Constant-Time Callees with Variable-Time Callers

Cesar Pereida Garcia

Billy Bob Brumley

Tampere University of Technology
{cesar.pereidagarcia,billy.brumley} @tut.fi

Abstract

Side-channel attacks are a serious threat to security-
critical software. To mitigate remote timing and cache-
timing attacks, many ubiquitous cryptography software
libraries feature constant-time implementations of cryp-
tographic primitives. In this work, we disclose a vulner-
ability in OpenSSL 1.0.1u that recovers ECDSA private
keys for the standardized elliptic curve P-256 despite the
library featuring both constant-time curve operations and
modular inversion with microarchitecture attack mitiga-
tions. Exploiting this defect, we target the errant mod-
ular inversion code path with a cache-timing and im-
proved performance degradation attack, recovering the
inversion state sequence. We propose a new approach
of extracting a variable number of nonce bits from these
sequences, and improve upon the best theoretical result
to recover private keys in a lattice attack with as few as
50 signatures and corresponding traces. As far as we are
aware, this is the first timing attack against OpenSSL EC-
DSA that does not target scalar multiplication, and fur-
thermore the first side-channel attack on cryptosystems
leveraging P-256 constant-time scalar multiplication.

Keywords: applied cryptography; elliptic curve cryp-
tography; digital signatures; side-channel analysis; tim-
ing attacks; cache-timing attacks; performance degrada-
tion; ECDSA; modular inversion; binary extended Eu-
clidean algorithm; lattice attacks; constant-time soft-
ware; OpenSSL; NIST P-256; CVE-2016-7056

1 Introduction

Being a widely-deployed open-source cryptographic li-
brary, OpenSSL is a popular target for different cryptan-
alytic attacks, including side-channel attacks that target
cryptosystem implementation weaknesses that can leak
critical algorithm state. As a software library, Open-
SSL provides not only TLS functionality but also cryp-

tographic functionality for applications such as SSH,
IPSec, and VPNs.

Due to its ubiquitous usage, OpenSSL contains ar-
guably one of the most popular software implemen-
tations of the Elliptic Curve Digital Signature Algo-
rithm (ECDSA). OpenSSL’s scalar multiplication algo-
rithm was shown vulnerable to cache-timing attacks in
2009 [7], and attacks continue on the same code path to
this date [3, 5, 10, 27]. Recognizing and responding to
the threat cache-timing attacks pose to cryptosystem im-
plementations, OpenSSL mainlined constant-time scalar
multiplication for several popular standardized curves al-
ready in 2011 [16].

In this work, we disclose a software defect in the
OpenSSL (1.0.1 branch) ECDSA implementation that al-
lows us to design and implement a side-channel cache-
timing attack to recover private keys. Different from
previous work, our attack focuses on the modular inver-
sion operation instead of the typical scalar multiplication,
thus allowing us to target the standardized elliptic curve
P-256, circumventing its constant-time scalar multiplica-
tion implementation. The root cause of the defect is fail-
ure to set a flag in ECDSA signing nonces that indicates
only constant-time code paths should be followed.

We leverage the state-of-the-art FLUSH+RE-
LOAD [28] technique to perform our cache-timing
attack. We adapt the technique to OpenSSL’s implemen-
tation of ECDSA and the Binary Extended Euclidean
Algorithm (BEEA). Our spy program probes relevant
memory addresses to create a timing signal trace, then
the signal is processed and converted into a sequence of
right-shift and subtraction (LS) operations correspond-
ing to the BEEA execution state from which we extract
bits of information to create a lattice problem. The
solution to the lattice problem yields the ECDSA secret
key.

We discover that observing as few as 5 operations
from the LS sequence allows us to use every single cap-
tured trace for our attack. This significantly reduces both

the required amount of signatures and side-channel data
compared to previous work [2], and maintains a good
signature to lattice dimension ratio.

We build upon the performance degradation technique
of Allan et al. [3] to efficiently find the memory addresses
with the highest impact to the cache during the degrading
attack. This new approach allows us to accurately find
the best candidate memory addresses to slow the mod-
ular inversion by an average factor of 18, giving a high
resolution trace and allowing us to extract the needed bits
of information from all of the traces.

Unlike previous works targeting the wNAF scalar
multiplication code path (for curves such as BitCoin’s
secp256k1) or performing theoretical side-channel anal-
ysis of the BEEA, we are the first to demonstrate a practi-
cal cache-timing attack against the BEEA modular inver-
sion, and furthermore OpenSSL’s ECDSA signing im-
plementation with constant-time P-256 scalar multipli-
cation.

