
Privacy-Preserving Ridge Regression over Distributed Data

from LHE∗

Irene Giacomelli1, Somesh Jha1, Marc Joye2, C. David Page1, and Kyonghwan
Yoon1

1University of Wisconsin-Madison, Madison, WI, USA
2NXP Semiconductors, San Jose, CA, USA

October 6, 2017

Abstract

Linear regression with 2-norm regularization (i.e., ridge regression) is an important sta-
tistical technique that models the relationship between some explanatory values and an
outcome value using a linear function. In many current applications (e.g., predictive mod-
elling in personalized health-care), these values represent sensitive data owned by several
different parties who are unwilling to share them. In this setting, training a linear regres-
sion model becomes challenging and needs specific cryptographic solutions. This problem
was elegantly addressed by Nikolaenko et al. in S&P (Oakland) 2013. They suggested a
two-server system that uses linearly-homomorphic encryption (LHE) and Yao’s two-party
protocol (garbled circuits). In this work, we propose a novel system that can train a ridge
linear regression model using only linearly-homomorphic encryption (i.e., without using
Yao’s protocol). This greatly improves the overall performance (both in computation and
communications) as Yao’s protocol was the main bottleneck in the previous solution. The
efficiency of the proposed system is validated both on synthetically-generated and real-world
datasets.

1 Introduction

Linear regression is an important statistical tool that models the relationship between some
explanatory values (features) and an outcome value using a linear function. More precisely,
given the data points (x1, y1), . . . , (xn, yn) where xi = (xi[1], . . . ,xi[d]) is a vector of d real
values (features) and yi is a real value (outcome), a linear regression method is a learning
algorithm for finding a vector w = (w[1], . . . ,w[d]) (the model) with d real components such
that the value w[1] · xi[1] + · · · + w[d] · xi[d] is “close” to yi for all i = 1, . . . , n. Despite its
simple definition, a linear regression model is very useful. Indeed, w can be used to quantify
the relationship between the features and the outcome (e.g., identify which features influence
more directly the outcome) and for future prediction (e.g., if a new vector of features with
no known outcome is given, w can be used to make a prediction about it). Ridge regression
(detailed in the next section) is one of the most widely-used forms of regression, because it
lessens the overfitting of ordinary least squares regression without adding computational cost.
In practice, this is achieved giving preference to models with small Euclidean norm. This method
is extremely popular (see the survey in [McD09]) and has found applications in several different
fields, from biology [PQCF07] and medicine [NJFM14] to economics and finance [LD15].

∗This paper is a merge of [Joy17, GJPY17]

1

In the standard statistics setting, it is assumed that the party performing the regression has
direct access to all the data points in the training set in order to compute the model. This
common assumption becomes non-trivial in some relevant areas where linear regression is ap-
plied (e.g., personalized medicine [C+09]) because the data points encode sensitive information
owned by different and possibly mutually distrustful entities. Often, these entities will not
(or cannot) share the private data contained in their “data silos”, making traditional linear
regression algorithms difficult (or even impossible) to apply. On the other hand, it is known
that having more data (more relevant features and/or more data points) typically improves the
ability to compute a reliable model. Consider the following example: We would like to use a
given linear regression method in order to predict the weight of a baby at birth on the basis of
some ultrasound measurements made during last month of pregnancy (e.g., head circumference,
femur length, . . .). On one hand, in order to avoid computing a biased model, we would like
to run the selected learning algorithm on data points collected in different hospitals in different
locations. On the other hand, each hospital legally cannot share (in the clear) patients’ sensitive
data (the measurements) with other hospitals or with a third party (e.g., a cloud-computing
server). This real-life case exemplifies the challenge on which we focus in this work: training
a linear regression model on data points that must be kept confidential and/or are owned by
multiple parties.

Our paper takes up this challenge and proposes an efficient solution in the setting in which
the training set is a combination of data input by different parties (data-owners). Specifically, we
consider both horizontally-partitioned datasets in which each party has some of the data points
that form the training set (e.g., two or more hospitals, each of which collects the same medical
data on different sets of patients) and vertically-partitioned datasets in which the features in
the training dataset are distributed among different parties (e.g., two or more hospitals, each of
which collects different medical data on the same set of patients). Our system is based only on
a simple cryptographic primitive that can be implemented via efficient constructions. Indeed,
our solution, in both the aforementioned settings, is designed using just a linearly-homomorphic
encryption scheme, that is, an encryption scheme that enables computing the sum of encrypted
messages. Previous solutions to the problem considered here are based on multi-party computa-
tion protocols (e.g., secret-sharing based protocols like BGW [BGW88] or the 2-party protocol
by Yao [Yao86, LP09]) or on somewhat-homomorphic encryption (i.e., encryption schemes that
allow homomorphic computation for two operations, for example addition and multiplication, on
ciphertexts). A hybrid approach that uses both homomorphic encryption and Yao’s scheme was
presented in [NWI+13]. In this work, we present the first approach to privacy-preserving ridge
regression that uses only linearly-homomorphic encryption (LHE). We believe that this result is
interesting both from the theoretical and the practical points of view. Indeed our system can
be seen as new black-box application of LHE and shows that this basic crypto-primitive can be
used alone to handle involved tasks (i.e., ridge regression over distributed data). Furthermore,
our system achieves practical performances when implemented using a standard encryption
scheme as Paillier’s cipher [Pai99]. We show this via a broad evaluation of our system using
synthetically-generated and real-world data. Overall, our experiments show that, for many real
scenarios, LHE is all you need to privately yet efficiently train a ridge regression model on
distributed data.

Related work

The question of privacy-preserving machine learning was introduced in 2000 by two pioneering
works [LP00, AS00]. Later on, privacy-preserving linear regression was considered in a number
of different works (e.g., [KLSR04, DHC04, SKLR04, KLSR05, KLSR09, HFN11, CDNN15,
AHPW15]). In 2013, Nikolaenko et al. [NWI+13] introduced the scenario we consider in this
paper: privacy-preserving linear regression protocol in the two-server model. In this setting,
the computation is outsourced to two non-colluding (but not necessarily trusted) third parties.
This setting offers the practical advantage that the involvement of data-owners is minimal: they

2

just need to submit their private data and do not participate in any further future interaction.
After a first phase of collecting private data from possibly many data-owners, the two third
parties then engage in a second phase for the computation of the model itself. Neither one
of these two parties have to handle the input data in the clear and the system is designed in
such a way that no extra information (beside that released by the model itself) is revealed to
these two parties (assuming that they do not collude). The solution in [NWI+13] considers the
horizontally-partitioned setting for ridge regression and is based on LHE and Yao’s protocol
[Yao86, LP09]. The latter is a two-party protocol that allows the evaluation of a circuit C on
a pair of inputs (a, b) such that one party knows only a and the other party knows only b.
At the end of the protocol, the value C(a, b) is revealed but no party learns extra information
beyond what is revealed by this value. In [NWI+13], the ridge regression model is computed
using Yao’s protocol to compute the solution of a linear system of the form Aw = b where
the entries of A and b are encrypted (and must be kept private). The circuit C is the one that
solves a linear system computing the Cholesky decomposition of the coefficient matrix. Recently,
the system presented in [NWI+13] was extended to vertically-partitioned setting by the paper
[GSB+17]. Gascón et al. achieve this result using multiparty computation (MPC) techniques to
allow the data-owners to distribute shares of the merged dataset to the two parties active in the
second phase. Moreover, Gascón et al. also improve the running time of the second phase of the
protocol presented in [NWI+13] by designing a new conjugate gradient descent algorithm that
is used as circuit C in the place of Cholesky decomposition. This approach was subsequently
further improved by Mohassel and Zhang [MZ17] and extended to logistic regression and neural
networks.

Our paper follows this line of work and presents a novel system for ridge regression in
the two-server model. For the first phase, we extend the approach used by Nikolaenko et al.
to the vertically-partitioned setting using the techniques of labelled-homomorphic encryption
[BCF17] to support multiplications among pairs of ciphertexts encrypted via a LHE scheme.
For the second phase, we get rid of Yao’s protocol by designing an ad-hoc two-party protocol
that solves the linear system Aw = b using only the linear homomorphic property of the
underlying encryption scheme. This allows to boost the overall performance. As a highlight,
if we horizontally partition (into ten equal-sized parts) a dataset of 10 millions instances and
20 features, our privacy-preserving regression method runs in under 2 minutes1 and produces
a communication overhead2 of 1.3 MB. The system presented in [NWI+13] needs more than
50 minutes and 270 MB exchanged data to perform a similar computation.3

Roadmap

In Section 2 we start our presentation recalling ridge linear regression and we provide the
definitions of the cryptographic primitives involved in the design of our system. In Section 3
we describe the general framework of our system (e.g., parties involved, security assumptions,
security definitions, etc.). We also provide an overview of its design. In Section 4 we describe
in detail the protocols that form our two-phase system. Finally, Section 5 reports on our
implementation and experimental results.

2 Background

2.1 Standard notations

For any integer N > 1, ZN denotes the ring of integers modulo N and Z∗N denotes its group of
units. For any integer a, a mod N represents the smallest integer in {0, 1, . . . , N − 1} that is
congruent to a modulo N .

1Timing on a 2.6 GHz 8 GB RAM machine running Linux 16.04.
2Size of the messages exchanged among the parties running the system.
3Timing on a 1.9 GHz 64 GB RAM machine running Linux 12.04

3

We use bold notation for vectors and capital letter for matrices (e.g., x ∈ Rn is a column
vector, X ∈ Rn×d is matrix with n rows and d columns, both with real-value entries). We
indicate the i-th component of a vector x with x[i] and the i-th component of the j-th column
of the matrix X with X[i, j]. The p-norm of a vector x ∈ Rn is defined by ‖x‖p = p

√∑n
i=1 |x[i]|p.

