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ABSTRACT: 

 

To assess the phenological changes in Moist Deciduous Forest (MDF) of western Himalayan region of India, we carried out NDVI 

time series analysis from 2013 to 2015 using Landsat 8 OLI data. We used the vegetation index differencing method to calculate the 

change in NDVI (NDVIchange) during pre and post monsoon seasons and these changes were used to assess the phenological 

behaviour of MDF by taking the effect of a set of environmental variables into account. To understand the effect of environmental 

variables on change in phenology, we designed a linear regression analysis with sample-based NDVIchange values as the response 

variable and elevation aspect, and Land Surface Temperature (LST) as explanatory variables. The Landsat-8 derived phenology 

transition stages were validated by calculating the phenology variation from Nov 2008 to April 2009 using Landsat-7 which has the 

same spatial resolution as Landsat-8. The Landsat-7 derived NDVI trajectories were plotted in accordance with MODIS derived 

phenology stages (from Nov 2008 to April 2009) of MDF. Results indicate that the Landsat -8 derived NDVI trajectories describing 

the phenology variation of MDF during spring, monsoon autumn and winter seasons agreed closely with Landsat-7 and MODIS 

derived phenology transition from Nov 2008 to April 2009. Furthermore, statistical analysis showed statistically significant 

correlations (p < 0.05) amongst the environmental variables and the NDVIchange between full greenness and maximum frequency 

stage of Onset of Greenness (OG) activity.. The major change in NDVI was observed in medium (600 to 650 m) and maximum (650 

to 750 m) elevation areas. The change in LST showed also to be highly influential. The results of this study can be used for large 

scale monitoring of difficult-to-reach mountainous forests, with additional implications in biodiversity assessment. By means of a 

sufficient amount of available cloud-free imagery, detailed phenological trends across mountainous forests could be explained. 

 

 

1. INTRODUCTION 

In humid subtropical ecosystem of Western Himalayan region 

of India, forest phenology patterns are potentially governed by 

climatic conditions (Joshi et al., 2001). Due to this, spatio-

temporal patterns in phenological changes are comprehensively 

considered as important indicators of changes in forest 

biodiversity (Cleland et al., 2007). Furthermore, Western 

Himalayan region of India is mainly dominated by Moist 

Deciduous Forest (MDF) (Jeganathan et al. 2010a, b) and faces 

four different major seasons (summer, monsoon, autumn and 

winter) throughout the year. Thus, different growing season 

dynamics are also strongly connected with environmental 

variables such as topographic variations, Land Surface 

Temperature (LST) and rainfall. Due to this fact, detailed and 

precise description of phenological behaviour of MDF is 

essential to maintain the forest biodiversity. 

 

The most widely used remote sensing satellite for the study of 

phenological pattern are Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Roy et al., 2002) and Advanced 

Very High Resolution Radiometer (AVHRR) (Townshend and 

Tucker, 1981) which offer imagery at varying spatial resolution 

between 250 m and 8 Km with nearly daily temporal resolution. 

Due to coarser spatial resolution, these datasets are suitable only 

for large scale analysis of vegetation dynamics (Melaas et al., 

2013; Ju and Masek, 2016). Various studies during the past two 

decades exploited time series NDVI data to track seasonal 

changes in plant, crop and forest phenology (Moulin et al., 

1997; Jonsson & Eklundh, 2002; de Beurs & Henebry, 2010). 

However, these studies are less reliable at local scale analysis 

and in areas with mixed land cover where remote sensing 

sensors with coarser spatial resolution provide surface 

reflectance with mixture of land cover types, plant types and 

plant species (Liang et al., 2011). In contrast to this, Landsat 

imagery offers a possibility for a medium spatial resolution, 

long term datasets for local scale analysis of forest phenology. 

Landsat archive has been continuously providing data at 

medium spatial resolution of 30 m since 1982. it has given 

impetus to phenology based studies (Woodcock et al., 2008; Li 

et. al., 2013; Ke at. al., 2015). Moreover, vegetation index 

differencing is widely used method to study changes in 

vegetation phenology. This method gives prominence to 

differences in spectral response of different features 

(Townshend and Justice, 1995; Fan et al., 2015).   

