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Calorie restriction and aging: review of the literature and
implications for studies in humans1–3

Leonie K Heilbronn and Eric Ravussin

ABSTRACT Calorie restriction (CR) extends life span and
retards age-related chronic diseases in a variety of species, includ-
ing rats, mice, fish, flies, worms, and yeast. The mechanism or
mechanisms through which this occurs are unclear. CR reduces
metabolic rate and oxidative stress, improves insulin sensitivity, and
alters neuroendocrine and sympathetic nervous system function in
animals. Whether prolonged CR increases life span (or improves
biomarkers of aging) in humans is unknown. In experiments of
nature, humans have been subjected to periods of nonvolitional par-
tial starvation. However, the diets in almost all of these cases have
been of poor quality. The absence of adequate information on the
effects of good-quality, calorie-restricted diets in nonobese humans
reflects the difficulties involved in conducting long-term studies in
an environment so conducive to overfeeding. Such studies in free-
living persons also raise ethical and methodologic issues. Future
studies in nonobese humans should focus on the effects of pro-
longed CR on metabolic rate, on neuroendocrine adaptations, on
diverse biomarkers of aging, and on predictors of chronic age-
related diseases. Am J Clin Nutr 2003;78:361–9.
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INTRODUCTION

Evidence that calorie restriction (CR) retards aging and extends
median and maximal life span was first presented in the 1930s by
McCay et al (1). Since then, similar observations have been made
in a variety of species including rats, mice, fish, flies, worms, and
yeast (2, 3). Although not yet definitive, results from the ongoing
calorie-restriction studies in monkeys also suggest that the mortal-
ity rate in calorie-restricted animals will be lower than that in con-
trol subjects (4–7). Furthermore, calorie-restricted monkeys have
lower body temperatures and insulin concentrations than do control
monkeys (4), and both of those variables are biomarkers for
longevity in rodents. Calorie-restricted monkeys also have higher
concentrations of dehydroepiandrosterone sulfate (4). The impor-
tance of dehydroepiandrosterone sulfate is not yet known, but it is
suspected to be a marker of longevity in humans (8, 9), although
this is not observed consistently (10). In humans, a major goal of
research into aging has been the discovery of ways to reduce mor-
bidity and delay mortality in the elderly (11, 12). The absence of
adequate information on the effects of CR in humans reflects the dif-
ficulties involved in conducting long-term calorie-restriction stud-
ies, including ethical and methodologic considerations.
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Naturally occurring episodes of CR in human populations are
not uncommon in some parts of the world. However, it is impor-
tant to note that most of these populations are exposed to energy-
restricted diets that are lacking in protein and micronutrients. CR
in these populations is often associated with short stature, late
reproductive maturation (13), lower baseline gonadal steroid pro-
duction in adults (14, 15), suppressed ovarian function (16),
impaired lactation performance (17), impaired fecundity (18), and
impaired immune function (19, 20). The pioneering studies by
Keys et al (21) found that severe CR induced changes in many
variables, including metabolic rate, pulse, body temperature, and
blood pressure. However, that diet also was of poor quality and
induced many adverse psychological effects.

A few observational studies reported the effects of prolonged
CR, in the context of high-quality diets, on health and longevity.
Kagawa (22) carefully analyzed data documenting the prevalence
of centenarians on the island of Okinawa (Japan). Total energy
consumed by schoolchildren on Okinawa was only 62% of the
“recommended intake” for Japan as a whole. For adults, total pro-
tein and lipid intakes were about the same, but energy intake was
20% less than the Japanese national average. The rates of death
due to cerebral vascular disease, malignancy, and heart disease on
Okinawa were only 59%, 69%, and 59%, respectively, of those for
the rest of Japan. Whereas these data are consistent with the
hypothesis that CR increases life span in humans, there probably
are other, unmeasured differences between Okinawa and mainland
Japan, including genetic or other environmental factors. However,
Okinawans who move away from the island (and presumably
abandon their protective lifestyle patterns) have mortality rates
higher than those in Okinawans who remain on the island (23). To
our knowledge, only one study investigated the effects of long-
term CR (with a diet of reasonable quality) on health and
longevity in nonobese humans and a control group (24). This
study was conducted in 120 men, of whom 60 were randomly
assigned to the control group and 60 to the calorie-restricted
group. The control group was fed �9600 kJ/d. Calorie-restricted
subjects received 1 L milk and 500 g fruit every other day, which
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TABLE 1
The effects of chronic calorie restriction on markers of aging in rodents
and nonhuman primates and predicted outcomes in nonobese humans1

