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ABSTRACT: 

 

In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These 

uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of 

expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We 

improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc 

weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust 

metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, 

a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate  the 

premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results 

of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances 

are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that 

not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results  clarify 

that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed 

method can efficiently be utilized to handle FSPP in uncertain networks.  
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1. INTRODUCTION 

Finding shortest path in a known network can be regarded as a 

popular concern among different engineering fields. Shortest 

path problem (SPP) can be investigated using a directed graph, 

which is studied using its edges and vertices (Antonio et al., 

1992). In this task, the primary purpose is to attain the 

minimum length path (Effati and Jafarzadeh, 2007). 

Geoscience experts usually resolve the SPP in transportation 

planning, robot route planning and traffic tasks (Chuang Kung, 

2005). The SPP has been inspected comprehensively. Up to 

now, various classes of algorithms are developed to tackle this 

task efficiently such as Dijkstra strategy (Sedeno-Noda and 

Raith, 2015) and Bellman–Ford (Goldberg and Radzik, 1993) 

approaches. Besides the traditional approaches, several novel 

and revised procedures have been established recently. It has 

been proved that the bi-criterion version of crisp SPP can be 

treated as a NP-hard problem. Hence, metaheuristic 

approaches are also useful to tackle SPP, especially for large-

scale and real-time requests (Mohemmed et al., 2008).  

Trevizan and Veloso (2014) introduced depth-based SPP 

techniques (Trevizan and Veloso, 2014). Pulido et al. verified 

multi-objective arrangement of SPP using lexicographic 

preferences (Pulido et al., 2014). Takaoka suggested a notable 

procedure in data spreading among all pairs SPP (Takaoka, 

2014). It is required to propose more competent approaches to 

understand SPP. With regard to difficulty of SPP; 

metaheuristics can also determine superior routes in a proper 

time (Mohemmed et al., 2008). Pervious researches also 

support the benefits of neural networks (NN) in handling SPP 

(Ahn et al., 2001). The genetic algorithm (GA) has been 

applied to realize different aspects of SPP (Ahn and 

Ramakrishna, 2002). Their paper revealed that GA 

outperforms NN-based methods in resolving SPP. In 2008, 

PSO was tested to solve SPP and the achieved results 

demonstrated that the PSO-based routes are better than those 

of GA (Mohemmed et al., 2008). In 2010, an ant colony 

technique (ACO) has been proposed to assess SPP (Ghoseiri 

and Nadjari, 2008). 

In real networks, uncertainty exists in the body of arcs and 

vertices. With regard to the inherent fuzziness of 

measurements and expert's knowledge, uncertainties cannot be 

ignored in realizing the SPP. Although in conventional SPP, 

the masses of the boundaries are real quantities, most real-

world tasks have inaccurate parameters (i.e. costs, 

measurements, demands, weights, time and capacities). Hence, 

solving SPP under fuzzy conditions (FSPP) is a motivating 

problem; subsequently the decision maker will be able to think 

through risk of the routes. The FSPP is reasonably different 

from the certain SPP with crisp numbers. In FSPP, fuzzy 

numbers can be used to model the uncertain aspects of the 
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problem. Also, FSPP involves operations on fuzzy numbers 

that cannot be completed by default methods.  

For the first time, Dubois and Prade (1980) suggested FSPP. 

Their method utilized fuzzy ordering relation and considered 

modification of the Ford–Moore–Bellman (FMB) technique. 

Blue et al. (2002) proposed a technique which discovers a cut 

rate to control the number of investigated routes, and then 

utilized a revised form of the k-shortest path (crisp) strategy. 

Up to now, several works have been reported about FSPP. 

Mahdavi et al. (2009) developed a dynamic programming 

strategy to tackle the fuzzy shortest chain task via an 

appropriate ranking technique. Tajdin et al. (2010) designed a 

dynamic programming strategy to handle uncertain SPP in 

networks having mixed fuzzy values via α-cuts. Okada and 

Soper (2000) presented a model that assigns a possibility to 

each arc of the shortest path. Lin and Chen (1994) assigned a 

membership degree to all shortest routes and proposed a fuzzy-

based technique to explore the best vital edge in route network. 

Klein (1991) proposed a method that helps decision makers to 

set a threshold for membership degree and attain promising 

paths. Ji et al. (2007) proposed different models to tackle SPP 

in fuzzy situations.  