 

In this paper, we have assessed the phenological changes across 

MDF in western Himalayan region of India using Landsat 8 

Operational Land Imager OLI-derived NDVI and Thermal 

Infrared Sensor (TIRS)-derived LST. The objective of this study 

was to examine the effect of environmental variables including 

elevation, aspect and LST on phenological changes of MDF by 

regression analysis during post and pre-monsoon seasons from 

Nov-2013 to Apr-2015. In short, this paper combined 

vegetation index differencing method to detect phenological 

changes between mature leaf (Nov) and leaf flush (Apr) 

duration and then examined the effect of topographic elements 

and change in LST on phenological behaviour of MDF. 
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2. METHODS 

2.1 Study area 

The study area is located in the Western Himalayan region of 

Doon valley, Uttarakhand, India (Latitude 29055' to 30030' N 

and Longitude 77035' to 78024'E) (Figure 1). The Doon valley is 

surrounded by hills and has varied range of MDF, mainly 

dominated by Shorea robusta (Sal tree) along with Syzygium 

spp., Terminalia spp., Ehretia spp., and Litsea spp as co-

dominant species. The average maximum and minimum 

temperatures of Doon valley are 27.650c and 13.80c, 

respectively, with average maxima in June (400c) and average 

minima in January (1.800c) (Mandal and Joshi, 2015). This 

region faces four different seasons annually: Summer seasons is 

from March to May and monsoon season starts from June 

onwards and lasts up to end of September. An average annual 

rainfall of 2025.43 mm has been recorded, with most of the 

annual rainfall occurred in monsoon season. Furthermore, post 

monsoon season covers October and November, while winter 

season duration is from December to February.  

  

 
 

Figure 1: Location of study area along with sample points 

(N=100) within Thano forest site. 

 

2.2 Methodology 

2.2.1 Acquisition and preprocessing of remote sensing 

datastes : Since major phenological changes for MDF takes 

place from November to April (Jeganathan et al., 2010b) and a 

recent study of Upadhyay et al., (2013) has also shown the 

phenological stages of MDF for Doon valley from November 

2008 to April 2009. Thus, for this study we have acquired 

nearby dates Landsat-7 derived surface reflectance NDVI from 

November 2008 to April 2009. Landsat-7 data was used for 

reference purpose only.  

 

Temporal time series of Landsat-8 derived surface reflectance 

NDVI were acquired from United States Geological Survey 

(USGS). We acquired 7 scenes of processed NDVI from Nov-

2013 to Apr-2014 and 5 scenes from Nov-2014 to Apr-2015. 

Cloud free scenes of Landsat-8 were selected approximately for 

similar acquisition dates of Landsat-7 scenes (table 1). The LST 

was calculated from Landsat-8 TIRS bands using ATCOR 3. In 

addition, topographic variables such as elevation and aspect 

were generated using Cartosat-I version 3.1 Digital Elevation 

Model (DEM) (Ritter, 1987) provided by Bhuvan portal of 

Indian Space research Organization (ISRO). The spatial 

resolution of DEM was 30m and it was orthorectified and pre-

processed by the data provider. 

 

2.2.2 Establish relationship between multi-temporal 

NDVI and phenology activity of MDF: The figure 2 

summarizes the methodology of this study. Mean, standard 

deviation, minimum and maximum values of NDVI were 

calculated for 6 scenes of Landsat-7 and similarly for both time 

lines of the Landsat-8 datasets. Furthermore, mean values of 

NDVI trajectories were plotted from Nov to Apr for Landsat-7 

(figure 3) and Landsat-8 (figure 4). Two time lines for Landsat-

8 data (figure 4) were selected to establish the relationship 

between phenological activity of MDF and mean values of 

NDVI. Since Landsat-7 data was used as a reference purpose, 

comparison was done between Landsat-7 and Landsat-8-based 

NDVI trajectories. Further analysis was solely carried out on 

Landsat-8 data to understand the change in phenological activity 

between Nov and Apr. Since Nov and Apr are the two extremes 

of NDVI trajectories (figure 4), change in NDVI (NDVIchange) 

was calculated between Nov (full greenness) and Apr 

(maximum frequency stage of OG activity) using equation 1.  