Expected
outcomes

Nonhuman in nonobese
Rodents primates humans

DHEAS ?2 ↑ ↑
Insulin ↓ ↓ ↓
Body temperature ↓ ↓ ↓
Energy expenditure

Total3 ↔4↓ ↔↓ ↓
Sedentary3 ↓ ↓ ↓

Voluntary activity ↑ ↔ ↓
Oxidative stress ↓ ↓ ↓
Fat mass and fat-free mass ↓ ↓ ↓
Visceral fat ↓ ↓ ↓
Intramyocellular lipids ? ? ↓
Insulin sensitivity ↑ ↑ ↑
IGF-1 ↓ ↓ ↓
Thyroid axis ↓ ↓ ↓
HPA axis ↑ ? ↓
Gonadotropic axis ↓ ↔ ↓
Somatotropic axis ↓ ? ↓
Sympathetic activity ↓ ? ↓

1 Measured effects of calorie restriction on the above markers of aging
were obtained from references 32–43 for rodents and 4 and 44–50 for mon-
keys. DHEAS, dehydroepiandrosterone sulfate; IGF-I, insulin-like growth
factor-I; HPA, hypothalamus-pituitary-adrenal.

2 Effect not known.
3 Adjusted for fat-free mass.
4 No effect.

led to an overall mean energy intake of �6300 kJ/d (or a 35%
restriction from the intake of the control group). This regimen was
implemented for 3 y. Stunkard (25) reanalyzed these data and
reported less time in the infirmary (123 compared with 219 d) and
a nonsignificant difference in the death rate (6 compared with 13
deaths) in calorie-restricted subjects than in control subjects,
respectively, which suggests that chronic CR may prolong life
span in humans.

Results from the Biosphere 2 experiment also give us an
insight into the effects of long term CR in nonobese humans.
Biosphere 2 is a 12 750-m2 (3.15-acre), enclosed, glass and steel
structure that was constructed as a self-contained ecologic
“miniworld” and prototype planetary habitat. From 26 Septem-
ber 1991 to 26 September 1993, 8 healthy subjects (4 men, 4
women) lived inside Biosphere 2, during which time the enclo-
sure was materially sealed, ie, no material passed in or out,
except small items used for research purposes. Unexpectedly, the
amount of food grown inside was less than originally predicted,
and, as a result, all 8 biospherians experience a marked weight
loss (26). Numerous changes in physiologic, hematologic, hor-
monal, and biochemical variables were observed (27). These
changes mimic many of the effects previously observed in rodent
calorie-restriction studies, but they cannot be equated with
increased longevity in nonobese humans.

It is also not known whether creating a relative energy deficit
by increasing physical activity (PA) without modifying other
health behaviors will increase life span. Increased activity (to
achieve a relative energy deficit of 30%) did not extend maximal
life span in rodents, although average life span was increased (28).

Increased activity was also associated with some traits of CR,
including improved insulin sensitivity, decreased fat mass (FM),
and reduced tumor incidence. Holloszy (29) observed that adding
PA to CR did not interfere with the life-extension effects of CR.
Currently, no data exist on whether PA (or a combination of CR
and PA) will extend life span in humans. Observational studies
suggest that PA improves the quality of life and prevents the onset
of chronic disease (30, 31). Increasing PA to create a relative
energy deficit may improve compliance and may be associated
with a lower rate of attrition in humans.