The sup-norm of a matrix (or a vector) X ∈ Rn×d is defined by ‖X‖∞ = maxi,j{|X[i, j]|}.
If A is a d × d matrix, then the adjunct of A is defined as adj(A) = C

ᵀ
with C[i, j] =

(−1)i+jAij and Aij is the determinant of the (d− 1)× (d− 1) matrix that results from deleting
row i and column j of A (i.e., the (i, j) minor of A). Note that adj(A) = det(A)A−1. Finally,
we recall that Hadamard’s inequality implies that |det(A)| ≤ (

√
d ‖A‖∞)d for any d× d matrix

A, and det(A) ≤
∏d
j=1A[j, j] ≤ ‖A‖d∞ if A is positive definite.

2.2 Linear ridge regression

A linear regression learning algorithm is a procedure that on input n points {(x1, y1), . . . , (xn, yn)}
(where xi ∈ Rd and yi ∈ R) outputs a vector w∗ ∈ Rd such that w∗

ᵀ
xi ≈ yi for all i = 1, . . . , n.

One common way to compute such a model w∗ is to use the squared-loss function and the
associated empirical error function (mean squared error):

fX,y(w) = ‖Xw − y‖22

where X ∈ Rn×d is the matrix with the vector x
ᵀ
i as ith row and y ∈ Rn is the vector with

the value yi as ith component. Notice that in this work we assume that X is always full-rank
(i.e., rk(X) = d). Specifically, w∗ is computed by minimizing a linear combination of the
aforementioned error function and a regularization term,

w∗ ∈ argmin
w∈Rd

fX,y(w) + λR(w)

where λ ≥ 0 is fixed. The regularization term is added to avoid over-fitting the training dataset
and to bias toward simpler models. In practice, one of the most common regularization terms is
the 2-norm (R(w) = ‖w‖22), which generates a model with overall smaller components. In this
case (called ridge regression), the model w∗ is computed by minimizing the function Fridge(w) =
‖Xw − y‖22 + λ‖w‖22.

Since, ∇Fridge(w) = 2X
ᵀ
(Xw − y) + 2λw, we have that w∗ is computed solving the linear

system
Aw = b (1)

where A = X
ᵀ
X +λI (symmetric d× d matrix) and b = X

ᵀ
y (vector of d components). Notice

that since X is full-rank, A is positive definite and therefore det(A) > 0 (in particular A is
invertible).

2.3 Cryptographic tools

To design our new privacy-preserving system for linear regression, we employ homomorphic
encryption. Let (M,+) be a finite group. A linearly-homomorphic encryption (LHE)
scheme for messages in M is defined by three algorithms:

1. the key-generation algorithm Gen takes as input the security parameter κ and outputs the
pair of secret and public key, (sk , pk)← Gen(κ).

2. the encryption algorithm Enc is a randomized algorithm that uses the public key to trans-
form a message m from M (plaintext space) in a ciphertext, c← Encpk (m).

3. the decryption algorithm Dec is a deterministic function that takes as input a ciphertext
and the secret key and recovers the original plaintext (i.e., Pr[Decsk (c) = m] = 1 where
the probability is taken over the encryption algorithm’s random choice).

4

The standard security property (semantic security) says that it is infeasible for any compu-
tationally bounded algorithm to gain extra information about a plaintext when given only
its ciphertext and the public key pk . Moreover, we have the homomorphic property: Let C
be the set of all possible ciphertexts, then there exists an operation � on C such that for
any a-tuple of ciphertexts c1 ← Encpk (m1), . . . , ca ← Encpk (ma) (a integer), it holds that
Pr[Decsk (c1 � · · · � ca) = m1 + · · · + ma] = 1. This implies that, if c = Encpk (m) and a is a
positive integer, Decsk (cMult(a, c)) = ax, where

cMult(a, c) = c� · · · � c︸ ︷︷ ︸
a times

.

Known instantiations of this primitive include Paillier’s scheme [Pai99] (that we briefly recall in
Appendix A.1), and its generalization by Damg̊ard and Jurik [DJ01], Regev’s scheme [Reg09]
and Joye-Libert scheme [JL13].

In some cases being able to perform only linear operations on encrypted messages is not
sufficient. For example, when considering vertically-partitioned datasets, we will need to be
able to compute the encryption of the product of two messages given the encryptions of the
individual messages. An LHE scheme cannot directly handle such operation. On the other hand,
a general solution to the problem of computing on encrypted data can be obtained via the use
of fully-homomorphic encryption (FHE) [Gen09]. Since full fledged constructions of FHE are
inefficient to be used in practice, more efficient solutions have been designed for evaluating low-
degree polynomials over encrypted data functionalities (somewhat-homomorphic encryption).
This less powerful variants, even if more efficient than FHE, still require very large key and have
poor expansion factor (i.e., a ciphertext is much longer than a plaintext). In a recent work,
Barbosa et al. [BCF17] introduce the concept of labelled-homomorphic encryption (labHE);
this new primitive significantly accelerates homomorphic computation over encrypted data when
the function that is being computed is known to the party that decrypts the result. Since in
this paper we consider that the machine-learning algorithm and the data distribution among
the participants is publicly known, the previous assumption is satisfied and we can make use
of labHE. In particular, Barbosa et al. show how to design an homomorphic encryption scheme
that supports evaluation of degree-two polynomial using only an LHE and a pseudo-random
function. The new scheme is public-key and works in the multi-user setting: two or more users
encrypt different messages, an encryption of the evaluation of a degree-two polynomial on these
messages can be constructed by any party having access to the public key and the ciphertext.
Then the party holding the secret key can decrypt and reveal the result of the evaluation (the
polynomial is public, the correspondence user-ciphertext is known). We briefly recall here their
construction (see [BCF17, Section 5]) in the case that the polynomial is evaluated on messages
encrypted only by two different users.

Let (Gen,Enc,Dec) be an LHE scheme with security parameter κ and message space M.
Assume that a multiplication operation is given in M, i.e., (M,+, ·) is a ring, and let F :
{0, 1}s ×L →M be a pseudo-random function with seed space {0, 1}s (s = poly(κ)) and input
space L. Define:

• labGen(κ): On the security parameter κ as input, it runs Gen(κ) and outputs (sk , pk).

• localGen(pk): For each user i and with the public key as input, it samples a random seed
si in {0, 1}s and computes pk i = Encpk (si). It outputs (si, pk i).

• labEncpk (si,m, τ): On input a message m ∈ M with label τ ∈ L from the user i, it
computes b = F (si, τ) and outputs the labelled ciphertext c = (a, c) ∈ M × C with
a = m− b in M and c = Encpk (b).

• labMult(c, c′): On input two labelled ciphertexts, c = (a, c) and c′ = (a′, c′), it computes
a “multiplication” ciphertext d as

d = Encpk (a · a′)� cMult(a, c′)� cMult(a′, c) .

5

Observe that Decsk (d) = m ·m′−b ·b′. Moreover, notice that given two or more multiplica-
tion ciphertexts d1, . . . , dn, we can “add” them using the operation of the underling LHE
scheme: d1 � · · · � dn. Assume that user i and user j have both encrypted n messages,
m1, · · · ,mn and m′1, · · · ,m′n, respectively. Let c̃ ∈ C is the ciphertext obtained as

n⊙
t=1

labMult
(
labEncpk (si,mt, τt), labEncpk (sj ,m

′
t, τ
′
t)
)

• labDecsk (pk i, pk j , c̃): On input the ciphertext c̃, it computes si = Decsk (pk i) and sj =
Decsk (pk j). Then, it computes bt = Fsi(τt) and b′t = Fsj (τ

′
t) for all t = 1, . . . , n. Finally,

it computes b̃ =
∑n
t=1 bt · b′t and

m̃ = Decsk (c̃)− b̃ .

It is easy to verify that m̃ =
∑n
t=1mt ·m′t.

2.4 Data representation

In order to use the cryptographic tools described in the former section to design a privacy-
preserving system for ridge regression, we need to represent the real values that form the datasets
as values in a finite set M (the message space). Without loss of generality, we assume that
M = ZN for some big integer N and that the entries of the matrix X and the vector y are
numbers from the real interval [−δ, δ] (with δ > 0)4 with at most ` digits in their fractional part.
In this case, the conversion from real values to elements inM can be easily done by rescaling all
the entries of X and y and then mapping the integers in ZN using the modular operation. For
this reason, from now on we consider that the entries of X and y are integers from 0 to N − 1.
This implies that we consider the matrix A and the vector b having positive integer entries5

and, finally, that we assume that the model w∗ is a vector in Qd.
Notice that for the integer representation of A and b it holds that ‖A‖∞, ‖b‖∞ ≤ 102`(nδ2 +

λ). Therefore, if 102`(nδ2 + λ) ≤ N−1
2 , then A and b are embedded in ZN without overflow

for their entries. However, if the linear system (1) is now solved over ZN , then clearly the
entries of the solution are given as modular residues of ZN and may be different from the
entries of the desired model w∗ in Qd. In order to solve this problem and recover the model in
Qd from the model computed over ZN , we can apply the rational reconstruction technique
component-wise. With rational reconstruction [WGD82, FSW02] we mean the application of
the Lagrange-Gauss algorithm to recover a rational t = r/s from its representation in ZN as
t′ = r s−1 mod M . Notice that the modulus N has to be big enough (see Section 4.3).

3 Threat Model and System Overview

We consider the setting where the training dataset is not available in the clear to the entity that
wants to train the ridge regression model. Instead, the latter can access encrypted copies of the
data and, for this reason, needs the help of the party handling the cryptographic keys in order
to learn the desired model. More precisely, protocols in this paper are designed for the following
parties (see Fig. 1):

• The Data-Owners: there are m data-owners DO1, . . . ,DOm; each data-owner DOi has a
private dataset Di and is willing to share it only if encrypted.

4In other words, δ = max{‖X‖∞, ‖y‖∞} for the original X and y.
5We assume that the regularization parameter λ ∈ R has at most 2` digits in the fractional part and can be

rescaled by the factor 102` to obtain an integer.

6

• The Machine-Learning Engine (MLE): this is the party that wants to run a linear regres-
sion algorithm on the dataset D obtained by merging the local datasets D1, . . . ,Dm, but
has access only to the encrypted copies of them. For this reason, MLE needs the help of
the Crypto Service Provider.