Our contributions in this work include the following:

We identify a bug in OpenSSL that allows a
cache-timing attack on ECDSA signatures, despite
constant-time P-256 scalar multiplication. (Sec-
tion 3)

We describe a new quantitative approach that ac-
curately identifies the most accessed victim mem-
ory addresses w.r.t. data caching, then we use them
for an improved performance degradation attack in
combination with the FLUSH+RELOAD technique.
(Section 4.1)

We describe how to combine the FLUSH+RELOAD
technique with the improved performance degrada-
tion attack to recover side-channel traces and algo-
rithm state from the BEEA execution. (Section 4)

* We present an alternate approach to recovering
nonce bits from the LS sequences, focused on min-
imizing required side-channel information. Using
this approach, we recover bits of information from
every trace, allowing us to use every signature query
to construct and solve a lattice problem, revealing
the secret key with as few as 50 signatures and cor-
responding traces. (Section 4.2)

2 Background

2.1 Elliptic Curve Cryptography

Developed in the mid 1980’s, elliptic curves were intro-
duced to cryptography by Miller [20] and Koblitz [17]
independently. Elliptic Curve Cryptography (ECC) be-
came popular mainly for two important reasons: no sub-
exponential time algorithm to solve the elliptic curve dis-
crete logarithm problem is known for well-chosen pa-

rameters and it operates in the group of points on an el-
liptic curve, compared to the classic multiplicative group
of a finite field, thus allowing the use of smaller param-
eters to achieve the same security levels—consequently
smaller keys and signatures.

Although there are more general forms of elliptic
curves, for the purposes of this paper we restrict to short
Weierstrass curves over prime fields. With prime p > 3,
all of the x,y € GF (p) solutions the equation

E :y2 =X +ax+b

along with an identity element form an abelian group.
Parameters of interest here are the NIST standard curves
that set @ = —3 and p a Mersenne-like prime, both cho-
sen for their performance characteristics.

2.2 Digital Signatures

ECDSA. Throughout this paper, we use the following
notation for the Elliptic Curve Digital Signature Algo-
rithm (ECDSA).

Parameters: A generator G € E of an elliptic curve group
of prime order n and an approved hash function / (e.g.
SHA-1, SHA-256, SHA-512).

Private-Public key pairs: The private key o is an integer
uniformly chosen from {1..n— 1} and the corresponding
public key D =]G where [i]G denotes scalar-by-point
multiplication using additive group notation. Calculat-
ing the private key given the public key requires solving
the elliptic curve discrete logarithm problem and for cor-
rectly chosen parameters, this is an intractable problem.
Signing: A given party, Alice, wants to send a signed
message m to Bob. Using her private-public key pair
(aa,Dy), Alice performs the following steps:

1. Select uniformly at random a secret nonce k such
that 0 < k <n.

2. Compute r = ([k]G)yx mod n.

3. Compute s = k! (h(m) + aar) mod n.

4. Alice sends (m,r,s) to Bob.

Verifying: Bob wants to be sure the message he re-
ceived comes from Alice—a valid ECDSA signature
gives strong evidence of authenticity. Bob performs the
following steps to verify the signature:

1. Reject the signature if it does not satisfy 0 < r < n
and 0 <s <n.

Compute w = s~ mod n and h(m).

Compute u; = h(m)w mod n and uy = rw mod n.
Compute (x,y) = [u1]G + [u2]Da.

Accept the signature if and only if x = r mod n
holds.

DA

Side-channel attacks against ECDSA. Thanks to the
adoption of ECC and the increasing use of digital sig-
natures, ECDSA has become a popular algorithm choice
for digital signatures. ECDSA’s popularity makes it a
good target for side-channel attacks.

At a high level, an established methodology for EC-
DSA is to query multiple signatures, then partially re-
cover nonces k; from the side-channel, leading to a bound
on the value af; — u; that is shorter than the interval
{1..n—1} for some known integers #; and u;. This leads
to a version of the Hidden Number Problem (HNP) [6]:
recover ¢¢ given many (f;,u;) pairs. The HNP instances
are then reduced to Closest Vector Problem (CVP) in-
stances, solved with lattice methods.

Over the past decade, several authors have described
practical side-channel attacks on ECDSA that exploit
partial nonce disclosure by different microprocessor fea-
tures to recover long-term private keys.

Brumley and Hakala [7] describe the first practical
side-channel attack against OpenSSL’s ECDSA imple-
mentation. They use the EVICT+RELOAD strategy and
an L1 data cache-timing attack to recover the LSBs of
ECDSA nonces from the library’s wNAF (a popular low-
weight signed-digit representation) scalar multiplication
implementation in OpenSSL 0.9.8k. After collecting
2,600 signatures (8K with noise) from the dgst com-
mand line tool and using the Howgrave-Graham and
Smart [15] lattice attack, the authors recover a 160-bit
ECDSA private key from standardized curve secp160r1.

Brumley and Tuveri [8] attack ECDSA with binary
curves in OpenSSL 0.9.80. Mounting a remote timing at-
tack, the authors show the library’s Montgomery Ladder
scalar multiplication implementation leaks timing infor-
mation on the MSBs of the nonce used and after collect-
ing that information over 8,000 TLS handshakes a 162-
bit NIST B-163 private key can be recovered with lattice
methods.