Many of the effects of prolonged CR have been characterized
(Table 1), but the mechanism or mechanisms by which CR
increases life span are still debated. An initial hypothesis was that
delayed sexual maturation might be one of those mechanisms
through which CR exerts its effect on longevity, until it was shown
that CR initiated in older animals also extends life span (51, 52).
Reduced metabolic rate is another possible explanation for the
anti-aging effects of CR, with the consequent reduction in free
radicals underpinning this observation. However, many other
metabolic alterations are associated with CR. For instance, short-
term CR in humans and long-term CR in animals alter insulin sen-
sitivity, the secretion of many hormones, and sympathetic nerv-
ous system activity. CR also alters the gene expression profile in
muscle, heart, and brain. Any (or a combination) of these biolog-
ical changes may retard aging, and evidence for each of these the-
ories will be presented in this review.

CALORIE RESTRICTION AND ENERGY METABOLISM

CR is hypothesized to lessen oxidative damage by reducing
energy flux and metabolism, or the “rate of living,” thereby influ-
encing the aging process (53, 54). We know that CR results in a
loss of weight and tissues and a reduction in the rate of metabo-
lism. A portion of this decline is the result of reduced energy
intake and the consequent decrease in the thermic effect of food,
whereas another portion is due to the reduced size of the metabo-
lizing mass. However, whether there is also a “metabolic adapta-
tion,” defined here as a reduction in the metabolic rate that is out
of proportion to the decreased size of the respiring mass, is a sub-
ject of continued debate. In their investigation of the biology of
semistarvation, Keys et al (21) defined metabolic adaptation as “a
useful adjustment to altered circumstances.” More recently, a 1985
FAO/WHO/UNU report proposed a definition of adaptation as “a
process by which a new or different steady state is reached in
response to a change or difference in the intake of food or nutri-
ents” (55). In this context, the adaptation can be genetic, meta-
bolic, social, or behavioral. The important question is whether CR
reduces energy expenditure (EE) more than would be expected to
result from the changes observed in FM and fat-free mass (FFM).

McCarter et al studied basal metabolic rate in rats after restrict-
ing their energy intake for 6 mo (56) and for their entire life span
(57). Rats fed ad libitum and rats on a food-restricted regimen
(40% CR) had similar metabolic rates, as measured per kilogram
of FFM. However, these data were criticized by Lynn and Wall-
work (58), who suggested that oxygen consumption should be
adjusted for functional metabolic mass instead of for FFM. Fur-
thermore, it is now well accepted that dividing EE by body size
leads to a mathematical artifact because of the fact that the regres-
sion line between EE and body size does not go through the zero
intercept (44, 59, 60). In contrast with the findings of McCarter et
al, Ballor (32) observed a decrease in 23-h resting oxygen uptake
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after 11 wk of moderate (25%) and severe (50%) CR. However,
after correction was made for body weight, only severe CR low-
ered the metabolic rate, even when metabolic rate was expressed
per kg0.75. After 6 wk of severe (40%) CR, the mean metabolic rate
was 14% lower after adjustment for body size (45). Taken
together, these results indicate that the absolute metabolic rate
declines after CR, but this reduction may be only transient after
adjustment for changes in body weight and body composition
(53). However, before a final conclusion can be drawn, most of
these data should be reevaluated by using an appropriate method
of normalizing metabolic rate for body size and composition (44).
Recently, when reanalyzing the data, Blanc et al (59) clearly
showed that, in most instances and in all species, CR causes a
decrease in resting EE. In fact, monkeys subjected to 11 y of CR
had a reduced total EE (TEE) that was attributable to a 250 kJ/d
reduction in resting EE, independent of reduced FFM (59). Other
studies in monkeys showed that 30 mo of CR reduces nighttime
and 24-h EE (61). Furthermore, 10 y of CR in monkeys also
resulted in sustained reductions in TEE by doubly labeled water
methods, even after correction for FFM (41).

