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Abstract. Characterization of the fault space of a cipher to filter out
a set of faults potentially exploitable for fault attacks (FA), is a prob-
lem with immense practical value. A quantitative knowledge of the ex-
ploitable fault space is desirable in several applications, like security eval-
uation, cipher construction and implementation, design, and testing of
countermeasures etc. In this work, we investigate this problem in the con-
text of block ciphers. The formidable size of the fault space of a block
cipher suggests for an automation to solve this problem, which should
be able to characterize each individual fault instance quickly. On the
other hand, the automation is expected to be applicable to most of the
block cipher constructions. Existing techniques for automated fault at-
tacks do not satisfy both of these goals simultaneously and hence are not
directly applicable in the context of exploitable fault characterization.
In this paper, we present a supervised machine learning (ML) assisted
automated framework, which successfully addresses both of the criteria
mentioned. The key idea is to extrapolate the knowledge of some existing
FAs on a cipher to rapidly figure out new attack instances on the same.
Experimental validation of the proposed framework on two state-of-the-
art block ciphers – PRESENT and LED, establishes that our approach
is able to provide fairly good accuracy in identifying exploitable fault
instances at a reasonable cost. Finally, the effect of different S-Boxes on
the fault space of a cipher is evaluated utilizing the framework.
Security, Block Cipher, Fault Attack, Machine Learning

1 Introduction

The advent of Internet of Things (IoT) and Cyber-Physical-Systems (CPS) have
laid foundations for designing smarter albeit complex applications involving em-
bedded computing platforms. Most of the modern embedded devices use in-
built cryptographic cores, often tailored for resource-constrained environments,
as root-of-trust for authentication and information processing tasks. Block ci-
phers are one of the most common cryptographic primitives deployed on such
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devices, for being the basic constituent of virtually every symmetric key cryp-
tosystem of today. However, it has been shown on several occasions that albeit
being mathematically secure, unless properly implemented and protected, such
cryptographic cores may lead to catastrophic security vulnerabilities by leaking
secrets to malicious parties. In particular, one must ensure the cryptographic
security of the primitives against implementation specific attacks like passive
side channel analysis and active fault attacks, which have recently gained a lot
of attention from both industry and academia, due to their practicality and
diversity.

Fault-based cryptanalysis or Fault Attacks (FA) is a class of active imple-
mentation based attacks, which typically exploit transient faults in the data
and/or control paths of a cipher during its execution to extract the secret key.
Among different sub-classes of FA, Differential Fault Analysis (DFA) attacks
are particularly interesting in the context of block ciphers, due to their low
data/fault complexity and easy-to-mount nature. In DFA, the adversary injects
faults with certain known spatiotemporal characteristics and then analyzes the
pairs of faulty and the corresponding fault-free ciphertexts to recover the secret
key. It is well established that even a single properly placed malicious fault is
able to compromise the security of mathematically strong block ciphers in cer-
tain cases. The most prominent example of this fact is the AES cipher [1], where
a single random byte fault at the 8th round of the cipher can compromise the
128-bit secret key [2].

Given a block cipher, the discovery of a DFA attack is, however, nontrivial,
as not all possible faults may lead to successful attacks. Traditional approaches
for DFAs are mostly manual and demand special expertise on cryptanalysis. Till
date, numerous block ciphers have been designed and deployed in-field for various
applications [1,3,4]. Moreover, there is a growing trend of designing application
and platform-specific lightweight ciphers, tailored for resource-constrained en-
vironments [5, 6]. Recently, NIST has launched an international competition to
standardize lightweight cryptographic primitives. It is quite apparent that thor-
ough analysis of such a large number of ciphers is impractical with manual DFA
techniques and automated DFA tools must be devised for this purpose. Further,
such automated tools should work with minimal manual intervention and must
be applicable to a large class of block ciphers and fault models.

Recently, there has been a significant advances in designing such tools [7–
12]. The most prominent among these automated frameworks is the so-called
Algebraic Fault Attack (AFA), which encodes a given cipher and an injected
fault as a system of multivariate polynomial equations on the finite field GF (2)
in Algebraic Normal Form (ANF) [7–11]. The ANF system is then converted to
an equivalent system in Conjunctive Normal Form (CNF) and fed to a Boolean
Satisfiability (SAT) solver with the aim of extracting the key by solving the
system.