Here, an effective strategy is proposed to obtain the shortest 

path of a sampler robot in an uncertain network. Performance 

of genetic algorithm (GA) is improved to investigate a class of 

SPPs on networks with vague arc weights. As a robust method, 

the GA is adapted and assessed to challenge the fuzzy SPP 

(FSPP) with uncertain edges. In the next section, the problem 

is introduced and then the modified GA and results are 

presented in detail. 

2. FUZZY SHORTEST PATH PROBLEM (FSPP) 

In order to design the mathematical model of FSPP, a directed 

acyclic network is considered, ( , )Net v A , with a set of 

nodes,  {1,2,..., }v n , and a number of arcs, A. Each arc is 

symbolized by ( , )s t A . In this network, only one directed 

arc ( , )s t  from "s" to" t" are allowed. Furthermore, the vertices 

of an acyclic directed network ( , )Net v A  is reordered so 

that s<t for every ( , )s t A . Each path can be represented by 

(Ji et al., 2007): 

{ ( , ) }, stx x s t A  {0,  1}stx                                           (1) 

where 1stx  shows that the arc ( , )s t  is a part of the route. 

This structure is shown in Figure 1.  

 

 
Figure 1. Illustration of a Net 

 

It has been exposed that { ( , ) } stx x s t A  is considered as a 

path in a Net if and only if (Ji et al., 2007): 

( , ) ( , )

1 1

0    2 1

1
 




    
 

 st ts

s t A t s A

s

x x s n

s n

                              (2) 

0 or 1    ( , )  stx s t A                                                       (3) 

For all ( , )s t A , let the arc lengths 
stL  be considered as 

fuzzy variables.  ( , ) stL L s t A  is given, then the length of 

each route x is 

( , )

( , )


  st st

s t A

D x L L x                                                          (4) 

In FSPP, the length of each route is fuzzy with respect to the 

allocated fuzzy values to different arcs. Hence, the main task is 

to minimize the expected length of pathways. The following 

model is considered for this purpose (Ji et al., 2007). First the 

next definition should be provided. For each route x , path x 

is identified as the expected SP (ESP) if 

   ( , ) ( , )E D x L E D x L                                                  (5) 

where [ ( , )]E D x L  shows the expected shortest route (ESR) 

length. To discover the ESR, the mathematical model of the 

FSPP is as:  

minimize st st

(s,t)

 
 
 


A

E m x                                                     (6) 

1 1

(1, ) ( ,1)

subject to  

1,
 

  t t

t A t A

x x                                                          (7) 

( , ) ( , )

0,    2 1
 

     st ts

s t A t s A

x x s n                                   (8) 

( , ) ( , )

1,
 

   nt tn

n t A t n A

x x                                                      (9) 

 0,1 ,    ( , ) .  stx s t A                                                     (10) 

where m is an integer value. In the next section, the fuzzy 

simulation is presented.  

 

2.1 Fuzzy simulation 

 

In order to transfigure the uncertain objective and restrictions 

to their corresponding deterministic variants, fuzzy 

programming can be utilized. However, this technique is not 

often effective and easy to implement in some cases. Here, 

fuzzy simulation is employed to estimate uncertain functions of 

the model. Before simulation, some definitions should be 

provided.  

 

The credibility of each fuzzy occurrence can be described as 

the average of its corresponding possibility and necessity. 

These concepts are described in Ji et al. (2007). Let z be a 

fuzzy variable and its membership function (MF) is ( ) x  and 

r is a real value, then the following equations are true:  

  sup ( )


 
w r

Pos z r w                                                      (11) 

   1   Nec z r Pos z r                                              (12) 

     0.5 ( )     Cred z r Pos z r Nec z r                 (13) 

For example, a trapezoidal fuzzy variable, z is described by 

(z1,z2,z3,z4) of crisp values with z1<z2<z3<z4 and following MF, 

Pos, Nec and Cred: 

1 2 1 1 2

2 3

4 3 4 3 4

( ) / ( )   

1    
( )

( ) / ( )    

0    otherwise



   


 
 

   


x z z z z x z

z x z
x

x z z z z x z
                          (14) 

2

1 1 2 1 2

1 0

( 0) / ( )      0

0       otherwise




    



z

Pos z z z z z z                           (15) 
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4

3 3 4 3 4

1 0

( 0) / ( )      0

0     otherwise




    



z

Nec z z z z z z                          (16) 