The first experiments on the effect of energy restriction in
humans were performed in lean men by Keys et al (21) in the
1950s. In these classic experiments, lean volunteers received 50%
of their habitual intake for 24 wk. Basal metabolic rate was
decreased after adjustment for body surface area (�31%), body
weight (�20%), and cell mass (�16%). The reduced metabolic
rate was paralleled by a reduction in temperature that indicated a
real metabolic adaptation in these lean subjects (63). Most other
studies investigating the effects of energy restriction on energy
metabolism were performed in the obese. In several of these stud-
ies, a very-low-energy diet resulted in a decrease in basal meta-
bolic rate that was still significant after adjustment for differences
in body weight, FFM, or both (64–66). A meta-analysis of studies
in formerly obese persons found a lower resting metabolic rate,
even after adjustment for body size and body composition (67).
Careful studies in formerly obese persons showed that energy
turnover was �15% less than that in never-obese persons of the
same body composition (68–71). In lean subjects, maintenance of
body weight 10% below initial weight also reduced EE by 10–15%,
even after adjustment for FFM (68). These results were confirmed
by a direct measure of TEE using a respiratory chamber and the
doubly labeled water method (72). Part of this adaptation may be
related to the cost of PA, as elegantly shown by Weigle and Brun-
zell (71). It is relevant that we clearly identified a metabolic adap-
tation in the 5 persons from Biosphere 2 who agreed to participate
in follow-up measures of energy metabolism after almost 2 y of
CR (26). The subjects, measured within a week after their exit from
Biosphere 2, had decreases in adjusted 24-h EE and spontaneous
PA in a respiratory chamber when compared with 152 control sub-
jects. However, within the confinement of Biosphere 2, TEE meas-
ured by doubly labeled water was not characteristically low. This
was probably due to the relatively high level of PA required to keep
Biosphere 2 in operation and to harvest food inside the enclosure.

In summary, there is evidence that a metabolic adaptation
develops in response to CR and loss of weight in humans. The
reason for the apparently paradoxical difference between rodents
and humans with regard to an adaptation in EE in response to CR
may be related to the erroneous way in which physiologists
express rodent energy metabolism data (60) or to differences in
metabolism between rodents and humans. Other possible reasons
are that the methods for measuring human EE are more sensitive

than are those for measuring rodent EE, and investigators can
obtain the full cooperation of the subjects.

CALORIE RESTRICTION AND BODY COMPOSITION

CR prevents the increases in visceral FM and intramyocellu-
lar lipid deposition that are generally observed with aging (73,
74). In rodents, however, no association has been observed
between FM and longevity in animals fed ad libitum, and, in
fact, a positive correlation was observed between FM and
longevity in calorie-restricted animals (75). This finding led to
the conclusion that changes in FM brought about by long-term
CR do not influence longevity.

In the past 5–10 y, much evidence of the importance of adi-
pose tissue has appeared. Adipocytes secrete numerous cytokines
that can affect substrate oxidation, EE, insulin sensitivity, and the
neuroendocrine system (33). Furthermore, short-term CR in
obese humans, independent of changes in FM, alters the expres-
sion of numerous adipocytokines (33), and this change is associ-
ated with an improvement in markers for age-related diseases
such as atherosclerosis and type 2 diabetes. Whether alterations
in body composition brought about by CR positively influence
markers of longevity in nonobese subjects has not been investi-
gated. Recently, Gabriely et al (76) observed that the surgical
removal of visceral adipose tissue restored peripheral and hepatic
insulin sensitivity in aging Zucker rats. We know that visceral fat
is reduced by CR (77) and is related to improvements in insulin
sensitivity in the obese. However, it is still debated whether the
accumulation of visceral fat is the major cause of insulin resist-
ance (78). Intramyocellular lipid concentrations are also related
to insulin resistance in lean individuals (79). Intramyocellular tri-
acylglycerol content is higher in obese persons than in nonobese
persons, and it is reduced by weight loss (80, 81). Whether the
improvements in insulin sensitivity in response to CR in
nonobese persons are caused by a reduction in intramyocellular
lipids is unresolved.

