorphic executions of alge-
braic operations over finite fields (often Z2), many applications call for
different algebraic structures like signed rational numbers. Thus, before
an FHE scheme can be used at all, the data needs to be mapped into the
structure supported by the FHE scheme.

We show that the choice of the encoding can already incur a significant
slowdown of the overall process, which is independent of the efficiency of
the employed FHE scheme. We compare different methods for represent-
ing signed rational numbers and investigate their impact on the effort
needed for processing encrypted values. In addition to forming a new
encoding technique which is superior under some circumstances, we also
present further techniques to speed up computations on encrypted data
under certain conditions, each of independent interest. We confirm our
results by experiments.

This work is the extended version of ([23], DOI 10.1007/978-3-319-39555-5 22, Springer
copyright). It differs in several key aspects: Operations are discussed in much greater depth
and explained through examples, we show how to derive the theoretical formulas we give,
further concrete numbers are presented, and we explicitly show how to transform a function
into a boolean circuit. We also extended the background on Machine Learning to make this
paper more easily accessible and show how to reduce redundancy in multiplication through
concrete formulas.
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1 Introduction

Fully Homomorphic Encryption (FHE) is a very promising field of research be-
cause it allows arbitrary computations on encrypted data. This means that
data can be outsourced securely (e.g. into the cloud) without sacrificing func-
tionality, as any operation one would like to perform on the data can also be
performed on the encrypted data by a third party without divulging informa-
tion. With a powerful enough encryption scheme, this third party may even
apply its own proprietary algorithm, like a machine learning algorithm, to the
encrypted data such that the result divulges nothing about the algorithm that
was applied except for what can be inferred from the result itself - this is the
setting we will assume. While multiparty computation also offers this kind of
confidential computation, it requires frequent interaction between the involved
parties, which seems unfortunate for the goal of outsourcing computation. For
this reason, we instead focus on FHE, which allows a non-interactive solution.
Unfortunately, FHE-based solutions today are still very slow and thus not very
practical. Current FHE schemes are all based on Somewhat Homomorphic En-
cryption (i.e., allow a limited number of operations) and are noise-based. Every
multiplication increases the amount of noise, and if the noise exceeds a certain
threshold, the ciphertexts become undecryptable. There are two approaches
to accommodate arbitrary many ciphertext multiplications in these schemes: In
so-called leveled FHE schemes, one can adjust the encryption scheme to support
a predetermined number of consecutive multiplications (multiplicative depth),
where the scheme becomes slower the larger the depth is. For this reason, mini-
mizing depth is one of our goals in this paper. The other approach for handling
the problems that come with consecutive multiplications, which we opted for
because of very large depths in our use cases, is called bootstrapping. Here, the
ciphertext is “cleaned up” after multiplication, but this operation takes very
long and constitutes the main bottleneck when used. For this reason, minimiz-
ing the total number of multiplications is another of our goals.

Because of these efficiency problems, there is currently much research on
improving the efficiency of the schemes themselves on the one hand, and on
designing algorithms that are particularly suited to FHE, i.e., through minimal
multiplicative depth, on the other hand. While this is certainly a valuable
contribution for some use cases, we feel that in general the algorithms one wants
to perform on the data are predetermined and not up for discussion. At first
glance, this might seem to imply that there is little potential for improvement
apart from improving the schemes themselves, but we show that this is indeed
not the case.

Generally, suppose one has an FHE scheme E = (Gen,Enc,Dec) with plain-
text space M and ciphertext space C, and there is a function g : Mz → M
for some z ∈ N. Then a Fully Homomorphic Encryption scheme promises that
there exists a corresponding function g∗ : Cz → C with

Dec(sk, g∗(Enc(pk,m1), . . . ,Enc(pk,mz))) = g(m1, . . . ,mz).

However, plaintext spaces for encryption schemes are usually some finite
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field GF (pd) for some prime p and power d, so if we want to work with elements
from a different structure S (like the rational numbers), we must first map
them1 to the plaintext space using an encoding π : S →Mk and then perform
a function on the plaintext values that emulates the function on S. For a better
understanding, suppose we have an encryption scheme like above. Then, if we
want to evaluate a function f : Sn → S on encrypted data, we must first turn
f into a function g : (Mk)n →Mk on the plaintext space (whereMk emulates
S) and then execute the function g∗ : (Ck)n → Ck that corresponds to g. This
is illustrated in Figure 1.

Sn S

(Mk)n Mk

(Ck)n Ck

f

g

g∗

π π−1

Enc Dec

Function Space:

Plaintext Space:

Ciphertext Space:

Figure 1: Steps in homomorphic evaluation

As it turns out, there is often no unique function g for a given function f , but
instead several different ones which depend on the chosen encoding function π.
This also means that the most we can aim for in terms of efficiency in evaluating
a function f on encrypted data is not f itself, but rather its emulation g on the
plaintext space. As it turns out, the increase here is not negligible: While the
Perceptron, which we evaluate in Section 6.3 on encrypted data, runs almost
instantaneously (roughly 0.004 seconds) for ten rounds when computing on un-
encrypted rational numbers, the evaluation of the same algorithm emulated on
the plaintext space (i.e., still unencrypted) takes over 120 seconds for the same
parameters even with our most efficient encoding in the plaintext space. This
shows that though largely ignored until now, the overhead that comes from
switching from the function f to g can be substantial and must equally be ad-
dressed to make FHE applications as efficient as possible. Thus, while previous
work on making computations with FHE more efficient has focused primarily
on the area inside the dashed red rectangle in Figure 1, we investigate how to
improve efficiency through the right choice of π and subsequently g, represented
by the solid green rectangle. Motivated by the idea of outsourcing actual data

1For example, if S = {x ∈ Z|0 ≤ x ≤ 7} (i.e., numbers representable by 3 bits) but the
plaintext space of the encryption scheme is only M = {0, 1}, we could map π : S →M3.
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and running existing algorithms on it, we face the challenges of encoding ratio-
nal numbers (as opposed to elements of finite fields or unsigned integers) and
of incorporating basic operations like addition, multiplication and comparison,
which are needed for many popular algorithms.

1.1 Our Contribution

In this paper, we address the above challenges and try to minimize total num-
ber of multiplications (and the multiplicative depth) of g through appropriate
choices in π. We also examine some further optimizations which increase effi-
ciency under certain assumptions and are of independent interest. As a concrete
application, we apply our results to two use cases from machine learning, the
Perceptron and the Linear Means Classifier, and see that the right choice of π
can make a significant difference in terms of multiplicative depth, total number
of multiplications, and in terms of runtime, for which we encrypted the data
with the HElib library. To this end:

• We present a new method for working with encrypted rational numbers
by solving the problem that the number of digits of precision doubles with
each multiplication. We show how to remove the extra digits and bring
the number back down to a predefined precision level, greatly improv-
ing performance without leaking information about the function that was
applied.

• We investigate two different popular encodings with regard to efficiency
in emulating basic operations on rational numbers like comparison, addi-
tion and multiplication, and present a hybrid encoding that surpasses the
two traditional ones both in theory (as measured by total bit additions,
multiplications and required multiplicative depth) and in terms of actual
runtime for large sizes.

• We show how to derive the boolean circuit (i.e., the polynomial over
GF (2)) for comparing two encrypted numbers, and present an easier way
for comparing numbers to 0 which takes almost no time.

• We show how to increase efficiency in the case that the numbers are
bounded, like in real-world applications where values lie in some known
range.

