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Abstract. Nonlinear permutations (S-boxes) are key components in
block ciphers. Differential branch number measures the diffusion power
of a permutation. Differential branch number of nonlinear permutations
of Fn

2 has not been analyzed, although it is well studied for linear permu-
tations. In this paper we obtain a bound on differential branch number
of permutations (both linear and nonlinear) of Fn

2 . We also show that
in case of F4

2, the maximum differential branch number can be achieved
only by affine permutations.
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1 Introduction

The basic design principle of a block cipher consists of confusion and diffusion
as suggested by Shannon [16]. Confusion layer makes the relation between the
key and the ciphertext as complex as possible, whereas diffusion layer spreads
the plaintext statistics across the ciphertexts. So far there have been several
constructions of block ciphers, and equal efforts have been made to break them.
In the process literature has been enriched by proposals of elegant cryptanalysis
techniques, for instance, differential cryptanalysis [4] and linear cryptanalysis
[14]. The latter two cryptanalysis methods led to the design known as wide-trail
strategy [9]. This design constructs round transformations of block ciphers with
efficiency and provides resistance against differential and linear cryptanalysis.
This also explains how differential branch number is related to the number of
active S-boxes.

Recently lightweight cryptography has gained huge attention from both the
industry and academia. There have been several proposals of lightweight ciphers
so far, which are mostly based on symmetric cryptography. In this work we
are interested in block ciphers. Some examples of lightweight block ciphers are
CLEFIA [17] and PRESENT [6]; both are included in the ISO/IEC 29192 stan-
dard. There are many block ciphers which follow the design of Substitution-
Permutation-Network (SPN), for example, AES [10]. In this model, S-boxes are
used to achieve the confusion property, whereas in general MDS matrices are
used as the diffusion layer of a block cipher. MDS matrices generate MDS codes



which achieve the highest possible minimum distance, thus MDS matrices have
the highest possible diffusion power. In the same note we find the design of
PRESENT very interesting. It has removed the usual diffusion layer that is nor-
mally implemented by an MDS matrix. Thus saving a considerable amount of
hardware cost. It uses a 4× 4 S-box that has the following properties:

• differential branch number is 3,
• differential uniformity is 4 (the highest possible),
• nonlinearity is 4 (the highest possible),
• algebraic degree is 3.

One round function of PRESENT is comprised of 16 such S-boxes followed by a
linear bit-wise permutation L : F64

2 → F64
2 . The role of this linear permutation is

to mix up the outputs of the S-boxes which become the input to the next round.
As bit-wise permutation can be implemented by wires only, so this reduces the
number of gates required for the whole design. Recently a lightweight block
cipher GIFT [2] has appeared which relies on the same design principle as of
PRESENT.

PRESENT (in 2007) used the diffusion property of an S-box. This construction
idea will succeed provided the S-box has high differential branch number along
with the other cryptographic properties. However after PRESENT, through the last
10 years, no attempt has been made to analyze how far an S-box can diffuse. We
consider this problem and provide upper bound of differential branch number of
permutations in general. To the best of our knowledge this is the first ever work
which gives nontrivial bounds on diffusion power of S-boxes.

Below we summarize our contributions.

Our contributions

In Section 3, we present bounds on the differential branch number of any per-
mutation of Fn2 . We completely characterize permutations of F4

2 in terms of
differential branch number. In [15] huge computational effort was made in order
to characterize cryptographic properties of 4 × 4 S-boxes. In their search they
considered 16 optimal 4×4 S-boxes from [12] and showed that the maximum pos-
sible differential branch number of such an S-box is 3. However, from this search
it is not clear whether 3 is the maximum for all 4 × 4 S-boxes. In Theorem 1,
we prove that if a permutation of F4

2 has differential branch number 4 then it is
affine, which shows (Theorem 2) that in fact for any 4× 4 S-box, the maximum
possible differential branch number is 3. Further in Theorem 3, we prove that
for any permutation over Fn2 , for n ≥ 5, its differential branch number is upper
bounded by

⌈
2n3
⌉
. There is a bound known as Griesmer bound [11] which applies

only to linear permutations, whereas our bound works on any permutation. We
compare these two bounds in Table 2, and observe that values are very close to
each other.

