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Abstract

We construct two identity-based encryption (IBE) schemes. The first one is IBE sat-
isfying key dependent message (KDM) security for user secret keys. The second one is
IBE satisfying simulation-based receiver selective opening (RSO) security. Both schemes
are secure against adaptive-ID attacks and do not have any a-priori bound on the num-
ber of challenge identities queried by adversaries in the security games. They are the first
constructions of IBE satisfying such levels of security.

Our constructions of IBE are very simple. We construct our KDM secure IBE by
transforming KDM secure secret-key encryption using IBE satisfying only ordinary indis-
tinguishability against adaptive-ID attacks (IND-ID-CPA security). Our simulation-based
RSO secure IBE is based only on IND-ID-CPA secure IBE.

We also demonstrate that our construction technique for KDM secure IBE is used to
construct KDM secure public-key encryption. More precisely, we show how to construct
KDM secure public-key encryption from KDM secure secret-key encryption and public-key
encryption satisfying only ordinary indistinguishability against chosen plaintext attacks.

Keywords: Identity-based encryption, Key dependent message security, Receiver selective
opening security.
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1 Introduction

1.1 Background

Identity-based encryption (IBE) proposed by Shamir [Sha84] is an extension of public-key en-
cryption (PKE). In IBE, we can use an identity of a recipient as a public-key. The secret key
corresponding to an identity is generated only by the trusted authority who has the master
secret key. Users can obtain secret keys corresponding to their identities by authenticating
themselves to the trusted authority. By using IBE, we can avoid the need to distribute public-
key certificates that is one of the major issues with public-key cryptography.

Security notions for IBE capture corruptions and collusions of users. In other words, we
require that IBE guarantee confidentiality of a message encrypted under an identity id∗ even if
an adversary obtains secret keys corresponding to any identity other than id∗.

Security notions for IBE are classified into two categories, that is, adaptive security and
selective security. an IBE scheme is said to be secure against adaptive-ID attacks [BF01] if it
is secure even when an adversary adaptively chooses the challenge identity id∗. On the other
hand, an IBE scheme is said to be secure against selective-ID attacks [CHK03] if it is secure
when an adversary declares the challenge identity id∗ before seeing the public parameter.

Security against adaptive-ID attacks is a desirable security notion for IBE when we use it
in practical situations. However, since IBE has an advanced functionality compared to PKE,
attack scenarios that ordinary indistinguishability against adaptive-ID attacks does not capture
can naturally occur in practical situations of IBE. As such attack scenarios, in this work, we
focus on the situation of encrypting secret keys and the selective opening attacks.

Black, Rogaway, and Shrimpton [BRS03] introduced the notion of key dependent message
(KDM) security which guarantees confidentiality even in the situation of encrypting secret keys.
Informally, an encryption scheme is said to be KDM secure if it is secure when an adversary can
obtain encryptions of f(sk1, . . . , skℓ), where sk1, . . . , skℓ are secret keys that exist in the system
and f is a function.

Alperin-Sheriff and Peikert [AP12] pointed out that KDM security with respect to user
secret keys is well-motivated by some natural usage scenarios for IBE such as key distribution
in a revocation system. They constructed the first IBE satisfying KDM security for user secret
keys assuming the hardness of the learning with errors (LWE) problem. Galindo, Herranz, and
Villar [GHV12] proposed an IBE scheme that satisfies KDM security for master secret keys
based on the hardness of a rank problem on bilinear groups. However, both of these schemes
are secure only against selective-ID attacks. Moreover, both schemes have some a-priori bound
on the number of queries made by an adversary.1

In the selective opening attack, an adversary, given some ciphertexts, adaptively corrupts
some fraction of users and try to break confidentiality of ciphertexts of uncorrupted users.

There are both sender corruption case and receiver corruption case in this attack scenario.
Bellare, Hofheinz, and Yilek [BHY09] formalized sender selective opening (SSO) security for
PKE that captures situations where there are many senders and a single receiver, and an
adversary can obtain messages and random coins of corrupted senders. Hazay, Patra, and
Warinschi [HPW15] later formalized receiver selective opening (RSO) security for PKE that
captures situations where there are many receivers and a single sender, and an adversary can
obtain messages and secret keys of corrupted receivers.

Selective opening attacks originally considered in the context of multi-party computation is
natural and motivated in the context of IBE since it also considers situations where there are

1 The scheme by Alperin-Sheriff and Peikert has an a-priori bound on the number of challenge identities in the
security game. The scheme by Galindo et al. has an a-priori bound of the number of KDM encryption queries
made by an adversary.
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many users and some fraction are corrupted. Bellare, Waters, and Yilek [BWY11] defined SSO
security for IBE and proposed SSO secure IBE schemes under the decisional linear assumption
and a subgroup decision assumption in composite order bilinear groups. Their definition of SSO
security for IBE captures adaptive-ID attacks in addition to sender selective opening attacks.
However, it does not take receiver selective opening attacks into account.

It is known that the standard notions of indistinguishability implies neither KDM se-
curity [ABBC10, CGH12, BHW15, KW16] nor selective opening security [BDWY12, HR14,
HRW16]. From this fact, we know very little about the possibility of IBE satisfying these
stronger security notions than standard indistinguishability though there have been many works
on the study of IBE.

Especially, it is open whether we can construct IBE that is KDM secure against adaptive-ID
attacks and there is no a-priori bound on the number of queries made by an adversary. For
selective opening security, we have no construction of IBE satisfying RSO security even if we
require only security against selective-ID attacks.

As mentioned above, attack scenarios captured by both KDM security and selective opening
security are natural and motivated for IBE. We thus think it is important to clarify these issues.

1.2 Our Results

Based on the above background, we propose KDM secure IBE and RSO secure IBE. Both
schemes satisfy security against adaptive-ID attacks. They are the first schemes satisfying such
levels of security.

Our constructions of IBE are very simple. We construct KDM secure IBE by transform-
ing KDM secure secret-key encryption (SKE) using IBE satisfying ordinary indistinguishability
against adaptive-ID attacks (IND-ID-CPA security) and garbled circuits. Somewhat surpris-
ingly, Our RSO secure IBE is based only on IND-ID-CPA secure IBE. We think they shares the
same sprit of construction strategy.

We show the details of each result below.

Key dependent message secure IBE. In this work, we focus on KDM security for user
secret keys similarly to Alperin-Sheriff and Peikert [AP12], and let KDM security indicate KDM
security for user secret keys. We show the following theorem.

Theorem 1 (Informal) Assuming there exist IND-ID-CPA secure IBE and SKE that is KDM
secure with respect to projection functions (resp. functions computable by a-priori bounded size
circuits). Then, there exists IBE that is KDM secure with respect to projection functions (resp.
functions computable by a-priori bounded size circuits) against adaptive-ID attacks.

Projection function is a function whose each output bit depends on at most one bit of
an input. KDM security with respect to projection functions is a generalization of circular
security [CL01]. We can construct IBE satisfying KDM security with respect to any function
computable by circuits of a-priori bounded size [BHHI10] by requiring the same KDM security
for the underlying SKE.

As noted above, KDM secure IBE proposed by Alperin-Sheriff and Peikert is only secure
against selective-ID attacks. Moreover, their scheme has an a-priori bound on the number of
challenge identities in the security game. Our KDM secure IBE is secure against adaptive-ID
attacks and does not have any a-priori bound on the number of queries made by an adversary
in the security game.
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To achieve KDM security for a-priori unbounded number of challenge identities, in our
construction, the size of instances of the underlying KDM secure SKE needs to be independent
of the number of users in the security game.2

We can construct SKE that is KDM secure with respect to projection functions and satisfies
this efficiency requirement based on the decisional diffie-hellman (DDH) assumption [BHHO08]
and LWE assumption [ACPS09].3 In addition, Applebaum [App11] showed how to transform
SKE that is KDM secure with respect to projection functions into SKE that is KDM secure
with respect to functions computable by a-priori bounded size circuits.

We can construct IND-ID-CPA secure IBE under the LWE assumption [ABB10]. Moreover,
Döttling and Garg [DG17b] recently showed how to construct IND-ID-CPA secure IBE based
on the computational diffie-hellman (CDH) assumption.

Our construction also uses garbled circuits, but it is implied by one-way functions [Yao86].
Thus, from Theorem 1, we obtain the following corollary.

Corollary 1 There exists IBE that is KDM secure with respect to functions computable by a-
priori bounded size circuits against adaptive-ID attacks under the DDH assumption or LWE
assumption.

In addition to the above results, based on the construction techniques above, we also show
that we can transform KDM secure SKE into KDM secure PKE by using PKE satisfies ordinary
indistinguishability against chosen plaintext attacks (IND-CPA security). Specifically, we show
the following theorem.

Theorem 2 (Informal) Assuming there exist IND-CPA secure PKE and SKE that is KDM
secure with respect to projection functions (resp. functions computable by a-priori bounded size
circuits). Then, there exists PKE that is KDM secure with respect to projection functions (resp.
functions computable by a-priori bounded size circuits).

It seems that we cannot construct KDM secure PKE from KDM secure SKE via straight-
forward hybrid encryption methodology. It leads to dead rock of secret keys of the underlying
primitives and thus it seems difficult to prove the security of hybrid encryption construction.
Thus, we believe this result is of independent interest.

Receiver selective opening secure IBE. Before our work, RSO security for IBE has never
been studied while an IBE scheme that is SSO secure was proposed by Bellare et al. [BWY11].
Therefore, we first define RSO security for IBE formally. Our definition is a natural extension
of simulation-based RSO security for PKE proposed by Hazay et al. [HPW15]. We then show
the following theorem.

Theorem 3 (Informal) Assuming there exists IND-ID-CPA secure IBE. Then, there exists
IBE that satisfies simulation-based RSO security against adaptive-ID attacks.

Somewhat surprisingly, the above theorem says that all we need is IND-ID-CPA secure IBE
to achieve simulation-based RSO secure IBE. We can obtain the result via a simple double
encryption paradigm [NY90].

The reason we can obtain the above result via a simple double encryption paradigm is that
in receiver selective opening attacks for IBE, we have to consider the revelation of secret keys

2For more details, see Remark 1 in Section 2.3.
3More precisely, these works showed now to construct PKE that is KDM secure with respect to projection

functions and satisfies the efficiency requirement.
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itself but not the random coins for key generation since secret keys are generated by the trusted
authority in IBE.

From the above, we also observe that if we consider only revelations of secret keys and not
the random coins for key generation, we can construct PKE satisfying such simulation-based
RSO security using any PKE satisfying ordinary IND-CPA security. This fact is somewhat
obvious from some previous results [CHK05, HPW15] though these works did not explicitly
state it. For self-containment, we formally show the fact in the appendix. Formally, we have
the following theorem.

Theorem 4 (Informal) Assuming there exist IND-CPA secure PKE. Then, there exists PKE
that satisfies simulation-based RSO security considering the revelation of only secret keys.