• The Crypto Service Provider (CSP) takes care of initializing the encryption scheme used
in the system and interacts with MLE to help it in achieving its task (computing the linear
regression model). CSP manages the cryptographic keys and is the only entity capable of
decrypting.

We assume that the MLE and the CSP do not collude and that all the parties involved are
honest-but-curious. That is, they always follow the instructions of the protocol but try to learn
extra information about the dataset from the messages received during the execution of the
protocol (i.e., passive security). Moreover, we assume that for each pair of parties involved
in the protocol there exists a private and authenticated peer-to-peer channel. In particular,
communications between any two players cannot be eavesdropped.

The goal is to ensure that the MLE obtains the regression model (the vector obtained by
running the regression algorithm on D in the clear) while both the MLE and the CSP do not
learn any other information about the private datasets Di beyond what is revealed by the model
itself.

In order to achieve this goal we design a new system that can be seen as multi-party protocol
run by the m + 2 parties mentioned before and specified by a sequence of steps. The system
described in this paper (Section 4) has the following two-phase architecture (see Fig. 1):

Phase 1 (merging the local datasets): CSP generates the key pair (sk , pk), stores sk and
makes pk public; each DOi sends to the MLE specific ciphertexts computed using pk and
the values in Di. The MLE uses the ciphertexts received and the homomorphic property
of the underling encryption scheme in order to obtain encryptions of A and b (coefficient
matrix and vector in (1)).

Phase 2 (computing the model): MLE uses the ciphertexts Encpk (A) and Encpk (b) and pri-
vate random values in order to obtain encryptions of new values that we call “masked
data”; these encryptions are sent to the CSP; the latter decrypts and runs a given algo-
rithm on the masked data. The output of this computation (“masked model”) is a vector
w̃ that is sent back from the CSP to the MLE. The latter computes the output w∗ from
w̃.

Informally, we say that the system is correct if the model computed by the MLE is equal to the
model computed by the learning algorithm in the clear using D as training data. And we say
that the system is private if the distribution of the masked data sent by the MLE to the CSP
is independent of the distribution of the local inputs. Thus, no information about D1, . . . ,Dm
is revealed by the messages exchanged during Phase 2.

As we will see in Section 4, the specific design of the protocol realizing Phase 1 depends on
the distributed setting: horizontally- or vertically-partitioned dataset. However, in both cases,
the data-owners input encryptions of local values and the MLE gets the encryptions of A and b.
The CSP simply takes care of initializing the cryptographic primitive and generates the relative
key. Phase 2 is realized by an interactive protocol for MLE and the CSP that takes on input the
encryptions of A and b from the MLE and returns the solution of the system Aw = b following
this pattern (we refer to this as “masking trick”):

– The MLE samples a random matrix R and a random vector r and it uses the linear
homomorphic property of the underlying encryption scheme to compute C ′ = Encpk (AR)
and d′ = Encpk (b +Ar). The values C = AR and d = b +Ar are the “masked data”.

– The CSP decrypts C ′ and d′ and computes w̃ = C−1d. The vector w̃ is the “masked
model” sent back to the MLE.

7

– The MLE computes the desired model as w∗ = Rw̃ − r. Indeed, it is easy to verify that
Rw̃ − r = R(AR)−1(b +Ar)− r = A−1b.

Informally, the security of the encryption scheme assures privacy against an honest-but-curious
MLE. On the other hand, if R and r are sampled uniformly at random, then the distribution
of the masked data is independent of A and b. This guarantees privacy against an honest-but-
curious CSP. In [BB89], similar masking tricks are used to design a secret-shared based MPC
protocol for the evaluation of general functions. In this work, we tailor the masking trick for
the goal of solving the linear system Aw = b gaining in efficiency.

Notice that the data-owners are active only in Phase 1. They are not required to stay online
during Phase 2 since their participation to this phase is not necessary.

We assume that the data parameters (i.e., n, d, and δ), the system parameters (i.e., `, m
and κ) and the regularization parameter λ are public values.

D1 D2

. . .

Dm

MLE CSP

3) collect
encrypted data

1) generate crypto keys:
publish pk , store sk

2) encrypted data

4) encryption of
masked data

5) decrypt and learn
the masked model w̃

masked model

6) remove mask and
learn the model w∗

Figure 1: System overview —The CSP initializes the encryption; the m data-owners input the
datasets D1, . . . ,Dm in encrypted form. The MLE, with the help of the CSP, learns the model
trained on the data D1 ∪ . . . ∪ Dm, without seeing the data in the clear.

4 Protocols Description

In this section, we construct our two-phase system for training a ridge regression model in the
setting described in Section 3. Specifically, we describe how to implement Phase 1 (merging the
datasets) and Phase 2 (computing the model) in Sections 4.1 and 4.2, respectively.

4.1 Phase 1: Merging the dataset

Horizontally-partitioned setting

Assume that the dataset represented by the matrix X and the vector y is horizontally parti-
tioned in m datasets. This means that each DOk holds some rows of the matrix X and the
corresponding components of vector y. We assume that the correspondence between rows and

8

parties is publicly known and has this form: the data-owner DOk holds Dk with

Dk =
{

(xnk−1+1, ynk−1+1), . . . , (xnk , ynk)
}

(2)

for k = 1, . . . ,m (0 = n0 < n1 < · · · < nm = n). In this case, as already noticed in [NWI+13],
we have the following: If we define

Ak =

nk∑
i=nk−1+1

xix
ᵀ
i and bk =

nk∑
i=nk−1+1

yixi

then we have that

A =

m∑
k=1

Ak + λI and b =

m∑
k=1

bi .

The matrix Ak and the vector bk can be computed locally by the party DOk; the latter can also
compute encryptions of the entries of Ak and bk and send the ciphertexts to MLE. If an LHE
scheme is used for the encryption, then MLE can compute encryptions of the entries of A and
b simply using the above formula and the operation �. This is depicted in detail in protocol
Π1,hor (Fig. 2).

Protocol Π1,hor

– Parties: CSP and MLE with no input, DOk with input Dk as defined in (2) for all
k = 1, . . . ,m.

– Output : MLE gets A′ and b′ (i.e., encryptions of A and b, respectively).

Assume that (Gen,Enc,Dec) is an LHE scheme with plaintext space M and security pa-
rameter κ.

Step 1 : (key-generation) CSP runs (sk , pk) ← Gen(κ) and makes pk public, while it keeps
sk secret.

Step 2 : (local computation) For all k = 1, . . . ,m, DOk computes Ak =
∑
i xix

ᵀ
i and bk =∑

i yixi with nk−1 + 1 ≤ i ≤ nk; next, DOk encrypts them,{
A′k[i, j] = Encpk (Ak[i, j])

b′k[i] = Encpk (bk[i])

for all i, j = 1, . . . , d and j ≥ i; finally, DOk sends all A′k and b′k to MLE.

Step 3 : (datasets merge) MLE computes
A′[i, i] =

⊙m
k=1A

′
k[i, i]� Encpk (λ)

A′[i, j] =
⊙m

k=1A
′
k[i, j] if j 6= i

b′[i] =
⊙m

k=1 b
′
k[i]

for all i, j = 1, . . . , d and j ≥ i.

Figure 2: Protocol Π1,hor implements Phase 1 in the horizontally-partitioned setting.

9

Vertically-partitioned setting

Assume that the dataset represented by the matrix X and the vector y is vertically-partitioned
in m datasets. In this case, each DOk holds some columns of X and y. We assume the
correspondence between columns and parties is publicly known and, without loss of generality,
we represented it in the following way: For k = 1, . . . ,m, the data-owner DOk holds the columns
from dk−1 + 1 to dk in X:

Dk =


x1[dk−1 + 1] x1[dk]

... · · ·
...

xn[dk−1 + 1] xn[dk]

 (3)

where 0 = d0 < d1 < · · · < dm = d. The party DOm holds also the vector y. By definition, we
have 

A[i, i] =
∑n
t=1 xt[i]xt[j] + λ

A[i, j] =
∑n
t=1 xt[i]xt[j] if j 6= i

b[i] =
∑n
t=1 xt[i]y[t]

.

When the columns i, j of X are both held by one data-owner, then this party can directly
compute the value A[i, j] and send an encryption of it to the MLE. But if the columns i, j are
held by two different data-owners, then this is not possible since neither of them can compute
the value A[i, j]. To solve this and enable the MLE to get encryptions of all components of
the matrix A (and the vector b), we use labelled-homomorphic encryption. As we discussed
in Section 2, the latter can be constructed on top of any LHE scheme and it enhances the
underlying scheme with the command labMult. This is used in order to compute an encryption
of the product of two messages from the labelled-encryption of the individual messages. If each
data-owner DOk encrypts the entries of the local dataset Dk using a labelled-homomorphic
encryption scheme and sends the labelled-ciphertexts to the MLE, then the latter can compute
an encryption of the entries of A (and the entries of b) using formulas of the form:

n⊙
t=1

labMult
(
labEnc(xt[i]), labEnc(xt[i])

)
.

Remember that the output of the command labMult used to compute the encryption of the
product of two messages, m1 and m2, is in fact an encryption of m1m2 − b1b2 where b1, b2 are
two random values used to compute the labelled-encryptions of the values m1 and m2. For this
reason, at the end of the procedure described before, MLE obtains encryptions of A − B and
b − c, instead of encryption of A and b, where B and c depend on the random values used to
encrypt the entries of the local datasets using the labelled-homomorphic scheme. The matrix
B and the vector c can be reconstructed by the party handling the decryption key (i.e., in
our setting, the CSP). The decryption procedure of the labelled-homomorphic scheme, labDec,
accounts for this. However, in the application we consider here (training for a ridge regression
model) it is necessary that at the end of Phase 1 the MLE has proper encryptions or A and
b. Indeed, only in this case we can proceed to Phase 2 and use the masking trick (using the
masking trick with labelled-encryptions of A and b doesn’t work). For this reason, we need to
add one round of communication where the CSP sends to the MLE encryptions of the entries of
B and c. Notice that this can be done before the beginning of the actual computation (Step 1 of
Phase 1) since the value B and c do not depend on the actual data used to train the regression
model. In this way, the MLE can finally gets encryptions of A and b. Protocol Π1,ver (Fig. 3)
describes this in detail.