• We confirm our results by implementing the Perceptron, an important
fundamental algorithm in machine learning, and running it using the dif-
ferent encodings, as well as a polynomial like that used for Linear Means
Classification.

As a quick preview, consider Figure 2, which shows theoretical bounds on the
number of bitwise additions and multiplications as well as extrapolated runtime
needed to apply a Linear Means Classifier with each of the three encodings
for different numbers of features. We can see that our new hybrid encoding
mechanism is superior in all three aspects, making it an attractive choice.
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(a) Bit Additions.
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(b) Bit Multiplications.
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Figure 2: Bounds for the number of bitwise additions and multiplications as
well as runtime for evaluating Linear Means Classifier with l features of length
30 for different l using Two’s Complement • (lines), Sign-Magnitude • (solid)
and Hybrid Encoding • (dotted)

1.2 Outline

We start by giving an overview of related work in Section 2. In Section 3, we give
some background on Fully Homomorphic Encryption and the challenges faced
when working with rational numbers, as well as on the two encodings we use. In
Section 4, we show how to emulate the addition, multiplication and comparison
of encoded numbers using just binary additions and multiplications and analyze
complexity. Section 5 presents different ways of accelerating computations on
encrypted data, and Section 6 gives some motivation and necessary background
on machine learning before using two algorithms from this field to demonstrate
the effects of our improvements. Lastly, Section 7 gives our conclusion, and
an insight into future work. The appendix shows how to turn functions into
Boolean circuits.

2 Related Work

While encryption schemes that allow one type of operation on ciphertexts are
well understood and have a comprehensive security characterization ([4]), Fully
Homomorphic Encryption, which allows both unlimited additions and multipli-
cations, was only first solved in [18]. Since then, numerous other schemes have
been developed, for example [28], [10], [9], [26], [13], [14] and [20]. An overview
can be found in [3]. There have been several works concerning actual imple-
mentation of FHE, like [19] (homomorphically evaluating the AES circuit), [7]
(predictive analysis on encrypted medical data), or [21] (machine learning on
encrypted data), and there are two publicly available libraries ([1],[17]). [24] dis-
cusses whether FHE will ever be practical and gives a number of possible appli-
cations, including encrypted machine learning. Most recently, two publications
regarding encoding rational numbers for FHE have appeared, illustrating what
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an important topic this is: [12] examines encoding rational numbers through
continued fractions (restricted to positive rationals and evaluating linear mul-
tivariate polynomials), whereas [15] focuses on most efficiently embedding the
computation into a single large plaintext space. Another work that explores
similar ideas as [15] and also offers an implementation is [16].

While the idea of being able to privately evaluate machine learning algo-
rithms is certainly intriguing, the overwhelming majority of work in this area
considers multiparty computation, which requires interaction between the client
and the server during computation and is thus a different model. Examples in-
clude [29], [25] and [8], and works like [22] and [27] concern themselves with
efficiency measures and circuit optimizations specific to multiparty computa-
tion. Another line of research regarding confidential machine learning, e.g. [7]
and again [8], focuses on a scenario where the model being computed and/or
evaluated is publicly known - a scenario we explicitly exclude. Other work like
[11] restricts itself to unsigned integers, making all involved circuits much less
complex. Work like [5] considers recommender systems, but in a scenario which
becomes insecure if too many fresh encryptions are available. Closest to our
work is [21], which restricts itself to machine learning algorithms like the Lin-
ear Means Classifier and Fishers Linear Discriminant Classifier, which can be
expressed as polynomials of low degree, and focuses on the classification, not
the derivation of the model. Their encoding of input data is also restricted to
functions with few multiplications.

We stress that until now, all approaches dealing with rational numbers do not
fully solve the problem, as computations are either restricted to positive integers,
or the multiplicative depth of the computation must be know beforehand. Our
approach is the first to actually tackle the problem of computing on rational
numbers with no further assumptions, and offers other improvements if some
assumptions can be made.

3 Background

3.1 FHE and Efficiency Metrics

Fully Homomorphic Encryption (FHE) describes a class of encryption schemes
that allow arbitrary operations on encrypted data. This would, in theory, en-
able outsourcing of encrypted data to an untrusted cloud service provider, who
could still perform any operations the user wishes. This means that we can
protect privacy (as opposed to uploading the data in unencrypted form) while
maintaining functionality (as opposed to uploading data encrypted under con-
ventional schemes). Unfortunately, FHE today it is still rather slow, although
huge advancements have been made in the last six years.

Because of this, one of our measures for efficiency is the number of bit ad-
ditions and multiplications performed, as this would translate directly into the
number of homomorphic additions and multiplications performed if the data
were encrypted. Note that in schemes today, homomorphic multiplication tends
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to be computationally more expensive than addition.
In our analysis of computational effort, we also include the multiplicative depth:
Many publications today use Leveled Fully Homomorphic Encryption, which is
related to Fully Homomorphic Encryption in that arbitrary functions f can be
performed on the encrypted data, but the multiplicative depth of f must be
known beforehand, and efficiency of the encryption scheme decreases as this
number increases. Multiplicative depth measures how many consecutive multi-
plications are performed. For example, the polynomial x1 · x2 + x1 · x3 + x2 · x3
has 3 multiplications in total, but a multiplicative depth of only 1. These lev-
eled schemes can be more efficient than pure FHE schemes for small depths, but
if more than the allowed number of consecutive multiplications are performed,
decryption may return the wrong result. To this end, we include multiplica-
tive depth in our analysis and aim to minimize it as one of our goals. We
would, however, like to point out that if one uses bootstrapping, as we did in
our implementations, depth becomes less of an issue and the total number of
multiplications is the main factor determining runtime.

3.2 From Unsigned Integers to Rationals of Arbitrary Pre-
cision

In previous work (e.g. [6], see also Section 2), rational numbers have often been
approximated by multiplying with a power of 10 and rounding, but note that
when multiplying two rational numbers with k bits of precision, we obtain a
number with 2k bits of precision (whereas addition does not change the pre-
cision). If we are working on unencrypted numbers, we might just round to
obtain k bits of precision again, or we could truncate (truncation after k bits
yields the same accuracy as rounding to k − 1 bits). However, things become
more difficult if we will be operating on encrypted data, as rounding is gener-
ally not possible here and thus these extra bits of precision accumulate. To see
this, suppose a precision of k digits is required. One would usually multiply the
rational number with 10k and round (or truncate) to the nearest integer, which
is then encoded and encrypted. Dividing the decrypted decoded number by 10k

again yields the rounded rational. However, the problem of doubling precision
with multiplication is prevalent here. Consider what would happen if we were
to multiply two such numbers: Suppose we have two rational numbers a and b
that we would like to encode as integers a′ and b′ with k digits of precision, so
we get a′ = a ·10k and b′ = b ·10k (rounded to the nearest integer). Multiplying
a′ and b′, we get c′′ = a′ · b′ = a · 10k · b · 10k = (a · b) · 102k. Thus, having
reversed the encoding, the obtained value c′′ must be divided by 102k. This is
a problem because we cannot remove the extra bits by dividing by 10k, so the
party performing the algorithm must now divulge what power of 10 to divide
the obtained result by. This leaks information about the multiplicative depth of
the function used and thus constitues a privacy breach for the computing party.
Additionally, there is also the problem during computation that the sizes of the
encoded numbers will increase substantially.