Benger et al. [5] target OpenSSL’s wNAF implemen-
tation and 256-bit private keys for the standardized GLV
curve [11] secp256k1 used in the BitCoin protocol. Us-
ing as few as 200 ECDSA signatures and the FLUSH+
RELOAD technique [28], the authors find some LSBs of
the nonces and extend the lattice technique of [21, 22] to
use a varying amount of leaked bits rather than limiting
to a fixed number.

van de Pol et al. [27] attack OpenSSL’s 1.0.1e wNAF
implementation for the curve secp256k1. Leveraging the
structure of the modulus #n, the authors use more infor-
mation leaked in consecutive sequences of bits anywhere
in the top half of the nonces, allowing them to recover
the secret key after observing as few as 25 ECDSA sig-
natures.

Allan et al. [3] improve on previous results by using
a performance-degradation attack to amplify the side-

channel. This amplification allows them to additionally
observe the sign bit of digits in the wNAF representa-
tion used in OpenSSL 1.0.2a and to recover secp256k1
private keys after observing only 6 signatures.

Fan et al. [10] increase the information extracted from
each signature by analyzing the wNAF implementation
in OpenSSL. Using the curve secp256k1 as a target, they
perform a successful attack after observing as few as 4
signatures.

Our work differs from previous ECDSA side-channel
attacks in two important ways. (1) We focus on NIST
standard curve P-256, featured in ubiquitous security
standards such as TLS and SSH. Later in Section 2.4,
we explain the reason previous works were unable to tar-
get this extremely relevant curve. (2) We do not target
the scalar-by-point multiplication operation (i.e. the bot-
tleneck of the signing algorithm), but instead Step 3 of
the signing algorithm, the modular inversion operation.

2.3 Binary Extended Euclidean Algorithm

The modular inversion operation is one of the most ba-
sic and essential operations required in public key cryp-
tography. Its correct implementation and constant-time
execution has been a recurrent topic of research [1, 2, 4].

A well known algorithm used for modular inversion
is the Euclidean Extended Algorithm and in practice
is often substituted by a variant called the Binary Ex-
tended Euclidean Algorithm (BEEA) [18, Chap. 14.4.3].
This variant replaces costly division operations by simple
right-shift operations, thus, achieving performance ben-
efits over the regular version of the algorithm. BEEA is
particularly efficient for very long integers—e.g. RSA,
DSA, and ECDSA operands.

Figure 1 shows the BEEA. Note that in each iteration
only one u or v while-loop is executed, but not both. Ad-
ditionally, in the very first iteration only the u while-loop
can be executed since v is a copy of p which is a large
prime integer n for ECDSA.

In 2007, independent research done by Acii¢mez et al.
[1], Aravamuthan and Thumparthy [4] demonstrated
side-channel attacks against the BEEA. Aravamuthan
and Thumparthy [4] attacked BEEA using Power Anal-
ysis attacks, whereas Aciigmez et al. [1] attacked BEEA
through Simple Branch Prediction Analysis (SBPA),
demonstrating the fragility of this algorithm against side-
channel attacks.

Both previous works reach the conclusion that in order
to reveal the value of the nonce £, it is necessary to iden-
tify four critical input-dependent branches leaking infor-
mation, namely:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.

Input: Integers k and p such that ged(k, p) = 1.
Output: k! mod p.
vepui—k,X+—1,Y+0
while u £ 0 do
while even(u) do
u<—u/2
if odd(X)then X «+ X +p
X+X/2
while even(v) do
vv/2
if odd(Y)thenY < Y +p
Y+«Y/)2
if u > v then
U+ u—v
X+—X-Y

else

/* u loop */

/* v loop */

Vv—u
| Y<Y—-X

return ¥ mod p

Figure 1: Binary Extended Euclidean Algorithm.

3. Number and order of subtractions u := u —v.
4. Number and order of subtractions v := v — u.

Moreover, both works present a BEEA reconstruction
algorithm that allows them to fully recover the nonce
k—and therefore the secret signing key—given a per-
fect side-channel trace that distinguish the four critical
branches.

Aravamuthan and Thumparthy [4] argue that a coun-
termeasure to secure BEEA against side-channel attacks
is to render u and v subtraction branches indistinguish-
able, thus the attack is computationally expensive to
carry out. As a response, Aldaya et al. [2] demonstrated
a Simple Power Analysis (SPA) attack against a custom
implementation of the BEEA. The authors’ main contri-
bution consists of demonstrating it is possible to partially
determine the order of subtractions on branches u and
v only by knowing the number of right-shift operations
performed in every while-loop iteration. Under a perfect
SPA trace, the authors use an algebraic algorithm to de-
termine a short execution sequence of u and v subtraction
branches.