In this paper, we address the problem of characterizing the entire fault space
of a block cipher to filter out the potentially exploitable fault instances. While
finding a single exploitable fault instance is sufficient from the perspective of an
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attacker, certifying a cipher or its implementation for fault attack resilience
would not be complete without some quantitative knowledge about the en-
tire space of exploitable faults. The knowledge of the exploitable fault space
might also be desired for designing ciphers with some inherent fault attack re-
silience, testing of countermeasures, and guided synthesis of countermeasures
for resource-constrained environments. However, the formidable size of the fault
spaces usually encountered in block ciphers makes the problem of exploitable
fault space characterization much more difficult than finding individual DFAs.
Typically, a fault instance in a cryptographic primitive depends on different as-
pects (e.g. the location, the width of the fault, the mathematical structure of the
cipher, and the number of times a fault is injected) and consideration of each of
these aspects results in a fault space of prohibitive size, which may be even hard
to enumerate. Even a statistical characterization of this fault space is difficult
and one must obtain a sufficiently large number of samples, as the underlying
distribution of the fault space may be unknown, even for well-studied ciphers.

The very nature of the exploitable fault characterization problem demands
an automated solution for this purpose. From the perspective of a cipher designer
or system architect, the characterization process for each individual fault should
be fast enough so that complete (or at least representative fault space can be
covered within a reasonable time. Another desired criterion for such automation
is genericness so that large class of existing and future cipher designs can be
analyzed within one single flow. Unfortunately, none of the automated fault
attack frameworks proposed till date satisfy both these criteria, simultaneously.
In particular, the AFA, which is fairly generic in nature, involves solving a SAT
problem for each individual fault instance. Although SAT solvers are remarkably
good at finding solutions to a large class of NP-Complete problem instances,
the time taken for solving is prohibitively high for certain instances. In fact,
in the context of AFA attacks, the solver may not stop within a reasonable
time for many fault instances. Although, setting a proper timeout seems to be a
reasonable fix for such cases, the variation of solving times is often very high and
as a result, the timeout threshold must be reasonably high as well, to guarantee
the capture of every possible attack. It is thus quite evident that the analysis of
the fault space by means of AFA is impractical so far the time is concerned.

1.1 Our Contributions

It is apparent from the above discussion that characterization of the fault space
of a cipher is an open problem, and in this paper, we propose a simple albeit
efficient solution to this. The contributions of this paper are as follows:

– We present a generic, fast, and fully automated framework for exploitable
fault space characterization in block ciphers. Loosely speaking, fault attack
instances are usually represented as mathematical constraints, which reduces
the size of key-space to a significant extent, so that exhaustive key search
become a trivial task. Based on the intuition that the constrained search
spaces for different exploitable fault instances on a cipher may have cer-
tain structural similarities, we propose a machine learning (ML) framework,
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which, if trained with some already known exploitable fault instances on a
cipher, can predict new attacks on the same. To the best of our knowledge,
this is the first time ML is utilized in the context of DFA.

– The proposed framework is experimentally evaluated on two state-of-the-art
lightweight block ciphers – PRESENT [5] and LED [6]. In particular, we
show that ML models can predict new attack instances for a block cipher
with significantly high accuracy, while trained with a reasonable number
of known attack instances on the same. Interestingly, we figure out a
new DFA on the 29th round of LED block cipher requiring only
two, bit fault instances, which was never reported before. Further,
we propose a simple strategy to nullify the risk of misclassifying exploitable
faults as benign ones, which is found to work fairly well for our case studies.

– In order to establish the importance of exploitable fault characterization, we
present a potential application scenario. More specifically, we analyze the
effect of 3 structurally similar S-Boxes in the context of DFA attacks on
PRESENT. It was found that the statistical characterization of exploitable
fault space may provide interesting information regarding the effect of S-
Boxes on block ciphers, which, to the best of our knowledge, was never
elaborated before.

The rest of the paper is organized as follows. In the next section, we present
a brief overview of fault-based cryptanalysis with an emphasis towards auto-
mated fault analysis techniques. Some necessary preliminaries are presented in
Section 3. Eventually, we elaborate the proposed framework in Section 4, along
with supporting case studies and a potential application scenario in Section. 5.
Finally, the paper is concluded in Section 6.

2 Background

In this section, we present some necessary backgrounds on fault attacks with an
emphasis towards automated fault analysis. We begin with a brief introduction to
fault analysis attacks on block ciphers. The AFA and some other approaches for
automated fault attacks will be summarized next with emphasis on the concepts
relevant for this work.