To solve this problem, we propose the following approach: Instead of scaling

7



by a power of 10, we multiply by a power of 2 and truncate to obtain an integer
that we will encode in binary fashion, so that we can later encrypt each bit
separately. This eliminates the above problem: Multiplying two numbers a′ and
b′ with k bits of precision still yields c′′ = (a · b) · 22k, but since we are encoding
bit by bit, dividing by 2k and truncating corresponds to merely deleting the last
k (encrypted) bits of the product. Thus, the party performing the computations
can bring the product c′′ back down to the required precision after every step
by discarding the last k bits and thus obtaining c′ = a · b · 2k, meaning that
the party which holds the data must always divide the decoded result by 2k no
matter what operations were applied. This has the benefit of not only hiding
the data from the computing party, but also hiding the function from the party
with the data.

3.3 Two’s Complement

Having determined that we will be encoding bit for bit to support arbitrary
precision without information leakage, we must now decide on how exactly we
want to represent a rational number (which has been scaled to be a signed
integer). For unsigned integers, binary representation is well known: Given an

integer a ≥ 0, we write it as a =
n∑
i=0

ai · 2i where n = blog2(|a|)c and ai ∈ {0, 1}

to obtain a n+ 1-bit string anan−1 . . . a1a0.
To incorporate negative numbers, the most popular encoding is called Two’s

Complement : Here, we write an integer a as a = an+1 ·(−2n+1)+
n∑
i=0

ai ·2i where

n = blog2(a)c and ai ∈ {0, 1}. This means that the most significant bit (MSB)
encodes the negative value −2n+1 and is thus 1 exactly when a < 0. As an
example, consider the bitstring 1011, which encodes 1·(−23)+0·22+1·2+1·1 =
−8 + 2 + 1 = −5. The most important operations for numbers encoded in this
fashion are presented in the following.

3.3.1 Addition

Addition works in much the same way as normal binary addition, except for
one point: To obtain the correct result when adding two n-bit numbers, the
result must also be encodeable by n bits, and any values past the nth bit are
discarded. Since the result of adding two n-bit numbers is usually n + 1 bits
long, we first extend the inputs by one bit without changing their value so that
we can then add two n+ 1 bit numbers whose sum is also encodeable by n+ 1
bits, thus yielding the correct result. Note that to extend the bitlength by k,
we merely replace the most significant bit by k + 1 copies of itself (so 1 for a
negative number and 0 otherwise). This is called sign extension. As an example,
suppose we are adding the 4-bit numbers −5 = 1011 and 7 = 0111: First, we
use sign extension to obtain the 5-bit numbers −5 = 11011 and 7 = 00111, then
we carry out normal addition, resulting in the number 100010. Discarding the
excess leftmost bit, we obtain 00010, which indeed decodes to 2 = −5 + 7.
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We would like to point out that addition has been defined for two numbers
of equal length, but if this is not the case we can easily increase the bitlength of
the shorter one through sign extension as described above so that the lengths
match.

3.3.2 Multiplication

When multiplying two numbers in Two’s Complement encoding, we need to
follow a few steps. For maximum generality, we assume that our numbers have
lengths m and n, respectively.

i. Increase the bitlength of both numbers through sign extension (as described
above) to length m+ n.

ii. Perform regular binary multiplication of the two resulting numbers. Note
that to add the individual rows, we must use the addition function from
above.

iii. Keep only the rightmost n+m bits.

As an example, we will multiply −3 = 101 (m = 3) and 7 = 0111 (n = 4):

1 1 1 1 1 0 1 · 0 0 0 0 1 1 1
| 1 1 1 1 1 0 1
| 1 1 1 1 0 1
| 1 1 1 0 1
| 0 0 0 0
| 0 0 0
| 0 0
| 0

1 1 0 1 0 1 1

This correctly yields 1101011 = −21. Whenever we refer to the addition of rows
during multiplication in this paper, we are referring to the rows as in the above
example, which has 7 rows of lengths 7, 6, . . . , 1, respectively.

As can easily be seen, the above approach introduces redundancy because
the same product is calculated several times, which may become costly if bit
multiplication is an expensive operation. As a minimal example, consider the
case for n = m = 2:

a1 a1 a1 a0 · b1 b1 b1 b0
a1 · b0 a1 · b0 a1 · b0 a0 · b0
a1 · b1 a1 · b1 a0 · b1
a1 · b1 a0 · b1
a0 · b1
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Here, we can see that out of the 10 terms that occur (generally: (n+m) +

(n+m−1) + · · ·+ 2 + 1 = (n+m)·(n+m+1)
2 ), the term a0 · b0 occurs once, and the

terms a1 · b0, a0 · b1 and a1 · b1 all occur three times. As can easily be seen, we
actually only have n ·m different products, so we can save a significant amount
of computation by avoiding this redundancy. A detailed explanation of how to
do this can be found in Section 5.3.

3.3.3 Negation

Negating a given number is simple in Two’s Complement:

i. Flip all bits (i.e., XOR them with 1).

ii. Add 1 to the resulting number.

As an example, take the number −3 = 101: Flipping all bits gives us 010, and
adding 1 yields 011 = 3.

3.4 Sign-Magnitude

While Two’s Complement may be the most popular encoding of signed integers,
it is not the only one: Sign-Magnitude encoding formalizes the most intuitive
idea of having an extra bit that determines the sign. Conventionally, this is the
most significant bit, which is 1 when a number is negative and 0 when a number
is positive. Thus, for example, the number 5 = 0101 and −5 = 1101. This
notation suffers from the fact that there are two encodings of 0 (0 = 00 . . . 00
and −0 = 10 . . . 00) and is seldom used, but we will later see how this slightly
unconventional encoding can help us. A detailed presentation of the individual
operations can be found below.

3.4.1 Addition

Addition is surprisingly complex for Sign-Magnitude and we will need several
subroutines:

• NormalAdd(a, b): a and b are positive integers in regular binary notation
(which is the same as Sign-Magnitude for positive numbers) and regular
binary addition is performed.

• NormalSub(a, b): a and b are positive integers with a ≥ b in regular binary
notation and regular binary subtraction a − b is performed (using the
Complement Method).

• SMCompare(a, b): a and b are arbitrary integers, the function returns 1
exactly when a ≤ b. Further details on this function can be found in
Appendix A.2.

• SMNeg(a): Return −a (see below).
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With these subroutines, we can express addition of a and b, both of length n+1,
as in Figure 3. Note that an and bn denote the sign, ã = an−1 . . . a1a0 (i.e.,
with discarded sign bit) and an||c means appending a’s sign to a string c.

1: SMBinAdd()
Input: a = anan−1 . . . a1a0 and b = bnbn−1 . . . b1b0

2: if an = bn then
3: c = an||NormalAdd(ã, b̃)
4: (Add absolute values and append sign)
5: end if
6: if an = 1 and bn = 0 then
7: SMCompare(SMNeg(a), b)
8: (compare absolute values)
9: if SMNeg(a) ≤ b then

10: c = bn||NormalSub(b, SMNeg(a))
11: else
12: c = an||NormalSub(SMNeg(a), b)
13: end if
14: (subtract smaller value from larger value and append sign of larger

one)
15: end if
16: if an = 0 and bn = 1 then
17: SMCompare(a, SMNeg(b))
18: (compare absolute values)
19: if a ≤ SMNeg(b) then
20: c = bn||NormalSub(SMNeg(b), a)
21: else
22: c = an||NormalSub(a, SMNeg(b))
23: end if
24: (subtract smaller value from larger value and append sign of larger

one)
25: end if

Output: c
26: end

Figure 3: Addition in Sign-Magnitude encoding

3.4.2 Multiplication

Multiplication with Sign-Magnitude encoding is conceptually very simple: We
delete the sign bits an and bn, multiply the remaining bitstrings as with regular
binary multiplication, and append the sign bit an ⊕ bn. Note that to add the
individual rows that we obtain, we do not have to use the complicated addition
of section 3.4.1 but rather the much more efficient subroutine NormalAdd().
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3.4.3 Negation

Negation is very easy, as it can be obtained through a single bit addition: Since
the MSB determines the sign, flipping it (i.e., setting an = an⊕1) will transform
a number a into −a.