They manage to recover various bits of information
for several ECDSA key sizes. The authors are able to
recover information only from some but not all of their
SPA traces by using their algorithm and the partial infor-
mation about right-shift and subtraction operations. Fi-
nally, using a lattice attack they recover the secret signing
key.

As can be seen from the previous works, depending on

the identifiable branches in the trace and quality of the
trace it is possible to recover full or partial information
about the nonce k. Unfortunately, the information leaked
by most of the real world side-channels does not allow
us to differentiate between subtraction branches u and v,
therefore limiting the leaked information to three input-
dependent branches:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number of subtractions.

2.4 OpenSSL History

OpenSSL has a rich and storied history as a prime se-
curity attack target [19], a distinction ascribed to the li-
brary’s ubiquitous real world application. One of the
main contributions of our work is identifying a new
OpenSSL vulnerability described later in Section 3. To
understand the nature of this vulnerability and facili-
tate root cause analysis, in this section we give a brief
overview of side-channel defenses in the OpenSSL li-
brary, along with some context and insight into what
prompted these code changes. Table 1 summarizes the
discussion.

0.9.7. Side-channel considerations started to induce code
changes in OpenSSL starting with the 0.9.7 branch. The
RSA cache-timing attack by Percival [23] recovered se-
cret exponent bits used as lookup table indices in slid-
ing window exponentiation using an EVICT+RELOAD
strategy on HyperThreading architectures. His work
prompted introduction of the BN_.FLG_CONSTTIME flag,
with the intention of allowing special security treatment
of BIGNUMSs having said flag set. At the time—and ar-
guably still—the most important use case of the flag is
modular exponentiation. Introduced alongside the flag,
the BN_mod_exp_mont_consttime function is a fixed-
window modular exponentiation algorithm featuring data
cache-timing countermeasures. Recent research brings
the security of this solution into question [29].

0.9.8. The work by Aciicmez et al. [1] targeting BEEA
prompted the introduction of the BN _mod_inverse no_-
branch function, an implementation with more favor-
able side-channel properties than that of BEEA. The
implementation computes modular inversions in a way
that resembles the classical extended Euclidean algo-
rithm, calculating quotients and remainders in each step
by calling BN_div updated to respect the BN_FLG_CON-
STTIME flag. Tracking callers to BN_mod_inverse, the
commit! enables the BN_FLG_CONSTTIME across several
cryptosystems where the modular inversion inputs were

"https://github.com/openssl/openssl/commit/
bd31fb21454609b125adelad569ebcc2a2b9b73c¢

https://github.com/openssl/openssl/commit/bd31fb21454609b125ade1ad569ebcc2a2b9b73c
https://github.com/openssl/openssl/commit/bd31fb21454609b125ade1ad569ebcc2a2b9b73c

deemed security critical, notably the published attack tar-
geting RSA.

1.0.1. Based on the work by Késper [16], the 1.0.1
branch introduced constant-time scalar multiplication
implementations for several popular elliptic curves. This
code change was arguably motivated by the data cache-
timing attack of Brumley and Hakala [7] against Open-
SSL that recovered digits of many ECDSA nonces dur-
ing scalar multiplication on HyperThreading architec-
tures using the EVICT+RELOAD strategy. This informa-
tion was then used to construct a lattice problem and cal-
culate ECDSA private keys. The commit” included sev-
eral new EC_METHOD implementations, of which arguably
EC_GFp_nistp256_method has the most real world ap-
plication to date. This new scalar multiplication imple-
mentation uses fixed-window combing combined with
secure table lookups via software multiplexing (mask-
ing), and is enabled with the ec_nistp_64_gcc_128 op-
tion at build time. For example, Debian 8.0 “Jessie” (cur-
rent LTS, not EOL) and 7.0 “Wheezy” (previous LTS,
not EOL) and Ubuntu 14.04 “Trusty” (previous LTS, not
EOL) enable said option when possible for their Open-
SSL 1.0.1 package builds. From the side-channel attack
perspective, we note that this change is the reason aca-
demic research (see Section 2.2) shifted to the secp256k1
curve—NIST P-256 no longer takes the generic wNAF
scalar multiplication code path like secp256k1.

1.0.2. Motivated by performance and the potential to
utilize Intel AVX extensions, a contribution by Gueron
and Krasnov [14] included fast and secure curve P-
256 operations with their custom EC_GFp_nistz256_-
method. Here we focus on a cherry picked commit?
that affected the ECDSA sign code path for all elliptic
curves. While speed motivated the contribution, Moller
observes*: “It seems that the BN_MONT_CTX-related code
(used in crypto/ecdsa for constant-time signing) is en-
tirely independent of the remainder of the patch, and
should be considered separately.” Gueron confirms:
“The optimization made for the computation of the mod-
ular inverse in the ECDSA sign, is using const-time mod-
exp. Indeed, this is independent of the rest of the patch,
and it can be used independently (for other usages of
the library). We included this addition in the patch for
the particular usage in ECDSA.” Hence following this
code change, ECDSA signing for all curves now com-
pute modular inversion via BN_mod_exp_mont_const-
time and Fermat’s Little Theorem (FLT).

