基于低硬件复杂度、高速 CORDIC 的 SVD 模块设计与实现

张晓帆,李广军

(电子科技大学通信学院,四川成都 611731)

摘 要: 为降低实现高阶矩阵 SVD 时的硬件复杂度和计算延时,本文改进了 CORDIC 迭代结构,设计了一种用 于 SVD 的低硬件复杂度、高速 CORDIC 计算单元.本文以 2x2 矩阵为例,基于 XilinxVirtex6 硬件平台设计并实现了使用 优化后 CORDIC 计算单元的 SVD 模块,在 19bit 位宽下吞吐率达 25.9Gbps.对比 Xilinx IP core 中同类模块,本文设计节 省 27.6%寄存器,27.7%查找表,实时性提高 14%.对高阶矩阵,本文给出资源消耗趋势曲线,可证明优化后 CORDIC 计算单元能降低 16 阶矩阵 SVD 模块约 40%的硬件复杂度.

关键词: 奇异值分解 (SVD); 坐标旋转数字计算机 (CORDIC); 向量旋转
 中图分类号: TN713.7 TN431.2 文献标识码: A 文章编号: 0372-2112 (2015)04-0738-05
 电子学报 URL: http://www.ejournal.org.cn
 DOI: 10.3969/j.issn.0372-2112.2015.04.016

The Design and Implementation of SVD Module with Reduced Hardware Complexity and High-Speed CORDIC Processor

ZHANG Xiao-fan, LI Guang-jun

(Centre for Communication Circuits and Systems, UESTC, Chengdu, Sichuan 611731, China)

Abstract: In order to reduce the hardware complexity and the delay of high-order SVD processor, two improved CORDIC modules including Arc Tan and Rotation functions are designed. These two improved CORDIC modules have better performance in terms of register saving and real-time quality. In this paper, a 2x2SVD module using above-mentioned CORDIC modules with 19bit data width has implemented on XilinxVirtex6 and the throughout reaches 25.9Gbps. Compared with the 2x2SVD module using IP core, it reduced 27.6% registers, 27.7% LUTs and improved 14% real-time performance. Moreover, the trend curves of hardware consumption are presented which have testified that these two improved CORDIC modules can reduce 40% hardware complexity of 16-order SVD processor.

Key words: singular value decomposition(SVD); coordinate rotation digital computer(CORDIC); vector rotation

1 引言

SVD (Singular Value Decomposition)常见于信号处理、 信号检测等领域.自 1969 年 Golub 和 Kahan 提出传统 QR 迭代算法后^[1],零位移 QR 算法^[2]进一步提高了 SVD 计算精度.而 Forsythe 提出的 Jacobi 算法^[3]提高了算法 并行度,令硬件实现更方便.自 CORDIC (Coordinate Rotation Digital Computer)出现以来,又吸引了众多学者发展 低硬件复杂度、高速的 SVD 算法^[4~6].文献[7]提出了一 种对 2×2 子矩阵作对角化,实现高阶矩阵 SVD 的方法, 我们因此可以灵活解决不同阶数矩阵的 SVD 计算.针 对大规模矩阵,文献[8]提出的位串行结构 SVD 处理器 节约了资源,但实时性差.文献[9]改进了流水线结构 SVD 处理器中数据流向,减少计算延时,却付出额外的 硬件开销.而文献[10]对 Jacobi 算法在 FPGA 上实现浮 点数运算作研究,令 SVD 运算拥有更高精度和更大动 态范围,但硬件复杂度高.因此,本文对采用双边 Jacobi 算法的 SVD 模块作研究,优化其中的 CORDIC 计算单 元,降低其硬件复杂度和计算延时,为高阶矩阵 SVD 运 算节省硬件开销和计算时间.

2 双边 Jacobi SVD 算法

对于 2 × 2 矩阵 G, 双边 Jacobi SVD 算法计算步骤 如式(1) ~ (4).其中 θ_L 、 θ_R 为左右旋转角, 而式(2)等号 的右边是矩阵 G 的对角矩阵, 其对角线上元素即为矩 阵 G 的奇异值.