4.2 Phase 2: Computing the model

At the end of Phase 1, MLE knows component-wise encryption of the matrix A and the vector
b (both with entries represented in M = ZN , the message space of the LHE scheme used in

10

Protocol Π1,ver

– Parties: CSP and MLE with no input, DOk with input Dk as defined in (3) for all
k = 1, . . . ,m.

– Output : MLE gets A′ and b′ (i.e., encryptions of A and b, respectively).

Assume that (labGen, labEnc, labDec) is the labelled-homomorphic encryption constructed
using an LHE scheme (Gen,Enc,Dec) with plaintext space M and security parameter κ.

Step 1 : (key-generation) CSP runs (sk , pk) ← labGen(κ) and makes pk public, while it
keeps sk secret. For k = 1, . . . ,m, DOk runs (sk, pkk) ← localGen(pk) and makes
pkk public, while it keeps sk secret.

(setup) For k = 1, . . . ,m, CSP computes skk = Decsk (pkk) and bij = F (skk, (i, j))
with 1 ≤ i ≤ n, and dk−1 + 1 ≤ j ≤ dk (if k = m, then include also j = 0). Then,
for all i, j = 1, . . . , d and j ≥ i, CSP computes B′[i, j] = Encpk (

∑n
t=1 btibtj) and

c′[i] = Encpk (
∑n
t=1 btibt0). These ciphertexts are sent to MLE.

Step 2 : (local computation) For k = 1, . . . ,m, DOk computes labelled-encryptions of the
known entries of all vectors xi. That is, for i = 1, . . . , n and j = dk−1 + 1 . . . , dk,
it computes

cij = (aij , cij) = labEncpk (sk,xi[j], τ)

with label τ = (i, j). DOm also computes labelled-encryptions of entries of y:

ci0 = (ai0, ci0) = labEncpk (sm,y(i), τ)

with label τ = (i, 0).

Finally, for all k = 1, . . . ,m, DOk sends all labelled-ciphertexts cij to MLE.

Step 3 : (datasets merge) MLE computes

A′[i, i] =
⊙n

t=1 labMult(cti, cti)�
B′[i, i]� Encpk (λ)

A′[i, j] =
⊙n

t=1 labMult(cti, ctj)�B′(i, j)
if j 6= i

b′[i] =
⊙n

t=1 labMult(cti, ct0)� c′[i]

for all i, j = 1, . . . , d and j ≥ i.

Figure 3: Protocol Π1,ver implements Phase 1 in the vertically-partitioned setting.

Phase 1). Recall that the final goal of our system is computing w∗ ∈ Qd such that Aw∗ = b.
In order to do this in a privacy-preserving manner, in Phase 2 we implement the masking trick
described in Section 3 in the following way. The MLE samples an invertible matrix R and a
vector r uniformly at random from Md×d and Md, respectively. MLE uses these values and
the encryption of A and b to compute encryptions of C ≡ AR mod N and d ≡ b+Ar mod N
(data masking). These ciphertexts are sent to CSP. The latter decrypts, obtains C and d,
and computes w̃ ≡ C−1d mod N (masked model computation). This vector is sent back to
the MLE who first computes w̃∗ ≡ Rw̃ − r mod N (the model represented in M) and then

11

uses rational reconstruction to compute w∗ in Qd(model reconstruction). All the details of this
procedure are reported in Protocol Π2 (Fig. 4).

The correctness is easy to verify, indeed we have:

Rw̃ − r ≡ R(AR)−1(b +Ar)− r ≡ A−1b mod N

Security is also straightforward. Protocol Π2 is secure against a honest-but-curious CSP
because the values seen by it (the masked data AR and b + Ar) have a distribution that is
unrelated with the input datasets. More precisely we have the following lemma. Let

(
Md×d)∗

be the set of all invertible matrices with coefficients in the ring M.

Lemma 4.1. Let (A, b) ∈
(
Md×d)∗ ×Md. Assume that R is sampled uniformly at random

from
(
Md×d)∗ and that r is sampled uniformly at random fromMd. Then, the distribution of

(AR, b +Ar) is the uniform distribution over
(
Md×d)∗ ×Md.

Proof. Fix (M,v) ∈
(
Md×d)∗ ×Md, then

Pr[AR = M, b +Ar = v]

= Pr[R = A−1M, r = A−1(v − b)]

=
1

| (Md×d)
∗ ×Md|

.

Moreover, Protocol Π2 is secure against a honest-but-curious MLE because of the security
of the underlying encryption scheme. Indeed, the MLE sees only an encrypted version of A and
b. See Appendix A.2 for the formal security proof.

4.3 Choice of parameters

In the last step of Π2 we use rational reconstruction to recover the components of w∗ ∈ Qd
from the solution of Aw = b computed in M = ZN . According to [WGD82, FSW02] if a
rational t = r/s with −R ≤ r ≤ R, 0 < s ≤ S and gcd(s,N) = 1 is represented as t′ = rs−1

mod N in M, then the Lagrange-Gauss algorithm uniquely recovers r and s provided that
2RS < N . Since w∗ = A−1 b = 1

det(A) adj(A)b ∈ Qd, in order to choose N that satisfies the

condition stated before, we need to bound the det(A) and the entries of the vector adj(A)b.
Let α = max{‖A‖∞, ‖b‖∞}, using the Hadamard’s inequality (see Section 2.1), we have that

0 < det(A) ≤ αd (A is a positive definite matrix) and ‖ adj(A)b‖∞ ≤ d(d− 1)
d−1
2 αd. Using the

same assumptions of Section 2.4 on the entries of X and y (that is, the entries of X and y are real
number in [−δ, δ] with at most ` digits in the fractional part), we have that α ≤ 102`(nδ2 + λ).
It follows that the condition 2RS < N is fulfilled when

2d(d− 1)
d−1
2 104`d (nδ2 + λ)2d < N . (4)

In Section 5, in our case study implementation the underlying encryption scheme has messages
space ZN and we adaptively choose N in terms of the public data and system parameters using
Eq. (4).

4.4 Complexity

Protocols Π1,hor, Π1,ver and Π2 described in Section 4.1 and Section 4.2 are practically efficient.
Before demonstrating this via concrete experiments in Section 5, we discuss here the complexity
the aforementioned protocols as a function of the public parameters.

Table 1 presents the communication complexity in terms of number of plaintexts and ci-
phertexts sent at each step. We use the following public parameters: n (number of instances),
d (total number of features) and dk (in the vertically-partitioned setting, the data-owner DOk

12

Protocol Π2

The protocol Π1,hor or the protocol Π1,ver has been previously executed.

– Parties: CSP knows sk , MLE knows A′ = Encpk (A) and b′ = Encpk (b).

– Output : MLE gets w∗.

– Public parameters: d, n, M = ZN .

Step 1 : (data masking) MLE samples R←
(
Md×d)∗ and r ←Md and computes{

C ′[i, j] =
⊙d

k=1 cMult(R[k, j], A′[i, k])

d′[i] = b′[i]�
(⊙d

k=1 cMult(r[k], A′[i, k])
)

for all i, j = 1, . . . , d; next, MLE sends the matrix C ′ and the vector d′ to CSP.

Step 2 : (masked model computation) The CSP first decrypts C ′ and d′ obtaining C and d,{
C[i, j] = Decsk (C ′[i, j])

d[i] = Decsk (d′[i])

for all i, j = 1, . . . , d; then it computes w̃ ≡ C−1d mod N . CSP sends the vector
w̃ to the MLE.

Step 3 : (model reconstruction) The MLE computes w̃∗ ≡ Rw̃−r mod N and uses rational
reconstruction on each component of w̃∗ to compute and output the vector w∗.

Figure 4: Protocol Π2 implements Phase 2.

holds the features from dk−1 + 1 to dk and DOm also holds the vector of outputs). Notice that
because of the use of rational reconstruction, the bit-length of a plaintext (and therefore also the
bit-length of a ciphertext) depends on the parameters n and d (see Eq. (4)). It follows that both
Protocol Π1,hor and Protocol Π2 have complexity O(d3(log(d) + log(n))) bits, while Protocol
Π1,ver has complexity O((nd2 + d3)(log(d) + log(n))) bits (we assume ` and m constant and an
equal-sized partition of the training dataset).

In practice, our approach significantly improves the communication complexity compared to
the previous solutions that use Yao’s scheme [NWI+13, GSB+17]. Indeed, the latter requires
CSP sending the garbled representation of a boolean circuit of millions of gates (see [NWI+13,
Fig. 5] and [GSB+17, Fig. 7]) to MLE. In [NWI+13] the authors show that the garbled repre-
sentation of one gate is a lookup table of around 30 bytes (80-bit security). This means that a
privacy-preserving system based on Yao’s scheme, only for sending the garbled circuit and with-
out considering the other steps needs at least hundreds of megabytes For example, [NWI+13]
reports that the garbled representation of the circuit that solves (1) with d = 20 using Cholesky
decomposition and 24-bits integer representation has size 270 MB. On the other hand, even for
large values of n and d, the total communication complexity of our system in the horizontally-
partitioned case (Π1,hor + Π2) is smaller than 200 MB (see Fig. 5, where Paillier’s scheme is
assumed as underlying encryption). For example, if we have a dataset with 107 instances and
d = 20, then Eq. (4) implies that we need to use an encryption scheme with message space ZN
where the bit-length of N is at least 1774. If we use Paillier’s scheme, this implies an overhead of
less the 1.3 MB. In the vertically-partitioned case (Π1,ver +Π2), the overall communication over-

13

heard of our system is dominated by the complexity of Phase 1 because of its linear dependency
on the number of instances n. However, this seems to be the case also in other approaches. In
[GSB+17], a secure inner-product protocol based on additive secret-sharing and Beaver’s triples
[Bea91] is used to compute the inner product of the columns of the matrix X held by different
users. The communication complexity of this approach is Θ(nd2 log(n)) bits. The same build-
ing blocks are used in [MZ17] to design a system that assumes an arbitrary partitioning of the
dataset (i.e., it works for both the vertically- and the horizontally-partitioned setting). When
the pre-processing needed for the triples is implemented via LHE, the linear regression train-
ing system proposed in [MZ17] has complexity Θ(nd + n). Thus, in terms of communication
complexity, [MZ17] performs better than our solution in the vertically-partitioned case. Our
system, however, is preferable if the training dataset is horizontally partitioned and n >> d
(e.g., n = Θ(d2.5)). For example, if d = 100 and n = 105 the system in [MZ17] has an overheard
of 200 MB for the pre-processing phase only (see[MZ17, Table II]). On the other hand, the
overall complexity of Π1,hor + Π2 for d = 100 and n = 107 is less then 150 MB.