4 Basic Operations and Their Performance

Having introduced two different ways of encoding, this section will now examine
both the theoretical complexity and actual performance of elementary opera-
tions. All computations were done on a virtual machine with 5 GB of RAM
running Ubuntu 14.04 LTS (running on a Lenovo Yoga 2 Pro with a Intel i7-
4500U processor with 1.8 GHz and 8 GB of RAM with Windows 8.1). We
give the number of binary additions and multiplications as well as multiplica-
tive depth required for these elementary operations. Due to space limitations,
we omit how these values were determined, but two examples can be found in
Appendix A along with a detailed explanation on how to turn a function into
a boolean circuit. We note that we also implemented all our functions with
a subroutine that counts these values to ensure that the formulas are correct.
Runtimes were obtained for values encrypted with the HElib library ([1]).

4.1 Note on Comparisons

Since Sign-Magnitude uses a comparison in its addition function, Appendix A.2
shows how to implement this comparison as a polynomial. We note, however,
that when comparing a number with 0, there is an easier way (see Section 5.2).
For the general case, the effort of comparing two arbitrary numbers is:

Two’s Complement: Sign-Magnitude:
• 3n binary additions • 10n− 3 binary additions
• n+ 1 binary multiplications • 6n− 2 binary multiplications
• a multiplicative depth of n • a multiplicative depth of 2n− 1

We can see that Two’s Complement is more efficient for comparing encrypted
numbers.

4.2 Addition

We will now compare addition of two n-bit numbers for Two’s Complement and
Sign-Magnitude encoding. The computational effort is:

Two’s Complement: Sign-Magnitude:
• 5n− 2 binary additions • 73n− 17 binary additions
• n binary multiplications • 28n+ 4 binary multiplications
• a multiplicative depth of n • a multiplicative depth of 2n+ 2

12



As we can see, Two’s Complement again does better in theory. In practice
(i.e., counted by our program), we get as values the number of operations and
runtime as shown in Figure 4. These diagrams show that Two’s Complement is
indeed superior to Sign-Magnitude where addition is concerned.

4.3 Multiplication

In this section, we will examine the multiplication of an n-bit number with
an m-bit number. Heuristically, we expect Sign-Magnitude to do better here:
Instead of the costly “normal” Sign-Magnitude addition operation which uses
a comparison circuit, we can use regular textbook binary addition to add up
the rows encountered in multiplication, so the fact that addition of two n-bit
Sign-Magnitude numbers is much more expensive than that of two n-bit Two’s
Complement numbers does not weigh in here. On the other hand, because of
the sign extension necessary in Two’s Complement multiplication, not only are
the rows longer (n + m as compared to n), but there are also more of them
(n + m as opposed to m), so we must do more additions of longer bitstrings.
We examine the effort required:
Two’s Complement:

• 5(m2+n2)−19(m+n)
2 + 5mn+ 10 binary additions

• (m+n−3)(m+n)
2 +mn+ 1 binary multiplications

• a multiplicative depth of dlog2(m+ n)e · (m+ n− 1)− 2dlog2(m+n)e + 2

Sign-Magnitude:
Due to changing intermediate lengths during row additions (which depend on
both n and m instead of just n+m as in Two’s Complement), an exact formula
would be very involved and hardly informative. Thus, we present a formula
for an upper bound which already shows that SM is superior to TC for multi-
plication. To this end, we now have two data sets for Sign-Magnitude in the
diagrams 4b, 4d and 4f in Figure 4 regarding the number of operations: One
shows the exact numbers as counted by an instruction in our program (and ver-
ified manually), and one shows the bounds as given by the following formulas:

• (2dlog2(m−1)e − 1) · (5n− 7) + (2dlog2(m−1)e−1 − 1) · 5 · dlog2(m− 1)e
binary additions at most

• (n−1)·(m−1)+(2dlog2(m−1)e−1)·(n−1)+(2dlog2(m−1)e−1−1)·dlog2(m−1)e
binary multiplications at most

• A multiplicative depth of at most
1
2dlog2(m− 1)e · (dlog2(m− 1)e+ 2n− 5) + 2dlog2(m−1)e

Concrete values and runtimes can be seen in Figure 4 and as we can see,
Two’s Complement performs much worse, as expected. Thus, Two’s Comple-
ment encoding is superior for addition and comparison, but inferior for multi-
plication.
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Figure 4: Comparison of addition (+) and multiplication (*) for Two’s Comple-
ment • (lines), exact values for Sign-Magnitude (counted by program) • (solid),
upper bound for Sign-Magnitude for multiplication• (dotted) and our new Hy-
brid Encoding (• (dotted). Runtimes for data encrypted with HElib.14



5 Accelerating Computations

In this section, we will discuss several optimizations to make computations on
encrypted data more efficient.

5.1 Hybrid Encoding

Since we have seen in the previous sections that Two’s Complement encoding
always performs better than Sign-Magnitude except for multiplication (where
it is much worse), we propose the following approach, called Hybrid Encoding:
We work with Two’s Complement encoding, but when we want to multiply,
we convert the numbers to their representations in Sign-Magnitude, perform
the multiplication there, and convert the result back. As we will see, this is
indeed more efficient than regular Two’s Complement multiplication. To do
this, we must first determine how to convert numbers from their representation
in Two’s Complement to their Sign-Magnitude form and vice versa, so suppose
we have a number a under one encoding α (either Two’s Complement or Sign-
Magnitude), denoted aα, and wish to transform it into its representation under
the other encoding β, denoted aβ . For numbers with MSB 0, both encodings
are actually the same (aα = aβ), so in this case we do nothing. If the number
has a MSB of 1, we compute its negation (aα 7→ −aα), which is the same for
both encodings as it has MSB 0 (−aα = −aβ). We then negate the negation
under the new encoding (−aβ 7→ aβ), obtaining the original value in the new
encoding.

As can easily be seen, the overhead we incur in addition to the cost of a
Sign-Magnitude multiplication for multiplying two numbers of lengths n and m
is basically that of 3 Two’s Complement inversions, 3 Sign-Magnitude inversions
(both of lengths n,m and n+m), and the cost of multiplying the boolean values
representing whether the different cases are true or false. In total, the overhead
costs (i.e., those incurred in addition to the costs for the Sign-Magnitude mul-
tiplication) are:

• 14(n+m)− 7 binary additions

• 6(n+m)− 3 binary multiplications

• a multiplicative depth of max{n,m}+ 1 + n+m

We present some concrete values for this overhead and runtimes in Figure
4 along with the same values for Two’s Complement multiplication and Sign-
Magnitude multiplication. The exact numbers can also be found in Tables 1
and 2.