收稿日期:2013-11-18;修回日期:2014-03-18;责任编辑:李勇锋

基金项目:国家自然科学基金(No.61176025, No.61006027)

设 $G = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,其中,左右旋转角与 G 的元素有以下 关系:

$$\begin{cases} \theta_R + \theta_L = \arctan\left(\frac{c+b}{d-a}\right) \\ \theta_R - \theta_L = \arctan\left(\frac{c-b}{d+a}\right) \end{cases}$$
(1)

$$\begin{pmatrix} \cos\theta_L & -\sin\theta_L \\ \sin\theta_L & \cos\theta_L \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \cos\theta_R & \sin\theta_R \\ -\sin\theta_R & \cos\theta_R \end{pmatrix}$$
(2)

$$= \frac{1}{2} \begin{pmatrix} A + C & B + D \\ B - D & C - A \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha \cos \alpha \end{pmatrix} \begin{pmatrix} a - d \\ c + b \end{pmatrix}$$
(3)

$$\begin{pmatrix} C\\ D \end{pmatrix} = \begin{pmatrix} \cos\beta - \sin\beta\\ \sin\beta \ \cos\beta \end{pmatrix} \begin{pmatrix} a+d\\ b-c \end{pmatrix}$$
(4)

并且 $\alpha = \theta_R + \theta_L, \beta = \theta_R - \theta_L$.综上, 2×2 矩阵 SVD 运算 可方便地利用 CORDIC 实现反正切函数, 如式(1)和向 量旋转运算, 如式(3)、(4)实现^[11].

3 CORDIC 优化算法设计与实现

由 CORDIC 迭代式可知,每次迭代都需要计算 x, y,z 三路数据^[12],故其最基本运算单元,如图 1.

对有高精度高吞吐率要求的应用场合,CORDIC 必须使用流水线结构,基本运算单元数随迭代次数增加 而上升.为减少 CORDIC 的硬件复杂度,提高模块实时 性,本文将分别对 CORDIC 向量模式和旋转模式作优 化.

3.1 CORDIC 向量模式优化算法

以19比特为例,我们在 Matlab 上进行 CORDIC 向 量模式仿真,如图 2.我们发现幅度值收敛速度比反正 切值快.x 路表示的幅度值经过 8 次迭代已经完全收 敛,而 z 路表示的反正切值约需 16 次迭代.根据此现 象,本文对不同数据通路采用不同的迭代次数,CORDIC 迭代关系由文献[12]中的迭代式改为式(5).

$$\begin{cases} x_{m+1} = x_m \\ y_{m+1} = (y_m + \delta_m x_m 2^{-m}) \\ z_{m+1} = z_m - \delta_m \arctan 2^{-m} \end{cases}$$
(5)

硬件实现上,从图3可见,在n+1次迭代后,x数

据收敛,可在第 n + 2 次及以后的迭代关闭 x 数据通路,故 CORDIC 基本计算单元可节省一个移位运算单元 和一个加减法运算单元,降低了硬件实现时复杂度.

3.2 FPGA 实现 CORDIC 求反正切模块

我们对 CORDIC 求反正切模块的不同位宽作 Matlab 仿真,并在 FPGA 上实现.由图 2、4 和 5 可知,CORDIC 求 反正切模式在位宽为 19、27 和 35 比特时,幅度值分别 在第 8、第 14 和第 17 次迭代后收敛.此后的迭代,将关 闭 x 数据通路以降低硬件复杂度.

图2 CORDIC向量模式输出误差与迭代次数关系

如表 1、2 所示,优化后的 CORDIC 求反正切模块比 Xilinx IP core 中同类型模块更节省硬件资源:位宽分别 为 19、27 和 35 比特时,寄存器开销可分别减少 12.5%、

11.8% 和 14.9%; 查找表开销可减少 11.7%、16.4% 和 21.4%; 实时性提高 5.0%、6.7% 和 5.2%.

模块名	寄存器	查找表	查找表-触发器组合			
输入输出数据位宽为 19 比特						
本文设计模块	1114	1160	1209			
IP core	1274	1315	1414			
输入输出数据位宽为 27 比特						
本文设计模块	2190	2127	2207			
IP core	2484	2545	2659			
输入输出数据位宽为 35 比特						
本文设计模块	3549	3310	3514			
IP core	4171	4215	4425			

表1 CORDIC 求反正切模块资源消耗情况

表 2 CORDIC 求反正切模块实时性情况

模块名	输出滞后输入时钟个数			
	19比特	27 比特	35 比特	
本文设计模块	文设计模块 20		36	
IP core	21	30	38	

3.3 CORDIC 旋转模式优化算法

本文选择优化 CORDIC 的迭代次数,结合 Low latency 算法^[13],设计出一种能有效提高模块实时性、节省大 量资源的优化方案. 假设 CORDIC 在第 *j* 次迭代后,关 系如式(6).