                                               (1)                                         

                                                                               

 

 
 

Figure 2: Flow chart of methodology 

 

2.2.3 Modelling relationship between NDVIchange and 

environmental variables: The effect of environmental 

variables (tpography and LST) on changes in phenology 

between Nov and Apr was modelled as a function of the 

spectral feature (NDVIchange) derived from vegetation index 

differencing method (equation 2). A global Ordinary Least 

Squares (OLS) model was initially set by taking NDVIchange as a 

dependent variable. Independent variables included elevation, 

aspect and change in LST (∆TM). 

 

                                         

                                                        (2) 

                        

Where Y represents the response variable,   is the 

intercept,   ,     ,   ,        are regression coefficient of the 

respective explanatory, and ε is random error term. The 

coefficients were estimated by OLS method. Each global model 

was screened by an exhaustive model selection procedure via 

repeated model fitting of all numerous possible sub-models as 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-15-2016

 
16



 

described by Barton (2015). The model selection procedure 

followed Latifi et al. (2016). Second-order Akaike Information 

Criterion (AICc) was calculated for all NDVIchange between Nov 

(A) to Apr (F) phenology stages to identify the sub-model with 

highest AICc. AICc takes the general form of AIC=2k-2 ln (L), 

where k is the number of parameters in the model and L denotes 

the maximization of a likelihood function. The AICc is an 

extension of AIC in the presence of small sample sizes or when 

number of fitted parameters is moderate to large (Hurvich and 

Tsai, 1989; Johnson and Omland, 2004). ‘MuMin’ package in R 

was applied to calculate the subsets, AICc and select sub-

models. 

 

3. RESULT AND DISCUSSION 

3.1 Phenology variation of MDF 

This section describes the results for NDVI trajectories along 

with phenology stages of MDF for Landsat-7 and Landsat-8 

data separately. Further sections will cover statistical analysis 

between NDVIchange and environmental variables.  

The curve (figure 3) for Landat-7 derived NDVI closely agreed 

with MODIS- derived NDVI curve previously published by 

Upadhyay et al., (2013) for MDF. Maximum NDVI value 

achieved in November 2008 was 0.861 as well as 0.714 for 

April 2009. These values were closely in agreement with 

finding of Upadhyay et al., (2013). Since monsoon season ends 

in September, MDF shows full greenness (mature leaf) in the 

month of November which leads to higher NDVI values. In 

contrast to this, April belongs to pre-monsoon season and is the 

starting point of leaf flush activity which is defined as Onset of 

Greenness (OG) activity, in which minimum NDVI value was 

obtained (table 1). However, higher (39.7 mm) rainfall was 

observed for mid-February 2009 as compared to December 

2008 (0.0 mm) and January 2009 (5.2 mm) (table 1), due to 

which there is a sudden increase in NDVI value during mid-

February 2009.  

 

 
 

Figure 3: Landsat-7 derived NDVI trajectories along with 

phenological activities from Nov 2008 to Apr 2009 

OG: Onset of Greenness (leaf flush durtation) and ES: End of 

Senescence (leaf fall duration) 

 

Table 1 shows that Doon valley occasionally faces winter 

rainfall. Therefore similar rise in NDVI values was also 

observed by Upadhyay et al., (2013). However, they used 

coarser spatial resolution datasets to understand the phenology 

of MDF. In contrary, our study used medium spatial resolution 

dataset (30 m) and additionally estimated the effect of 

environmental variables causing change in phenological 

activities of MDF using a regression approach. 

 

Based upon the available cloud free data, similar type of 

Landsat-8 derived NDVI trajectories were drawn from Nov 

2013 to Apr 2014 as well as between Nov 2014 and Apr 2015. 

Here, we only show the results from Nov 2013 to Apr 2014, 

since the final selected regression model included the same 

variables as the other studied time span (table 2) as well as the 

rainfall data was only available up to year 2014. Results 

indicated that trend in the variation of NDVI values is 

approximately similar for both timelines except for some dates 

(B and C in figure 4), in which cloud free scenes for similar 

dates were unavailable.  