To prove simulation-based RSO security against the revelation of random coins for key
generation, it seems that the underlying PKE needs to be key simulatable [DN00, HPW15]
in some sense. In this case, it seems difficult to construct simulation-based RSO secure PKE
without relying on some specific algebraic or lattice assumptions.

We summarize our results in Figure 1.

IND-ID-CPA
IBE

KDM
IBE

SIM-RSO
IBE

+KDM SKE

IND-CPA
PKE

KDM
PKE

SIM-RSO
PKE

+KDM SKE

Figure 1: Our results.

1.3 Overview of Our Techniques

We first give an intuition for our KDM secure IBE.

KDM secure IBE from KDM secure SKE. Our construction methodology for KDM se-
cure IBE is somewhat based on the recent beautiful construction of IBE proposed by Döttling
and Garg [DG17b, DG17a] using new primitives called chameleon encryption or one-time signa-
tures with encryption. The essence of their transformations is the mechanism that an encryptor
who does not know the exact value of a public-key ek of PKE can generate an “encoding” of a
PKE’s ciphertext under the public-key ek. Moreover, in their construction, the security of IBE
is directly reduced to that of PKE in the last step of the security proof.

This hints that by realizing the mechanism that an encryptor who does not know the value
of the key K of SKE can generate an encoding of an SKE’s ciphertext under the key K of
SKE, we can transform SKE into public primitives such as PKE and IBE shifting the security
level of SKE to them. We show that this intuition is true by demonstrating constructions of
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KDM secure IBE (resp. PKE) based on KDM secure SKE and IND-ID-CPA secure IBE (resp.
IND-CPA secure PKE).

We emphasize that we need neither chameleon encryption nor one-time signatures with
encryption. This is because our aim is to construct IBE satisfying a strong security notion, that
is, KDM security, and we use IBE satisfying ordinary IND-ID-CPA security as a building block
while the goal of Döttling and Garg in the above work is to construct IND-ID-CPA secure IBE.

Our constructions are very simple and use garbled circuits. For simplicity, we focus on
constructing KDM secure PKE to give an intuition. Suppose that we construct a KDM secure
PKE scheme KdmPKE from a KDM secure SKE scheme SKE and IND-CPA secure PKE scheme
PKE.

Basically speaking, the encryption algorithm of KdmPKE first garbles an encryption circuit of
SKE that has a message to be encrypted hardwired, that is, Eske(·,m), and then encrypts labels
of the garbled circuit by PKE under different keys. This process can be done without any secret-
key of SKE and thus we achieve the “encoding” mechanism mentioned above. This construction
is similar to that of “semi-adaptively” secure functional encryption based on selectively secure
one proposed by Goyal, Koppula, and Waters [GKW16], but our techniques for the security
proof explained below are different from theirs.

Why IND-CPA security of the underlying PKE is sufficient? One might wonder why
IND-CPA security of the underlying PKE scheme PKE is sufficient to construct the KDM secure
PKE scheme KdmPKE. To see the answer for this question, we closer look at the construction
of KdmPKE.

Let the length of a secret-key K of SKE be lenK. A public-key Kdm.ek of KdmPKE consists
of 2 · lenK public-keys of PKE, {ekj,α}j∈[lenK],α∈{0,1}. The secret-key Kdm.dk corresponding to
Kdm.ek consists of a secret-key K of SKE and lenK secret-keys of PKE corresponding to the bit
representation of K = K[1] . . .K[lenK], that is,

{
dkj,K[j]

}
j∈[lenK]

. We note that secret-keys of PKE

that do not correspond to the bit representation of K are not included in Kdm.dk.
As mentioned above, when encrypting a messagem under the public-key Kdm.ek := {ekj,α}j∈[lenK],α∈{0,1},

the encryption algorithm of KdmPKE first garbles an encryption circuit of SKE in which m is
hardwired, that is, Eske(·,m). This results in a single garbled circuit Ẽ and 2 · lenK labels
{labj,α}j∈[lenK],α∈{0,1}. Then, the encryption algorithm of KdmPKE encrypts labj,α by ekj,α for

every j ∈ [lenK] and α ∈ {0, 1}. The resulting ciphertext of KdmPKE consists of Ẽ and these
2 · lenK ciphertexts of PKE.

When decrypting this ciphertext with Kdm.dk :=
(
K,

{
dkj,K[j]

}
j∈[lenK]

)
, we first obtain labels

corresponding to K from lenK out of 2·lenK ciphertexts of PKE using
{
dkj,K[j]

}
j∈[lenK]

and evaluate

Ẽ with those labels. This results in an SKE’s ciphertext Eske(K,m). Thus, by decrypting it with
K, we obtain m.

In this construction, secret-keys of PKE corresponding to K, that is,
{
dkj,K[j]

}
j∈[lenK]

are

included in Kdm.dk, but the rest of secret-keys
{
dkj,1−K[j]

}
j∈[lenK]

are not included in Kdm.dk.

Thus, even if adversaries for KdmPKE obtain encryptions of key dependent messages, they can-
not get information of

{
dkj,1−K[j]

}
j∈[lenK]

while they potentially get information of
{
dkj,K[j]

}
j∈[lenK]

from those encryptions. This is the reason the IND-CPA security of PKE is sufficient to con-
struct a KDM secure PKE scheme KdmPKE since we use the security of PKE of instances related
to

{
dkj,1−K[j]

}
j∈[lenK]

, but not
{
dkj,K[j]

}
j∈[lenK]

in the security proof. To see the fact, we show

the outline of the proof below.
In the proof, using the security of garbled circuits, we change the security game without

affecting the behavior of adversaries so that we generate a challenge ciphertext under the key
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pair (Kdm.ek,Kdm.dk) with simulated garbled circuits computed from an SKE’s ciphertext of
the challenge key dependent message m∗ under the key K, that is, Eske(K,m

∗), where K is the
secret-key of SKE contained in Kdm.dk. By this change, we do not need m∗ itself, and the
ciphertext Eske(K,m

∗) is sufficient to simulate the security game. Thus, at this point, we can
reduce the KDM security of KdmPKE to that of the underlying SKE.

In the above proof, before using the security of garbled circuits, we have to eliminate
the labels of garbled circuits that do not correspond to the bit representation of K, that is,{
labj,1−K[j]

}
j∈[lenK]

from the view of adversaires. This can be done by using the IND-CPA se-

curity of PKE of only instances related to
{
dkj,1−K[j]

}
j∈[lenK]

from the construction of KdmPKE.

Thus, we can complete the proof by using IND-CPA security of PKE of instances related to{
dkj,1−K[j]

}
j∈[lenK]

, but not
{
dkj,K[j]

}
j∈[lenK]

.

Conversions of functions. One additional non-trivial point is the conversion of functions
by reductions.

In the security game of KDM security, adversaries query a function and obtain an encryp-
tion of the function of secret keys. Thus, KDM security is parameterized by function classes
indicating functions that adversaries can query.

In the above construction, a secret key Kdm.dk of KdmPKE contains some secret-keys of PKE
in addition to a secret key of SKE. Therefore, a function queried by an adversary for KdmPKE
is a function of secret-keys of PKE and secret keys of SKE. On the other hand, a function that
a reduction algorithm can query is a function of only secret keys of SKE. This means that the
reduction algorithm needs to convert a function queried by an adversary for PKE.

Such conversion is clearly possible if we do not care classes of functions. However, when
considering KDM security, classes of functions are important since they determine the level of
KDM security. It is not clear how such conversions affect a class of functions. Especially, it is
not clear whether we can perform such conversions for functions without changing the class of
functions.

We show that such conversions are possible for projection functions and functions com-
putable by a-priori bounded size circuits. Thus, we can reduce the KDM security for those
function classes of KdmPKE to that of SKE.

These arguments hold if we replace the underlying IND-CPA secure PKE with IND-ID-CPA
secure IBE. The above construction can be seen as the special case where the size of instances
of the underlying IBE linearly depends on the size of identity space. Thus, we can obtain KDM
secure IBE from KDM secure SKE and IND-ID-CPA secure IBE.

RSO secure IBE from IND-ID-CPA secure IBE. Our starting point of the construction
of RSO secure IBE is the above KDM secure IBE based on KDM secure SKE. It seems that
the above construction can be used to carry over strong security notions of SKE to IBE that we
need to simulate secret-keys in some sense in the security game. One such example, we focus on
RSO security.4 Actually, in the above construction, if the underlying SKE has non-committing
property (such as one-time pad), the resulting IBE gains simulation-based RSO security.

However, the construction turns out to be redundant and we can dramatically simplify the
construction. The reason we can do such a simplification is related to whether we consider the
revelation of the random coins for key generation in addition to secret-keys or not in receiver
selective opening attacks.

4We observe that another example is leakage resilience. We do not focus on it in this paper.
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Secret key vs random coins for key generation. Hazay et al. [HPW15] considered
the revelation of both secret keys and random coins for key generation when they defined RSO
security for PKE. It might be better to consider the revelation of random coins of key generation
for many applications of PKE. However, for IBE, it is sufficient to consider the revelation of
only secret keys.

In IBE, the trusted authority generates user secret keys and distributes them to users. Thus,
if an adversary corrupts a user, the adversary cannot obtain the random coin used to generate
the secret key of the user since the user do not know it. For this reason, we do not have to
consider the revelation of random coins of key generation in IBE.5

Construction based on double encryption paradigm. When we do not consider the
revelation of random coins of key generation in IBE, we can construct simulation-based RSO
secure IBE via a simple double encryption paradigm [NY90] without using garbled circuits.

More precisely, using an IBE scheme IBE whose identity space is ID × {0, 1}, we construct
the following new IBE scheme RsoIBE whose message space and identity space are {0, 1} and
ID, respectively.

The setup algorithm of RsoIBE is the same as that of IBE. When generating a secret-
key Rso.skid for identity id ∈ ID, the key generation algorithm of RsoIBE generates an IBE’s
secret-key skid,r for the identity (id, r), where r is a freshly generated random bit, and outputs
Rso.skid := (r, skid,r). When encrypting a message m ∈ {0, 1} for identity id ∈ ID, the encryp-
tion algorithm of RsoIBE generates a pair of ciphertexts (CT0,CT1), where CTα is an encryption
of m under the identity (id, α) for every α ∈ {0, 1}. The decryption algorithm of RsoIBE, given
a pair of ciphertexts (CT0,CT1) and a secret-key Rso.skid := (r, skid,r), outputs the decryption
result of CTr with skid,r.

This construction achieves non-committing property. Suppose that we generate CTr as an
encryption of 0 under the identity (id, r) and CT1−r as an encryption of 1 under the identity
(id, 1 − r) when generating a ciphertext (CT0,CT1) for the identity id, where r is the random
bit contained in the secret key Rso.skid := (r, skid,r) for id. We can open this ciphertext to any
m ∈ {0, 1} by pretending as if the secret key Rso.skid for id is (r ⊕ m, skid,r⊕m). Due to this
non-committing property, we prove the simulation-based RSO security of RsoIBE.