Differential branch number is not invariant under affine equivalence in gen-
eral. There are 302 affine equivalence classes of 4×4 S-boxes as listed in [5]. After
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searching through the affine equivalent S-boxes we identify 7 different S-boxes
in Table 3 that have differential branch number 3, nonlinearity 4, differential
uniformity 4, and degree 3. Our search concluded that there is no involutory
S-box with these properties.

2 Preliminaries

Denote by F2 the finite field of two elements {0, 1} and by Fn2 the n-dimensional
vector space over F2. For any x ∈ Fn2 the Hamming weight of x is the number
of 1’s in x, and denoted by wt(x). The bitwise XOR is denoted by ⊕.

An n × n S-box is a permutation S : Fn2 → Fn2 which is (strictly) nonlin-
ear. For a secure design, S-box needs to satisfy several properties such as high
nonlinearity, high differential uniformity, high algebraic degree, etc [8]. We now
recall the notion of differential branch number [9].

Definition 1. The differential branch number of a permutation F : Fn2 → Fn2 is
defined as

BN(F) = min
x,x′∈Fn2 , x 6=x′

{wt(x⊕ x′) + wt(F(x)⊕ F(x′))}. (1)

In the rest of this paper, we will simply use branch number instead of differ-
ential branch number. High branch number relates to the Maximum Expected
Differential Probability (MEDP) [7]. If F is linear then (1) simplifies to

BN(F) = min
x 6=0∈Fn2

{wt(x) + wt(F(x))}.

Since x 6= x′ and F is bijective, so obviously BN(F) is ≥ 2. Moreover,

BN(F) = BN(F−1).

Definition 2 (Affine Equivalence). Let F,F′ be two permutations of Fn2 . We
say that F is affine equivalent to F′ if there exist two n × n binary nonsingular
matrices A and B, and c, d ∈ Fn2 such that

F′(x) = B F[Ax⊕ c]⊕ d, for all x ∈ Fn2 . (2)

Affine equivalence preserves many properties of S-boxes, such as uniformity,
nonlinearity, degree, but it does not preserve branch number in general. For
instance, the following two affine equivalent S-boxes have different branch num-
ber. Here S and S′ are related as S′(x) = B S(x), where B is a matrix with the
rows {(1, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Note that BN(S) = 3, whereas
BN(S′) = 2, although they are affine equivalent. The S-box S is used in PRESENT.

On the other hand, if A and B are permutation matrices then the corre-
sponding affine equivalence class preserves the branch number [15]. We state
this as the following lemma.

Lemma 1. If F and F1 are two affine equivalent permutations of Fn2 such that
F1(x) = B F[Ax⊕ c]⊕ d, for all x ∈ Fn2 , where A and B are n× n permutation
matrix, and c, d ∈ Fn2 , then BN(F) = BN(F1).

Next we focus on branch number of permutations of Fn2 .

3



x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

S′(x) C D 6 3 1 0 A 5 B E 7 8 4 F 9 2

.

Table 1. Affine equivalent S-boxes with different branch number.

3 Bounds on Differential Branch Number

It is trivial to check that for any permutation F : Fn2 −→ Fn2 , we have BN(F) ≥ 2.
For linear permutations, some upper bound can be easily obtained from coding
theory. If L : Fn2 → Fn2 is linear permutation, then the set C = {(x, L(x)) : x ∈
Fn2} forms a [2n, n] linear code, and its minimum distance is actually the branch
number of L. An [N,K] linear code has minimum distance d ≤ N − K + 1
(Singleton Bound). The codes which achieve the Singleton Bound are called
MDS codes. Therefore, branch number of L is bounded by n+ 1. However, it is
known that there is no nontrivial binary MDS code [13], which means there is
no linear permutation defined over Fn2 having branch number n+ 1. Thanks to
Griesmer bound we can have further bounds [11].

Lemma 2 (Griesmer Bound). Let [N,K] be a binary linear code with the
minimum distance d then

N ≥
K−1∑
i=0

⌈
d

2i

⌉
.

We now bring in some notations which will be frequently used. For i =
0, . . . , n − 1 denote by ei, the element of Fn2 which has 1 in the i-th position,
and 0 elsewhere. Note that the set {e0, . . . , en−1} forms a basis of Fn2 . Further,
the element of Fn2 with all 1 is denoted by ē . If n = 4 then we have e0 =
(1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1), ē = (1, 1, 1, 1). We
begin with following remark which will be useful in our proofs.