*https://github.com/openssl/openssl/commit/
3e00b4c9db42818c621£609e70569c7d9ae85717

3https://github.com/openssl/openssl/commit/
8aed2a7548362e88e84a7feb795a3a97e8395008

“https://rt.openssl.org/Ticket/Display.html?id=
3149&user=guest&pass=guest

Table 1: OpenSSL side-channel defenses across ver-
sions. Although BN_mod_exp_mont_consttime was in-
troduced in the 0.9.7 branch, here we are referring to its
use for modular inversion via FLT.

09.6 09.7 098 1.00 101 102
v
v

OpenSSL version
BN_mod_inverse
BN_FLG_CONSTTIME
BN_mod_inverse_no_branch
ecnistp_64_gcc_ 128
BN_mod_exp_mont_consttime — — — —
EC_GFp_nistz256 method — — — — —

IENERN
[ENENEN
[IRNENEN
IENENENAN
AR NENENENEN

3 A New Vulnerability

From Table 1, starting with 1.0.1 the reasonable expec-
tation is that cryptosystems utilizing P-256 resist timing
attacks, whether they be remote, data cache, instruction
cache, or branch predictor timings. We focus here on
the combination of ECDSA and P-256 within the library.
The reason this is a reasonable expectation is that ec_-
nistp_64_gcc_128 provides constant-time scalar multi-
plication to protect secret scalar nonces, and BN_mod_in-
verse_no_branch provides microarchitecture attack de-
fenses when inverting these nonces. For ECDSA, these
are the two most critical locations where the secret nonce
is an operand—to produce r and s, respectively.

The vulnerability we now disclose stems from the
changes introduced in the 0.9.8 branch. The BN_mod_-
inverse function was modified to first check the BN_-
FLG_CONSTTIME flag of the BIGNUM operands—if set,
the function then early exits to BN_.mod_inverse_no_-
branch to protect the security-sensitive inputs. If the
flag is not set, i.e. inputs are not secret, the control flow
continues to the stock BEEA implementation.

Paired with this code change, the next task was
to identify callers to BN_mod_inverse within the li-
brary, and enable the BN_FLG_CONSTTIME flag for
BIGNUMs in cryptosystem implementations that are
security-sensitive. Our analysis suggests this was done
by searching the code base for uses of the BN_FLG_EXP_-
CONSTTIME flag that was replaced with BN_FLG_CONST-
TIME as part of the changeset, given the evolution of
constant-time as concept within OpenSSL and no longer
limited to modular exponentiation. As a result, the code
changes permeated RSA, DSA, and Diffie-Hellman im-
plementations, but not ECC-based cryptosystems such as
ECDH and ECDSA.

This leaves a gap for 1.0.1 with respect to EC-
DSA. While ec_nistp_64_gcc_128 provides constant-
time scalar multiplication to compute the r component
of P-256 ECDSA signatures, the s component will com-
pute modular inverses of security-critical nonces with
the stock BN_mod_inverse function, not taking the BN_—
mod_inverse_no_branch code path. In the end, the root
cause is that the ECDSA signing implementation does

https://github.com/openssl/openssl/commit/3e00b4c9db42818c621f609e70569c7d9ae85717
https://github.com/openssl/openssl/commit/3e00b4c9db42818c621f609e70569c7d9ae85717
https://github.com/openssl/openssl/commit/8aed2a7548362e88e84a7feb795a3a97e8395008
https://github.com/openssl/openssl/commit/8aed2a7548362e88e84a7feb795a3a97e8395008
https://rt.openssl.org/Ticket/Display.html?id=3149&user=guest&pass=guest
https://rt.openssl.org/Ticket/Display.html?id=3149&user=guest&pass=guest

+--bn_ged.

1226 BIGNUM *BN_mod_inverse(BIGNUM *in,

1227 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)

1228 { |
B+ [229 BIGNUM *A, *B, *X, *Y, xM, %D, *T, *xR = NULL;

1230 BIGNUM *ret = NULL; |

1231 int sign; |

1232 |

1233 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)

>|234 Il (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
1235 return BN_mod_inverse_no_branch(in, a, n, ctx);
1236 } |