4

3 4 3 4 3 4

2 3

1 1 2 1 2

1 0

(2 ) / 2( ) 0

( 0)   0.5 0

/ 2( ) 0

0 otherwise




   


   
   
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z

z z z z z z
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z z z z z

            (17) 

Another definition is as follows, which is based on Liu and Liu 

(2002). 
0

0
[ ] ( ) ( )




    E z Cred z r dr Cred z r dr                     (18) 

where E(z) shows the expected value of z. For example, the 

E(z) for trapezoidal numbers is as follows: 
4

1
[ ] 0.25


  ii

E z z                                                         (19) 

Based on these concepts, fuzzy simulation can be performed 

via the following phases: 

 

Step 1: Set E = 0. 

Step 2: randomly create 1 2 3, , ,...,j j j mjq q q q based on ε-level 

sets of 
1 2, ,..., mL L L  and indicate 1 2 3( , , ,..., )j j j j mjq q q q q , 

, 1,2,...,j N  correspondingly, where ε is a small amount. 

Step 3: Set 
1 1 2( , ) ( , ) ... ( , ),    Nz D x q D x q D x q  

2 1 2( , ) ( , ) ... ( , ).    Nz D x q D x q D x q  

Step 4: Create random value r based on interval [z1, z2]. 

Step 5: If 0r , then  ( , )  E E Cr D x L r . 

Step 6: If 0r , then  ( , )  E E Cr D x L r . 

Step 7: Repeat 4 to 6 phases for REP times.  

Step 8:   1 2 2 1( , ) 0 0 .( ) / .     E D x L z z E z z REP  

where Cr(.) function computes the credibility of its inside part. 

Fuzzy simulation is beneficial to estimate the following 

uncertain function. 

:  [ ( , )]U x E D x L                                                          (20) 

To estimate U, qik is created using ε-level arrangements of 

fuzzy values 
iL , i=1,2,…,m, correspondingly, where ε is a 

small value around zero. Set 
1 2 3( , , ,..., )k k k k mkq q q q q  and 

1 1 2 2( ) ( ) ( ) ... ( )      k k k m mkq q q q . For 0r  and 

0r , the credibility is calculated by following equations, 

respectively (Ji et al., 2007): 

 
 

 
1,2,...,

1,2,...,

max ( ) ( , )
1

( , )
2 1 max ( ) ( , )









 
 

   
   
 

k j
j N

j

k j
j N

q D x q r

Cr D x q r
q D x q r

 (21)  

 
 

 
1,2,...,

1,2,...,

max ( ) ( , )
1

( , )
2 1 max ( ) ( , )









 
 

   
   
 

k j
j N

j

k j
j N

q D x q r

Cr D x q r
q D x q r

 (22) 

where N is a large number.  

 

3. MODIFIED GENETIC ALGORITHM (MGA) 

GA technique can be regarded as a robust optimization 

mechanism. This technique inspires the biological experience 

of genetic evolution (Ahn and Ramakrishna, 2002). The crucial 

idea is that the genetic pool of a certain population 

theoretically holds the solution, or a superior solution, to a 

specified adaptive task (Ahn and Ramakrishna, 2002). 

Collaboration of dissimilar chromosomes may lead to better 

solutions. Throughout reproduction and crossover phases, new 

genetic mixtures happen and, lastly, a generation can receive a 

better gene from the parents. Using genetic operators, current 

population should be evolved in an iterative process. 

  

Ever since the GA technique was designed by Holland 

(Alvarenga et al., 2007) to realize combinatorial tasks, it has 

emerged as an efficient meta-heuristic mechanism for tackling 

several network design problems. In the employed model, as 

the vertices of the network increase, the final set of routes can 

be very large. Due to the increasing complexity of this model, 

the GA is used to find the appropriate set of routes. Every GA 

algorithm should perform three phases: chromosome structure, 

crossover step and mutation. The structure of conventional GA 

is presented in Figure 2.  

 

 
Figure 2. The conventional GA flowchart 

 

For initialization, these steps can be performed: 

 

Step 1: Set u=0 and p0=1. 

Step 2: Select index m randomly like (p1, m) 

Step 3: u←u+1 and p1=m.  

Step 4: Repeat 2 and 3 phases until p1=n. 

Step 5: achieve the chromosome (p1, p2, …, pu-1). 