Remark 1. Let F be a permutation of Fn2 such that F(0) = c for some c 6= 0 ∈ Fn2 .
Then for the permutation F′ defined as F′(x) = F(x) ⊕ c it is easy to see that
BN(F) = BN(F′) and F′(0) = 0. Thus while deriving bounds of branch numbers
we can simply consider permutations F such that F (0) = 0.

Suppose q is a power of prime, and L : Fnq −→ Fnq is a linear permutation. It is
a well known fact [13] that BN(L) ≤ n+ 1 except when q 6= 2.

Suppose F is a permutation of Fn2 . If BN(F) = n+ 1 then by Definition 1 and
using Remark 1 we get

wt(ei ⊕ 0) + wt(F(ei)⊕ F(0)) = wt(ei) + wt(F(ei)) ≥ n+ 1

which implies that wt(F(ei)) ≥ n, for i = 0, . . . n− 1. This is impossible because
there is precisely one element ē ∈ Fn2 with wt(ē ) = n. So BN(F) < n + 1.
Therefore, we have the trivial bounds of branch number of permutations of Fn2
as follows.

Lemma 3. For any permutation F of Fn2 we have 2 ≤ BN(F) < n+ 1.
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3.1 Differential Branch Number of Permutations of F4
2

In this section we consider permutations defined on F4
2 which are used to design

4 × 4 S-boxes. Here we show that if the branch number of a permutation of F4
2

is 4 then it is affine and hence branch number of any 4 × 4 S-box is bounded
above by 3.

Lemma 4. Suppose F : F4
2 → F4

2 is a permutation with F (0) = 0 and BN(F ) = 4.
Then the following conditions hold for x ∈ F4

2

C1. if wt(x) = 4 then wt (F(x)) = 4,

C2. if wt(x) = 1 then wt (F(x)) = 3,

C3. if wt(x) = 2 then wt (F(x)) = 2,

C4. if wt(x) = 3 then wt (F(x)) = 1.

Proof. Since BN(F) = 4, and F(0) = 0, then for any nonzero x ∈ F4
2 it must

satisfy

wt(x) + wt(F(x)) ≥ 4. (3)

Immediate consequence of this is that wt(F(ei)) = 3 or wt(F(ei)) = 4 as wt(ei) =
1 for any 0 ≤ i ≤ 3. Suppose wt(F(ei)) = 4 for some i, then for any j 6= i we
have

wt(ei ⊕ ej) + wt(F(ei)⊕ F(ej)) = 3 < 4,

contradicting (3). Hence C2 follows.

Next let x ∈ F4
2 with wt(x) = 2. Then, 2 ≤ wt(F(x)) ≤ 4 by (3). Since

F maps all weight 1 elements to weight 3 elements and F is a permutation, so
wt(F(x)) 6= 3. Then suppose wt(F(x)) = 4. Choose ei such that wt(ei ⊕ x) = 1
and since wt(F(ei)) = 3 we must have

wt(ei ⊕ x) + wt(F(ei)⊕ F(x)) = 1 + 1 = 2 < 4,

again contradicting (3), and hence it follows that wt(F(x)) = 2. This concludes
the proof of C3.

Now let’s prove C4. Consider x with wt(x) = 3. By C2 and C3, we have
wt(S(x)) 6= 2 and 3. This leaves open the possibility that wt(F(x)) = 1 or 4.
If wt(F(x)) = 4, take an element x′ with wt(x′) = 2 and wt(x⊕ x′) = 1. Then

wt(x⊕ x′) + wt(F(x)⊕ F(x′)) = 1 + 2 < 4,

a contradiction. So wt(F(x)) = 1.

Finally, C2, C3, C4 imply that wt(F(x)) = 4, when wt(x) = 4. ut

Now we characterize permutations F of F4
2 that have BN(F) = 4.

Theorem 1. Let F : F4
2 −→ F4

2 be a permutation with BN(F) = 4. Then F is
affine.
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Proof. As per Remark 1 we prove the result for F (0) = 0. Since BN(F) = 4
and F(0) = 0, F satisfies C1, C2, C3, C4 (Lemma 4). Note that the set of 1-
weight vectors {e0, e1, e2, e3} form a basis of F4

2, by the property C2 of Lemma 4,
the corresponding image set {F(e0),F(e1),F(e2),F(e3)} contains all the 3-weight
vectors of F4

2. Note that {F(e0),F(e1),F(e2),F(e3)} too forms a basis of F4
2. If

F(c0e0 ⊕ c1e1 ⊕ c2e2 ⊕ c3e3) = c0F(e0)⊕ c1F(e1)⊕ c2F(e2)⊕ c3F(e3)

holds for all (c0, c1, c2, c3) ∈ F4
2, then F is linear.