10x7££££77dalc7 <BN_mod_inverse+56> mov -0x90(%rbp) ,%rax
|0x7££££77dalce <BN_mod_inverse+63> mov Ox14(%rax),%eax
|0x7££££77daldl <BN_mod_inverse+66> and $0x4,%eax
|0x7££££77dald4 <BN_mod_inverse+69> test Y%eax,%eax
|0x7££££77da1d6 <BN_mod_inverse+71> jne Ox7ffff77dale9 <BN_mod_inverse+90>
|10x7££££77da1d8 <BN_mod_inverse+73> mov -0x98(%rbp) ,%rax
|0x7££££77daldf <BN_mod_inverse+80> mov Ox14(%rax),%eax
|0x7£££f77dale2 <BN_mod_inverse+83> and $0x4,%eax
|0x7££££77dale5 <BN_mod_inverse+86> test %eax,%eax
>|0x7£f£f77dale7 <BN_mod_inverse+88> je Ox7ffff77da212 <BN_mod_inverse+131>

native process 3399 In: BN_mod_inverse L1234 PC: 0x7ffff77dale7
(gdb) run dgst -sha256 -sign prime256vi.pem -out lsb-release.sig /etc/lsb-release
Starting program: /usr/local/ssl/bin/openssl dgst -sha256 -sign prime256vi.pem ...
Breakpoint 1, BN_mod_inverse (...) at bn_gcd.c:229

(gdb) backtrace

#0 BN_mod_inverse (...) at bn_gcd.c:229

#1 0x00007ffff782aed9 in ecdsa_sign_setup (...) at ecs_ossl.c:182

#2 0x00007ffff782bc35 in ECDSA_sign_setup (...) at ecs_sign.c:105

#3 0x00007ffff782b29a in ecdsa_do_sign (...) at ecs_ossl.c:269

#4 0x00007ffff782bafd in ECDSA_do_sign_ex (...) at ecs_sign.c:74

#5 0x00007ffff782bb97 in ECDSA_sign_ex (...) at ecs_sign.c:89

#6 0x00007ffff782bb44 in ECDSA_sign (...) at ecs_sign.c:80 ...

(gdb) stepi

(gdb) macro expand BN_get_flags(a, BN_FLG_CONSTTIME)

expands to: ((a)->flags&(0x04))

(gdb) print BN_get_flags(a, BN_FLG_CONSTTIME)

$1=0

(gdb) print BN_get_flags(n, BN_FLG_CONSTTIME)

$2 =0

Figure 2: Modular inversion within OpenSSL 1.0.1u
(built with ec_nistp_64_gcc_128 enabled) for P-256
ECDSA signing. Operands a and n are the nonce and
generator order, respectively. The early exit to BN_mod_-
inverse_no_branch never takes place, since the caller
ecdsa_sign_setup fails to set the BN_.FLG_CONSTTIME
flag on the operands. Control flow continues to the stock,
classical BEEA implementation.

not set the BN_FLG_CONSTTIME flag for nonces. Scalar
multiplication with ec_nistp_64_gcc_128 is oblivious
to this flag and always treats single scalar inputs as
security-sensitive, yet BN_mod_inverse requires said
flag to take the new secure code path.

Figure 2 illustrates this vulnerability running in Open-
SSL 1.0.1u. The caller function ecdsa_sign_setup
contains the bulk of the ECDSA signing cryptosystem—
generating a nonce, computing the scalar multiple, in-
verting the nonce, computing both r and s, and so on.
When control flow reaches callee BN_mod_inverse, in-
puts a and n are the nonce and generator order, respec-
tively. Stepping by instruction, it shows that the call
to BN_mod_inverse_no_branch never takes place, since
the BN_FLG_CONSTTIME flag is not set for either of these
operands. Failing this security critical branch, the control
flow continues to the stock, classical BEEA implementa-
tion.

3.1 Forks

OpenSSL is not the only software library affected by this
vulnerability. Following HeartBleed, OpenBSD forked
OpenSSL to LibreSSL in July 2014, and Google forked
OpenSSL to BoringSSL in June 2014. We now discuss
this vulnerability within the context of these two forks.
LibreSSL. An 04 Nov 2016 commit® cherry picked the
EC_GFp_nistz256_method for LibreSSL. Interestingly,
LibreSSL is the library most severely affected by this
vulnerability. The reason is they did not cherry pick
the BN_mod_exp_mont_consttime ECDSA nonce inver-
sion. That is, as of this writing the current LibreSSL mas-
ter branch can feature constant-time P-256 scalar multi-
plication with either EC_GFp_nistz256_method or EC_—
GFp_nistp256_method callees depending on compile-
time options and minor code changes, but inverts all EC-
DSA nonces with the BN_mod_inverse callee that fails
the same security critical branch as OpenSSL, due to
the caller ecdsa_sign_setup not setting the BN_FLG_—
CONSTTIME flag for ECDSA signing nonces. We con-
firmed the vulnerability using a LibreSSL build with de-
bug symbols, checking the inversion code path with a
debugger.

BoringSSL. An 03 Nov 2015 commit® picked up
the EC_GFp_nistz256_method implementation for Bor-
ingSSL. That commit also included the BN_mod_exp_—
mont_consttime ECDSA nonce inversion callee, which
OpenSSL cherry picked. The parent tree’ is slightly
older on the same day. It features constant-time P-256
scalar multiplication with callee EC_GFp nistp256_-
method, but inverts ECDSA signing nonces with callee
BN_mod_inverse that fails the same security critical
branch, again due to the BN_FLG_CONSTTIME flag not be-
ing set by the caller—i.e. it follows essentially the same
code path as OpenSSL. We verified the vulnerability af-
fects said tree using a debugger.