Table 1: Summary of communication complexity.

Π1,hor (Fig. 2) – CSP sends pk to each party

– DOk sends d(d+1)
2 + d ciphertexts to MLE

Π1,ver (Fig. 3) – CSP sends pk to each party

– DOk sends pkk to CSP and MLE

– CSP sends d(d+1)
2 + d ciphertexts to MLE

– DOk sends n× (dk − dk−1) ciphertexts and

n× (dk − dk−1) plaintexts to MLE (k 6= m)

– DOm sends n× (dk − dk−1 + 1) ciphertexts

and n× (dk − dk−1 + 1) plaintexts to MLE

Π2 (Fig. 4) – MLE sends d2 + d ciphertexts to CSP

– CSP sends d plaintexts to MLE

horizontally-partitioned case (Π1,ver + Π2) vertically-partitioned case (Π1,ver + Π2)

50 100 150

200

400

600

d

n = 103

n = 105

n = 107

50 100 150

200

400

600

800

d

n = 103

n = 2 · 103

n = 3 · 103

Figure 5: The overall communication complexity in megabytes of our system for different values
of n and d (δ = 1, ` = 3).

Table 2 summarizes the computational complexity in terms of number of elementary op-

14

erations (e.g., arithmetic operations on plaintexts, arithmetic operations on ciphertexts, en-
cryptions, decryptions, etc.). Beside the aforementioned public parameters n and d we use m
(number of data-owners) and nk (in the horizontally-partitioned setting, the data-owner DOk

holds the instances from nk−1+1 to nk). The notation “mult.” (resp.“add.”) represents a multi-
plication (resp. an addition) on plaintext messages (i.e., with the arithmetic of ZN); “enc-add.”
represents for one operation � on ciphertexts. Notice that the number of features d influences
the computational complexity of all the steps of our system, while the parameter n influences
the complexity of some of the steps in Phase 1 only (specifically, Step 2 of Π1,hor and Step 2 and
3 of Π1,ver). Since, each operation considered for Table 2 has a different execution time (e.g.,
operation on plaintexts are much faster than operation on ciphertexts), for concrete running
times we refer to Section 5, where results of the implementation of our system are presented.

Table 2: Summary of computational complexity.

Step 1 Step 2 (DOk) Step 3 (MLE)

CSP DOk (nk − nk−1)
(
d(d+1)

2 + d
)

mult. m
(
d(d+1)

2 + d
)

enc-add.

Π1,hor 1 execution of Gen (nk − nk−1)
(
d(d+1)

2 + d
)

add.

d(d+1)
2 + d enc.

1 execution of Gen 1 enc. n(dk − dk−1) add. n
(
d(d+1)

2 + d
)

mult.

Π1,ver m dec. n(dk − dk−1) enc. n
(
d(d+1)

2 + d
)

enc.

d(d+1)
2 + d enc. 2n

(
d(d+1)

2 + d
)
cMult

(3n+ 1)
(
d(d+1)

2 + d
)

enc-add.

Step 1 (MLE) Step 2 (CSP) Step 3 (MLE)

Π2 d3 + d2 + d enc-add. d2 + d dec. d2 + d add.

d3 + d2 cMult 1 solution of d× d linear system d2 mult.

d rational reconstruction

4.5 Active security

The protocols described in Sections 4.1 and 4.2 guarantee privacy when all the parties follow
the protocol (passive security). Here we briefly discuss the security of these protocols in the
case when the CSP or the MLE are corrupted and arbitrarily deviate from the protocol. We
still assume that they do not collude.

The case of a malicious CSP can be handled easily. First of all, notice that we can assume
that the encryption scheme is initialized in the correct way and that all users obtain a valid public
key using standard techniques as Certificate Authorities. Nevertheless, if CSP is corrupted, in
Phase 2 (Protocol Π2) it can send to the MLE a faulty w̃ causing the computation of a wrong
model. To prevent this, it is enough to add a simple verification step run by the MLE at the end
of Π2. Assume that w̃∗ is the model in ZdN computed by MLE during Step 3 in Π2. In other
words, w̃∗ = Rw̃− r mod N where w̃ is the –possibly wrong– masked model sent by the CSP.
Since in ridge regression the model is computed as solution of the system (1), if w̃∗ satisfies
Aw̃∗ − b = 0 in ZdN , then the MLE has the correct model. Recall that at the end of Phase 1
the MLE gets the encryptions of the entries of the matrix A and the vector b. Therefore, the
MLE can easily compute the encryption of the components of the vector Aw̃∗ − b in ZdN using
the homomorphic property of the underlying encryption scheme. At this point the problem of
checking the validity of w̃∗ is equivalent to the following abstract problem: the MLE (honest
party) has a ciphertext Encpk (x) and it needs to be convinced that x = 0 by interacting with the
CSP who knows sk but is malicious. This can be easily solved in the following manner: MLE
samples r ← ZN , computes c = Encpk (x) � Encpk (r) and sends c to CSP. The latter decrypts

15

and sends the result back to MLE, who accepts the proof if and only if the received value is
equal to r. If x 6= 0, the probability of a malicious CSP to convince MLE of the opposite is 1/N
(e.g., N can be the Paillier’s scheme modulus).

The case of a malicious MLE is more involved. If the MLE is corrupted, then it can decide
to ignore (o replace with encryption of dummy values) the ciphertexts received during Phase 1
from some of the m data-owners. In this way, at the end of Phase 2 the MLE learns a model
that is trained only on the data from a small subset of the m data-owners (potentially only
one them); such a model may reveal extra information about the private datasets held by these
users. To avoid this threat we need to use a mechanism that allows the CSP to check that the
masked data seen in Step 2 of Protocol Π2 (i.e., C = AR and d = b+Ar) are computed by the
MLE in the correct way using the ciphertexts from all the DOs (e.g., Encpk (A1), . . . ,Encpk (Am)
for the horizontally-partitioned dataset). Moreover, this mechanism needs to be assure that
no extra information about the inputs from the DOs or the random values used to mask (i.e.,
R and r) is revealed to CSP. A mechanism with this property can be obtained using a zero-
knowledge argument protocol for proving generic statements, as the ones proposed in [PHGR13]
or in [GMO16, CDG+]. Investigating this enhancement in details is left for future work.

5 Implementation

In this section we describe our implementation case study of the system described in Section 4
to train a ridge regression model on an encrypted and distributed data. Our goal is to evaluate
the effect of the public parameters (i.e., data parameters n and d, and system parameter `)
on the system’s accuracy and efficiency. Moreover, we are interested in testing our system on
real-word datasets to evaluate its effectiveness in practice. In particular, the experiments we
run are designed to answer the following questions:

1. Evaluate correctness: How does the system parameter ` influence the correctness of the
output model w∗?

2. Evaluate running-time: How do the data parameters n and d influence in practice the
running time of each step in our privacy-preserving system?

3. Evaluate efficiency in practice: how does our system behave when is run on real-word
data?

To design our system we assumed that the values X and y are real number with at most
` digits in the fractional part. In practice, this means that we ask to each user to truncate all
the entries in the local dataset after the `th digit in the fractional part. This needs to be done
before inputting the values in our the privacy-preserving system. On the other hand, in the
standard machine learning-setting this requirement is not necessary, and the model is computed
using floating point arithmetic on values represented with more than ` digits in the fractional
part. For this reason, the model w∗, which is trained using our privacy-preserving system, can
differ from the model w̄∗ learned in the clear (the same regularization parameter λ is used).
To evaluate the error that this difference can introduce we use the following error rate measure
[NWI+13]:

E1 =

∣∣∣∣Fridge(w∗)− Fridge(w̄∗)

Fridge(w̄∗)

∣∣∣∣
where Fridge is the objective function defined in Section 2.2. Recall that learning a ridge re-
gression model is equivalent to find the minimum point of Fridge, therefore E1 tells the loss in
accuracy caused by using the vector w∗ instead of w̄∗ as model. To answer question 1, we mea-
sure E1 for different values of ` when the system is run on several datasets. The experimental
results reported in Section 5.2 indicate that a negligible error rate (e.g., E1 of order 10−6) can
be achieved already for small values of ` (e.g., ` = 3).

16

To answer question 2 and asses the effect of the parameters n and d on our system’s per-
formance in practice, we report the running time of each steps in Π1,hor, Π1,ver and Π2 when
the system is run on synthetically generated data. The advantage of this approach is that we
can run experiments for a wide range of parameters values. The results of this experiment are
reported in details in Section 5.2. As an highlight, when n = 103 and d = 20 Protocol Π1,hor

runs in less than 1 second, Protocol Π1,ver runs in less than 20 minutes and Protocol Π2 runs
in less than half a minute.

To answer question 3 and show the practicality of our system we consider real-world datasets.
In particular, we run our system on real-world datasets download from the UCI repository6. This
repository is commonly used for evaluating new machine-learning algorithms in the standard
setting (i.e., no privacy guarantees). To evaluate communication and computational efficiency
in practice, we report the total running time and communication overhead for eights different
UCI datasets (see Section 5.2).