As wt(F(e0⊕ e1⊕ e2⊕ e3)) = 4 (by C1 of Lemma 4), and wt(F(e0)⊕F(e1)⊕
F(e2)⊕ F(e3)) = 4, then

F(e0 ⊕ e1 ⊕ e2 ⊕ e3) = F(e0)⊕ F(e1)⊕ F(e2)⊕ F(e3).

In the following we will use the fact that F (ei) ⊕ F (ej) has weight 2, and
F (ei)⊕F (ej)⊕F (ek) has weight 1. The set {F(e0),F(e1),F(e2),F(e3)} forms a
basis and wt(F(ei⊕ej)) = 2 (by C3 of Lemma 4), then F(ei⊕ej) can be written
as

F(ei ⊕ ej) = F(e`)⊕ F(er),

for some ` and r.
If linearity does not hold for (ei ⊕ ej) then (i, j) 6= (`, r).

If i = `, then

wt(ej ⊕ ei ⊕ ej) + wt(F(ej)⊕ F(ei ⊕ ej)) = wt(ei) + wt(F(ej)⊕ F(ei)⊕ F(er))

= 1 + 1 < 4,

a contradiction. The case j = r can be treated similarly.
Next if `, r /∈ {i, j}, then

wt(ej ⊕ ei ⊕ ej) + wt(F(ej)⊕ F(ei ⊕ ej)) = wt(ei) + wt(F(ej)⊕ F(e`)⊕ F(er))

= 1 + 1 < 4,

a contradiction. Therefore, for any linear combinations of the form ei ⊕ ej we
must have

F(ei ⊕ ej) = F(ei)⊕ F(ej).

We now consider linear combinations of the form ei ⊕ ej ⊕ ek. By C4 of
Lemma 4, we have wt(F(ei⊕ ej ⊕ ek)) = 1. As {F(e0),F(e1),F(e2),F(e3)} forms
a basis, so we can write

F(ei ⊕ ej ⊕ ek) = F(e`)⊕ F(er)⊕ F(et).

Suppose that linearity does not hold for ei⊕ej⊕ek, then (i, j, k) 6= (`, r, t). Note
that we must have |{i, j, k} ∩ {`, r, t}| = 2. Assume that i = ` and j = r. Then

wt(ei ⊕ ek ⊕ ei ⊕ ej ⊕ ek) + wt(F(ei ⊕ ek)⊕ F(ei ⊕ ej ⊕ ek))
= wt(ej) + wt(F(ei)⊕ F(ek)⊕ F(ei)⊕ F(ej)⊕ F(et))
= wt(ej) + wt(F(ek)⊕ F(ej)⊕ F(et))
= 1 + 1 < 4,
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a contradiction. Therefore, for any linear combinations of the form ei ⊕ ej ⊕ ek
we must have

F(ei ⊕ ej ⊕ ek) = F(ei)⊕ F(ej)⊕ F(ek).

Thus we conclude that F is linear, and the theorem follows. ut

Recall that by definition, an n× n S-box is a strictly nonlinear permutation
of Fn2 . Using Lemma 3 and Theorem 1 we can prove the upper bound on branch
number of 4× 4 S-boxes.

Theorem 2. The maximum possible branch number of a 4× 4 S-box is 3.

The paper [15] followed the work of [12] to search for optimal 4×4 S-boxes in
the affine equivalent classes. The maximum branch number in the affine equiva-
lent classes of the 16 optimal 4× 4 S-boxes from [12] is 3. As this search did not
consider the so-called non-optimal S-boxes, the question of the maximal branch
number of any 4 × 4 S-box remained unanswered. Theorem 2 settles this ques-
tion. Refer to Table 3, which lists S-boxs S that have BN(S) = 3 along with other
optimal cryptographic properties.

We now give a family of linear permutations LSn of Fn2 with BN(LSn) = 4.
Definition of these permutations varies slightly depending on whether n is even
or odd. Since these permutations are linear we specify their action on basis
Bn = {e0, . . . , en−1} of Fn2 and the maps extend linearly to other elements of Fn2 .