From this result, we observe that if we consider the revelation of only secret keys, we
can also construct SIM-RSO secure PKE based on any IND-CPA secure PKE. Our results on
simulation-based RSO secure IBE and PKE highlight the gap of difficulties between achieving
RSO security against revelation of only secret-keys and achieving that against both secret-keys
and random coins for key generation. To achieve the latter RSO security for PKE, it seems
that the underlying scheme needs to be key simulatable [DN00, HPW15] in some sense.

1.4 Organization

In Section 2, we introduce some notations and review definitions of cryptographic primitives
that we use as building blocks. In Section 3, we define IBE, and introduce KDM security and
RSO security for it. In Section 4, we show how to construct KDM secure IBE from KDM secure
SKE and IND-ID-CPA secure IBE. In Section 5, we show the construction of simulation-based
RSO secure IBE based on IND-ID-CPA secure IBE. In Section 6, we show how to construct
KDM secure PKE from KDM secure SKE and IND-CPA secure PKE. In Appendix A, we show
how to construct simulation-based RSO secure PKE based on IND-CPA secure PKE.

5One additional reason is that we can always make a key generation algorithm of IBE deterministic by using
pseudorandom functions.
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2 Preliminaries

In this section, we define some notations and cryptographic primitives.

2.1 Notations

In this paper, x
r←− X denotes selecting an element from a finite set X uniformly at random,

and y ← A(x) denotes assigning to y the output of an algorithm A on an input x. For strings x
and y, x∥y denotes the concatenation of x and y. For an integer ℓ, [ℓ] denote the set of integers
{1, . . . , ℓ}. For a string x and positive integer j ≤ |x|, x[j] denotes the j-th bit of x.

λ denotes a security parameter. PPT stands for probabilistic polynomial time. A function
f(λ) is a negligible function if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We write
f(λ) = negl(λ) to denote f(λ) being a negligible function.

2.2 Garbled Circuits

We define garbled circuits. We can realize garbled circuits for all efficiently computable circuits
based on one-way functions [Yao86].

Definition 1 (Garbled circuits) Let {Cn}n∈N be a family of circuits where each circuit in Cn
takes n-bit inputs. A circuit garbling scheme GC is a two tuple (Garble,Eval) of PPT algorithms.

• The garbling algorithm Garble, given a security parameter 1λ and circuit C ∈ Cn, outputs
a garbled circuit C̃, together with 2n labels {labj,α}j∈[n],α∈{0,1}.

• The evaluation algorithm, given a garbled circuit C̃ and n labels {labj}j∈[n], outputs y.

Correctness We require Eval
(
C̃,

{
labj,x[j]

}
j∈[n]

)
= C(m) for every n ∈ N, x ∈ {0, 1}n, where(

C̃, {labj,α}j∈[n],α∈{0,1}
)
← Garble(1λ, C).

Security Let Sim be a PPT simulator. We define the following game between a challenger and
an adversary A as follows.

1. First, the challenger chooses a bit b
r←− {0, 1} and sends a security parameter 1λ to A.

Then, A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n for the challenger. Next,

if b = 1, the challenger computes
(
C̃, {labj,α}j∈[n],α∈{0,1}

)
← Garble(1λ, C) and re-

turns
(
C̃,

{
labj,x[j]

}
j∈[n]

)
to A. Otherwise, the challenger returns

(
C̃, {labj}j∈[n]

)
←

Sim(1λ, |C| , C(x)) to A.
2. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvgcGC,A,Sim(λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

We say that GC is secure if for any PPT adversary A, we have AdvgcGC,A,Sim(λ) = negl(λ).
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2.3 Public Key Encryption

We define public key encryption (PKE).

Definition 2 (Public key encryption) A PKE scheme PKE is a three tuple (KG,Enc,Dec)
of PPT algorithms. Below, letM be the message space of PKE.

• The key generation algorithm KG, given a security parameter 1λ, outputs a public key ek
and a secret key dk.

• The encryption algorithm Enc, given a public key ek and message m ∈ M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a secret key dk and ciphertext c, outputs a message
m̃ ∈ {⊥} ∪M.

Correctness We require Dec(dk,Enc(ek,m)) = m for every m ∈M and (ek, dk)← KG(1λ).

We introduce indistinguishability against chosen plaintext attacks (IND-CPA security) for
PKE.

Definition 3 (IND-CPA security) Let PKE be a PKE scheme. We define the IND-CPA
game between a challenger and an adversary A as follows. We let M be the message space of
PKE.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates a

key pair (ek, dk)← KG(1λ) and sends ek to A.

2. A sends (m0,m1) ∈ M2 to the challenger. We require that |m0| = |m1|. The challenger
computes CT← Enc(ek,mb) and returns CT to A.

3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvindcpaPKE,A(λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

We say that PKE is IND-CPA secure if for any PPT adversary A, we have AdvindcpaPKE,A(λ) =
negl(λ).

Next, we define key dependent message (KDM) security for PKE [BRS03].

Definition 4 (KDM-CPA security) Let PKE be a PKE scheme, F function family, and ℓ
the number of keys. We define the F-KDM-CPA game between a challenger and an adversary
A as follows. Let DK andM be the secret key space and message space of PKE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates ℓ

key pairs
(
ek(k), dk(k)

)
← KG(1λ) (k ∈ [ℓ]). The challenger sets dk :=

(
dk(1), . . . , dk(ℓ)

)
and sends

(
ek(1), . . . , ek(ℓ)

)
to A.

2. A may adaptively make polynomially many KDM queries.
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KDM queries A sends (k, f) ∈ [ℓ] × F to the challenger. We require that f is a
function such that f : DKℓ → M. If b = 1 then the challenger returns CT ←
Enc

(
ek(k), f(dk)

)
to A. Otherwise, the challenger returns CT ← Enc

(
ek(k), 0|f(·)|

)
to A.

3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advkdmcpa
PKE,F ,A,ℓ(λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

We say that PKE is F-KDM-CPA secure if for any PPT adversary A and polynomial ℓ =
ℓ(λ), we have Advkdmcpa

PKE,F ,A,ℓ(λ) = negl(λ).

Remark 1 (Flexibility of the number of users) The above definition implicitly requires
that the size of instances such as public keys, secret keys, and ciphertexts be independent of
the number of users ℓ. We require the same condition for KDM secure SKE. This requirement
is necessary for our constructions of KDM secure IBE (and PKE) based on KDM secure SKE.

When we reduce the KDM security of our IBE to that of the underlying SKE, the number
of users ℓ in the security game of SKE corresponds to the number of challenge identities queried
by an adversary for IBE. If the size of instances of SKE depends on ℓ, we can prove the KDM
security of the resulting IBE only when the number of challenge identities is a-priori bounded.

Function families. As we can see, KDM security is defined with respect to function families.
In this paper, we focus on KDM security with respect to the following function families.

Projection functions. A projection function is a function in which each output bit depends
on at most a single bit of an input. Let f be a function and y = y1 . . . ym be the output of
the function f on an input x = x1 . . . xn, that is f(x) = y. We say that f is a projection
function if for any j ∈ [m], there exists i ∈ [n] such that yj ∈ {0, 1, xi, 1− xi}.
In this paper, we let P denote the family of projection functions, and we say that PKE is
P-KDM-CPA secure if it is KDM-CPA secure with respect to projection functions.

Functions computable by a-priori bounded size circuits. In the security game of KDM-CPA
security with respect to this function family, an adversary can query a function computable
by a circuit of a-priori bounded size and input and output length. We allow the size of
instances of a scheme to depend on these a-priori bounds on functions while we do not
allow it to depend on the number of total users as we noted in Remark 1.

In this paper, we say that PKE is B-KDM-CPA secure if it is KDM-CPA secure with
respect to functions computable by a-priori bounded size circuits.

P-KDM-CPA security is a generalization of circular security [CL01] and strong enough
for many applications. Boneh, Helevi, Hamburg, and Ostrovsky [BHHO08] and Applebaum,
Cash, Peikert, and Sahai [ACPS09] showed how to construct P-KDM-CPA secure PKE under
the decisional diffie-hellman (DDH) assumption and learning with errors (LWE) assumption,
respectively.6

6Brakerski and Goldwasser [BG10] proposed P-KDM-CPA secure PKE under the quadratic residuosity (QR)
assumption and decisional composite residuosity (DCR) assumption, but their schemes do not satisfy the flexi-
bility of the number of users in the sense of Remark 1.
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Barak, Haitner, Hofheinz, and Ishai [BHHI10] showed how to construct B-KDM-CPA secure
PKE under the DDH assumption or LWE assumption. Applebaum [App11] showed how to
transform P-KDM-CPA secure PKE into B-KDM-CPA secure one using garbled circuits.

We next introduce the definition of receiver selective opening (RSO) security for PKE. We
adopt the simulation-based definition proposed by Hazay et al. [HPW15].

Definition 5 (SIM-RSO security) Let PKE be a PKE scheme, and ℓ the number of keys.
Let A and S be a PPT adversary and simulator, respectively. We define the following pair of
games.

Real game

1. First, the challenger generates ℓ key pairs
(
ek(k), dk(k)

)
← KG(1λ) (k ∈ [ℓ]) and sends(

ek(1), . . . , ek(ℓ)
)
to A.

2. A sends a message distribution Dist to the challenger. The challenger generates{
m(k)

}
k∈[ℓ] ← Dist, computes CT(k) ← Enc

(
ek(k),m(k)

)
for every k ∈ [ℓ], and sends{

CT(k)
}
k∈[ℓ]

to A.

3. A sends a subset I of [ℓ] to the challenger. The challenger sends
{(

dk(k),m(k)
)}

k∈I
to A.

4. A sends a string out to the challenger.

5. The challenger outputs outreal :=
({

m(k)
}
k∈[ℓ] ,Dist, I, out

)
.

Simulated game

1. First, the challenger sends 1λ to S.
2. S sends a message distribution Dist to the challenger. The challenger generates{

m(k)
}
k∈[ℓ] ← Dist.

3. S sends a subset I of [ℓ] to the challenger. The challenger sends
{
m(k)

}
k∈I to S.

4. S sends a string out to the challenger.

5. The challenger outputs outsim :=
({

m(k)
}
k∈[ℓ] ,Dist, I, out

)
.

We say that PKE is SIM-RSO secure if for any PPT adversary A and polynomial ℓ = ℓ(λ),
there exists a PPT simulator S such that for any PPT distinguisher D with binary output we
have

Advsimrso
PKE,A,ℓ,S,D(λ) = |Pr[D(outreal) = 1]− Pr[D(outsim) = 1]| = negl(λ) .

The above definition considers non-adaptive corruptions by adversaries. Namely, adversaries
need to corrupt users in one go.