Finally, before moving to the next section, we want to prove the concrete utility of our
system considering here its application to an existing medical scenario: the Warfarin dosing
model. Warfarin is a popular anticoagulant, used for instance to prevent stokes in patients suf-
fering from atrial fibrillation. In 2009 the International Warfarin Pharmacogenetics Consortium
(IWPC 2009) [C+09] proposed an accurate dosing model trained using linear regression on a
database containing clinical and genetic information of 4043 patients. The database was the
result of the merge of the data of different patients collected by 21 research groups. The model
proposed in [C+09] was tested on a validation cohort of 1009 patients, on which it achieved a
MAE (mean absolute error) of 8.5 mg per week (as baseline, notice that a fixed-dose approach
of 35 mg per week has a MAE of 13 mg per week). We downloaded7 the database used for this
study and, after removing the instances with missing values, we randomly split it in a training
set (80%) and validation set (20%). We run our system (Protocol Π1,hor + Protocol Π2) with
m = 21 and ` = 5 on the training set and we compute the MAE of the learned model using the
validation set. The average result of this experiment on 30 repetitions is a MAE of 8.8 mg per
week. That is, the MAE increases of 3.35% only. Notice that our system in this setting runs in
less than 3 minutes on a commodity server and produces an overall communication overhead of
less then 2.5 MB.

5.1 Setup

We implemented our system using Paillier’s scheme (see Appendix A.1); recall that Paillier’s
scheme has message space M = ZN where N is a large RSA modulus. In order to 1) assure a
security level of at least 80 bits8, 2) decrease the running time and the communication overhead
and 3) satisfy Eq. (4), we choose N such that log2(N) = max{1024, bβc + 1} where β is the
logarithm in base 2 of the left-hand side of Eq. (4). We wrote our software in Python3 5.2 using
the phe1.3 library9 to implement Paillier encryption/decryption and operations on ciphertexts.
We use the gmpy2 library10 to implement arithmetic operations with large integers. To compute
the determinant function and to solve linear systems, we use the Gaussian elimination. To
multiply to square matrices we use the Strassen algorithm.

In each experiment involving Π1,hor (horizontally-partitioned setting), we split the n data
points evenly among the m data-owners and m = 10. In the experiments involving Π1,ver

(vertically-partitioned setting), we split the d features evenly among the m data-owners and we
assume that DOm also has the vector of outputs. We assume m = 5 for this setting.

It is known that for ridge regression the predictive accuracy of the learned model depends on
λ. In machine learning, different techniques are used to tune the regularization parameter and

6https://archive.ics.uci.edu/ml/datasets.html
7https://www.pharmgkb.org/downloads
8According to NIST standard 80-bit security corresponds to a factoring modulus of at least 1024 bits.
9http://python-paillier.readthedocs.io

10https://pypi.python.org/pypi/gmpy2

17

https:// archive.ics.uci.edu/ml/datasets.html
https://www.pharmgkb.org/downloads
http://python-paillier.readthedocs.io
https://pypi.python.org/pypi/gmpy2

obtain more accurate models (e.g., cross-validation); many of these techniques split the input
dataset in subsets and repeat the following procedure: train on some of the subsets and test
on the other ones. This kind of parameter tuning algorithms can be included in our system
if ad-hoc modifications are made. Since this is beyond the scope of this implementation case
study, in the following we fix the regularization parameter λ to 0.1.

5.2 Experiments results

All experiments were run on a machine with a 2.6GHz single CPU and 8 GB RAM under Ubuntu
Linux 16.04. All the timings are reported in seconds, all the values (timings and errors) are
averaged on 5 repetitions of the same experiment.

Synthetic data

To evaluate the effect of the parameters on our system’s performance we run experiments on
synthetically generated datasets. For any pair of n and d, each xi is sampled uniformly at
random from [−1, 1]n (i = 1, . . . , n). The coefficients of the vector w∗ are sampled independently
and uniformly at random from the real interval [0, 1]. Finally yi = x

ᵀ
iw
∗+εi, where εi is sampled

from a Gaussian distribution with zero mean and variance 1 and under the condition |yi| ≤ 1.

Error rate E1 (log scale) Running time Phase 1 (seconds) Running time Phase 2 (seconds)

1 3 5 7
10−14

10−8

10−2

`

n = 103; d = 10

n = 103; d = 20

n = 105; d = 10

n = 105; d = 20

1 3 5 7
0

2

4

6

`

1 3 5 7

50

100

150

`

1 3 5 7

10−14

10−8

10−2

`

n = 103; d = 5

n = 103; d = 10

n = 2 103; d = 5

n = 2 103; d = 10

1 3 5 7

200

400

`

1 3 5 7
0

2

4

`

Figure 6: Results of the experiments run on synthetically-generated data for different values
of the system parameter ` in the horizontally-partitioned setting (top) and in the vertically-
partitioned setting (below).

The results from the experiments involving synthetically generated data are reported in
Figure 6, Tables 3 and 4 here, and in Tables 2 and 6 in Appendix A. To quantify the impact of
the parameter `, we measure the error rate E1 and the running times when ` = 1, 3, 5, 7 for 4
different synthetically-generated datasets in both settings considered in this work (horizontally-
and vertically-partitioned data). Figure 6 shows a summary of the results of this experiment.
It is clear that the value of E1 decreases very rapidly with the increasing of `, regardless of the
values of n and d. Moreover, we can infer that the efficiency of our system can be influenced by
the value of `. Indeed, because of (4) the value of this parameter has effect on the bit-length of
the plaintexts and ciphertexts handled by our system. For this reason, we recommend to choose
` equal to a small integer (e.g., ` = 3). This choice allows to have a negligible error rate without
degrading our system efficiency.

18

Table 3: Running times and error rate for UCI datasets in the horizontally-partitioned setting.

Dataset n d ` log2(N) E1
Phase 1 Phase 2

Time kB Time kB

forest 517 12 1 1024 1.46E-07 0.234 23 2.891 41.48

facebook 500 17 1 1926 1.11E-15 2.148 81.8 56.203 151.37

air 6946 13 1 1128 0.00E+00 0.323 29.3 5.898 53.09

beijing 41757 14 1 1260 2.40E-08 0.504 37.44 8.468 68.28

wine 4898 11 3 1112 1.59E-06 0.227 21.38 3.213 38.18

energy 19735 25 2 2400 4.53E-08 7.597 209.9 310.826 397.29

student 395 30 1 1740 2.85E-16 4.396 215.22 152.220 410.87

boston 506 13 3 1268 1.96E-08 0.430 33.94 8.110 59.7

Table 4: Running times and error rate for UCI datasets in the vertically-partitioned setting.

Dataset n d ` log2(N) E1
Phase 1 Phase 2

Time kB Time kB

forest 517 12 1 1024 1.46E-07 134.410 543.06 2.876 41.48

facebook 500 17 1 1926 1.11E-15 1496.023 1397.5 56.118 151.37

student 395 30 1 1740 2.85E-16 2636.412 712.34 150.000 410.87

boston 506 13 3 1268 1.96E-08 270.957 1854.82 7.880 59.7

To understand the effect of n and d on the speed of our system, we fix ` = 3 and we run the
system on synthetic data for large range of values for these two data parameters. The results
can be found in Table 5 (horizontally-partitioned case) and in Table 6 (vertically-partitioned
case). We report the running time of each step of protocols Π1,hor, Π1,ver and Π2. For Step 2 in
Π1,hor and Π1,ver we report the average running time of one data-owner. In Π1,hor, Step 2 is the
most expensive step (see Table 5). Here, the data-owner DOk computes the d × d matrix Ak
and encrypts its entries. In our setting (n data points evenly split among the ten data-owners),
this costs approximately nd2 arithmetic operations on plaintext values and d2 encryptions for
one data-owner (see Table 2). From the results reported in Table 5, it is clear that the costs
of the encryptions is dominant even for large values of n. Indeed, in our implementation using
Paillier’s scheme one encryption correspond to 2 multiplication and 1 exponentiation modulo N
(see Appendix A.1). In Step 3 of Π1,hor, the MLE computes the encryption of A and b using
approximately 10d2 ciphertexts additions (i.e., multiplications modulo N), which turns out to
be fast. In Π1,ver, Step 3 is the most expensive step (see Table 6). In particular, as expected
from the analysis done in Section 4.4, the running time of this step is significantly influenced by
the values of n. Finally, for Phase 2 the results in Table 5 and 6 show that in Π2 Step 1 requires
longer time respect to the other two steps because of the operations done on ciphertexts. Step
2 and 3 require operations only on plaintext values and therefore are very fast (e.g., 21 seconds
for both the steps for a dataset of one hundred thousands instances with 40 features).

UCI datasets

Finally, we ran our system on different real-world datasets downloaded from the UCI repository.
References about each one of the datasets are given in Table 8 in the Appendix A. For each
dataset, we removed the data points with missing values and we use 1-of-k encoding to convert
nominal features to numerical ones. The results of this experiment are reported in Table 3
(horizontally-partitioned case) and in Table 4 (vertically-partitioned case). In Table 3 for Phase 1
we report the total running time (in seconds) of Π1,hor assuming that the 10 data-owners execute

19

Table 5: Running times and error rate for synthetically-generated data (horizontally-partitioned
setting, ` = 3).

n d E1
Π1,hor Π2

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

103

10 3.71E-07 0.026 0.126 0.007 1.844 0.057 0.010

20 6.19E-07 0.057 0.741 0.034 20.963 0.409 0.045

30 1.07E-06 0.243 5.402 0.151 192.757 3.045 0.175

40 1.20E-06 0.367 21.556 0.451 1112.223 12.142 0.477

104

10 3.28E-07 0.032 0.135 0.007 1.897 0.059 0.011

20 7.96E-07 0.039 1.057 0.043 29.757 0.575 0.060

30 9.62E-07 0.285 7.288 0.188 254.774 4.012 0.224

40 1.13E-06 0.314 23.617 0.556 1221.701 15.853 0.604

105

10 2.71E-07 0.026 0.190 0.007 1.894 0.060 0.013

20 5.78E-07 0.099 1.624 0.049 40.959 0.786 0.080

30 8.66E-07 0.314 9.795 0.220 331.589 5.563 0.320

40 1.07E-06 0.634 30.605 0.642 1559.289 20.373 0.784

Table 6: Running times and error rate for synthetically-generated data (vertically-partitioned
setting, ` = 3).

n d E1
Π1,ver Π2

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

103

10 2.34E-07 0.319 4.214 188.206 1.842 0.058 0.010

15 5.63E-07 0.521 6.124 401.245 4.981 0.129 0.021

20 7.23E-07 1.139 13.540 1,135.393 20.900 0.409 0.045

2 103

10 3.66E-07 0.472 8.389 368.255 1.845 0.058 0.010

15 4.08E-07 0.809 12.222 781.864 4.983 0.129 0.022

20 5.84E-07 1.717 30.486 2,573.014 23.620 0.457 0.048

3 103

10 2.88E-07 0.633 12.584 552.764 1.855 0.059 0.011

15 5.58E-07 1.062 18.307 1,174.733 4.976 0.128 0.022

20 6.68E-07 2.264 46.620 3,916.432 24.027 0.465 0.050

Step 2 in parallel, and the size in kilobytes of the message sent from one data-owner to MLE.
In Table 4 for Phase 1 we report the total running time (in seconds) of Π1,ver assuming that
the 5 data-owners execute Step 2 in parallel, and the average size in kilobytes of the message
sent from one data-owner to MLE (in Step 2) plus the message sent from CSP to MLE (setup
in Step 1). In both tables, for Phase 2 we report the total running time (in seconds) of Π2 and
the overall communication required between CSP and MLE (in kilobytes).