2.1 Fault Attacks on Block Ciphers: A Brief Survey

Exploitation of faults to attack cryptographic devices dates back to 1997 by
Boneh et.al., who demonstrated the attack on RSA public key cryptosystem [13].
The concept of Differential Fault Analysis (DFA) was introduced by Biham et.
al. [14] on the Data Encryption Standard (DES), and was readily adapted for
other ciphers like AES [1], PRESENT [5], CLEFIA [3], LED [6] etc. In par-
ticular, AES is the most extensively studied cipher in the context of fault at-
tacks [2, 15–21]. The basic principle of any fault attack is to cause a malicious
aberration in the normal execution of the target cryptographic algorithm and
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to exploit the corresponding leakage to try and recover the secret key within
reasonable computational complexity. Till date, DFAs are the most widely stud-
ied class of fault attacks. DFA, in general, exploit computationally efficient key
distinguishers resulting from the fault injection and recover the secret key by
solving a system of equations constructed with the distinguishers. The existence
of practically achievable fault models such as bit faults, nibble faults, byte faults,
and diagonal faults makes DFA a potent threat for modern block ciphers.

Although DFA constitutes the most prominent class of fault attacks, there
exist some other variants which have recently gained significant attention mainly
due to their simplicity. Differential Fault Intensity Analysis (DFIA) is a non-
DFA techniques [22, 23]. DFIA combines the concept of side-channel analysis
with fault attack to recover the secret key by exploiting the faulty ciphertexts
only. However, the number of required ciphertexts are significantly higher than
in DFA. The Safe-Error Attacks (SEA), Differential Behaviour Analysis (DBA)
and Fault Sensitivity Analysis (FSA) constitute the other major categories of
fault attacks. The main crux of these attacks lies in the fact that depending on
a particular sub-part of the secret key (such as a bit or a byte), a fault may or
may not lead to a faulty computation. The very presence fault in a computation
thus leaks critical information which leads to the extraction of the key [21, 24].
It should be noted that all these attacks including DFIA are statistical in nature
and their success critically depends on the physical characteristics of the target
implementation.

2.2 Automated Fault Analysis

In 2010, Courtois et. al. presented the concept of Algebraic Fault Analysis (AFA)
combining the concepts of algebraic cryptanalysis and DFA [7]. Just like DFA,
AFA also exploits the difference in values generated from the fault-free calcu-
lation and faulty calculation (due to the injection of fault at any intermediate
round) to recover the secret. However, the representation and the analysis of
AFA is significantly different from that of classical DFA. AFA is the reminis-
cent of algebraic cryptanalysis which represents a cipher as a large system of
multivariate polynomial equations of low degree and high sparsity. Such polyno-
mial systems, which are usually defined on the finite field GF (2) in ANF form,
are then fed to generic algebraic solvers with the aim of extracting the secret
keys by solving [25]. Although algebraic cryptanalysis is not sufficient to break
state-of-the-art block ciphers, with the addition of extra equations due to fault
injection, they are found to break most of the well-known ciphers of present
days [7–11]. The most popular method for solving AFA instances is to convert
it to an equivalent representation in CNF form and then using off-the-shelf SAT
solvers for solving. Perhaps the most attractive feature of AFA is its genericness.
In [11], Zhang et. al. have shown that the algebraic framework can encode most
of the DFA like attacks including the attacks on key schedule and round coun-
ters. Moreover, it has been anticipated that AFA are powerful than conventional
DFA in certain situations as they can exploit many equations which are other-
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wise beyond the perception of a human attacker [11]. All such features of AFA
make it the perfect candidate for automated fault analysis.

Recently, Khanna et. al. [12] has proposed a novel approach for automated
fault analysis called XFC, which is significantly different from the AFA approach.
Through a coloring based abstraction, XFC first enumerates the fault propaga-
tion path of a cipher and then calculates the complexity of the key space which
is expected to be reduced significantly, if a fault is exploitable. The computation
procedure of XFC is fairly simple and fast compared to the AFA approaches,
which makes it a potential candidate for exploitable fault characterization. How-
ever, the framework is found to be restricted to a very specific class of DFA and
also lacks proper automation. Saha et. al., has recently proposed another sim-
ilar but significantly enhanced framework which encompasses a larger class of
DFA including Impossible Differential Fault Analysis (IDFA), and also resolves
the automation issue to some extent. However, both the frameworks are still at
initial stage.