We note that our construction of RSO secure PKE based on IND-CPA secure PKE works
well even if we consider adaptive corruptions of adversaries. For simplicity, we define RSO
security for PKE against non-adaptive corruptions in this paper.
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Secret key vs key generation randomness. We define SIM-RSO security considering only
the revelation of secret keys throughout the paper. Namely, we assume that an adversary gets
only a secret key itself of a corrupted user and not the random coin used to generate the secret
key.

Hazay et al. [HPW15] considered the revelation of both secret keys and random coins for
key generation when they defined RSO security for PKE. It might be better to consider the
revelation of random coins of key generation for some applications.

We show that by requiring only security against the revelation of secret keys, we can obtain
RSO secure PKE from IND-CPA secure PKE. If we consider RSO security against the revelation
of random coins for key generation, it seems difficult to construct RSO secure PKE based only
on IND-CPA secure PKE without assuming that secure erasure is possible or the underlying
scheme is key simulatable [DN00, HPW15] in some sense.

2.4 Secret Key Encryption

In this subsection, we define secret key encryption (SKE).

Definition 6 (Secret key encryption) An SKE scheme SKE is a three tuple (KG,Enc,Dec)
of PPT algorithms. Below, letM be the message space of SKE.

• The key generation algorithm KG, given a security parameter 1λ, outputs a secret key K.

• The encryption algorithm Enc, given a secret key K and a message m ∈ M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a secret key K and a ciphertext CT, outputs a message
m̃ ∈ {⊥} ∪M.

Correctness We require Dec(K,Enc(K,m)) = m for every m ∈M and K← KG(1λ).

Next, we define KDM-CPA security for SKE.

Definition 7 (KDM-CPA security for SKE) Let SKE be an SKE scheme whose key space
and message space are K andM, respectively. Let F be a function family, and ℓ the number of
keys. We define the F-KDM-CPA game between a challenger and an adversary A as follows.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates ℓ

secret keys K(k) ← KG(1λ)(k = 1, . . . , ℓ), sets K :=
(
K(1), . . . ,K(ℓ)

)
, and sends 1λ to A.

2. A may adaptively make polynomially many KDM queries.

KDM queries A sends (k, f) ∈ [ℓ]×F to the challenger. We require that f is a function
such that f : Kℓ → M. If b = 1, the challenger returns CT ← Enc

(
K(k), f(K)

)
.

Otherwise, the challenger returns CT← Enc
(
K(k), 0|f(·)|

)
.

3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advkdmcpa
SKE,F ,A,ℓ(λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

We say that SKE is F-KDM-CPA secure if for any PPT adversary A and polynomial ℓ =
ℓ(λ), we have Advkdmcpa

SKE,F ,A,ℓ(λ) = negl(λ).
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As we noted at Remark 1 after the definition of KDM security for PKE, we require that
the size of instances of a KDM-CPA secure SKE scheme be independent of the number of users
ℓ. This requirement is necessary for our construction of KDM secure IBE (and PKE) based on
KDM secure SKE.

Similarly to KDM security for PKE, we focus on KDM security for SKE with respect to
projection functions and that with respect to functions computable by a-priori bounded size
circuits. We say that SKE is P-KDM-CPA secure if it is KDM-CPA secure with respect to
projection functions. We say that SKE is B-KDM-CPA secure if it is KDM-CPA secure with
respect to functions computable by a-priori bounded size circuits.

3 Identity-Based Encryption

We define identity-based encryption encryption (IBE). Then, we introduce KDM security and
RSO security for IBE.

Definition 8 (Identity-based encryption) An IBE scheme IBE is a four tuple (Setup,KG,Enc,Dec)
of PPT algorithms. Below, let ID and M be the identity space and message space of IBE, re-
spectively.

• The setup algorithm Setup, given a security parameter 1λ, outputs a public parameter PP
and a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK and identity id ∈ ID,
outputs a user secret key skid.

• The encryption algorithm Enc, given a public parameter PP, identity id ∈ ID, and message
m ∈M, outputs a ciphertext CT.

• The decryption algorithm Dec, given a user secret key skid and ciphertext CT, outputs a
message m̃ ∈ {⊥} ∪M.

Correctness We require Dec(KG(MSK, id),Enc(PP, id,m)) = m for every m ∈ M, id ∈ ID,
and (PP,MSK)← Setup(1λ).

We define indistinguishability against adaptive-ID attacks (IND-ID-CPA security [BF01])
for IBE.

Definition 9 (IND-ID-CPA security for IBE) Let IBE be an IBE scheme whose identity
space and message spare are ID andM, respectively. We define the IND-ID-CPA game between
a challenger and an adversary A as follows.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates

(PP,MSK) ← Setup(1λ) and sends PP to A. Finally, the challenger prepares a list Lext

which is initially empty.

At any step of the game, A can make key extraction queries.

Extraction queries A sends id ∈ ID to the challenger. The challenger returns skid ←
KG(MSK, id) to A and adds id to Lext.

2. A sends (id∗,m0,m1) ∈ ID×M×M to the challenger. We require that |m0| = |m1| and
id∗ /∈ Lext. The challenger computes CT← Enc(PP, id,mb) and returns CT to A.
Below, A is not allowed to make an extraction query for id∗.
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3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

AdvindidcpaIBE,A (λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

We say that IBE is IND-ID-CPA secure if for any PPT adversary A, we have AdvindidcpaIBE,A (λ) =
negl(λ).

3.1 KDM Security for IBE

Next, we define KDM security for IBE. Alperin-Sheriff and Peikert [AP12] defined KDM security
for IBE by extending selective security for IBE [CHK03]. On the other hand, the following
definition is an extension of adaptive security for IBE [BF01]. For the difference between the
definition of Alperin-Sheriff and Peikert and ours, see Remark 2 after Definition 10.

Definition 10 (KDM-CPA security for IBE) Let IBE be an IBE scheme, and F a function
family. We define the F-KDM-CPA game between a challenger and an adversary A as follows.
Let SK, ID, and M be the user secret key space, identity space, and message space of IBE,
respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates

(PP,MSK)← Setup(1λ) and sends PP to A. Finally, the challenger prepares lists Lext, Lch,
and sk all of which are initially empty.

2. A may adaptively make the following three types of queries polynomially many times.

Extraction queries A sends id ∈ ID \ (Lext ∪ Lch) to the challenger. The challenger
returns skid ← KG(MSK, id) to A and adds id to Lext.

Registration queries A sends id ∈ ID \ (Lext ∪ Lch) to the challenger. The challenger
generates skid ← KG(MSK, id) and adds id to Lch and skid to sk.

KDM queries A sends (id, f) ∈ Lch × F to the challenger. We require that f is a
function such that f : SK|Lch| → M. If b = 1, the challenger returns CT ←
Enc (PP, id, f(sk)) to A. Otherwise, the challenger returns CT← Enc

(
PP, id, 0|f(·)|

)
to A.

3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advkdmcpa
IBE,F ,A(λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

We say that IBE is F-KDM-CPA secure if for any PPT adversary A, we have Advkdmcpa
IBE,F ,A(λ) =

negl(λ).

Similarly to KDM security for PKE, we focus on KDM security for IBE with respect to
projection functions and that with respect to functions computable by a-priori bounded size
circuits. We say that IBE is P-KDM-CPA secure if it is KDM-CPA secure with respect to
projection functions. We say that IBE is B-KDM-CPA secure if it is KDM-CPA secure with
respect to functions computable by a-priori bounded size circuits.
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Remark 2 (Difference with [AP12]) Alperin-Sheriff and Peikert [AP12] defined KDM se-
curity for IBE. Their definition is a natural extension of selective security for IBE [CHK03]. In
their definition, an adversary must declare the set of challenge identities Lch at the beginning of
the security game. On the other hand, our definition of KDM security for IBE is an extension
of adaptive security for IBE [BF01]. In our definition, an adversary can adaptively declare
challenge identities through registration queries.7

One additional difference between our definition and that of Alperin-Sheriff and Peikert is
whether the size of instances of IBE such as a public parameter is allowed to depend on the
number of challenge identities or not. In the definition of Alperin-Sheriff and Peikert, the setup
algorithm of IBE takes the upper bound on the number of challenge identities as an input, and
the size of instances of IBE depend on the number of challenge identities. In our definition,
there is no a-priori bound on the number of challenge identities, and thus the size of instances
of IBE is required to be independent of the number of challenge identities.

3.2 RSO Security for IBE

We next define RSO security for IBE. We extends the simulation-based definition for PKE
proposed by Hazay et al. [HPW15].

Definition 11 (SIM-RSO security for IBE) Let IBE be an IBE scheme whose identity space
and message space are ID andM, respectively. Let A and S be a PPT adversary and simulator,
respectively. We define the following pair of games.

Real game

1. The challenger generates public parameter and master secret key (PP,MSK)← Setup(1λ)
and sends PP to A. The challenger then prepares a list Lext which is initially empty.

At any step of the game, A can make key extraction queries.

Extraction queries A sends id ∈ ID \ Lext to the challenger. The challenger
returns skid ← KG(MSK, id) to A and adds id to Lext.

2. A sends q identities
{
id(k) ∈ ID \ Lext

}
k∈[q]

and a message distribution Dist onMq

to the challenger, where q is an a-priori unbounded polynomial of λ. The challenger

generates
{
m(k)

}
k∈[q] ← Dist, computes CT(k) ← Enc

(
PP, id(k),m(k)

)
for every k ∈

[q], and sends
{
CT(k)

}
k∈[q]

to A.

In the rest of the game, A is not allowed to make extraction queries for
{
id(k)

}
k∈[q]

.

3. A sends a subset I of [q] to the challenger. The challenger computes skid(k) ←
KG

(
MSK, id(k)

)
for every k ∈ I and sends

{(
skid(k) ,m

(k)
)}

k∈I to A.

4. A sends a string out to the challenger.

5. The challenger outputs outreal =

({
id(k)

}
k∈[q]

,
{
m(k)

}
k∈[q] ,Dist, I, out

)
.

Simulated game

1. First, the challenger sends 1λ to S.
7 One might think it is a restriction to force an adversary to register challenge identities before making KDM

queries. This is not the case since the adversary is allowed to adaptively make registration and KDM queries.
Our definition with registration queries makes the security proof of our IBE simple.
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2. S sends q identities
{
id(k) ∈ ID \ Lext

}
k∈[q]

and a message distribution Dist onMq

to the challenger, where q is an a-priori unbounded polynomial of λ. The challenger
generates

{
m(k)

}
k∈[q] ← Dist.

3. S sends a subset I of [q] to the challenger. The challenger sends
{
m(k)

}
k∈I to S.

4. S sends a string out to the challenger.

5. The challenger outputs outsim :=

({
id(k)

}
k∈[q]

,
{
m(k)

}
k∈[q] ,Dist, I, out

)
.