As can easily be seen, HE performs better than Two’s Complement in all
aspects for multiplying large numbers, but is (naturally) not quite as good
as Sign-Magnitude. The runtimes are roughly as we would expect from these
numbers, i.e., the new multiplication is faster than Two’s Complement for large
numbers, but naturally slower than Sign-Magnitude.
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n m TC+ TC* TC*d SM+ SM* SM*d O+ O* O*d HE+ HE* HE*d
3 3 43 19 9 8 6 3 77 33 10 85 39 13
3 5 94 36 15 29 15 6 105 45 14 134 60 20
5 5 165 61 22 59 29 10 133 57 16 192 86 26
5 7 256 90 30 105 47 16 161 69 20 266 116 36
10 20 1975 606 115 924 363 65 413 177 51 1337 540 116
30 30 8440 2611 292 4279 1708 175 833 357 91 5112 2065 266

Table 1: Number of binary additions (TC+ and SM+), binary multiplications
(TC* and SM*) and multiplicative depth (TC*d and SM*d) for multiplication
of a n-bit number with an m-bit number in Two’s Complement (TC) and Sign-
Magnitude (SM) encoding, as well as additional cost to the SM-values we expect
when using Hybrid Encoding multiplication (O+, O* and O*d), and total costs
for Hybrid Encoding (HE+, HE* and HE*d).

n m TC SM HE
3 3 458 144 926
3 5 870 288 1359
5 5 1476 719 2076
5 7 2177 1060 2703
10 20 14731 8078 12224
30 30 62982 41362 48791

Table 2: Runtimes in seconds for 1 execution of the three different multiplica-
tions (encrypted).
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Thus, we have found a new way to improve efficiency for large bitlengths: do
all operations in Two’s Complement notation, but switch to Sign-Magnitude for
multiplication. We shall see the benefits of this in our real-world application in
Section 6.3, though we would like to note that there may be applications where
Sign-Magnitude is favorable (when there are very few additions). However,
since in Fully Homomorphic Encryption, multiplicative depth is often key (as
mentioned in Section 3.1) and bootstrapping is the bottleneck, our new approach
seems favorable for large parameters under this aspect as well.

5.2 Easy Comparison

Apart from numerical computations, many algorithms require a comparison
of two numbers, which would usually require a rather expensive computation.
However, we argue that in some use cases where one only has to compare a
number to 0, like in the Perceptron, there is a much easier way. Instead of
computing a costly circuit for comparison, it suffices to take the most significant
bit of the number, which will be 0 if the number is greater than zero and 1 if it
is less. For Two’s Complement, it will be 0 also when the number equals 0, but
in Sign-Magnitude it can be either 0 or 1 when using this method, as there are
two encodings of 0 here. Thus, if the sum is exactly 0, the resulting bit is wrong
for Two’s Complement and can be either case for Sign-Magnitude. We observe,
however, that when initializing the weights w1, . . . , wl with random rational
numbers, a weighted sum w1x1 + · · · + wlxl is highly unlikely to be 0. Thus,
in this case there should be no change whether the condition for an operation
is w1x1 + · · · + wlxl > 0 or w1x1 + · · · + wlxl ≥ 0 and the easy comparison
should return the correct result with overwhelming probability. If the weights
are initialized with 0 (as could be chosen in the Perceptron) or integers in the
more general case, a more involved formula like that in Appendix A.2 should
be used.

5.3 Improved Multiplication

As already mentioned, the sign extension in Two’s Complement introduces
costly redundancy. This section now shows in detail how to avoid computing
the same product several times, which more than halves the computation effort

of the matrix computation step by bringing it from (n+m)·(n+m+1)
2 to n ·m. To

this end, we will think of the rows that are generated as an (n+m)× (n+m)
- matrix A (with some empty entries) indexed as A[i, j], where i refers to the
row and j to the bit position in the row, i.e., 0 is on the right-hand side. As an
example for the case with n = m = 2 (where we write [i, j] instead of A[i, j]):

a1 a1 a1 a0 · b1 b1 b1 b0
[0, 3] [0, 2] [0, 1] [0, 0]
[1, 3] [1, 2] [1, 1]
[2, 3] [2, 2]
[3, 3]
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With this notation in place, we present the following pseudocode instructions
(Figure 5) for reducing the number of computations in multiplying two numbers
of lengths n and m. Note that the below code eliminates all superfluous product
computations when m = n. When m < n, we have bj = bm−1 also for m ≤ j ≤
n − 1. Though not explicitly stated below for reasons of readability, it is not
hard to see how the code can be extended to eliminate this redundancy as well.

Input: an−1 . . . a1a0, bm−1 . . . b1b0

for 0 ≤ i ≤ n− 2 do
for 0 ≤ j ≤ n− 1 do

A[i, j + i] = bi · aj
end for
for n ≤ j ≤ n+m− 1− i do

A[i, j + i] = A[i, n+ i− 1]
end for

end for
for 0 ≤ j ≤ n− 2 do

A[n− 1, n+ j − 1] = bn−1 · aj
for n ≤ i ≤ n+m− j − 1 do

A[i, i+ j] = A[n− 1, n+ j − 1]
end for

end for
A[n, n+m− 1] = bn−1 · an−1
A[n− 1, n+m− 1] = A[n, n+m− 1]
A[n− 1, n+m− 2] = A[n, n+m− 1]
Output: A

Figure 5: Redundancy in Multiplication

Of course, as Sign-Magnitude multiplication works without sign extension,
this improvement only applies to Two’s Complement. However, the following
further improvements hold for both encodings:
Having computed the matrix whose rows we want to sum up, we can apply a
log(n+m)-depth circuit for adding the n+m rows. It is noteworthy that we can
save computation power by modifying the addition operation: As can easily be
seen, we are always adding rows of different lengths. While the naive approach of
padding the right-hand side of the shorter number with 0’s and applying normal
addition would also work, we can save some effort by copying the excess bits of
the longer number and then performing addition on the remaining shorter equal-
length parts. Generally, when using this second approach, we only perform an
addition of the length of the shorter input, which is an important factor in depth
optimization.

Note that in the simpler case where one value is known, i.e., multiplication by
a constant, we do not need to do quite as much work: For simplicity, we always
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assume that the input b is known. We again first need to do sign extension for
Two’s Complement, but in the next step instead of having to compute n · m
terms ai · bj as before, we can just copy the string a for every bit that is 1 in
b, shifting to the left with each bit. This way, we save n · m multiplications
from the generation of the matrix and reduce the depth by one. Also, note
that we now don’t need to add as many rows, as we only write down those
that correspond to the non-zero bits in b. Thus, we only need to do hm(b) row
additions, where hm(b) is the hamming weight of b. Of course, the complexity
and multiplicative depth now depend on the value of b and are the same as for
regular multiplication in the worst case. However, on average we will only have
to do half as many row additions.