3 Preliminaries

3.1 General Model for Block Cipher and Faults

Table 1: List of Symbols
Symbol Definition

Ek A block cipher

oij ith sub-operation in the jth round

Fh A fault instance

R Number of cipher rounds

l Number of sub-operation in each round

r round of fault injection

N fault multiplicity

w fault width

T fault position

λ bit-width of a sub-operation

{f}Nn=1 set of fault values for a fault injection

{p}Nn=1 set of plaintext values for a fault injection

MF set of exploitable faults

τ timeout for SAT solvers

S Sensitivity threshold

Let Ek be a block cipher defined as a tuple Ek = 〈Enc,Dec〉, where Enc
and Dec denote the encryption and decryption functions, respectively. Fur-
ther, the Enc function (and similarly the Dec function) is defined as Enc(p) =
olR ◦ ... ◦ o2

1 ◦ o1
1(p) = c, for a plaintext p ∈ P, ciphertext c ∈ C, and a

key k ∈ K. Each oij here denote a sub operation in a cipher having R iterative
rounds and l sub-operations in each round. The definition of the sub-operation
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also takes the key schedule sub-operations into consideration. Formally, each
sub-operation oij can be defined as oij = oij(sz, kz), where sz is some intermedi-
ate state of the cipher and kz is some intermediate state from the key schedule.
Further, any one of sz and kz can be empty. kz = φ implies a encryption sub-
operation, whereas sz = φ implies a key schedule sub-operation. Finally, both
sz and kz can be present in a sub-operation definition, which indicates a key
addition operation. For such sub-operations, kz usually denotes a round key.

An injected fault in DFA usually corrupts the input of some specific sub-
operation during the encryption or decryption operation of the cipher. Given
the cipher model, we denote the set of faults as F = {F1, F2, ..., FH}, where
each individual fault Fh is specified as follows:

Fh = 〈oir, λ, w, T,N, {f}Nn=1, {p}Nn=1〉 (1)

Here r < R is the round of injection, and oir denotes the sub-operation, in-
put of which is altered with the fault. The parameter λ denotes the data-width
of the sub-operation (more specifically, the bit-length of the input of the sub-
operation). The parameter w is the width of the fault which quantifies the max-
imum number of bits affected by a fault. In general, bit-based, nibble-based, and
byte-based fault models are considered which corresponds to w =1, 4, and 8,
respectively. The position of the fault at the input of a sub-operation is denoted
by T with t ∈ {0, 1, ... λw}. For practical reasons, w and T are usually defined in a
way so that the injected faults always remain localized within some pre-specified
block-operations of the corresponding sub-operation oir. The parameter N rep-
resents the number of times, a fault is injected at a specific location to obtain a
successful attack within a reasonable time. We call N as Fault Multiplicity.

The sets {f}Nn=1, and {p}Nn=1 denote the values of the injected faults and the
plaintexts processed during each fault injection, respectively. In the most general
case, the diffusion characteristics (and thus the exploitability) of an injected fault
critically depends upon the value of the fault and the corresponding plaintext on
which the fault is injected. A typical example is PRESENT cipher, where, the
number of active S-Boxes and thus the fault diffusion depends on the plaintext
and the fault value and as a result, many faults injected at a specific position
with the same multiplicity may become exploitable, whereas some of them at
the same position may become unexploitable. According to the fault model in
Equation 1, the total number of possible faults for a specific position T in sub-
operation oir is 2N(w+λ), for a given fault width w. The total number of possible
faults for a sub-operation oir is

(
2N(w+λ) × λ

w

)
, and that for the whole cipher is

oir is
(
2N(w+λ) × λ

w ×R× l
)
.

In certain cases the fault space can be pruned significantly utilizing the fact
that a large number are faults may be actually equivalent. A prominent example
is the AES where every byte fault at some specific position is equivalent irre-
spective of its value. However, there exists no automatic procedure to figure out
such equivalences, till date, and the only way is to manually analyze the cipher.
As a result, it is reasonable to assume the above mention calculation of fault
space size while analyzing a general construction.
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3.2 Algebraic Representation of Ciphers

Multivariate polynomial representation, which is quite well-known in the context
of AFA [11], is considered one of the most generic and informative representa-
tions for block ciphers. In this work, we utilize the polynomial representations
as the language for encoding both the ciphers and the faults. The usual way of
representing block ciphers algebraically is to assign a set of symbolic variables
for each iterative round, where each variable represents a bit from some inter-
mediate state of the cipher. Each cipher sub-operation is then represented as a
set of multivariate polynomial equations over the polynomial ring constructed
on these variables, with GF (2) being the base ring. The representation of each
sub-operation should be sparse and low-degree in addition, to make the cipher
representation easy to solve.