$$\begin{cases} x_1 = x_j \cos z_j - y_j \sin z_j \\ y_1 = y_j \cos z_j + x_j \sin z_j \end{cases}$$
(6)

其中,z为剩余待旋转角度值.在特定精度下

$$\cos(\theta_j) \approx 1, \sin(\theta_j) \approx \theta_j \tag{7}$$

随后的 CORDIC 迭代关系则由式(6)变为:

$$\begin{cases} x_1 = x_j - y_j \cdot z_j \\ y_1 = y_j + x_j \cdot z_j \end{cases}$$
(8)

因为式(7)在 CORDIC 迭代进行至一半时就能符合 误差要求,如图7,所以在硬件实现上,可通过一次乘法 操作,减少近一半迭代次数,节省大量如图 1 所示的 CORDIC 基本运算单元,降低了模块硬件复杂度并提高 了模块实时性.软件仿真结果如图 6,在相同的输出精 度要求下,使用本文算法的收敛速度可比传统算法快 将近一倍.

图6 CORDIC旋转模式x分量输出与迭代次数关系

3.4 FPGA 实现 CORDIC 向量旋转模块

考虑模块在不同位宽下的截位误差,由图7和近似 关系式(8)可知,位宽为19、27和35比特时,可分别在 第9次、第13次和第17次传统迭代后,再使用1次乘 法操作,直接得到迭代输出结果.

長3 CORDIC 向量旋转模块资源消耗情况

模块名	寄存器	查找表	查找表-触发器组合	乘法器	
输入输出数据位宽为 19 比特					
本文设计模块	1102	1096	1189		
IP core	1870	1924	2004	0	
输入输出数据位宽为 27 比特					
本文设计模块	2529	2506	2622	8	
IP core	3553	3534	3597	0	
输入输出数据位宽为 35 比特					
本文设计模块	3877	3715	3926	10	
IP core	5760	5737	5942	0	

表 4	CORDIC 向量旋转模块实时性情况
-----	--------------------

模块名	输出滞后时钟个数			
	19比特	27 比特	35 比特	
本文设计模块	20	28	33	
IP core	25	34	42	

表 3、4 可见,本文设计的模块拥有更少的硬件资源 开销和更高的实时性.在使用少量乘法器的情况下,位 宽分别为 19、27 和 35 比特时,本文设计模块的寄存器 开销可分别减少 41.0%、28.8% 和 32.6%;查找表开销 可减少 43.0%、29.0% 和 35.2%;实时性提高 25.0%、 17.6% 和 21.4%.

4 基于优化 CORDIC 计算单元的 SVD 模块 设计与实现

4.1 SVD 模块设计

本文设计的 SVD 模块采用流水线结构,以2×2SVD 为例,其硬件结构如图 8.由 Jacobi 算法可知, n 阶方阵

的 SVD 对角化模块,见图 9,完整的 SVD 迭代过程还需要进行 logn 次清扫^[14],每次清扫需要 n(n-1)次对角化,需要用到大量 CORDIC 计算单元.

4.2 SVD 模块 RTL 仿真

本文以 19 比特位宽的 2 × 2SVD 为例,在 XilinxVirtex6 硬件平台实现模块.输出首次处理延时 43 个时钟 周期,在随后的每个时钟上升沿均能输出一个 2 × 2 矩 阵的 SVD 对角矩阵,模块最高工作频率为 348.918MHz, 吞吐率达 25.9Gbps.

图9 n阶SVD对角化模块结构图

模块名	寄存 器	查找 表	查找表- 触发器 组合	乘法 器	输出滞 后时钟
使用优化后 CORDIC 计算 单元的 SVD 模块	4802	4890	5065	8	43
使用后 IP core 中 CORDIC 计算单元的 SVD 模块	6630	6765	7092	0	50

表 5 SVD 模块资源消耗和实时性情况

表5可知,在同一硬件平台下,本文设计的 SVD 模块比使用 Xilinx IP core 构造的同类模块节省了 27.6% 寄存器、27.7% 查找表,实时性提高 14.0%.

4.3 高阶 SVD 模块资源消耗分析

图 11 和 12 列举了 19 比特位宽的不同阶数 SVD 模 块需要使用的硬件资源.可以看到,在硬件实现 16 阶矩 阵 SVD 时,可节省 39.8%寄存器和 41.7% 查找表资源.