CALORIE RESTRICTION AND OXIDATIVE STRESS

The oxidative stress hypothesis of aging is supported by a num-
ber of observations: 1) life span is inversely correlated with meta-
bolic rate in a wide variety of animals, and it is directly related to
the amount of reactive oxygen species (ROS) produced (82); 2)
overexpression of antioxidative enzymes or activation of defen-
sive mechanisms against oxidative stress retards aging and extends
life span in some organisms (83, 84); and 3) CR reduces oxida-
tive stress in various species, including mammals (3, 34, 85).

Normal energy metabolism in aerobic organisms is coupled to
the generation of ROS. In fact, 2–5% of oxygen consumption is
not associated with the oxidative metabolism of fuels but is asso-
ciated with the production of highly reactive oxygen molecules
such as the superoxide radical (O2

·�), hydrogen peroxide, and the
hydroxyl radical (OH·). Therefore, reducing metabolic rate by
using CR may reduce oxygen consumption, which could decrease
ROS formation and potentially increase life span.

Steady state measures of oxidative damage represent equilib-
rium among the rate of ROS generation, the rate of oxygen scav-
enging, and the rate of repair. Aging may therefore be retarded not
only by a decrease in the production of ROS, but also by an
increase in the removal of ROS by the mechanisms described
above. For example, a transgenic fly that overexpresses both
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superoxide dismutase and catalase has a 30% extension of life
span associated with a lower amount of protein oxidative damage
and a delayed loss of physical performance (83, 86). Similar
results were obtained in Caenorhabditis elegans with low-molec-
ular-weight synthetic superoxide dismutase and catalase mimet-
ics (84). However, there is so far no report in mammals of the
extension of life span in transgenic mice that overexpress catalase
or superoxide dismutase. The p66shc knockout mouse has an
extended life span caused by a gene deletion that may be directly
related to the cellular response to oxidative stress (87). Superox-
ide dismutase–heterozygous knockout mice on the other hand,
have greater amounts of DNA damage [evidenced by elevated 8-
oxoguanine (8-oxoG)], but median and maximal life spans did not
differ from those of control mice (A Richardson, personal com-
munication, 2002).

Currently, no standard measures for assessing oxidative damage
are established. One method of determining the amount of protein
oxidation induced by ROS is to measure carbonyl groups in serum
(88). In obese humans, protein carbonylation has been signifi-
cantly associated with age and was reduced after 4 wk of CR (89).
ROS also increases the amount of lipid peroxidation. Isoprostanes
are prostaglandin-like products of arachidonic acid peroxidation
that circulate in plasma and are excreted in urine (90). Urinary iso-
prostanes (8-iso–prostaglandin F2�) are higher in smokers (90, 91),
in persons who consume alcohol (92), and in ischemia-reperfu-
sion syndromes (93), Alzheimer disease (94), and chronic obstruc-
tive pulmonary disease (95), and there is some evidence that iso-
prostanes are higher with aging (96). There is also evidence that
Okinawan centenarians have lower rates of lipid peroxidation than
do Okinawan septuagenarians, which indicates less free radical
attack [Internet: http://okinawaprogram.com/study.html (accessed
17 January 2003)]. Furthermore, urinary isoprostanes were
increased in obese women compared with control subjects and
were significantly reduced by weight loss (97).