5.4 Managing Length

By default, each addition and each multiplication increase the bitlength: Addi-
tion increases it by 1, whereas multiplication results in a bitlength that is the
sum of the two input lengths. When performing several multiplications con-
secutively, this can easily lead to enormous bitlengths. However, in a scenario
where the size of the values can be estimated, there is a way around this. One
such scenario is machine learning, where the person working on the data is the
person who has the algorithm for building the model and it is a reasonable as-
sumption that some factors of the model are known, e.g. from experience. For
example, in the data set we worked with (see Section 6.3.1), the value w0 always
took some value near 10000 no matter what subset of test subjects we chose. In
such cases, the service provider who is doing the computations can put a bound
on the lengths (i.e., he is certain that the weights will not be larger in absolute
value than 2q for some q). When this is the case, we can reduce the bitlength of
the encrypted values to this size q + 1 by discarding the excess bits: In Two’s
Complement, we can delete the most significant bits (which will all be 0 for a
positive and 1 for a negative number) until we reach the desired length, whereas
for Sign-Magnitude we discard the bits following the MSB (which will all be 0).
More specifically, we actually integrated this into our multiplication routine,
such that we not only save space, but also effort, as we only compute until we
reach the bound in each step. This can be viewed as the inversion of the sign
extension operation introduced in Section 3.3.1 and makes the entire algorithm
significantly faster, as we have elimninated linear growth in the bitlength.

6 Applications

In this section, we demonstrate the performance increase on two concrete use
cases. All computations were done on a virtual machine with 5 GB of RAM run-
ning Ubuntu 14.04 LTS (running on a Lenovo Yoga 2 Pro with a Intel i7-4500U
processor with 1.8 GHz and 8 GB of RAM with Windows 8.1). Encryptions
were done using the second parameter set from the Test bootstrapping.cpp

file included in the HElib library.
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6.1 Background and Motivation

Generally, Fully Homomorphic Encryption allows the computation of arbitrary
functions on encrypted data while keeping the data hidden from the computing
party. While FHE does not in principle offer to keep the function private (e.g.,
if the data and the function belong to the same party, who wishes to have
the computation done by a different party with more computing power, like a
cloud service provider), it can hide the function that was applied in the following
case: If the data belongs to one party and the function belongs to the computing
party, then FHE schemes that are “circuit private” guarantee that a ciphertext
divulges nothing about the function that was applied to it. Since circuit privacy
is often a goal for FHE schemes, it makes sense to extend this requirement to
the encoding choices to achieve privacy for the end result. This then means
that the data owner learns nothing about the applied function except for what
he can derive from the result, and the function owner learns nothing about the
data. In this spirit, machine learning has often been cited as an application
of Fully Homomorphic Encryption (see Section 2). Machine learning describes
a field of research focused on extracting information from data, e.g. in the
form of models. In this paper we consider the following scenario: Suppose
Alice has a machine learning algorithm which takes data as input and returns
a predictive model, and Bob has some data and would like either to obtain a
model based on his data, or apply said model to further data (though he does
not obtain the model in that case, e.g. allowing the service provider to bill
him for each classification of his data). However, Alice does not want to reveal
her algorithm for building the model to Bob, and Bob wishes to keep his data
secret. With Fully Homomorphic Encryption, Bob could encrypt his (training)
data and send it to Alice, who then performs her algorithm on the encrypted
data. The output is an encryption of the model, which Alice can apply to new
encrypted data instances from Bob and Bob only receives the result of applying
the model to his data (first case), or the whole model is sent to Bob (second
case), in which case only Bob can decrypt the model. Thus, with an adequately
secure Fully Homomorphic Encryption scheme, Alice has learned nothing about
Bob’s data and Bob has learned nothing about Alice’s algorithm except what
he can deduce from the result of the evaluation.

In the following, we consider two use cases, one for each of the above scenar-
ios. For the first case, we take up a use case already presented in [21]: the Linear
Means Classifier, where we assume that the model has already been built. Alice
receives Bob’s encrypted data, which she classifies by evaluating a polynomial
of degree 2. This use case showcases our new Hybrid Encoding, which performs
significantly better in this general case where the results are not bounded.

For the second case, we examine the Perceptron and show how to improve ef-
ficiency in evaluating it, showcasing our results regarding choice of encoding and
tweaks in multiplication. The Perceptron is a classifier: There are subjects with
known classifications which are used to build the model, subjects with known
classification to test the model, and the output is the model which can be used
to classify future instances with unknown classifications. The Perceptron is an
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important fundamental algorithm in machine learning upon which many others
are built, so being able to efficiently homomorphically evaluate it is mandatory
before we can move on to more advanced machine learning algorithms.

The given runtimes are estimates for data encrypted with HElib ([1]), as
runtimes are still very large: We measured the time taken for operations like
addition and multiplication for different parameters and extrapolated the time
it would take to compute the entire function. For example, given the function
f(x1, x2, x3, x4) = x1 · x2 + x3 · x4 on inputs of length n, we would calculate the
runtime as that of 2 multiplications of numbers of lengths n plus one addition of
numbers of lengths 2n (in the unbounded case). We confirmed our computations
by actually running the Perceptron for lengths n = 3 and n = 5 for all three
encodings to make sure that our computations reflect reality. However, we would
also like to point out that these runtimes depend greatly on the characteristics of
HElib: If one used a different encryption scheme that takes longer or shorter to
perform bootstrapping, the results would vary greatly. However, our theoretical
results are independent of the scheme that was used.

6.2 Homomorphically Evaluating the Linear Means Clas-
sifier

In this section, we examine the Linear Means Classifier to showcase the first use
case, where the Service Provider retains the encrypted model and the user may
send further encrypted data which is then classified by the encrypted model and
only the encrypted result is returned to the user.

6.2.1 The Linear Means Classifier

As already implied by its name, the Linear Means classifier classifies data. Like
[21], we consider the case where there are two classes, which are determined by
the sign of the score function. This score function is a polynomial of degree
2. More concretely, the model consists of a vector w = (w1, . . . , wl) and a
constant c, and the data to be classified is a l-dimensional real-valued vector
x = (x1, . . . , xl). The score function is then computed as 〈w, x〉 + c = w1x1 +
w2x2 + · · · + wlxl + c, and the sign of the result determines which class the
data instance belongs to. As can easily be seen, this is closely related to the
classification function of the Perceptron from the next section, where the focus
is on determining w and c instead of computing the score function for given
(encrypted and thus unknown) values for w and c as we do here.

6.2.2 Performance

Using the Linear Means Classifier, we now examine the effects of using different
encodings in the unbounded case (i.e., when the product of two n-bit numbers
has length 2n). To this end, we compute both the effort required in terms
of bit operations and depth and the runtime of evaluating the score function
for inputs of bitlength 30 for different numbers l of features. As explained
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above, we computed these runtimes from their components (i.e., the runtime
for multiplying two 30-bit numbers without bounds, and the runtime for adding
two 60-bit numbers) as the numbers are quite large. The results can be found
in Table 3 and also in Figure 2 on page 5.

l TC+ TC* SM+ SM* HE+ HE* RTTC RTSM RTHE
5 43690 13355 43210 16960 27050 10625 322120 368250 251165
10 87380 26710 86420 33920 54100 21250 644240 736500 502330
20 174760 53420 172840 67840 108200 42500 1288480 1473000 1004660
50 436900 133550 432100 169600 270500 106250 3221200 3682500 2511650
250 2184500 667750 2160500 848000 1352500 531250 16106000 18412500 12558250

Table 3: Number of binary additions (TC+, SM+ and HE+) and binary multi-
plications (TC*, SM* and HE*) for Linear Means Classification with bitlength
30 and l features, as well as runtimes in seconds (RTTC , RTSM and RTHE).
Multiplicative depth is always 352 for TC, 297 for SM, and 326 for HE.

As we can see, using our new Hybrid Encoding significantly improves all
aspects except depth, which is about halfway between the other two encodings,
which did not matter in our case as we bootstrapped after every multiplication.