4 Exploiting the Vulnerability

Our attack setup consists of an Intel Core 15-2400 Sandy
Bridge 3.10GHz (32 nm) with 8GB of memory running
64-bit Ubuntu 16.04 LTS “Xenial”. Each CPU core has
an 8-way 32KB L1 data cache, an 8-way 32KB L1 in-
struction cache, an 8-way 256KB L2 unified cache, and
all the cores share a 12-way 6MB unified LLC (all with
64B cache lines). It does not feature HyperThreading.
We built OpenSSL 1.0.1u with debugging symbols on
the executable. Debugging symbols facilitate mapping

Shttps://github.com/libressl-portable/openbsd/
commit/85b48e7c232e1dd18292a78a266c95dd317e23d3

®https://boringssl.googlesource.com/boringssl/+/
18954938684e269ccd59152027d2244040e2b819%5E%21/

"https://boringssl.googlesource.com/boringssl/+/
27a0d086f7bbf7076270dbeee5e65552eb2eab3a

https://github.com/libressl-portable/openbsd/commit/85b48e7c232e1dd18292a78a266c95dd317e23d3
https://github.com/libressl-portable/openbsd/commit/85b48e7c232e1dd18292a78a266c95dd317e23d3
https://boringssl.googlesource.com/boringssl/+/18954938684e269ccd59152027d2244040e2b819%5E%21/
https://boringssl.googlesource.com/boringssl/+/18954938684e269ccd59152027d2244040e2b819%5E%21/
https://boringssl.googlesource.com/boringssl/+/27a0d086f7bbf7076270dbeee5e65552eb2eab3a
https://boringssl.googlesource.com/boringssl/+/27a0d086f7bbf7076270dbeee5e65552eb2eab3a

source code to memory addresses, serving a double pur-
pose to us: (1) Improve our degrading attack (see Sec-
tion 4.1); (2) Probing the sequence of operations accu-
rately. Note that debugging symbols are not loaded dur-
ing run time, thus not affecting victim’s performance.
Attackers can map source code to memory addresses by
using reverse engineering techniques [9] if debugging
symbols are not available. We set enable-ec_nistp_-
64_gcc_128 at build time to ensure faster execution and
constant-time scalar multiplication. Also, we set shared
to compile OpenSSL as a shared object.

As seen in the Figure 2 backtrace, when performing an
ECDSA digital signature, OpenSSL calls ecdsa_sign_-
setup to prepare the required parameters and compute
the actual signature. The random nonce k is created and
to avoid possible timing attacks [8] an equivalent fixed
bit-length nonce is computed. The length of the equiv-
alent nonce k is fixed to one bit more than that of the
group’s prime order n, thus the equivalent nonce satisfies
k=k+y-nwhere ye {1,2}.

Additionally, ecdsa_sign_setup computes the sig-
nature’s r using a scalar multiplication function pointer
wrapper (i.e. for P-256, traversing the constant-time code
path instead of generic wNAF) followed by s, the latter
for which OpenSSL first needs to compute the modular
inverse k~!. To do so, it calls BN_mod_inverse, where
the BN_FLG_CONSTTIME flag is checked but due to the
vulnerability discussed in Section 3 the condition fails,
therefore proceeding to compute k! using the classical
BEEA.

Note that before executing the BEEA, the equivalent
nonce k is unpadded through a modular reduction oper-
ation, resulting in the original nonce k and voiding the
fixed bit-length countermeasure applied shortly before
by ecdsa_sign_setup.

The goal of our attack is to accurately trace and re-
cover side-channel information of the BEEA execution,
allowing us to construct the sequence of right-shift and
subtraction operations. To that end, we identify the rou-
tines used in the BN_mod_inverse method leaking side-
channel information.

The BN mod_inverse method operates with very
large integers, therefore it uses several specific routines
to perform basic operations with BIGNUMs. Addition
operations call the routine BN_uadd, which is a wrapper
for bn_add_words—assembly code performing the ac-
tual addition. Two different routines are called to per-
form right-shift operations. The BN_rshiftl routine
performs a single right-shift by one bit position, used on
X and Y in their respective loops. The BN_rshift rou-
tine receives the number of bit positions to shift right as
an argument, used on u« and v at the end of their respec-
tive loops. OpenSSL keeps a counter for the shift count,
and the loop conditions test # and v bit values at this off-

set. This is an optimization allowing « and v to be right-
shifted all at once in a single call instead of iteratively.
Additionally, subtraction is achieved through the use of
the BN_usub routine, which is a pure C implementation.