 

In crossover operation, for two chromosomes, (p1,p2,… ,pk) and 

(p1
', p2

',… , pk'
'), if there are shared vertices among them, then 

one of them can be randomly selected, say  pi=pi'. Hence, the 

following chromosomes are generated: 

' '

' '

1 2 1
( , ,..., , ,..., )

i i k
p p p p p , ' ' '

1 2 1( , ,..., , ,..., )i i kp p p p p         (23) 

For mutation step, first, an integer value should be selected 

randomly from set {1,2,3,…,k}, presented by i. Then, a route 

' '

' '

1
( ,..., )

i k
p p  is designed from pi to n using a similar 

procedure of chromosome encoding. Lastly, a new chromosome 

' '

' '

1 2 1
( , ,..., , ,..., )

i i k
p p p p p  can be generated.  

 

In modified GA-based fuzzy strategy, the rank-based evaluation 

of genes is determined chaotically. The logistic map is used to 

generate chaotic values inside interval (0, 1). This classic 
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chaos-based signal can be observed in nonlinear dynamics of 

organic populace showing disordered manners (Heidari et al., 

2015), and is formulated as 

1 (1 )  k k ka a a                                                               (24) 

where ak denotes the kth chaos number and k shows the 

iteration number. Clearly, a is inside (0,1) with opening 

condition a0 is inside (0,1).  In continue, ∝= 4 is utilized.  

Then, the rank-based evaluation is formed as: 
1( ) (1 ) ,   1,2,...,   i

i k keval P a a i pop size                     (25) 

Hence the GA-based fuzzy strategy is implemented using the 

following steps: 

 

Step 1: Initialize population size chromosomes Pk,  

               k=1, 2,…, pop-size at random 

Step 2:    Compute the objective values of all paths using used  

               fuzzy simulation.  

Step 3:   Calculate the fitness of every chromosome (gene).  

               The rank-based assessment measure is formulated as 

                    1( ) (1 ) ,   1,2,...,   i

i k keval P a a i pop size  

1 4 (1 )  k k ka a a , (0,1)a  

Step 4:   Select the genes for a new generation. 

Step 5:   Update the genes using crossover and mutation. 

Step 6:   Repeat steps 2-5 during certain loops. 

Step 7:   Return the best path. 

 

4. EXPERIMENTAL RESULTS 

In order to substantiate the performance of the proposed 

strategy, a robotic task is investigated. In these scenarios, a 

mobile robot should explore the shortest route to record some 

soil samples from different stations in uncertain situation. In 

these implementations, first, 23 sampling station and 40 

possible arcs among them are considered to generate the initial 

topology of path network. After obtaining required soil 

material from each station, the robot should move toward the 

next station to complete the soil sampling task. Due to the 

various limitations in time and energy, the robot should reach 

to the last station by following the best expected shortest 

trajectory. The tested network is depicted in Figure 3. The MF 

of arc lengths is also exposed on each route. 

 

 
Figure 3. Examined network with 23 nodes (The station IDs 

are reported on every node, while edge values demonstrate cost 

of the paths in terms of triangular fuzzy values) 

For these experiments, evaluated methods are substantiated 

using MATLAB R2012a (7.14) on a T6400@4 GHz Intel Core 

(TM) PC with 4 GB of RAM. After sensitivity study, the GA 

and MGA methods are evaluated with these parameters: 

pop_size: 40, total generations: 1000, total fuzzy simulations: 

5000, crossover: 0.4, mutation: 0.3.  

 

The optimal route recognized by GA is 1, 5, 11, 17, 21, 23 and 

the length of path is 52.50. The best solution found by MGA is 

also 1, 5, 11, 17, 21, 23, and the length is 52.50 but with better 

computational performance. The convergence history of the 

MGA in 10 independent trials with 100 and 200 generations in 

each test is reported in Table 1. From Table 1, it can be seen 

that MGA can obtain fuzzy shortest length after 4 iterations.  
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Test-1 100 1, 5, 11, 17, 21, 23 17 4.117 
Test-2 100 1, 5, 11, 17, 21, 23 4 1.319 
Test-3 100 1, 5, 11, 17, 21, 23  23 5.764 
Test-4 100 1, 5, 11, 17, 21, 23 19 4.801 
Test-5 100 1, 5, 11, 17, 21, 23 5 1.445 
Test-6 200 1, 5, 11, 17, 21, 23 59 14.513 
Test-7 200 1, 5, 11, 17, 21, 23 12 3.112 
Test-8 200 1, 5, 11, 17, 21, 23 28 7.699 
Test-9 200 1, 5, 11, 17, 21, 23 6 1.502 
Test-10 200 1, 5, 11, 17, 21, 23 33 8.633 

Table 1. Convergence history of MGA in robotic scenario 

 

In addition, MGA-based FSPP has validated in chorus with 

GA-based version. The obtained path of MGA-based fuzzy 

strategy during 33 iterations in test-10 is exposed in Figure 4. 