6.3 Homomorphically Evaluating the Perceptron

In this section, we examine the first use case where the Perceptron is evaluated
to return an encrypted model.

6.3.1 The Perceptron

The Perceptron is an algorithm based on neural networks and basically works
by computing a weighted sum of the input traits xk,i, which are usually rational
numbers, for each subject k and then classifying into one of two classes depend-
ing on whether this weighted sum is above a certain threshold or not. In the
training phase, the weights are adjusted if the computed classification does not
match the known classification ck ∈ {0, 1} of the training instance. The learning
rate η determines by how much the weights change through each such mismatch.
A larger η means bigger changes and less stability, whereas for a smaller value,
more rounds may be needed, but the weights are more likely to converge. After
training, the model can be used to classify future inputs with no known clas-
sification. The model consists of the weights, and the threshold can either be
predetermined or flexible (and thus part of the model being computed). We
will work with the latter approach and for notation reasons include a dummy
trait that is always −1, which enables us to compare the scalar product to 0.
(Denoting the threshold τ , we have
m∑
i=1

wi · xi > τ ⇔
m∑
i=0

wi · xi > 0 for x0 = −1 and w0 = τ .)
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Note that this is a binary classifier, i.e., it only works with two classes,
but the more complex case of several classes can easily be built by running
the Perceptron several times for different classes or by having more than one
output (i.e., computing several sums and having the targets not be bits, but
bitstrings). The exact workings of the Perceptron are presented in Figure 6,
and further implementation details can be found below.

We will now discuss the parameters and the dataset used in our actual
implementation of the Perceptron. To test our implementation, we used the
Pima Indian Dataset [2]. This is a dataset concerning 768 females at least 21
years old which considers 8 different traits and classifies into “has diabetes” or
“does not have diabetes”. Since the weights for two attributes did not seem to
converge at all, we reduced the number of traits down to m = 6:

1. Number of times pregnant

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test

3. Diastolic blood pressure (mm Hg)

4. Body mass index weight in kg
(height in m)2

5. Diabetes pedigree function

6. Age (years)

We set the learning rate as η = 0.125 and reserved the last t subjects for
performing the testing phase (i.e., use the weights obtained from the model
to classify entries with known class which were not involved in the generation
of the weights and see how many are correct). This means that we worked
with v = 768 − t subjects in the training phase. Note that the testing phase
is not carried out bitwise and does not really belong to our encrypted model
as it would be carried out client-side, but we performed it to see how different
precision values influenced the accuracy of our derived model. We used different
precision values and bounds on the length, and these computations were done in
unencrypted form, encoded bitwise, as they were only to determine satisfactory
parameter values. As it turns out, 20 bits with 6 bits for precision is not
enough, whereas both bitlengths 25 (precision 10) and 30 (precision 15) yielded
satisfactory results. From previous experiments, we knew that w0 (i.e., the
weight multiplied with x0 = −1) always converged to a number around 10000,
so we initialized w0 as 10000 + r where r is a small random number. As already
mentioned in section 5.4, we feel that this is a feasible scenario: Suppose Alice
has a great algorithm that builds models to classify diabetes occurence according
to the above-mentioned attributes, and in designing her model has run it on
different population groups. Then we feel that it is feasible for her to know
from experience things like the rough range to expect for certain values, like
the weight for the dummy input being around 10000. Note that we could live
without this assumption, but we would need more rounds, as the weight only
changes by a small amount in each weight update and it would take many rounds
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1: Phase Training
Input:

2: • Training Data (xk,i, ck), k = 0, . . . , v − 1, i = 1, . . . ,m of v
subjects with m traits

• Learning Rate η

• Iteration Number R
Write inputs as X, a v × (m+ 1)-matrix with first column −1, followed by
the inputs xk row-wise, and v-dimensional target vector ~c with entries ck.

3:

4: for 0 ≤ i ≤ m do
5: wi ← Rε (Small random number)
6: end for
7: for R iterations do
8: for 0 ≤ k ≤ v − 1 do

9: if
m∑
i=0

wi · xk,i > 0 then

10: Set y = 1
11: else
12: Set y = 0
13: end if
14: Update the weights:
15: for 0 ≤ i ≤ m do
16: wi ← wi + η · (ck − y) · xk,i
17: end for
18: end for
19: end for

Output: wi for 0 ≤ i ≤ m
20: end Phase
21:

22: Phase Classification
Input: w0, . . . , wm from Training Phase, Vector x = (x1, . . . , xm) to be clas-

sified.
23:

24: Set x0 = −1

25: if
m∑
i=0

xi · wi > 0 then

26: Set y = 1
27: else
28: Set y = 0
29: end if

Output: Classification y
30: end Phase

Figure 6: The Perceptron
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to reach a value as big as 10000. To reduce runtime, in our implementation we
chose to precompute the values η · ck · xk,j and −η · xk,j for all k = 0, . . . , v − 1
and all j = 0, . . . ,m, as these values don’t change from round to round.

6.3.2 Performance

We will now examine how the optimizations from Section 5 affect the Perceptron,
as shown in Figure 7.
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Figure 7: Extrapolated runtimes for one subject for the first round of the en-
crypted Perceptron for Two’s Complement (• (lines) for bounded values, •
(lines) for unbounded values), Sign-Magnitude (• (solid) for bounded values,
• (solid) for unbounded values) and using our new Hybrid Encoding (• (dotted)
for bounded values, • (dotted) for unbounded values).

We can see that bounding the values makes a huge difference, especially
since these values are only for the first round and would grow exponentially in
further rounds. Sign-Magnitude is consistently the worst choice, and in the un-
bounded case, Hybrid Encoding is fastest (as already evident from Section 6.2).
In the bounded case, however, Two’s Complement is fastest, and this makes
sense: The fact that we have integrated the bounding into our multiplication
procedure and stop computing in each line as soon as the bound is reached
negates the sign extension that incurs the slowdown for multiplication in Two’s
Complement encoding. This means that we expect bounded Two’s Complement
multiplication to be almost as fast as Sign-Magnitude multiplication, which was
confirmed by our experiments. Due to this, there is no efficiency gain through
our new encoding in the bounded case, but the graph still illustrates the impor-
tance of choosing the right encoding, as Sign-Magnitude is significantly slower
here due to its costly addition.

7 Conclusion and Future Work

In conclusion, we have presented a way of working with encrypted rational num-
bers, to our knowledge being the first to not restrict ourselves to unsigned inte-
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gers. We have presented a new hybrid encoding technique that vastly improves
efficiency for FHE on rational numbers both in theory and for real-world appli-
cations like the Linear Means Classifier, and other optimizations that improve
efficiency for more complicated functions like the Perceptron. Since our results
are independent of the scheme used, they hold with maximum generality and can
thus be beneficial for anyone looking to evaluate a function homomorphically.
For future research, we believe that this hybrid approach may be transferable to
plaintext spaces other than {0, 1}, although the elementary operations will be
considerably more involved. Further, we imagine that it could be beneficial to
take a step back from established encodings and come up with a new one from
scratch, which could be specially tailored to FHE computations.
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A How to Get From Pseudocode to a Boolean
Circuit

Since literature on Fully Homomorphic Encryption often talks about transform-
ing a function into a boolean circuit, we have decided to include this appendix
as an example, as it might not be clear to the reader how to make this transfor-
mation. To this end, we will quickly show how to express the addition of Two’s
Complement numbers and the comparison of Sign-Magnitude numbers as poly-
nomials in their input bits, which is equivalent to the corresponding circuit, and
give a short complexity analysis. To evaluate the function in encrypted form,
one now merely has to exchange every + with the corresponding addition op-
eration on the ciphertexts and every · with the multiplication operation on the
ciphertexts. Since we are working with bits, + and · are the operations of Z2.
We chose these specific functions because addition is the computation of a value
from two other values and thus an example of an algebraic function, whereas
comparison returns only one bit after navigating a number of if-then decisions
and thus shows how to represent logical functions.