Much attention has been paid to the effects of ROS on DNA
damage. ROS can induce the formation of several base adducts in
DNA, which are implicated in mutagenesis, carcinogenesis, and
neurologic disorders (98). Of major interest is the fact that the
amount of DNA damage correlates with the metabolic rate in var-
ious animals, which suggests that ROS generated by aerobic
energy metabolism may be a major cause of spontaneous DNA
damage (99). An abundant marker of DNA damage by free radi-
cal attack is 8-oxoG (100). Free radical attack on DNA can also
give rise to baseless (apurinic/apyrimidinic) sites. Moreover, the
repair of 8-oxoG can give rise to apurinic/apyrimidinic sites as an
intermediate in their repair. The presence of apurinic/apyrimidinic
sites in DNA can cause mutations (101, 102) or be lethal to the
cell (101). Notably, the formation of both 8-oxoG and apurinic/
apyrimidinic sites increases with age (103, 104), and a close asso-
ciation between oxidative DNA damage (assessed by the urinary
excretion of 8-oxoG) and oxygen consumption in healthy pre-
menopausal women was observed (105). Therefore, DNA damage
from ROS produced by energy metabolism is a potential cause of
natural aging. Whether CR reduces protein, lipid, or DNA dam-
age in nonobese humans has yet to be investigated.

CALORIE RESTRICTION AND CARDIOVASCULAR
DISEASE RISK

Atherosclerosis is now recognized as an inflammatory disease
(106). The initiating event in the progression of atherosclerosis is

believed to be the development of endothelial dysfunction. Poten-
tial causes of endothelial dysfunction include elevated concentra-
tions of oxidatively modified LDL, the generation of free radicals,
hypertension, diabetes, and elevated concentrations of homocys-
teine. The injured endothelium responds to these various insults
by developing procoagulant instead of anticoagulant properties
and by secreting a number of cytokines and growth factors. The
release of these factors leads to the sequestration and accumula-
tion of lymphocytes and macrophages from the blood and to the
migration and proliferation of underlying smooth muscle cells.
Thus, in addition to the well-recognized cardiovascular disease
risk factors including lipids, lipoproteins (LDL and HDL choles-
terol and triacylglycerol), and blood pressure, other factors,
including hemostasis factors (eg, factor VII, fibrinogen, and plas-
minogen activator inhibitor type 1), C-reactive protein, and homo-
cysteine, are predictive of cardiovascular disease events (107).

Blood pressure is decreased by CR in the obese (108) and in
chronically undernourished laborers (109). Landsberg and Young
(110, 111) showed that CR is associated with a decrease in
plasma norepinephrine concentration, decreased excretion of cat-
echolamines, and evidence of diminished sympathetic activity.
Similar results were found in normal-weight subjects exposed to
short-term CR by norepinephrine turnover measures (112). It is
likely, therefore, that the decrease in blood pressure during CR
is mediated by decreases in insulin concentration and sympathetic
nervous activity (113). Short-term CR does not affect concentra-
tions of triacylglycerol or total or LDL cholesterol in nonobese
subjects (113, 114), although HDL cholesterol was increased in
proportion to the decrease in body weight (113, 115). Long-term
CR, on the other hand, was associated with sustained reductions
in these factors in nonobese subjects, although HDL-2 concen-
trations were increased (27). CR may also influence the endothe-
lial function of the vasculature. Recently, Perticone et al (116)
reported that endothelial dysfunction, often seen in obese or over-
weight subjects, is due to oxidative stress (117–119) and can be
reversed by acute administration of the potent antioxidant vita-
min C. CR also improves endothelium-dependent vasodilatation
in obese hypertensive subjects (120). It is therefore logical to
hypothesize that CR will improve endothelial function in the
nonobese, probably via a decreased production of ROS. CR also
reduces markers for inflammation (eg, C-reactive protein, inter-
leukin 6, and plasminogen activator inhibitor type 1) in obese
(121–123) and nonobese subjects (124). However, homocysteine
concentrations are significantly increased by short-term CR,
although this was preventable with vitamin supplementation
(125). The effects of long-term CR on markers for inflammation
are unknown.