The length of 1→5→11→17→21→23 route is 52.50. 

However, the MGA-based FSPP algorithm can successfully 

outperform GA-based FSPP in most of the runs. For example, 

the computed path of GA-based FSPP after 33 repetitions in 

test-10 is depicted in Figure 5. It can be detected that the GA-

FSPP result is 1→5→12→14→21→23, which is not 

consistent at the same condition.  

 

 
Figure 4. The optimal route of MGA-FSPP in Test-10 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B2-299-2016

 
302



 

 
Figure 5. The sub-optimal route of GA-FSPP in Test-10 

 

To investigate the convergence of the MGA, the algorithm is 

tested with dissimilar parameters. Results reveal that solutions 

converge effectively and maximum relative error (RE) is 

0.936%. The RE value for Z variable can be determined based 

on: 

min min( )=( ) / 100 actualRE Z Z Z Z                                    (10) 

where
actualZ is the actual value of Z and 

minZ shows the 

minimum value of Z. 

 

To evaluate the MGA for different networks, it is substantiated 

on various random topologies with n nodes and m paths. These 

networks are generated using SPACYC (SPLIB) software (Ji et 

al., 2007). The expected shortest route is investigated using 

MGA and GA in each random network for 30 times to obtain 

the biggest RE value. The RE values are reflected in Table 2. 

From Table 2, it can be seen that the RE value of MGA is less 

than 8.0927%. This rate shows that the MGA is also competent 

for large scale soil sampling robotic networks.  

 

Network-ID n m MGA GA 

Net-1 300 1200 5.6208 7.5594 

Net-2 400 1600 3.2719 9.8980 

Net-3 500 1500 2.3078 8.7492 

Net-4 600 2400 3.4463 13.4362 

Net-5 700 2100 8.0927 19.2831 

Net-6 800 3200 5.0054 5.2208 

Net-7 900 2700 3.0360 3.3130 

Net-8 1000 3000 4.0412 4.1233 

     Table 2. RE Results of GA, MGA on random networks 

 

For bigger networks such as Net-6, Net-7 and Net-8, the 

difference amongst RE values is reduced. With regard to RE 

values, the simulations confirm that not only the proposed 

procedure can outperform GA, but also the qualities of the 

paths are effectively enriched. These results are also compared 

in Figure 6. 

 
Figure 6. Quality assessment of MGA-FSPP and GA-FSPP 

based on different random networks 

 

The CPU times of GA and MGA is shown in Table 3. The 

worst time of MGA is 418.86 (s), while the GA time is not 

better than 440.34 (s) for larger networks. However, the time 

of GA and MGA is comparable for some networks such as Net-

1, Net-2, Net-4 and Net-5. The RE and time results also 

demonstrate that the premature convergence problem is 

mitigated effectively. The results also demonstrate that the 

proposed GA-based technique can competently be used to 

resolve FSPP in uncertain networks.  

 

 

Network-ID n m  MGA (s) GA (s) 

Net-1 300 1200 51.91  57.28 

Net-2 400 1600 64.44 63.545 

Net-3 500 1500 76.97 83.235 

Net-4 600 2400 87.71 92.185 

Net-5 700 2100 148.57 142.305 

Net-6 800 3200 187.95 209.43 

Net-7 900 2700 261.34 308.775 

Net-8 1000 3000 418.86 440.34 

Table 3. Total running times of GA, MGA on random networks 

 

5. CONCLUSIONS 

In order to handle SPP task in uncertain networks, a new 

practical GA-based strategy for obtaining shortest route in 

fuzzy networks is evaluated. The expected shortest route model 

is utilized to explore target paths. To validate the performance 

of proposed approach, a robotic task is studied. In addition, to 

evaluate the MGA for dissimilar networks, it is substantiated 

on uncertain networks with random topologies. The results of 

relative errors and time comparisons show the superiority of 

the MGA-based FSPP. The evaluation can also be used in 

other uncertain networks including transportation systems. For 

future, different fuzzy models can be applied to tackle the SPP.  
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