 

 
 

Table 1: Selected Landsat-7 and Landsat-8 datasets along with 

rainfall and phenology activity of corresponding months 

 

 
 

Figure 4: Landsat-8 derived NDVI trajectories along with 

phenological activities for Nov 2013 to Apr 2014 and Nov 2014 

to Apr 2015 durations. 

 

3.2 Statistics between Nov 2013 and Apr 2014 

Correlation between the response variable and the 

environmental variables was shown by Pearson correlation 

coefficient. A linear and statistically significant correlation was 

observed between NDVIchange and environmental variables. 

Elevation and ∆TM were significantly correlated with 

NDVIchange (p < 0.05). Moreover, elevation and ∆TM also 

showed to be positively correlated, whereas the aspect was 

negatively correlated with NDVIchange. In addition, interaction 

effect was observed between elevation and ∆TM in final 

selected model (table 2), which suggests their relevance as 

compared to the interaction between aspect and ∆TM in linear 

regression model (equation 2).  
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Date Final Selected model r2 Adj.r2 

Nov 

2013 to 

Apr 

2014 

NDVIchange = elevation 

+ aspect + ∆TM + 

elevation × ∆TM 

0.415 0.3686 

Nov 

2014 to 

Apr 

2015 

NDVIchange = elevation 

+ aspect + ∆TM + 

elevation × ∆TM 

0.335 0.2799 

 

Table 2: Final selected models for Nov 2013 to Apr 2014 and 

Nov 2014 to Apr 2015 timelines 

 

 
 

Figure 5: Graphical representation of outputs between Nov  

2013 to Apr 2014. (a) ∆TM map representing variation in 

Max_∆TM (maximum change in LST), Med_∆TM (medium 

change in LST) and Min_∆TM (minimum change in LST) 

categories (b) Elevation map representing variation in 

topography (c) Cross sectional plots of the NDVIchange model 

with an intraction between elevation and ∆TM with emphasis 

on elevation (d) Univariate relationship of NDVIchange with 

elevation, aspect and ∆TM. 

 

Furthermore, estimated univariate association of NDVIchange 

with elevation, aspect and ∆TM are shown in figure 5 (d). The 

figure 5 (a) also represents the interaction among elevation and 

∆TM for NDVIchange. Among the ∆TM range, higher association 

between elevation and NDVIchange was observed within medium 

and minimum ∆TM categories. 

 

However, the standard error of estimation (i.e. confidence 

bands) and slope of the regression plot in minimum ∆TM 

category were affected by small number of observations. In case 

of univariate relationship between NDVIchange and aspect, 

standard error was substantially larger in northeast direction. It 

was also observed that maximum variations in NDVI occurred 

in those areas which are at medium (600 to 650 m) and 

maximum (650 to 750 m) elevation ranges. 

 

4. CONCLUSION 

This study used a vegetation index differencing method to 

develop relationships between changing phenology of MDF and 

a set of commonly-studied environmental variables. We have 

found that elevation and ∆TM are significantly correlated with 

NDVIchange (p<0.05). The Landsat 8 OLI-based phenological 

trajectories showed unique phenological characteristics of 

MDF. Two specific phenological phases of full greenness 

(mature leaf) and maximum frequency stage of OG activity 

(leaf flush) of MDF were accurately identified from the 

temporal profiles of Landsat-7 and Landsat-8 derived NDVI. 

Phenology is a major characteristic to be explored in order to 

sustain forest biodiversity within mountainous forest regions. 

Though our results are confined to a reserved forest range, the 

adopted approach may be applied to other forest areas as well 

for comparative analyses. Furthermore, the outcomes of this 

model-assisted analysis provide a cost effective solution to 

monitor ecosystem dynamics in tedious mountain forest 

regions. 

 

Coarser spatial resolution data derived from MODIS, AVHRR, 

and SPOT sensors were utilized for high temporal observations 

at larger spatial scales. However, significant variations in 

phenology occur at medium and high spatial resolution which 

may not be addressed by such sensors. Thus Landsat-7 and 

Landsat-8 (OLI and TIRS) datasets are potentially appropriate 

to address fine scale changes in phenology. The existence of 

other sources of medium resolution optical data such as those 

from Sentinel 2 warrants a global coverage and temporal 

continuity of such data for studying vegetation phenology in 

remote mountainous areas. 
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