CALORIE RESTRICTION AND INSULIN SENSITIVITY
AND SECRETION

Reduced glucose and insulin are hallmark features of CR in
rodents and monkeys. There is compelling evidence that CR and
the consequent weight loss in the obese (diabetic and nondiabetic
alike) greatly improve glucose metabolism by improving insulin
action. In a comprehensive review, Kelley (126) concluded that
weight loss in obese patients with type 2 diabetes not only
reduces fasting hyperglycemia (ie, reduction of postabsorptive
hepatic glucose production) but also increases insulin sensitivity
(ie, glucose uptake) in peripheral tissues. Whether � cell sensitiv-
ity to glucose remains intact with aging is unclear. However, the
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FIGURE 1. Leptin as the master neuroendocrine signal for the anti-
aging effects of dietary restriction.

most convincing data that long-term CR is an effective means of
avoiding the development of insulin resistance that occurs with
aging are from monkey studies (6, 7, 46, 127). Calorie-restricted
monkeys had greater insulin sensitivity and increased plasma glu-
cose disappearance rates by the minimal model than did control
monkeys at the 8.5-y follow-up (47). Calorie-restricted monkeys
also had reduced fasting insulin and a reduced insulin response to
glucose. Long-term CR also reduced fasting glucose and insulin
concentrations in the lean subjects from the Biosphere 2 experi-
ment (128, 129). Unfortunately, performing more stringent meas-
ures of insulin sensitivity was not possible in these subjects.

Whether the improvement in insulin sensitivity is a mechanism
by which CR increases life span is a subject of continued debate.
It has been proposed that increased insulin and glucose concen-
trations may contribute to the aging process—insulin because of
its mitogenic action (130) and glucose because of protein glyca-
tion. This hypothesis, proposed by Masoro and Austad (131), has
yet to be tested. However, insulin is known to alter the expression
of numerous other hormones, stimulate the sympathetic nervous
system, and promote vasoconstriction, all of which could poten-
tially affect longevity. Indeed, fat-specific insulin receptor knock-
out mice, which have normal or even increased food intake and
reduced adiposity, have increased median and maximal life
expectancies (132).

In summary, there is evidence that CR in obese and lean subjects
alike improves insulin sensitivity. Physiologic mechanisms for this
improvement may include decreases in circulating fatty acid con-
centrations (133), intramyocellular triacylglycerol (79, 134, 135), and
secreted cytokines from adipocytes (136–138). Potential molecular
mechanisms involved in the relation between fat “at the wrong place”
and insulin sensitivity (139), including the ectopic fat hypothesis,
which has arisen from the observation that subjects without fat (a con-
dition known as lipodystrophy) have severe insulin resistance (140).

CALORIE RESTRICTION AND THE NEUROENDOCRINE
AXES AND AUTONOMIC NERVOUS SYSTEM

The endocrine changes associated with short-term caloric dep-
rivation (CR or starvation) are well described in rodent models,
as recently reviewed by Shimokawa and Higami (141). Many of
these alterations were described in humans as well and include
a drop in triiodothyronine (142), an increase in cortisol secre-