Further optimizations

When the logarithm in base 2 of the left-hand of (4) is greater or equal to 2047 (i.e., β ≥ 2047),
in order to reduce the communication overhead of all the protocols and the running time of
the steps involving operations on ciphertexts (� and cMult) we can use Damg̊ard and Jurik’s
scheme [DJ01]. This cryptosystem is a generalization of the Paillier’s scheme cryptosystem
that has message space ZNs and ciphertext space ZNs+1 where N is an RSA modulus and s
is (positive) natural number (Paillier’s scheme is the special case with s = 1). If β ≥ 2047 we

can use Damg̊ard and Jurik’s scheme with s =
⌊
β+1
1024

⌋
and log2(N) = 1024. With this choice of

parameters, Damg̊ard and Jurik’s still guarantees 80-bit security and works with ciphertexts of
bit length at most s+1

s β. While Paillier’s scheme with log2(N) = bβc+1 works with ciphertexts
of bit length less or equal to 2β.

Finally, notice that we implement all the commands in our system in a sequential manner.
However, the operations described in many steps of both Phases 1 and 2 can be easily be
parallelized. For example, the MLE can run Step 3 in protocol Π1,ver on k processors in k times
faster since the computations of the values A′[i, j] can be done in parallel.

20

6 Conclusion

In this paper we described a new system to train a ridge regression model on the merge of
encrypted datasets held by different (possibly mutually distrustful) parties. Our new system
is designed in the two-server model and is the first one based only on linearly-homomorphic
encryption (e.g., Paillier’s scheme). We discussed parameter selection and scalability of our
system. We presented an implementation and showed that the system we propose has low
running-time and low communication overhead for many real-world datasets. Using standard
computational resources, we were able to train a ridge regression model on a dataset of almost 20
thousands instances with 25 features (result of the horizontal merge of 10 equal-sized datasets)
in 5 and half minutes causing a communication overhead of only 2.4 MB.

References

[AHPW15] Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and Lihua Wang. Fast and secure
linear regression and biometric authentication with security update. Cryptology
ePrint Archive, Report 2015/692, 2015.

[AS00] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, May 16-18, 2000, Dallas, Texas, USA., pages 439–450, 2000.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing, Edmonton, Alberta, Canada,
August 14-16, 1989, pages 201–209, 1989.

[BCF17] Manuel Barbosa, Dario Catalano, and Dario Fiore. Labeled homomorphic encryp-
tion: Scalable and privacy-preserving processing of outsourced data. IACR Cryp-
tology ePrint Archive, 2017:326, 2017.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Pro-
ceedings of Crypto, pages 420–432, Springer Verlag 1991.

[BGW88] Michael BenOr, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[C+09] International Warfarin Pharmacogenetics Consortium et al. Estimation of the war-
farin dose with clinical and pharmacogenetic data. N Engl J Med, 2009(360):753–
764, 2009.

[CDG+] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum
zero-knowledge and signatures from symmetric-key primitives. IACR Cryptology
ePrint Archive, 2017.

[CDNN15] Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, and Stacey C.
Newman. Fast, privacy preserving linear regression over distributed datasets based
on pre-distributed data. In Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, AISec 2015, Denver, Colorado, USA, October 16, 2015,
pages 3–14, 2015.

[DHC04] Wenliang Du, Yunghsiang S. Han, and Shigang Chen. Privacy-preserving multivari-
ate statistical analysis: Linear regression and classification. In Proceedings of the
Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida,
USA, April 22-24, 2004, pages 222–233, 2004.

21

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In Public Key Cryptography,
4th International Workshop on Practice and Theory in Public Key Cryptography,
PKC 2001, Cheju Island, Korea, February 13-15, 2001, Proceedings, pages 119–136,
2001.

[FSW02] Pierre-Alain Fouque, Jacques Stern, and Jan-Geert Wackers. Cryptocomputing with
rationals. In Financial Cryptography, volume 2357 of Lecture Notes in Computer
Science, pages 136–146. Springer, 2002.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GJPY17] Irene Giacomelli, Somesh Jha, C. David Page, and Kyonghwan Yoon. Privacy-
preserving ridge regression on distributed data. Cryptology ePrint Archive, Report
2017/707, 2017.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for Boolean circuits. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., pages 1069–1083, 2016.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[GSB+17] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans. Privacy-preserving distributed linear regression on
high-dimensional data. Proceedings on Privacy Enhancing Technologies, 4:248–267,
2017.

[HFN11] Rob Hall, Stephen E Fienberg, and Yuval Nardi. Secure multiple linear regression
based on homomorphic encryption. Journal of Official Statistics, 27(4):669, 2011.

[JL13] Marc Joye and Benôıt Libert. Efficient cryptosystems from 2k-th power residue sym-
bols. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 76–92, 2013.

[Joy17] Marc Joye. Privacy-preserving ridge regression without garbled circuits. Cryptology
ePrint Archive, Report 2017/732, 2017.

[KLSR04] Alan F. Karr, Xiaodong Lin, Ashish P. Sanil, and Jerome P. Reiter. Regression
on distributed databases via secure multi-party computation. In Proceedings of the
2004 Annual National Conference on Digital Government Research, pages 108:1–
108:2. Digital Government Society of North America, 2004.

[KLSR05] Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. Secure regres-
sion on distributed databases. Journal of Computational and Graphical Statistics,
14(2):263–279, 2005.

[KLSR09] Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. Privacy-
preserving analysis of vertically partitioned data using secure matrix products. Jour-
nal of Official Statistics, 25(1):125, 2009.

[LD15] Boqiang Lin and Kerui Du. Measuring energy rebound effect in the chinese economy:
an economic accounting approach. Energy economics, 50:96–104, 2015.

22

[LP00] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Advances
in Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2000, Proceedings, pages 36–54,
2000.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[McD09] Gary C McDonald. Ridge regression. Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 1(1):93–100, 2009.

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 19–38, 2017.

[NJFM14] Elias Chaibub Neto, In Sock Jang, Stephen H Friend, and Adam A Margolin. The
stream algorithm: computationally efficient ridge-regression via bayesian model av-
eraging, and applications to pharmacogenomic prediction of cancer cell line sensitiv-
ity. In Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
page 27. NIH Public Access, 2014.

[NWI+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and
Nina Taft. Privacy-preserving ridge regression on hundreds of millions of records.
In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013, pages 334–348, 2013.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238, 1999.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 238–252, 2013.

[PQCF07] Eduardo da Cruz Gouveia Pimentel, Sandra Aidar de Queiroz, Roberto Carvalheiro,
and Luiz Alberto Fries. Use of ridge regression for the prediction of early growth
performance in crossbred calves. Genetics and Molecular Biology, 30, 2007.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. J. ACM, 56(6):34:1–34:40, 2009.

[SKLR04] Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome P. Reiter. Privacy pre-
serving regression modelling via distributed computation. In Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’04, pages 677–682. ACM, 2004.

[WGD82] Paul S. Wang, M. J. T. Guy, and James H. Davenport. P-adic reconstruction of
rational numbers. ACM SIGSAM Bulletin, 16(2):2–3, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,
27-29 October 1986, pages 162–167, 1986.