5 结束语

本文对 CORDIC 计算单元作优化,改进其迭代结构,降低其硬件复杂度,提高其计算实时性,为高阶矩阵 SVD 提供一种节省资源和减少延时的方案.本文使用上述 CORDIC 计算单元设计了位宽为 19 比特的 2 × 2SVD 模块.在 XilinxVirtex6 硬件平台上实现时,吞吐率达 25.9Gbps,对比使用 Xilinx IP core 中同类模块,节省了 27.6%寄存器、27.7%查找表,实时性提高 14%.最后,本文给出高阶矩阵情况下 SVD 资源消耗趋势曲线,证明本文设计的 CORDIC 计算单元能降低 16 阶矩阵 SVD 模块约 40%的硬件复杂度.

参考文献

- Businger P A, Golub G H. Algorithm 358: singular value decomposition of a complex matrix [F1, 4, 5] [J]. Communications of the ACM, 1969, 12(10):564 – 565.
- [2] Demmel J, Kahan W. Accurate singular values of bidiagonal matrices[J]. SIAM Journal on Scientific and Statistical Computing, 1990, 11(5):873 – 912.
- [3] Forsythe G E, Henrici P. The cyclic Jacobi method for computing the principal values of a complex matrix [J]. Transactions of the American Mathematical Society, 1960,94(1):1-23.
- [4] Cavallaro J R, et al. VLSI implementation of a CORDIC SVD

processor[A]. University Government Industry Microelectronics Symposium[C]. IEEE, 1989.256 – 260.

- [5] Ma W, et al. An FPGA-based singular value decomposition processor[A]. Canadian Conference on Electrical and Computer Engineering[C]. Ottawa: IEEE, 2006.1047 – 1050.
- [6] Szecówka P M, Malinowski P. CORDIC and SVD implementation in digital hardware [A]. Mixed Design of Integrated Circuits and Systems [C]. Wroclaw: IEEE, 2010.237 – 242.
- [7] Brent R P, et al. The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays[J]. SIAM Journal on Scientific and Statistical Computing, 1985,6(1):69 – 84.
- [8] 谭曼琼,等.位串行 SVD 处理器的设计[J].小型微型计算 机系统,2012,33(006):1358 - 1362.
 Tan Man-qiong, et al. Design of bit-serial singular value decomposition processor[J].2012,33(006):1358 - 1362. (in Chinese)
- [9] Huang Kuan-Ju. A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis [A]. Engineering in Medicine and Biology Society[C]. Osaka: IEEE, 2013.1944 – 1947.
- [10] 陈刚,等.基于 CORDIC 算法的高精度浮点对称矩阵特征值分 解的 FPGA 实现[J].计算机科学,2013,40(5):35-37.
 Chen Gang, et al. Floating-point CORDIC-based real-valued symmetric matrix eigenvalue decomposition on FPGA [J].
 Computer Science,2013,40(5):35-37.(in Chinese)
- [11] 毕卓,戴益君.全定制 CORDIC 运算器设计[J].计算机 工程与科学,2011,33(10):64-69.
 Bi Zhuo,Dai Yi-jun. Full custom CORDIC arithmetic unit design[J]. Computer Engineering and Science,2011,33(10):64-69.(in Chinese)
- [12] J E Volder. The CORDIC trigonometric computing technique [J]. IRE Transactions on Electronic Computers, 1959,8(33):330 – 334.
- [13] E Antelo, J Villalba, E L Zapata. A low-latency pipelined 2D and 3D CORDIC processors[J]. IEEE Transactions on Computers, 2008, 57(3):404 – 417.
- [14] Ahmedsaid A, Amira A, Bouridane A. Improved SVD systolic array and implementation on FPGA[A]. Field-Programmable Technology[C]. Tokyo: IEEE, 2003.35 – 42.

作者简介

张晓帆 男,1990年5月出生,广东广州人。2013年毕业于电子 科技大学通信与信息工程学院,现为电子科技大学通信与信息工程 学院硕士研究生,从事 VLSI数字信号处理实现技术方面的研究。 E-mail:zhangxf218@qq.com

李广军 男,1950年9月出生,河北保定人。现为电子科技大学 通信与信息工程学院教授、博士生导师、中国通信学会通信专用集成 电路委员会委员、四川省通信学会副理事长。主要从事 VISI 数字信 号处理实现技术、移动通信系统和嵌入式系统方面的研究工作。 E-mail;gli@uestc.edu.cn