Example 1. Let n be an even integer. The linear permutation LSn of Fn2 , defined
on the basis Bn as

LSn(ei) = ē ⊕ ei (4)

has branch number 4 and it is also involution.

We now give family of linear permutations defined over Fn2 for odd values of
n with branch number 4.

Example 2. Let n be an odd integer. The linear permutation LSn of Fn2 , defined
on basis Bn as

LSn(ei) =


ē ⊕ ei ⊕ ei+1 if 0 ≤ i ≤ n− 2

ē ⊕ en−1 ⊕ e0 if i = n− 1

has branch number 4.

In both cases it is easy to show that the set {LSn(e0), . . . , LSn(en−1)} is a
basis of Fn2 asserting that the maps LSn indeed are bijections. The fact that
BN(LSn) = 4 can also be easily checked from the Definition 1 of branch number
for linear maps. Next we present bounds for permutations of Fn2 , for n ≥ 5.
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3.2 Differential Branch Number of Permutations of Fn
2 , n ≥ 5

In this section we present bounds on branch number of a general permutation
of Fn2 . In the remainder of this paper we assume that n ≥ 5 unless specified
otherwise. We begin with some initial observations.

Suppose that x ∈ Fn2 with wt(x) = n − δ for some δ ≥ 1. Then x can be
expressed as x = ē⊕ ex1 ⊕ . . .⊕ exδ for unique set of elements ex1 , . . . exδ ∈ Bn.
Using this one can easily see the following fact which we will be using frequently
in this paper:

Fact 1 For x, x′ ∈ Fm2 with wt(x) ≥ n− δ and wt(x′) ≥ n− δ′ we have

wt(x⊕ x′) ≤ δ + δ′.

Lemma 5. Let F be a permutation of Fn2 with F (0) = 0 and branch number
BN(F) = n− β + 1 for some 1 ≤ β ≤ n− 1. Then we have for 0 ≤ i ≤ n− 1

n− β ≤ wt(F(ei)) ≤ 2β + 1 (5)

and for 0 ≤ i 6= j ≤ n− 1,

n− (β + 1) ≤ wt(F(ei)⊕ F(ej)) ≤ 2β. (6)

Proof. From the definition of branch number it follows that

wt(F(ei)) ≥ n− β, (7)

as F (0) = 0. Then using x = F(ei), x
′ = F(ej) in Fact 1 we get

wt(F(ei)⊕ F(ej)) ≤ 2β. (8)

Again for every pair of indices i 6= j

wt(F(ei)⊕ F(ej)) ≥ n− (β + 1). (9)

Using (7) and (9) in Fact 1 we get (5). Further combining (8) and (9) we get
(6). ut

Lemma 6. Let δ be an integer such that 1 ≤ δ ≤ n. Denote byWn
δ the following

set
Wn
δ = {x ∈ Fn2 : wt(x) = n− δ}. (10)

Then for any x, x′ ∈ Wn
δ we have wt(x⊕ x′) = 2k for some 1 ≤ k ≤ δ. Further

suppose V ⊆ Wn
δ defined as

V = {x ∈ Wn
δ :wt(x⊕ x′) = 2δ for all x′ ∈ V}

then |V| ≤
⌊
n
δ

⌋
.
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Proof. First claim is obvious. To see second part, first observe that given any
x ∈ Wn

δ there exist unique set of elements {ex1
. . . , exδ} ⊆ Bn such that x =

ē ⊕ ex1 ⊕ · · · ⊕ exδ . An element y ∈ Wn
δ is in V if and only if

{ey1 . . . , eyδ} ∩ {ex1
. . . , exδ} = ∅

for every element x already in V. Consequently, we have |V| ≤
⌊
n
δ

⌋
as required.

ut

Using the above observations we prove the following bound on the branch
number of a permutation of Fn2 .

Theorem 3. If n ≥ 5 then for any permutation F of Fn2 we have

BN(F) ≤
⌈
2
n

3

⌉
. (11)

Proof. First it is easy to see that⌈
2
n

3

⌉
= n−

⌊n
3

⌋
,

and hence we substitute the bound in (11) by n−
⌊
n
3

⌋
to make the proof easy.