Similar in spirit to previous works [5, 24, 27] that
instead target other functionality within OpenSSL, we
use the FLUSH+RELOAD technique to attack OpenSSL’s
BEEA implementation. As mentioned before in Sec-
tion 2.3, unfortunately the side-channel and the algo-
rithm implementation do not allow us to efficiently
probe and distinguish the four critical input-dependent
branches, therefore we are limited to knowing only the
execution of addition, right-shift and subtraction opera-
tions.

After identifying the input-dependent branches in
OpenSSL’s implementation of the BEEA, using the FLU-
SH+RELOAD technique we place probes in code func-
tions BN_rshiftl and BN_usub. These two functions
provide the best resolution and combination of probes,
allowing us to identify the critical input-dependent
branches.

The modular inversion operation is an extremely fast
operation and only a small part of the entire digital signa-
ture. It is challenging to get good resolution and enough
granularity with the FLUSH+RELOAD technique due to
the speed of the technique itself, therefore, we apply a
variation of the performance degradation attack to slow
down the modular inversion operation by a factor of ~18.
(See Section 4.1.)

Maximizing performance degradation by identifying
the best candidate memory lines gives us the granularity
required for the attack. Combining the FLUSH+RELOAD
technique with a performance degradation attack allows
us to determine the number of right-shift operations exe-
cuted between subtraction calls by the BEEA. From the
trace, we reconstruct the sequence of right-shift and sub-
traction operations (LS sequence) executed by the BEEA.

Our attack scenario exploits three CPU cores by run-
ning a malicious process in every core and the vic-
tim process—OpenSSL’s dgst command—in the fourth
core. The attack consists of a spy process probing the
right-shift and subtraction operations running in parallel
with the victim application. Additionally, two degrad-
ing processes slow down victim’s execution, allowing us
to capture the LS sequence almost perfectly. Unfortu-
nately there is not always a reliable indicator in the signal
for transitions from one right-shift operation to the next,
therefore we estimate the number of adjacent right-shift
operations by the horizontal distance between subtrac-
tions. Figure 3 contains sample raw traces captured in
our test environment.

Our spy process captures all the subtraction operations
but duplicates some right-shift operations, therefore we
focus on the first part of the sequence to recover some

L probe ' ! ! !
S probe

Latency

L probe
S probe

Latency

Figure 3: Raw traces for the beginning of two BEEA
executions. The L probe tracks right-shift latencies and
S probe subtraction. Latency is in CPU clock cycles.
For visualization, focus on the amplitude valleys, i.e. low
latency. Top: LS sequence starting SLLLL corresponds
to j=35, ¢; =4, a; = 1. Bottom: LS sequence starting
LSLLSLS corresponds to j =7, ¢{; =5, a; = 10. See
Section 4.2 for notation.

bits of information from every trace. (See Section 4.2.)

4.1 Improving Performance Degradation

Performance degradation attacks amplify side-channel
signals, improving the quality and amount of information
leaked. Performance degradation attacks have been used
previously in conjunction with other side-channel attacks
(see e.g. [24]). It can be difficult and time consuming to
identify the “hot” memory addresses to degrade that re-
sult in the best information leak.

Allan et al. [3] suggest two approaches to find suitable
memory lines to degrade. The first approach is to read
and understand the victim code in order to identify fre-
quently accessed code sections such as tight loops. This
approach requires understanding the code, a task that
might not always be possible, takes time and it is prone to
errors [26], therefore the authors propose another option.

The second and novel approach they propose is to au-
tomate code analysis by collecting code coverage infor-
mation using the gcov tool. The code coverage tool out-
puts accessed code lines and then using this information
it is possible for an attacker to locate the memory lines
corresponding to the code lines. Some caveats of this
approach are that source lines can be replicated due to
compiler optimizations, thus the gcov tool might misre-
port the number of memory accesses. Moreover, code
lines containing function calls can be twice as effective
compared to gcov output.

In addition to the caveats mentioned previously, we

note that gcov profiling tool adds instrumentation to the
code, skewing the performance of the program, therefore
following this approach requires building the target code
twice, one with instrumentation to identify code lines and
other only with debugging symbols to measure the per-
formance.

To that end, we use a similar but faster and more
quantitative approach, potentially more accurate since it
leverages additional metrics. Similar to [3] we test the
efficiency of the attack for several candidate memory
lines. We compare cache-misses during a regular exe-
cution against a degraded modular inversion operation,
resulting in a list of the “hottest” memory lines, building
the code only once with debugging symbols and using
hardware register counters.

The perf command in Linux offers access to per-
formance counters—CPU hardware registers counting
hardware events (e.g. CPU cycles, instructions executed,
cache-misses and branch mispredictions). We execute
calls to OpenSSL’s inverse operation, counting the num-
ber of cache-misses during a regular execution of the op-
eration. Next, we degrade—by flushing in a loop from
the cache—one memory line at a time from the caller
BN_mod_inverse and callees BN_rshift1, BN_rshift,
BN_uadd, bn_add_words, BN_usub.

The perf command output gives us the real count
of cache-misses during the regular executio