Then, we say that IBE is SIM-RSO secure if for any PPT adversary A, there exists a PPT
simulator S such that for any PPT distinguisher D with binary output we have

Advsimrso
IBE,A,S,D(λ) = |Pr[D(outreal) = 1]− Pr[D(outsim) = 1]| = negl(λ) .

As we noted after defining SIM-RSO security for PKE, for simplicity, we consider non-
adaptive corruptions by adversaries in this paper. We note that our construction of RSO
secure IBE based on IND-ID-CPA secure IBE works well if we consider adaptive corruptions
by adversaries.

Remark 3 (On the syntax of simulators) In the above definition, not only an adversary
but also a simulator is required to output challenge identities with a message distribution, and
these identities are given to a distinguisher of games. One might think this is somewhat strange
since these identities output by a simulator are never used in the simulated game. This syntax of
simulators is similar to that used by Bellare et al. [BWY11] when they defined simulation-based
sender selective opening security for IBE.

It seems not to be a big issue whether we require a simulator to output identities or not.
This intuition comes from the fact that we allow an adversary and simulator to output arbitrary
length strings, and thus they can always include challenge identities into the output strings.

However, this subtle issue might divide notions of selective opening security for IBE. Espe-
cially, it looks hard to prove that the definition with simulators without outputting identities
imply that with simulators outputting identities, while it is easy to prove the implication of the
opposite direction. This means that the former definition is possibly weaker than the latter one.

From these facts, similarly to Bellare et al. [BWY11], we adopt the definition with simulators
explicitly outputting identities in this work.

4 KDM Secure IBE from KDM Secure SKE and IND-ID-CPA
Secure IBE

We show how to construct KDM secure IBE based on KDM secure SKE and IND-ID-CPA
secure IBE. The construction also uses a circuit garbling scheme.

Let SKE = (G,E,D) be an SKE scheme whose message space is M. Let lenK and lenr
denote the length of a secret key and encryption randomness of SKE, respectively. Let IBE =
(Setup,KG,Enc,Dec) be an IBE scheme whose identity space is ID × {0, 1}lenK × {0, 1}. Let
GC = (Garble,Eval) be a garbling scheme. Using SKE, IBE, and GC, we construct the following
IBE scheme KdmIBE = (Kdm.Setup,Kdm.KG,Kdm.Enc,Kdm.Dec) whose message space and
identity space areM and ID, respectively.
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Construction. KdmIBE consists of the following algorithms.

Kdm.Setup(1λ) :

• Return (PP,MSK)← Setup(1λ).

Kdm.KG(MSK, id) :

• Generate Kid ← G(1λ).

• Generate skid,j,Kid[j] ← KG(MSK, (id, j,Kid[j])) for every j ∈ [lenK].

• Return Kdm.skid :=
(
Kid,

{
skid,j,Kid[j]

}
j∈[lenK]

)
.

Kdm.Enc(PP, id,m) :

• Generate rE
r←− {0, 1}lenr and compute

(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
← Garble(1λ,E(·,m; rE)),

where E(·,m; rE) is the encryption circuit E of SKE into which m and rE are hard-
wired.

• For every j ∈ [lenK] and α ∈ {0, 1}, compute CTj,α ← Enc(PP, (id, j, α), labj,α).

• Return Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

Kdm.Dec(Kdm.skid,Kdm.CT) :

• Parse
(
Kid, {skid,j}j∈[lenK]

)
← Kdm.skid.

• Parse
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
← Kdm.CT.

• For every j ∈ [lenK], compute labj ← Dec
(
skid,j ,CTj,Kid[j]

)
.

• Compute CTske ← Eval
(
Ẽ, {labj}j∈[lenK]

)
.

• Return m← D(Kid,CTske).

Correctness. When decrypting a ciphertext of KdmIBE that encrypts a message m, we first
obtain a ciphertext of SKE that encrypts m from the correctness of IBE and GC. The correctness
of KdmIBE then follows from that of SKE.

We prove the following theorem.

Theorem 5 Let SKE be an SKE scheme that is P-KDM-CPA secure (resp. B-KDM-CPA
secure). Let IBE be an IND-ID-CPA secure IBE scheme and GC a secure garbling scheme.
Then, KdmIBE is an IBE scheme that is P-KDM-CPA secure (resp. B-KDM-CPA secure).

Proof of Theorem 5. Let A be an adversary that attacks the P-KDM-CPA security of
KdmIBE and makes at most qch registration queries and qkdm KDM queries. We proceed the
proof via a sequence of games. For every t ∈ {0, . . . , 2}, let SUCt be the event that A succeeds
in guessing the challenge bit b in Game t.

Game 0: This is the original P-KDM-CPA game regarding KdmIBE. Then, we have Advkdmcpa
KdmIBE,P,A =∣∣Pr[SUC0]− 1

2

∣∣. The detailed description is as follows.

1. The challenger chooses a challenge bit b
r←− {0, 1}, generates (PP,MSK)← Setup(1λ),

and sends PP to A. The challenger also prepares lists Lext, Lch, and skkdm all of
which are initially empty.
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2. A may adaptively make the following three types of queries.

Extraction queries A sends id ∈ ID\(Lext∪Lch) to the challenger. The challenger
responds as follows.

• The challenger generates Kid ← G(1λ).

• The challenger generates skid,j,Kid[j] ← KG(MSK, (id, j,Kid[j])) for every j ∈
[lenK] and α ∈ {0, 1}.

• The challenger returns Kdm.skid :=
(
Kid,

{
skid,j,Kid[j]

}
j∈[lenK]

)
to A and adds

id to Lext.

Registration queries A sends id ∈ ID \ (Lext ∪ Lch) to the challenger. The chal-
lenger generates Kdm.skid in the same way as the answer to an extraction query.
The challenger then adds id to Lch and Kdm.skid to skkdm.

KDM queries A sends (id, f) ∈ Lch×P to the challenger. The challenger responds
as follow.

(a) The challenger sets m1 := f(skkdm) and m0 := 0|m1|.

(b) The challenger computes
(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
← Garble(1λ,E(·,mb; rE)),

where rE
r←− {0, 1}lenr .

(c) For every j ∈ [lenK] and α ∈ {0, 1}, the challenger computes CTj,α ←
Enc(PP, (id, j, α), labj,α).

(d) The challenger returns Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

3. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 0 except the following. When Amakes a KDM query (id, f) ∈ Lch×P,
for every j ∈ [lenK] the challenger computes CTj,1−Kid[j] ← Enc

(
PP, (id, j, 1− Kid[j]), labj,Kid[j]

)
,

where Kid is the secret key of SKE generated when id was registered to Lch. Recall that in
Game 0, CTj,1−Kid[j] is generated as CTj,1−Kid[j] ← Enc

(
PP, (id, j, 1− Kid[j]), labj,1−Kid[j]

)
.

Namely, we eliminate labels of garbled circuits that do not correspond to Kid from the
view of A in this game.

In order to simulate both Game 0 and 1, we do not need user secret keys of IBE that do not
correspond to {Kid}id∈Lch

, that is
{
skid,j,1−Kid[j]

}
id∈Lch,j∈[lenK]

while we need
{
skid,j,Kid[j]

}
id∈Lch,j∈[lenK]

to compute the value of f(skkdm) when A makes a KDM query. Therefore, we can use
the IND-ID-CPA security of IBE when the challenge identity is (id, j, 1− Kid[j]) for every
id ∈ Lch and j ∈ [lenK]. By using IND-ID-CPA security of IBE lenK · qkdm times, we can
prove |Pr[SUC0]− Pr[SUC1]| = negl(λ).

Game 2: Same as Game 1 except that to respond to a KDM query from A, the challenger
generates a garbled circuit using the simulator for GC. More precisely, when A makes
a KDM query (id, f) ∈ Lch × P, the challenger generates rE

r←− {0, 1}lenr and CTske ←
E (Kid,mb; rE), and computes

(
Ẽ, {labj}j∈[lenK]

)
← Sim(1λ, |E| ,CTske), where Sim is the

simulator for GC and |E| denotes the size of the encryption circuit E of SKE. Moreover, the
challenger computes CTj,α ← Enc (PP, (id, j, α), labj) for every j ∈ [lenK] and α ∈ {0, 1}.
In the last step, we eliminate labels of garbled circuits that do not correspond to {Kid}id∈Lch

.
Therefore, by using the security of GC qkdm times, we can show that |Pr[SUC1]− Pr[SUC2]| =
negl(λ).

Below, we show that
∣∣Pr[SUC2]− 1

2

∣∣ = negl(λ) holds by the P-KDM-CPA security of SKE.
Using the adversary A, we construct an adversary Aske that attacks the P-KDM-CPA security
of SKE when the number of keys is qch.
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Before describing Aske, we note on the conversion of projection functions. We let K(k) be
the secret key of SKE generated to respond to the k-th registration query id(k) made by A. We
let αk,j denote the j-th bit of K(k), that is, K(k)[j] for every j ∈ [lenK] and k ∈ [qch]. Let f be a
projection function that A queries as a KDM query. f is a projection function of

{
K(k)

}
k∈[qch]

and
{
skid(k),j,αk,j

}
k∈[qch],j∈[lenK]

. To attack the P-KDM-CPA security of SKE, Aske needs to

compute a projection function g such that

g

({
K(k)

}
k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
skid(k),j,αk,j

}
k∈[qch],j∈[lenK]

)
. (1)

We can compute such a function g from f and
{
skid(k),j,α

}
k∈[qch],j∈[lenK],α∈{0,1}

as follows.

We first observe that for every k ∈ [qch] and j ∈ [lenK], we can write

skid(k),j,αk,j
= (1− αk,j) · skid(k)j,0 ⊕ αk,j · skid(k)j,1

= αk,j ·
(
skid(k),j,1 ⊕ skid(k),j,0

)
⊕ skid(k),j,0 .

We suppose that skid(k),j,1 and skid(k),j,0 are represented as binary strings and ⊕ is done in the

bit-wise manner. We define a function selk,j as selk,j(γ ∈ {0, 1}) = γ ·
(
skid(k),j,1 ⊕ skid(k),j,0

)
⊕

skid(k),j,0. Then, we have

f

({
K(k)

}
k∈[qch]

,
{
skid(k),j,αk,j

}
k∈[qch],j∈[lenK]

)
= f

({
K(k)

}
k∈[qch]

, {selk,j (αk,j)}k∈[qch],j∈[lenK]

)
.

We define g
({

K(k)
}
k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

)
. Then, g satisfies

Equation 1.
We show that if f is a projection function, then so is g. Let γ be an output bit of

g
({

K(k)
}
k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

)
. We say that γ is a pro-

jective bit for f (resp. g) if it depends on a single bit of an input for f (resp. g). We also say
that γ is a constant bit for f (resp. g) if it does not depend on any bit of an input for f (resp.
g).