On the contrary to (11) assume that BN(F) ≥ n −
⌊
n
3

⌋
+ 1. Using β =

⌊
n
3

⌋
in

Lemma 5 we get

n−
⌊n

3

⌋
≤ wt(F(ei)) ≤ 2

⌊n
3

⌋
+ 1 (12)

for 0 ≤ i ≤ n− 1, and

n− (
⌊n

3

⌋
+ 1) ≤ wt(F(ei)⊕ F(ej)) ≤ 2

⌊n
3

⌋
(13)

for 0 ≤ i 6= j ≤ n− 1. Now, recall that the integer n can be written as

n = 3
⌊n

3

⌋
+ r (14)

for a unique r such that 0 ≤ r ≤ 2. We prove our claim separately for each value
of r.
Case 1. r = 2. From (12) we have

n−
⌊n

3

⌋
≤ 2

⌊n
3

⌋
+ 1

and substituting n = 3
⌊
n
3

⌋
+ 2 in this we get 2 ≤ 1 which is a contradiction.

Case 2. r = 1. In this case, by substituting n = 3
⌊
n
3

⌋
+ 1 the inequalities (12)

and (13) become the following equalities

wt(F(ei)) = n−
⌊n

3

⌋
wt(F(ei)⊕ F(ej)) = 2

⌊n
3

⌋ (15)
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Note that both the identities in (15) must be satisfied by all the elements of
the set {F(e0), . . . ,F(en−1)}. We show that this is impossible. Since wt(F(ei)) =
n−
⌊
n
3

⌋
for all 0 ≤ i ≤ n−1, we are in the situation of Lemma 6 with F(ei) ∈ Wn

δ

where δ =
⌊
n
3

⌋
. Consequently, we see that there can be maximum b n

bn3 c
c = 3

elements F(er),F(es),F(et) for which the latter identity in (15) can hold. On the
other hand, since n ≥ 5, there exist at least two basis elements eu and ev apart
from er, es, et, and by Lemma 6 we will have

wt(F(eu)⊕ F(ev)) ≤ 2 (δ − 1) < 2
⌊n

3

⌋
which contradicts (15).

Case 3. r = 0. In this case we have n = 3
⌊
n
3

⌋
and the inequalities (12), (13)

simplify to

wt(F(ei)) = n−
⌊n

3

⌋
or n−

⌊n
3

⌋
+ 1 (16)

wt(F(ei)⊕ F(ej)) = n−
⌊n

3

⌋
− 1 or n−

⌊n
3

⌋
(17)

for every 0 ≤ i 6= j ≤ n− 1. Note that for every element of {F(e0), . . . ,F(en−1)}
there are only two possibilities for wt(F(ei)) as in (16). First we show that
wt(F(ei)) = wt(F(ej)) = n −

⌊
n
3

⌋
+ 1 cannot hold, for i 6= j, otherwise using

x = F(ei), x
′ = F(ej) and δ = δ′ =

⌊
n
3

⌋
− 1 in Fact 1 we get

wt(F(ei)⊕ F(ej)) ≤ 2(
⌊n

3

⌋
− 1) = n−

⌊n
3

⌋
− 2 < n−

⌊n
3

⌋
− 1

contradicting (17). Thus there can be at most one element F(ei) such that
wt(F(ei) = n −

⌊
n
3

⌋
+ 1. Without loss of generality assume that wt(F(e0)) =

n −
⌊
n
3

⌋
+ 1, then it follows from (16) that for i = 1, . . . , n − 1 the weights of

wt(F((ei)) satisfy

wt(F(ei)) = n−
⌊n

3

⌋
. (18)

Thus, we are in situation of Lemma 6 with F(e1), . . . ,F(en−1) ∈ Wn
δ for δ =

⌊
n
3

⌋
.

Hence there can be only three elements F(er),F(es),F(et), 1 ≤ r 6= s 6= t ≤ n−1
such that for any two indices i, j ∈ {r, s, t}

wt(F(ei)⊕ F(ej)) = 2 δ = 2
⌊n

3

⌋
holds. Since n ≥ 5 there exist at least one element ek, where k 6= 0 and also
k /∈ {r, s, t}. Then for any i ∈ {r, s, t} we must have (by Lemma 6) wt(F(ek) ⊕
F(ei)) ≤ 2(δ − 1), which means that

wt(F(ek)⊕ F(ei)) ≤ 2
⌊n

3

⌋
− 2 < n−

⌊n
3

⌋
− 1,

contradicting (17). This concludes proof of Case 3 and also of theorem. ut
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3.3 Comparison with Griesmer Bound