tion (143), and a decrease in gonadal function. It has long been
hypothesized that the neuroendocrine system coordinates and
integrates some of the anti-aging actions of CR (35, 36, 144,
145), but little is known about the neuroendocrine pathways that
are altered by chronic CR (37, 146–149). One of the major rea-
sons for the paucity of data pertaining to CR and neuroendocrine
axes is that neuroendocrine functions are difficult to study in
rodents. In a prolonged (48-h) starvation study in mice, Ahima
et al (150) provided evidence that the reduction in leptin with
starvation caused a decrease in the activity of the gonadal and
thyroid axes and an increase in the activity of the adrenal axis.
The changes in activity of these axes during fasting were pre-
vented by leptin administration, which suggests a role for leptin
as a master regulator of neuroendocrine status. These results sup-
port the disposable soma theory on the evolution of aging, which
states that longevity requires investment in somatic maintenance
by reducing the resources available for reproduction (141, 151).
Down-regulation of neuroendocrine activity has been interpreted
as a marker of somatic preservation, and leptin has been sug-
gested as the candidate endocrine mediator for this effect (Fig-
ure 1). In subjects with congenital acquired lipodystrophy (the
absence of fat and leptin), the administration of exogenous
recombinant leptin normalizes the metabolic milieu (152, 153).
Furthermore, the administration of “replacement” doses of lep-
tin in obese and nonobese subjects reverses the reductions in tri-
iodothyroxine, thyroxine, and TEE that are normally observed
after 10% weight loss (154). These studies suggest that leptin
coordinates many of the neuroendocrine actions of CR in
humans.

There is also considerable evidence that the growth hormone
(GH)–insulin-like growth factor I (IGF-I) axis may mediate some
of the effects of CR. In C. elegans, the loss of functional muta-
tions in the insulin–IGF-I signaling pathway nearly doubled the
expected life span (155). Further studies in genetically altered
mice (eg, Ames dwarf mouse, Snell dwarf mouse, GH-receptor
knockout mouse) show that changes in GH secretion (leading to
changes in IGF-I production) delay aging and prolong life span
(156). However, these animals have numerous other endocrine
defects that confound these results. Recently, IGF-I knockout mice
were shown to live 26% longer than wild-type littermates. These
animals did not develop dwarfism, had normal energy metabolism,
and had greater resistance to oxidative stress (157). The pygmy
population in the Philippines also has an altered GH–IGF-I axis,
with reduced concentrations of IGF-I, growth hormone–binding
protein, and IGF–binding protein-3 compared with Philippine
control subjects (158). However, whether any of the pygmy pop-
ulations have increased longevity is unknown. Further studies are
required to delineate the role of leptin, the GH–IGF-I axes, and
the thyroid axes in altering markers of aging during prolonged CR
in nonobese humans.

CALORIE RESTRICTION AND GENE EXPRESSION

Gene expression profiling with the use of DNA microarrays has
revealed that aging is associated with several alterations in gene
expression in rodent skeletal muscle (142), brain (159), and heart
(160) and that CR prevents many of these changes. Transcriptional
patterns suggest that CR retards aging by causing a metabolic shift
toward increased protein turnover and decreased macromolecular
damage (161). Several of these genes are also dysregulated during
aging in humans (162).
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Recently, skeletal muscle gene expression in aged primates was
compared with that in young animals (48). Aging selectively up-
regulated transcripts involved in inflammation and oxidative stress
and down-regulated genes involved in mitochondrial electron
transport and oxidative phosphorylation. CR up-regulated
cytoskeletal protein–encoding genes and decreased the expression
of genes involved in mitochondrial bioenergetics, but, surpris-
ingly, the inhibitory effect of CR on age-related changes in gene
expression was not observed (48). The effects of prolonged CR on
gene expression profiles in human skeletal muscle and adipose tis-
sue are unknown.

FUTURE STUDIES IN HUMANS

As reviewed here, CR leads to numerous changes in animal
models, including alterations in body composition, EE, oxidative
damage, cardiovascular disease, insulin sensitivity, neuroen-
docrine function, and gene expression. Because of the pluripotent
nature of CR, the mechanism or mechanisms by which CR extends
life span are still very much debated. Furthermore, it is not known
whether CR extends longevity in long-lived species. Randomized
controlled trials investigating the effects and possible mechanisms
of prolonged CR in nonobese humans are long overdue. The clin-
ical trial named CALERIE (Comprehensive Assessment of Long-
Term Effects of Reducing Intake of Energy), funded by the
National Institute of Aging and initiated in 2002, will address this
gap by examining the effects of chronic CR on surrogate markers
for longevity in nonobese humans.
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