23

A Appendix

Table 7: Results for synthetically-generated data. Underlying encryption: Paillier’s scheme with
message space ZN .

n d ` log2(N) E1
Π1,hor Π2

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

103

10

1 1024 2.72E-03 0.033 0.129 0.007 1.856 0.058 0.006

3 1024 3.07E-07 0.021 0.127 0.007 1.845 0.058 0.010

5 1024 2.68E-11 0.027 0.126 0.007 1.845 0.058 0.014

7 1150 3.60E-15 0.044 0.168 0.008 2.493 0.080 0.020

20

1 1024 7.01E-03 0.038 0.436 0.025 12.393 0.224 0.021

3 1244 6.70E-07 0.039 0.738 0.034 21.112 0.408 0.045

5 1776 5.84E-11 0.150 2.032 0.063 58.131 1.087 0.100

7 2306 5.70E-15 0.285 4.352 0.098 123.408 2.295 0.189

105

10

1 1024 2.46E-03 0.027 0.169 0.007 1.843 0.057 0.008

3 1024 2.98E-07 0.036 0.174 0.007 1.847 0.058 0.012

5 1024 3.17E-11 0.044 0.177 0.007 1.885 0.059 0.016

7 1282 2.89E-15 0.081 0.301 0.010 3.528 0.117 0.025

20

1 1024 6.82E-03 0.040 0.588 0.026 12.798 0.224 0.028

3 1510 7.33E-07 0.065 1.473 0.047 37.476 0.692 0.069

5 2040 6.98E-11 0.192 3.186 0.081 86.095 1.602 0.139

7 2572 5.84E-15 0.290 6.041 0.119 167.641 3.156 0.251

n d ` log2(N) E1
Π1,ver Π2

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

103

5

1 1024 1.03E-03 0.154 2.480 58.239 0.322 0.019 0.002

3 1024 1.11E-07 0.138 2.444 58.416 0.305 0.017 0.003

5 1024 1.90E-11 0.135 2.457 58.116 0.304 0.017 0.004

7 1024 1.27E-15 0.128 2.409 56.900 0.296 0.017 0.005

10

1 1024 3.09E-03 0.337 4.472 195.984 1.954 0.061 0.006

3 1024 3.26E-07 0.327 4.438 195.218 1.943 0.062 0.010

5 1024 3.04E-11 0.324 4.481 198.343 2.067 0.062 0.015

7 1150 2.33E-15 0.368 5.884 257.592 2.662 0.086 0.022

2 103

5

1 1024 1.59E-03 0.234 4.856 114.198 0.298 0.016 0.002

3 1024 1.49E-07 0.234 4.937 115.894 0.296 0.016 0.003

5 1024 1.63E-11 0.245 5.107 117.163 0.291 0.016 0.004

7 1024 1.28E-15 0.239 4.837 113.248 0.305 0.017 0.005

10

1 1024 4.37E-03 0.521 8.892 388.718 2.018 0.064 0.007

3 1024 3.37E-07 0.480 9.184 389.507 1.872 0.060 0.011

5 1024 3.52E-11 0.493 8.898 387.770 1.884 0.060 0.015

7 1170 3.07E-15 0.566 12.950 564.662 3.002 0.095 0.022

Table 8: References for the UCI datasets.
Dataset Reference
forest https://archive.ics.uci.edu/ml/datasets/Forest+Fires
boston https://archive.ics.uci.edu/ml/datasets/housing
facebook https://archive.ics.uci.edu/ml/datasets/Facebook+metrics
air https://archive.ics.uci.edu/ml/datasets/Air+Quality
energy https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
beijing https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
wine https://archive.ics.uci.edu/ml/datasets/Wine+Quality
bike https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
student http://archive.ics.uci.edu/ml/datasets/student+performance

24

https://archive.ics.uci.edu/ml/datasets/Forest+Fires
https://archive.ics.uci.edu/ml/datasets/housing
https://archive.ics.uci.edu/ml/datasets/Facebook+metrics
https://archive.ics.uci.edu/ml/datasets/Air+Quality
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
http://archive.ics.uci.edu/ml/datasets/student+performance

A.1 Paillier’s scheme

We briefly recall here Paillier’s scheme [Pai99] used in the implementation presented in Section
5.

Given a security parameter κ, Gen samples p and q, two prime integers of same bit-length,
and defines N = pq and ν = lcm(p− 1, q − 1). It sets pk = N , sk = ν and M = ZN , C = Z∗N2 .
To encrypt m ∈ M, Enc randomly chooses r in Z∗N and computes c = (1 + mN)rN mod N2.

To decrypt c ∈ C, Dec first computes m̄ = (cν mod N2)−1
N and returns m = m̄/ν mod N . The

correctness follows by observing that c ≡ (1+N)m rN (mod N2) and that (rN)ν ≡ 1 (mod N2).
For Paillier’s scheme, � is the standard product in Z∗N2 ; indeed: c1 · c2 ≡ [(1 + N)m1rN1] ·

[(1+N)m2rN2] ≡ (1+N)m1+m2 (r1r2)N (mod N2) and cMult(a, c1) ≡ (c1)a ≡ [(1+N)m1rN1]a ≡
(1 +N)am1(ra1)N (mod N2).

A.2 Security proof

To formally prove security, we use the standard simulation-based definition [Gol04]. Consider a
public function φ : ({0, 1}k)n → {0, 1}` and let P1, . . . , Pn be n players modelled as PPT ma-
chines. Each player Pi holds the value ai ∈ {0, 1}k and wants to compute the value φ(a1, . . . ,an)
while keeping his input private. The players can communicate among them using point-to-point
secure channels in the synchronous model. If necessary, we also allow the players to use a
broadcast channel. To achieve their goal, the players jointly run a n-party MPC protocol Π.
The latter is a protocol for n players that is specified via the next-message functions: there
are several rounds of communication and in each round the player Pi sends to other players a
message that is computed as a deterministic function of the internal state of Pi (his initial input
ai and his random tape ki) and the messages that Pi has received in the previous rounds of
communications. The view of the player Pj , denoted by ViewPj (a1, . . . ,an), is defined as the
concatenation of the private input aj , the random tape kj and all the messages received by Pj
during the execution of Π. Finally, the output of Π for the player Pj can be computed from the
view ViewPj . In order to be private, the protocol Π needs to be designed in such a way that a
curious player Pi cannot infer information about aj with j 6= i from his view ViewPi(a1, . . . ,an).

More precisely, we have the following definition.

Definition A.1 (Definition 7.5.1 in [Gol04]). We say that the protocol Π realizes φ with cor-
rectness if for any input (a1, . . . ,an), it holds11 that Prφ(a1, . . . ,an) 6= output of Π for Pi =
0 for all i ∈ [n]. Let A a subset of at most n − 1 players, the protocol Πf realizes φ
with privacy against A if it is correct and there exists a PPT algorithm Sim such that
(ViewPi(a1, . . . ,an))Pi∈A and Sim((ai)Pi∈A, φ(a1, . . . ,an)) are computationally indistinguish-
able for all inputs.

The protocol Π described in Fig. 7, which summarizes the privacy preserving system de-
scribed in Section 4, can be seen as an MPC for m+ 2 parties: DO1, . . . ,DOm, MLE and CSP.
The input of DOk is Dk as explained by (2) for the horizontally-partitioned setting, and by (3)
for the vertically-partitioned setting. MLE and CSP have no input. Notice that we assume here
that all the entries in the local dataset are integers number in in the interval [−10`δ, 10`δ] (see
Section 2.4). Moreover we assume that (Gen,Enc,Dec) is a LHE scheme with plaintext space
M = ZN and that Eq. (4) is satisfied. Finally define φ the function that computes the ridge
regression model from the data in the clear (φ(D1, . . . ,Dm) = A−1b). With this assumption we
have the following.

Theorem 1. Let D ⊂ {1, . . . ,m}, then Π (Fig. 7) realizes φ with correctness and privacy
against the adversaries A1 = {MLE} ∪ {DOi | i ∈ D} and A2 = {CSP} ∪ {DOi | i ∈ D}.

11The probability is over the choice of the random tapes ki.

25

Protocol Π

– Parties: CSP and MLE with no input, DOi with input Di for i = 1, . . . ,m.

– Output : each party gets w∗

Phase 1 : MLE, CSP and DO1, . . . ,DOm jointly run Π1,hor or Π1,ver.

Phase 2 : – MLE and CSP jointly execute Π2;

– MLE sends w∗ to the other parties.

Figure 7: Protocol Π implements our system.

Proof. Correctness: Using the homomorphic properties of the underlying encryption scheme, it
easy to verify that at the end of Phase 1 of Π, the MLE knows A′ and b′ such that Decsk (A′) = A
and Decsk (b′) = b. It is also easy to verify that in Step 3 in Π2 we have

w̃∗ = Rw̃ − r = R(C−1d)− r mod N

= R((AR)−1 + (b +Ar)) mod N

= A−1b mod N

Since Eq. (4) is satisfied, applying the rational reconstruction to w̃∗ we obtain the model w∗ =
A−1b in Qd.

Privacy: To prove privacy we construct two simulators Sim1 and Sim2 which simulate the
view of the parties in A1 and A2, respectively. Let w̄∗ = φ(D1, . . . ,Dm).

Sim1({Di}i∈D,w∗) (in the horizontally-partitioned setting) is defined by the following steps:

1. Run (pk , sk)← Gen(κ);

2. For all k = 1, . . . ,m, if k ∈ D compute A′k and b′k as in Step 2 of Π1,hor. Otherwise
compute A′k and b′k as component-wise encryption of the identity d × d matrix and the
zero vector (d components) (i = nk−1 + 1, . . . , nk);

3. Sample R and r as in the protocol;

4. Compute w̃ = R−1(w∗ + r) mod N ;

5. Output ({Di}i∈D, pk , enc, w̃,w∗) where enc contains the encryptions of step (2).

Sim1({Di}i∈D,w∗) (in the vertically-partitioned setting) is defined by the following steps:

1. Run (pk , sk)← Gen(κ) and run (pk i, sk i)← labGen(κ) for i = 1, . . . ,m;

2. For all k = 1, . . . ,m, if k ∈ D compute cij for all i = 1, . . . , n and j = dk−1 + 1, . . . , dk as
in Step 2 of Π1,ver. Otherwise compute cij as encryption of 0.

3. Sample R and r as in the protocol;

4. Compute w̃ = R−1(w∗ + r) mod N ;

5. Output ({Di}i∈D, pk , {pk i}i=1,...,m, enc, w̃,w
∗) where enc contains the encryptions of step

(2).

26

It follows from the semantic security of the encryption scheme that the simulation output has
the same distribution of the views of the corrupted parties in A1 in the protocol Π.

Sim2({Di}i∈D,w∗) is defined by the following steps:

1. Run (pk , sk)← Gen(κ);

2. Sample R and r as in the protocol;

3. Compute Encpk (R) and Encpk (r);

4. Output ({Di}i∈D, pk ,Encpk (R),Encpk (r),w∗)

It follows from Lemma 4.1 that the simulation output has the same distribution of the views
of the corrupted parties in A2 in the protocol Π.

27

	Introduction
	Background
	Standard notations
	Linear ridge regression
	Cryptographic tools
	Data representation

	Threat Model and System Overview
	Protocols Description
	Phase 1: Merging the dataset
	Phase 2: Computing the model
	Choice of parameters
	Complexity
	Active security

	Implementation
	Setup
	Experiments results

	Conclusion
	Appendix
	Paillier's scheme
	Security proof