Recall that Griesmer bound (Lemma 2) is applicable to linear permutations only.
Notably our bound as in (11) works for any permutation. The Table 2 shows
different n with corresponding values of Griesmer Bound and our bound (11).

n Griesmer Bound Our Bound

4 4 4

5 4 4

6 4 4

7 5 5

8 6 6

9 6 6

10 7 7

11 8 8

12 8 8

13 8 9

14 8 10

15 9 10

16 10 11

17 10 12

18 11 12

19 12 13

Table 2. Comparison between branch number of linear permutations obtained from
Griesmer bound and that of general permutations obtained from our bound (11).

It is noticeable that our bound is very close to Griesmer bound, and in
fact matching for some small values of n. The Griesmer bound is not sharp, for
example for an [8, 4] binary linear code the maximum possible minimum distance
d is 5 (see [1]), whereas the Griesmer bound says d ≤ 6. Our bound for branch
number of permutations of F8

2 is also 6. At this moment we also do not know the
existence of any nonlinear permutation with branch number 6, and in general for
Fn2 with n ≥ 5, it is not known whether there is any nonlinear permutation for
which the bound of branch number is achieved. We suspect that like Griesmer
bound our bound is also not sharp in general.

4 Identifying good 4 × 4 S-boxes

The set of permutations of F4
2 is classified into 302 affine equivalent classes as

listed in [5]. Affine equivalence relation preserves several cryptographic proper-
ties of permutations like algebraic degree, nonlinearity, differential uniformity.
There are 16 affine equivalence classes of S-boxes with nonlinearity 4, different
uniformity 4 and degree 3. However, none of the S-boxes in this list has branch

11



number 3. As affine equivalence relation does not preserve branch number of a
permutation, so we “unwrap” each equivalence class and collect S-boxes hav-
ing branch number 3. By unwrapping an S-box S we mean enumerating all the
S-boxes that are affine equivalent to S. Finally we obtain 7 S-boxes with non-
linearity 4, different uniformity 4, degree 3, and branch number 3. We list them
all in Table 3.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1(x) 2 B E 0 8 4 5 9 7 C 1 F D A 6 3

S2(x) 1 7 F 8 2 C 9 5 4 B 3 E D 6 A 0

S3(x) 5 E F 8 B 0 2 D 9 3 C 6 4 A 7 1

S4(x) 4 F 8 6 E 9 3 A 1 2 7 D B 5 C 0

S5(x) 2 D 1 A B E 4 3 9 7 C 0 6 8 F 5

S6(x) 7 A 4 F E 0 9 5 1 D B 2 8 3 6 C

S7(x) 5 6 0 9 C 1 A 4 E 8 3 F 7 B D 2

Table 3. 4×4 S-boxes with Nonlinearity 4, Differential Uniformity 4, Branch Number
3, and Degree 3.

4.1 Involutory S-boxes over F4
2

The paper [15] presented 4 classes of permutation-xor equivalent S-boxes men-
tioning them as “Golden S-boxes”. These S-boxes have the same properties as
mentioned in Table 3, and with some additional properties. Table 3 gives the
designer more choices of such S-boxes if he is only concerned about these four
core cryptographic properties. We also considered searching for 4× 4 involutory
S-boxes with good cryptographic properties.

A permutation F of Fn2 is called an involution if F(F(x)) = x for all x ∈ Fn2 .
Note that in a block cipher if the S-box is an involution then the same S-box
can be used for both encryption and decryption. This saves on implementation
cost as one does not need to implement both F and F−1. For instance the block
cipher KHAZAD [3] uses an involutory S-box. We are interested to see if there is
any involutory S-box that have the same property as the 7 S-boxes of Table 3
have. Note that affine equivalence relation does not preserve involution property.
So we search for involutory S-boxes in each of the 7 classes. Our search does not
yield any involution.

On the other hand one can obtain linear involutions of F4
2 with branch number

4 by using LSn as in (4).

5 Conclusions

In this paper we have analyzed differential branch number of permutations. We
have theoretically proved that 4× 4 S-boxes can have the maximum differential
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branch number 3. This is important for the designers who are aiming to con-
struct lightweight block ciphers following the design like PRESENT. We have also
presented upper bounds on differential branch number for permutations over Fn2 ,
for general n. We feel that there is still a scope of improving these bounds.
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