Since f is a projection function, γ is a constant bit or projective bit for f that depends
on either part of

{
K(k)

}
k∈[qch]

or
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

. Thus, we consider the follow-

ing three cases. (i) If γ is a constant bit for f , γ is clearly a constant bit for g. (ii) If γ
is a projective bit for f and depends on a single bit of

{
K(k)

}
k∈[qch]

, γ is a projective bit

for g since
{
K(k)

}
k∈[qch]

is also an input for g. (iii) If γ is a projective bit for f and de-

pends on some bit of
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

, γ is a projective bit for g since each bit of{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

depends on a bit K(k)[j] for some k ∈ [qch] and j ∈ [lenK], and

K(k)[j] is a part of an input to g. Therefore, γ is a projective bit or constant bit for g in any
case, and thus g is a projection function.

We now describe the adversary Aske that uses the above conversion of projection functions.

1. On input 1λ, Aske first generates (PP,MSK) ← Setup(1λ) and sends PP to A. Then, the
Aske prepares Lext and Lch.

2. Aske responds to queries made by A as follows.
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Extraction queries When A sends id ∈ ID \ (Lext ∪ Lch) as an extraction query, Aske

responds exactly in the same way as the challenger in Game 2. We note that, in this
case, Aske computes the answer Kdm.skid using a freshly generated key Kid of SKE.

Registration queries When A makes the k-th (k ≤ qch) registration query id(k) ∈
ID \ (Lext ∪ Lch), Aske relates id(k) to K(k), where K(k) is the k-th secret key of

SKE generated by the challenger. Aske generates skid(k),j,α ← KG
(
MSK,

(
id(k), j, α

))
for every j ∈ [lenK] and α ∈ {0, 1}. They are used for the conversion of functions.
Aske then adds id(k) to Lch.

KDM queries When A makes a KDM query (id, f) ∈ Lch×P, Aske responds as follows.

(a) Aske first computes a projection function g satisfying

g

({
K(k)

}
k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
skid(k),j,K(k)[j]

}
k∈[qch],j∈[lenK]

)
as we noted above from

{
skid(k),j,α

}
k∈[qch],j∈[lenK]

.

(b) Let k ∈ [qch] be the number that related to id. Since id was added to Lch, such
k ∈ [qch] exists. Aske queries (k, g) to the challenger as a KDM query and gets
the answer CTske.

(c) Aske computes
(
Ẽ,

{
labj

}
j∈[lenK]

)
← Sim

(
1λ, |E| ,CTske

)
and for every j ∈ [lenK]

and α ∈ {0, 1}, computes CTj,α ← Enc (PP, (id, j, α), labj).

(d) Aske returns Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
to A.

3. When A terminates with output b′ ∈ {0, 1}, Aske outputs β′ = b′.

Aske perfectly simulates Game 2 for A in which the challenge bit is the same as that of
P-KDM-CPA game of SKE between the challenger and Aske. Moreover, Aske just outputs A’s
output. Thus, Advkdmcpa

SKE,P,Aske,qch
(λ) =

∣∣Pr[SUC2]− 1
2

∣∣ holds. Since SKE is P-KDM-CPA secure,∣∣Pr[SUC2]− 1
2

∣∣ = negl(λ) holds.

From the above arguments, we see that

Advkdmcpa
KdmIBE,P,A(λ) =

∣∣∣∣Pr[SUC0]− 1

2

∣∣∣∣
=

2∑
t=0

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC2]− 1

2

∣∣∣∣ = negl(λ) .

Since the choice of A is arbitrary, KdmIBE satisfies P-KDM-CPA security.

On the transformation of B-KDM-CPA secure schemes. We can also construct B-KDM-CPA
secure IBE based on B-KDM-CPA secure SKE via the construction. The security proof of
B-KDM-CPA secure IBE is in fact almost the same as that of P-KDM-CPA secure IBE. The
only issue we need to care is whether the conversion of functions performed by Aske is successful
or not also when we construct B-KDM-CPA secure IBE.

Let f be a function queried by an adversary A for KdmIBE. As above, consider a function
g such that

g

({
K(k)

}
k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

)
,
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where the function selk,j is the function we defined earlier. Since selk,j is computable by a circuit
of a-priori bounded size, we see that if f is computable by a circuit of a-priori bounded size,
then so is g. Therefore, Aske can successfully perform the conversion of functions also when
constructing B-KDM-CPA secure IBE. □ (Theorem 5)

5 SIM-RSO Secure IBE Based on IND-ID-CPA Secure IBE

We can construct SIM-RSO secure IBE based on any IND-ID-CPA secure IBE.
Let IBE = (Setup,KG,Enc,Dec) be an IBE scheme whose message space and identity space

are {0, 1} and ID × {0, 1}, respectively. Using IBE, we construct the following IBE scheme
RsoIBE = (Rso.Setup,Rso.KG,Rso.Enc,Rso.Dec) whose message space and identity space are
{0, 1} and ID.

Construction. The description of RsoIBE is as follows.

Rso.Setup(1λ) :

• Return (PP,MSK)← Setup(1λ).

Rso.KG(MSK, id) :

• Generate r
r←− {0, 1}.

• Generate skid,r,← KG(MSK, (id, r)).

• Return Rso.skid := (r, skid,r).

Rso.Enc(PP, id,m ∈ {0, 1}) :

• For every α ∈ {0, 1}, compute CTα ← Enc(PP, (id, α),m).

• Return Rso.CT := (CT0,CT1).

Rso.Dec(Rso.skid,Rso.CT) :

• Parse (r, skid,r)← Rso.dk.

• Parse (CT0,CT1)← Rso.CT.

• Return m← Dec(skid,r,CTr).

Correctness. The correctness of RsoIBE directly follows from that of IBE.
We prove the following theorem.

Theorem 6 Let IBE be an IND-ID-CPA secure IBE scheme. Then, RsoIBE is a SIM-RSO
secure IBE scheme.

Proof of Theorem 6. Let A be an adversary that attacks the SIM-RSO security of RsoIBE.
We show the proof via the following sequence of games.

Let D be an PPT distinguisher with binary output. For every t ∈ {0, . . . , 2}, let Tt be the
event that D outputs 1 given the output of the challenger in Game t.

Game 0: This is the real game of SIM-RSO security regarding RsoIBE. The detailed description
is as follows.
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1. First, the challenger generates (PP,MSK) ← Setup(1λ) and sends PP to A. The
challenger prepares a list Lext.

At any step of the game, A can make key extraction queries.

Extraction queries A sends id ∈ ID \ Lext to the challenger. The challenger
responds as follows.

(a) The challenger generates r
r←− {0, 1}.

(b) The challenger generates skid,r,← KG(MSK, (id, r)).

(c) The challenger returns Rso.skid := (r, skid,r).

2. A sends qch identities
{
id(k) ∈ ID \ Lext

}
k∈[qch]

and a message distribution Dist on

{0, 1}qch to the challenger, where qch is an a-priori unbounded polynomial of λ. The
challenger generates

{
m(k)

}
k∈[qch]

← Dist and computes Rso.CT(k) for every k ∈ [qch]

as follows.

(a) The challenger computes CT
(k)
α ← Enc

(
PP,

(
id(k), α

)
,m(k)

)
for every α ∈

{0, 1}.
(b) The challenger sets Rso.CT(k) :=

(
CT

(k)
0 ,CT

(k)
1

)
.

The challenger sends
{
Rso.CT(k)

}
k∈[qch]

to A.

Below, A is not allowed to make extraction queries for
{
id(k)

}
k∈[qch]

.

3. A sends a subset I of [qch] to the challenger. The challenger generates Rso.skid(k) for
every k ∈ I as follows.

(a) The challenger generates r(k)
r←− {0, 1}.

(b) The challenger generates skid(k),r(k) ,← KG(MSK, (id(k), r(k))).

(c) The challenger sets Rso.skid := (r(k), skid(k),r(k)).

The challenger sends
{(

Rso.skid(k) ,m
(k)

)}
k∈I to A.

4. A sends a string out to the challenger.

5. The challenger outputs outreal :=

({
id(k)

}
k∈[qch]

,
{
m(k)

}
k∈[qch]

,Dist, I, out
)
.

Game 1: Same as Game 0 except that for every k ∈ [qch], the challenger generates

CT
(k)

1−r(k)
← Enc

(
PP,

(
id(k), 1− r(k)

)
, 1−m(k)

)
.

We note that the challenger generates CT
(k)

r(k)
← Enc

(
PP, (id(k), r(k)),m(k)

)
for every

k ∈ [qch] in both Games 0 and 1.

Secret keys for identities
{(

id(k), 1− r(k)
)}

k∈[qch]
of IBE are not given to A regardless of

which users A corrupts in both Games 0 and 1. Therefore, by using the security of IBE
qch times, we can prove |Pr[T0]− Pr[T1]| = negl(λ).

Game 2: Same as Game 1 except that for every k ∈ [qch], the challenger uses r
(k)⊕m(k) instead

of r(k) as the random bit contained in the k-th RsoIBE’s secret key Rso.skid(k) for id(k).

We note that the challenger does not need
{
r(k)

}
k∈[qch]

before generating
{
m(k)

}
k∈[qch]

.

Thus, the transition from Games 1 to 2 makes sense, and |Pr[T2]− Pr[T3]| = 0 holds since
r(k) ⊕m(k) is distributed uniformly at random for every k ∈ [qch].
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In Game 2, uncorrupted messages
{
m(k)

}
k∈[qch]\I

are completely hidden from the view

of A. To verify the fact, we confirm that ciphertexts
{
Rso.CT(k)

}
k∈[qch]

are independent of{
m(k)

}
k∈[qch]

.

For every k ∈ [qch], the challenger generates Rso.CT(k) =
(
CT

(k)
0 ,CT

(k)
1

)
by generating

CT
(k)

r(k)⊕m(k) ← Enc
(
PP,

(
id(k), r(k) ⊕m(k)

)
,m(k)

)
,

CT
(k)

1−r(k)⊕m(k) ← Enc
(
PP,

(
id(k), 1− r(k) ⊕m(k)

)
, 1−m(k)

)
.

We see that, regardless of the value of m(k) ∈ {0, 1}, the challenger computes

CT
(k)

r(k)
← Enc

(
PP,

(
id(k), r(k)

)
, 0
)

,

CT
(k)

1−r(k)
← Enc

(
PP,

(
id(k), 1− r(k)

)
, 1
)

.

Therefore, we see that ciphertexts
{
Rso.CT(k)

}
k∈[qch]

are independent of
{
m(k)

}
k∈[qch]

in Game 2.

Then, we construct a simulator S that perfectly simulate Game 2 for A. The description of
S is as follows.

1. On input 1λ, S generates (PP,MSK)← Setup(1λ) and sends PP to A.

Extraction queries When A sends id ∈ ID \ Lext, S responds as follows.

(a) S generates r
r←− {0, 1}.

(b) S generates skid,r,← KG(MSK, (id, r)).

(c) S returns Rso.skid := (r, skid,r) to A.