A.1 Binary Addition (Two’s Complement)

Suppose we are adding two n-bit Two’s Complement numbers a and b, where
a = an−1an−2 . . . . . . a1a0 and b = bn−1bn−2 . . . b1b0. We first extend both
strings by one bit (as described in Section 3.3.1) to obtain (n + 1)-bit strings
a = anan−1 . . . a1a0 and b = bnbn−1 . . . b1b0 with an = an−1 and bn = bn−1. We
will denote the output with c = cncn−1 . . . c1c0 and the carry bits we use with
ri. Then the output bits have the form ci = ai+ bi+ ri where r0 = 0. Thus, the
real challenge is expressing ri as a polynomial for 1 ≤ i ≤ n. Since the carry bit
ri is 1 when at least two out of the three values {ai−1, bi−1, ri−1} are 1, this is
the majority function, which can be expressed as
ri = (ai−1 + bi−1) · (ri−1 + ai−1) + ai−1 for 2 ≤ i ≤ n − 1 with r0 = 0 and
r1 = a0 · b0.
This is not the naive formula, but instead one that results in only a single
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multiplication. As can easily be seen, the above equation evaluates to 1 exactly
when at least two of the values are 1. Thus, we have found a way to recursively
define ri and thus addition as a whole through ci = ai + bi + ri.

Note that in order to save memory when implementing, we do not need to
make a vector of carry bits: Indeed, ri−1 is only used for computing ci−1 and
ri, so it suffices to keep the value in one variable r and in each round (i.e., for
each i) setting r = (ai−1 · bi−1) + (r · (ai−1 + bi−1)) and ci = ai + bi + r.

In terms of effort, we can easily derive the formulas given in Section 4.2: We
have c0 = a0 + b0 (because r0 = 0) and then ci = ai + bi + ri for i = 1 . . . n,
so we get 1 + 2n additions from this formula. From the computation of ri, we
get 0 additions for r0 = 0 and r1 = a0 · b0, and 3 additions for i = 2, . . . , n,
yielding 3 · (n − 1) further additions. Adding these numbers, we get a total of
2n+ 1 + 3n− 3 = 5n− 2 binary additions.

Likewise, we get 0 multiplications from ci = ai + bi + ri and r0 = 0, 1 multi-
plication from r1 = a0 · b0, and 1 multiplication from the computation of ri for
i = 2, . . . , n, leaving us with 1 + 1 + (n− 2) = n binary multiplications.

Lastly, for the multiplicative depth, we see that r1 has depth 1, and then
depth increases by 1 for i = 2, . . . , n because ri is multiplied with another value
(ai−1 + bi−1). Note that for depth, we are only interested in the term with
the highest amount of consecutive multiplications, so we ignore the other terms
we would get by expanding the formula for ri, since they have less depth. We
obtain a total depth of 1 + (n− 1) = n.

A.2 Comparison (Sign-Magnitude)

When computing a function where the operation to be performed depends on
a certain condition, the idea is the following: Compute the boolean value
of whether the condition is met, and multiply each bit of the output with
this boolean value (through a function denoted OneBitMult(an−1 . . . a1a0, b) =
(an−1 · b) . . . (a1 · b)(a0 · b)). This results in a string of 0’s if the condition is not
met, and the original result string if it is. If the conditions are phrased to be
mutually exclusive, we can just add the result for each case component-wise to
obtain the end result, as exactly one case-result will be non-zero.

To illustrate, we examine the comparison of two numbers a = an−1 . . . a1a0
and b = bn−1 . . . b1b0 in Sign-Magnitude encoding. First, we need to identify all
the cases that should return 1, i.e., where a ≤ b:

i. an−1 = 1 and bn−1 = 0 (a negative and b positive)

ii. an−1 = bn−1 = 1 and |a| ≥ |b| (both negative, a bigger absolute value)

iii. an−1 = bn−1 = 0 and |a| ≤ |b| (both positive, a smaller absolute value)

iv. a = 000 . . . 00 and b = 100 . . . 00 (two representations of 0)

Note that |a| ≥ |b| if an−2 = 1 and bn−2 = 0 or an−2 = bn−2 and an−3 = 1
and bn−3 = 0 or ..., i.e. if at the highest index where an−2 . . . a1a0 and b =
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bn−2 . . . b1b0 differ, a has the value 1. Likewise, |a| ≤ |b| if at the highest index
where they differ, a has the value 0. Since the above 4 cases are mutually
exclusive, we can express each as a polynomial and add them together, since at
most one of them will evaluate to 1. We express as a polynomial by writing +
for OR (technically XOR, which is why it is important to make sure that the
cases are mutually exclusive) and · for AND:

i. p1 = an−1 · (bn−1 + 1)

ii. p2 = (an−1 · bn−1) · (an−2 · (bn−2 + 1)
aa+ (an−2 + bn−2 + 1) · ((an−3 · (bn−3 + 1) + (. . . ))),
or alternatively written:

1. p2 ← a0 · (b0 + 1) + (a0 + (b0 + 1))

2. For 1 ≤ i ≤ n− 2:
aa p2 ← (p2 · (ai + bi + 1)) + (ai · (bi + 1))

3. p2 ← p2 · an−1 · bn−1

iii. p3 = ((an−1 + 1) · (bn−1 + 1)) · ((an−2 + 1) · bn−2
aa+ (an−2 + bn−2 + 1) · (((an−3 + 1) · bn−3 + (. . . ))),
or alternatively:

1. p3 ← ((a0 + 1) · b0) + (a0 + b0 + 1)

2. For 1 ≤ i ≤ n− 2:
aaap3 ← (p3 · (ai + bi + 1)) + ((ai + 1) · bi)

3. p3 ← p3 · (an−1 + 1) · (bn−1 + 1)

iv. p4 = (an−1 + 1) · (an−2 + 1) · . . . (a1 + 1) · (a0 + 1)
aa · bn−1 · (bn−2 + 1) · . . . (b1 + 1) · (b0 + 1)

Thus, the polynomial p = p1 + p2 + p3 + p4 is the function that returns 1
exactly when a ≤ b.

If we want to compute the effort from Section 4.1, we again just count the
number of additions and multiplications: We get 1 addition and 1 multiplication
from p1, 4 + (n− 2) · 4 additions and 1 + (n− 2) · 2 + 2 multiplications from p2,
4+(n−2)·4+2 additions and 1+(n−2)·2+2 multiplications from p3, n+(n−1)
additions and (n−1)+n multiplications from p4 and 3 additions from summing
up the 4 polynomials. In total, we get 1+4+(n−2)·4+4+(n−2)·4+2+n+(n−
1)+3 = 10·n−3 additions and 1+1+(n−2)·2+2+1+(n−2)·2+2+(n−1)+n =
6n− 2 binary multiplications. Regarding multiplicative depth, we can see that
the most consecutive multiplications occur in p4, where we get a depth of 2n−1.
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