2. When A outputs a message distribution Dist with identities
{
id(k)

}
k∈[qch]

, S sends them

to the challenger. Then, S computes Rso.CT(k) for every k ∈ [qch] as follows.

(a) S computes r(k)
r←− {0, 1}.

(b) S computes CT
(k)

r(k)
← Enc

(
PP,

(
id(k), r(k)

)
, 0
)
and CT

(k)

1−r(k)
← Enc

(
PP,

(
id(k), 1− r(k)

)
, 1
)
.

(c) S sets Rso.CT(k) :=
(
CT

(k)
0 ,CT

(k)
1

)
.

S sends
{
Rso.CT(k)

}
k∈[qch]

to A.

3. When A outputs a subset I of [qch], S sends it to the challenger, and gets
{
m(k)

}
k∈I . S

computes skid(k),r(k)⊕m(k) ← KG
(
MSK,

(
id(k), r(k) ⊕m(k)

))
sets Rso.skid(k) :=

(
r(k) ⊕m(k), skid(k),r(k)⊕m(k)

)
for every k ∈ I, and sends

{(
Rso.skid(k) ,m

(k)
)}

k∈I to A.

4. When A outputs a string out, S outputs it.

S perfectly simulates Game 2 for A. Therefore, we have

Advsimrso
RsoIBE,A,S,D(λ) = |Pr[T0]− Pr[T2]| ≤

2∑
t=0

|Pr[Tt]− Pr[Tt+1]| . (2)

From the above arguments, we see that each term of the right hand side of Inequality 4 is
negligible in λ. Since the choice of A and D is arbitrary and the description of S does not
depend on that of D, we see that for any A, there exists S such that for any D we have
Advsimrso

RsoIBE,A,S,D(λ) = negl(λ). This means that RsoIBE is SIM-RSO secure. □ (Theorem 6)
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6 KDM Secure PKE from KDM Secure SKE and IND-CPA
Secure PKE

We show how to construct KDM secure PKE based on KDM secure SKE and IND-CPA secure
PKE. The construction is similar to that of KDM secure IBE we show in Section 4 except that
IND-CPA secure PKE is used instead of IND-ID-CPA secure IBE as a building block.

Let SKE = (G,E,D) be an SKE scheme whose message space is M. Let lenK and lenr
denote the length of a secret key and encryption randomness of SKE, respectively. Let PKE =
(KG,Enc,Dec) be a PKE scheme and GC = (Garble,Eval) a garbling scheme. Using SKE,PKE,
and GC, we construct the following PKE scheme KdmPKE = (Kdm.KG,Kdm.Enc,Kdm.Dec)
whose message space isM.

Construction. KdmPKE consists of the following algorithms.

Kdm.KG(1λ) :

• Generate K← G(1λ).

• Generate (ekj,α, dkj,α)← KG(1λ) for every j ∈ [lenK] and α ∈ {0, 1}.

• Return Kdm.ek := {ekj,α}j∈[lenK],α∈{0,1} and Kdm.dk :=
(
K,

{
dkj,K[j]

}
j∈[lenK]

)
.

Kdm.Enc(Kdm.ek,m) :

• Parse {ekj,α}j∈[λ],α∈{0,1} ← Kdm.ek.

• Generate rE
r←− {0, 1}lenr and compute

(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
← Garble(1λ,E(·,m; rE)),

where E(·,m; rE) is the encryption circuit E of SKE into which m and rE are hard-
wired.

• For every j ∈ [lenK] and α ∈ {0, 1}, compute CTj,α ← Enc(ekj,α, labj,α).

• Return Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

Kdm.Dec(Kdm.dk,Kdm.CT) :

• Parse
(
K, {dkj}j∈[lenK]

)
← Kdm.dk.

• Parse
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
← Kdm.CT.

• For every j ∈ [lenK], compute labj ← Dec
(
dkj ,CTj,K[j]

)
.

• Compute CTske ← Eval
(
Ẽ, {labj}j∈[lenK]

)
.

• Return m← D(K,CTske).

Correctness. When decrypting a ciphertext of KdmPKE that encrypts a message m, we first
obtain a ciphertext of SKE that encryptsm from the correctness of PKE and GC. The correctness
of KdmPKE then follows from that of SKE.

We prove the following theorem.

Theorem 7 Let SKE be an SKE scheme that is P-KDM-CPA secure (resp. B-KDM-CPA
secure). Let PKE be an IND-CPA secure PKE scheme and GC a secure garbling scheme. Then,
KdmPKE is a PKE scheme that is P-KDM-CPA secure (resp. B-KDM-CPA secure).
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Proof of Theorem 7. Let A be an adversary that attacks the P-KDM-CPA security of
KdmPKE and makes as most qkdm KDM queries. Let ℓ be a polynomial of λ denoting the
number of key pairs. We proceed the proof via a sequence of games. For every t ∈ {0, . . . , 2},
let SUCt be the event that A succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original P-KDM-CPA game regarding KdmPKE when the number of key
pairs is ℓ. Then, we have Advkdmcpa

KdmPKE,P,A,ℓ =
∣∣Pr[SUC0]− 1

2

∣∣. The detailed description is
as follows.

1. The challenger chooses a challenge bit b
r←− {0, 1}, and generates a key pair

(
Kdm.ek(k),Kdm.dk(k)

)
for every k ∈ [ℓ] as follows.

(a) The challenger generates K(k) ← G(1λ).

(b) The challenger generates
(
ek

(k)
j,α, dk

(k)
j,α

)
← KG(1λ) for every j ∈ [lenK] and α ∈

{0, 1}.
(c) The challenger sets

Kdm.ek(k) :=
{
ek

(k)
j,α

}
j∈[lenK],α∈{0,1}

,Kdm.dk(k) :=

(
K(k),

{
dk

(k)
j,K[j]

}
j∈[lenK]

)
.

The challenger sets dkkdm :=
(
Kdm.dk(1), . . . ,Kdm.dk(ℓ)

)
and sends

(
Kdm.ek(1), . . . ,Kdm.ek(ℓ)

)
to A.

2. A may adaptively make polynomially many KDM queries.

KDM queries A sends (k, f) ∈ [ℓ] × P to the challenger. The challenger sets
m1 := f(dkkdm) and m0 := 0|m1|, and responds as follows.

(a) The challenger computes
(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
← Garble(1λ,E(·,mb; rE)),

where rE
r←− {0, 1}lenr .

(b) For every j ∈ [lenK] and α ∈ {0, 1}, The challenger computes CTj,α ←
Enc

(
ek

(k)
j,α, labj,α

)
.

(c) The challenger returns Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
to A.

3. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 0 except that when A makes a KDM query (k, f) ∈ [ℓ]×P, the chal-

lenger computes CTj,1−K(k)[j] ← Enc
(
ek

(k)

j,1−K(k)[j]
, labj,K(k)[j]

)
for every j ∈ [lenK]. Namely,

we eliminate labels of garbled circuits that do not correspond to K(k).

In order to simulate both Games 0 and 1, we do not need secret keys of PKE that do not cor-

respond to
{
K(k)

}
k∈[ℓ], that is

{
dk

(k)

j,1−K(k)[j]

}
k∈[ℓ],j∈[lenK]

while we need
{
dk

(k)

j,K(k)[j]

}
k∈[ℓ],j∈[lenK]

to compute the value of f(dkkdm) when A makes a KDM query. Therefore, we can use

IND-CPA security of PKE under the keys
{
dk

(k)

j,1−K(k)[j]

}
k∈[ℓ],j∈[lenK]

. By using IND-CPA

security of PKE lenK · qkdm times, we can prove |Pr[SUC0]− Pr[SUC1]| = negl(λ).

Game 2: Same as Game 1 except that in order to respond to a KDM query from A, the
challenger generates a garbled circuit using the simulator for GC. More precisely, when
A makes a KDM query (k, f), the challenger generates rE

r←− {0, 1}lenr and CTske ←
E
(
K(k),mb; rE

)
, and computes

(
Ẽ, {labj}j∈[lenK]

)
← Sim(1λ, |E| ,CTske), where Sim is the
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simulator for GC and |E| denotes the size of the encryption circuit E of SKE. Moreover,

for every j ∈ [lenK] and α ∈ {0, 1}, the challenger computes CTj,α ← Enc
(
ek

(k)
j,α, labj

)
.

In the last step, we eliminate labels of garbled circuits that do not correspond to K(k).
Therefore, by using the security of GC qkdm times, we can show that |Pr[SUC1]− Pr[SUC2]| =
negl(λ).

Below, we show that
∣∣Pr[SUC2]− 1

2

∣∣ = negl(λ) holds by the P-KDM-CPA security of SKE.
Using the adversary A, we construct an adversary Aske that attacks the P-KDM-CPA security
of SKE when the number of keys is ℓ.

Before describing Aske, we note on the conversion of projection functions. We use similar
conversion we used in the proof of Theorem 5.

We let αk,j denote K
(k)[j] for every j ∈ [lenK] and k ∈ [ℓ]. Let f be a projection function that

A queries as a KDM query. f is a projection function of
{
K(k)

}
k∈[ℓ] and

{
dk

(k)
j,αk,j

}
k∈[ℓ],j∈[lenK]

.

To attack the P-KDM-CPA security of SKE, Aske needs to compute a projection function g
such that

g

({
K(k)

}
k∈[ℓ]

)
= f

({
K(k)

}
k∈[ℓ]

,
{
dk

(k)
j,αk,j

}
k∈[ℓ],j∈[lenK]

)
. (3)

We can compute such a function g from f and
{
dk

(k)
j,α

}
k∈[ℓ],j∈[lenK],α∈{0,1}

. We define a

function selk,j as selk,j(γ ∈ {0, 1}) = γ ·
(
dk

(k)
j,1 ⊕ dk

(k)
j,0

)
⊕dk

(k)
j,0 . We suppose that dk

(k)
j,1 and dk

(k)
j,0

are represented as binary strings and ⊕ is done in the bit-wise manner. We then define

g

({
K(k)

}
k∈[ℓ]

)
= f

({
K(k)

}
k∈[ℓ]

,
{
selk,j

(
K(k)[j]

)}
k∈[ℓ],j∈[lenK]

)
.

We can prove that if f is a projection function, then so is g and g satisfies Equation 3 as we
show in the proof of Theorem 5.

We now describe the adversary Aske that uses the above conversion of projection functions.

1. On input 1λ, Aske first generates a public key Kdm.ek(k) of KdmPKE for every k ∈ [ℓ] as
follows.

(a) Aske generates
(
ek

(k)
j,α, dk

(k)
j,α

)
← KG(1λ) for every j ∈ [lenK] and α ∈ {0, 1}.

(b) Aske sets Kdm.ek(k) :=
{
ek

(k)
j,α

}
j∈[lenK],α∈{0,1}

.

Aske sends
(
Kdm.ek(1), . . . ,Kdm.ek(ℓ)

)
to A. We note that Aske uses secret keys of PKE

when converting functions queried by A.

2. Aske responds to KDM queries made by A as follows.

KDM queries When A makes a KDM query (k, f) ∈ [ℓ]× P, Aske responds as follows.

(a) Aske first computes a projection function g satisfying g
(
{Kk}k∈[ℓ]

)
= f

({
K(k), dk(k)

}
k∈[ℓ]

)
as we noted above, where dk(k) =

{
dk

(k)

j,K(k)[j]

}
j∈[lenK]

.

(b) Aske queries (k, g) to the challenger and gets the answer CTske.

27



(c) Aske computes
(
Ẽ,

{
labj

}
j∈[lenK]

)
← Sim

(
1λ, |E| ,CTske

)
and for every j ∈ [lenK]

and α ∈ {0, 1}, computes CTj,α ← Enc
(
ek

(k)
j,α, labj

)
.

(d) Aske returns Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
to A.

3. When A terminates with output b′ ∈ {0, 1}, Aske outputs β′ = b′.

We see that Aske perfectly simulates Game 2 for A in which the challenge bit is the same as
that of P-KDM-CPA game of SKE between the challenger and Aske. Moreover, Aske just outputs
A’s output. Therefore, we have Advkdmcpa

SKE,P,Aske,ℓ
(λ) =

∣∣Pr[SUC2]− 1
2

∣∣. Since SKE is P-KDM-CPA

secure, we see that
∣∣Pr[SUC2]− 1

2

∣∣ = negl(λ).

From the above arguments, we see that

Advkdmcpa
KdmPKE,P,A,ℓ(λ) =

∣∣∣∣Pr[SUC0]− 1

2

∣∣∣∣
=

2∑
t=0

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC2]− 1

2

∣∣∣∣ = negl(λ) .

Since the choice of A and ℓ is arbitrary, KdmPKE is P-KDM-CPA secure.

On the transformation of B-KDM-CPA secure schemes. As we noted after the proof of
Theorem 5, the above conversions of functions are possible when we consider the transformation
of B-KDM-CPA secure schemes since selk,j we defined above is computable by a circuit of a-priori
bounded size. Thus, we can also construct B-KDM-CPA secure PKE based on B-KDM-CPA
secure SKE and IND-CPA secure PKE via the construction. □ (Theorem 7)
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A SIM-RSO Secure PKE Based on IND-CPA Secure PKE

We can construct SIM-RSO secure PKE based on any IND-CPA secure PKE if we consider
the revelation of only secret keys. The construction is similar to that of SIM-RSO secure IBE
we show in Section 5 except that IND-CPA secure PKE is used instead of IND-ID-CPA secure
IBE.

Using a PKE scheme PKE = (KG,Enc,Dec), we construct the following PKE scheme
RsoPKE = (Rso.KG,Rso.Enc,Rso.Dec) whose message space is {0, 1}.

Construction. The description of RsoPKE is as follows.

Rso.KG(1λ) :

• Generate (ekα, dkα)← KG(1λ) for every α ∈ {0, 1}.
• Generate r

r←− {0, 1}.
• Return Rso.ek := (ek0, ek1) and Rso.dk := (r, dkr).

Rso.Enc(Rso.ek,m ∈ {0, 1}) :

• Parse (ek0, ek1)← Rso.ek.

• For every α ∈ {0, 1}, compute CTα ← Enc(ekα,m).

• Return Rso.CT := (CT0,CT1).

Rso.Dec(Rso.dk,Rso.CT) :

• Parse (r, dkr)← Rso.dk

• Parse (CT0,CT1)← Rso.CT.

• Return m← Dec(dkr,CTr).

Correctness. The correctness of RsoPKE directly follows from that of PKE.
We prove the following theorem.

Theorem 8 Let PKE be an IND-CPA secure PKE scheme. Then, RsoPKE is a SIM-RSO
secure PKE scheme.

Proof of Theorem 8. Let A be an adversary that attacks the SIM-RSO security of RsoPKE.
Let ℓ be a polynomial of λ denoting the number of key pairs. We show the proof via the
following sequence of games.

Let D be an PPT distinguisher with binary output. For every t ∈ {0, . . . , 2}, let Tt be the
event that D outputs 1 given the output of the challenger in Game t.

Game 0: This is the real game of SIM-RSO security regarding RsoPKE when the number of
key pairs is ℓ. The detailed description is as follows.

1. First, the challenger generates ℓ key pairs
(
Rso.ek(k),Rso.dk(k)

)
(k = 1, . . . , ℓ) as

follows.
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(a) The challenger generates
(
ek

(k)
α , dk

(k)
α

)
← KG(1λ) for every α ∈ {0, 1}.

(b) The challenger generates r(k)
r←− {0, 1}.

(c) The challenger sets Rso.ek(k) :=
(
ek

(k)
0 , ek

(k)
1

)
and Rso.dk(k) :=

(
r(k), dk

(k)
r

)
.

The challenger sends
{
Rso.ek(k)

}
k∈[ℓ]

to A.

2. A sends a message distribution Dist on {0, 1}ℓ to the challenger. The challenger
generates

{
m(k)

}
k∈[ℓ] ← Dist, and computes Rso.CT(k) for every k ∈ [ℓ] as follows.

(a) For every α ∈ {0, 1}, the challenger computes CT
(k)
α ← Enc

(
ek

(k)
α ,m(k)

)
.

(b) The challenger sets Rso.CT(k) :=
(
CT

(k)
0 ,CT

(k)
1

)
.

The challenger sends
{
CT(k)

}
k∈[ℓ]

to A.

3. A sends a subset I of [ℓ] to the challenger. The challenger sends
{
(Rso.dk(k),m(k))

}
k∈I

to A.
4. A sends a string out to the challenger.

5. The challenger outputs outreal :=
({

m(k)
}
k∈[ℓ] ,Dist, I, out

)
.

Game 1: Same as Game 0 except that for every k ∈ [ℓ], the challenger generates

CT
(k)

1−r(k)
← Enc

(
ek

(k)

1−r(k)
, 1−m(k)

)
.

We note that for every k ∈ [ℓ], the challenger generates CT
(k)

r(k)
← Enc

(
ek

(k)

r(k)
,m(k)

)
in

both Games 0 and 1.

Secret keys
{
dk

(k)

1−r(k)

}
k∈[ℓ]

of PKE are not given to A regardless of which users A corrupts

in both Games 0 and 1. Therefore, by using the security of PKE ℓ times, we can prove
|Pr[T0]− Pr[T1]| = negl(λ).

Game 2: Same as Game 1 except that for every k ∈ [ℓ], the challenger uses r(k)⊕m(k) instead
of r(k) as the random bit contained in the k-th RsoPKE’s secret key Rso.dk(k). We note
that the challenger does not need

{
r(k)

}
k∈[ℓ] before generating

{
m(k)

}
k∈[ℓ]. Thus, the

transition from Games 1 to 2 makes sense, and |Pr[T2]− Pr[T3]| = 0 holds since r(k)⊕m(k)

is distributed uniformly at random for every k ∈ [ℓ].

In Game 2, uncorrupted messages
{
m(k)

}
k∈[ℓ]\I are completely hidden from the view of A.

To verify the fact, we confirm that ciphertexts
{
Rso.CT(k)

}
k∈[ℓ]

are independent of
{
m(k)

}
k∈[ℓ].

For every k ∈ [ℓ], the challenger generates Rso.CT(k) =
(
CT

(k)
0 ,CT

(k)
1

)
by generating

CT
(k)

r(k)⊕m(k) ← Enc
(
ek

(k)

r(k)⊕m(k) ,m
(k)

)
,

CT
(k)

1−r(k)⊕m(k) ← Enc
(
ek

(k)

1−r(k)⊕m(k) , 1−m(k)
)

.

We see that, regardless of the value of m(k) ∈ {0, 1}, the challenger computes

CT
(k)

r(k)
← Enc

(
ek

(k)

r(k)
, 0
)

,

CT
(k)

1−r(k)
← Enc

(
ek

(k)

1−r(k)
, 1
)

.
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Therefore, we see that ciphertexts
{
Rso.CT(k)

}
k∈[ℓ]

are independent of
{
m(k)

}
k∈[ℓ] in Game 2.

Then, we construct a simulator S that perfectly simulate Game 2 for A. The description of
S is as follows.

1. On input 1λ, S generates
(
ek

(k)
α , dk

(k)
α

)
← KG(1λ) for every k ∈ [ℓ] and α ∈ {0, 1} and

sets Rso.ek(k) :=
(
ek

(k)
0 , ek

(k)
1

)
for every k ∈ [ℓ]. S then sends

{
Rso.ek(k)

}
k∈[ℓ]

to A.

2. When A outputs a message distribution Dist, S sends it to the challenger. Then, S
computes Rso.CT(k) for every k ∈ [ℓ] as follows.

(a) S computes r(k)
r←− {0, 1}.

(b) S computes CT
(k)

r(k)
← Enc

(
ek

(k)

r(k)
, 0
)
and CT

(k)

1−r(k)
← Enc

(
ek

(k)

1−r(k)
, 1
)
.

(c) S sets Rso.CT(k) :=
(
CT

(k)
0 ,CT

(k)
1

)
.

S sends
{
Rso.CT(k)

}
k∈[ℓ]

to A.

3. When A outputs a subset I of [ℓ], S sends it to the challenger, and gets
{
m(k)

}
k∈I . S sets

Rso.dk(k) :=
(
r(k) ⊕m(k), dk

(k)

r(k)⊕m(k)

)
for every k ∈ I, and sends

{
(Rso.dk(k),m(k))

}
k∈I

to A.

4. When A outputs a string out, S outputs it.

S perfectly simulates Game 2 for A. Therefore, we have

Advsimrso
RsoPKE,A,S,D(λ) = |Pr[T0]− Pr[T2]| ≤

2∑
t=0

|Pr[Tt]− Pr[Tt+1]| . (4)

From the above arguments, we see that each term of the right hand side of Inequality 4 is
negligible in λ. Since the choice of A,ℓ and D is arbitrary and the description of S does not
depend on that of D, we see that for any A and ℓ, there exists S such that for any D we have
Advsimrso

RsoPKE,A,S,D(λ) = negl(λ). This means that RsoPKE is SIM-RSO secure. □ (Theorem 8)

The above construction of RsoPKE based on IND-CPA secure PKE is SIM-RSO secure in
the sense of Definition 5 where an adversary can get only secret keys itself and not random
coins for key generation on the corruption of users. We see that if an adversary can also get
random coins for key generation, it seems difficult to prove that RsoPKE is SIM-RSO secure.

In this case, the adversary can get secret keys of PKE,
{
dk

(k)

1−r(k)

}
k∈I

in addition to
{
dk

(k)

r(k)

}
k∈I

and thus we cannot complete the transition from Games 0 to 1. To prove SIM-RSO security
against the revelation of random coins for key generation, it seems that the underlying scheme
needs to be key simulatable [DN00, HPW15] in some sense.
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