In order to elaborate the process of polynomial encoding, we consider the
example of the PRESENT block cipher. PRESENT is a lightweight block ci-
pher proposed by Bogdanov et. al. in CHES 2007 [5]. It has a Substitution-
Permutation Network (SPN) based round function which is iterated 31 times
to generate the ciphertext. The basic version PRESENT-80 has a block size of
64-bits and a master key of size 80 bits, which is utilized to generate 64-bit round
keys for each round function by means of an iterated key-schedule. Each round of
PRESENT consists of three sub-operations, namely, addRoundKey, sBoxlayer,
and pLayer. The addRoundKey sub-operation computes bitwise XOR between
the state bits and the round key bits. Algebraically it can be represented as:

yi = xi + ki, for 0 ≤ i < 64 (2)

where, xi, ki represents the input state bits and round key bits, respectively, and
yi represents the output bits of the addRoundKey sub-operation. In a similar
manner, the pLayer operation, which is a 64-bit permutation can be expressed
as:

yπ(i) = xi, for 0 ≤ i < 64 (3)

where π(i) is the permutation table. The non-linear substitution operation sBoxlayer
of PRESENT consists of 16 identical 4× 4 bijective S-Boxes, each of which can
be represented by a system of non-linear polynomials. The solvability of a typical
cipher polynomial system critically depends on the S-Box representation, which
is expected to be sufficiently sparse and consisting low-degree polynomials. In
the context of PRESENT, one way of representing the S-Boxes is the following:

y0 = x0x1x3 + x0x2x3

+ x0 + x1x2x3 + x1x2 + x2 + x3 + 1

y1 = x0x1x3 + x0x2x3 + x0x2 + x0x3+

x0 + x1 + x2x3 + 1
(4)

y2 = x0x1x3 + x0x1 + x0x2x3 + x0x2+

x0 + x1x2x3 + x2
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y3 = x0 + x1x2 + x1 + x3

Here xis (0 ≤ i < 4) and yis (0 ≤ i < 4) represent the input and output bits of
a 4× 4 S-Box, respectively.

Each injected fault instance can be added in the cipher equation system in
terms of new equations. Let us assume that the fault is injected at the input state
of the ith sub-operation oir at the rth round of the cipher. For convenience, we
denote the input of oir as Xi = x1||x2||...||xλ, where λ is the bit-length of Xi. In
the case of PRESENT λ = 64. Let, after the injection of the fault, the input state
changes to Y i = y1||y2||...||yλ. Then the state differential can be represented as
Di = d1||d2...||dλ, where dl = xl + yl with 0 ≤ l < λ − 1. Further, depending
on the width of the fault w, there can be m = λ

w possible locations in Xi,
which might have got altered. Let us partition the state differential Di in m-bit
chunks as Di = Di

1||Di
2||...||Di

m, where Di
t = dw×(t−1)+1||dw×(t−1)+2||...||dw×t.

Assuming T be the location of the fault, the fault effect can be modelled with
the following equations:

Di
t = 0, for 0 ≤ t ≤ m, t 6= T (5)

(1 + dw×(t−1)+1)(1 + dw×(t−1)+2)...(1+dw×t) = 0,

for t = T
(6)

It is worth to mention that, the location T of a fault can be assumed unknown
in certain cases and this can also be modeled with equations of slightly complex
form. [11]. However, in the context of exploitable fault characterization, it is
reasonable to assume that the locations are known as we are working in the
evaluator mode.

4 Proposed Methodology

4.1 Motivation

The goal of the present work is to efficiently filter out the exploitable faults for
a given cryptosystem. It is apparent that the ANF polynomials provide a rea-
sonable way for modeling the ciphers and the faults [11]. Although, the ANF
description and its corresponding CNF is easy to construct, solving them is non-
trivial as the decision problem associated with the solvability of an ANF system
is a NP-Complete problem. In practice, SAT solvers are used for solving the as-
sociated CNF systems and it is observed that the solving times vary significantly
depending on the instance.

One key observation regarding the cipher equation systems is that they are
always solvable, which is due to the fact that for a given plaintext-ciphertext pair
there always exists a key. However, it is not practically feasible to figure out the
key without fault injections, as the size of the key search space is prohibitively
large. The search space complexity reduces with the injection of faults. The size
of the search space is expected to reach below some certain size limit which is
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possible to search exhaustively with modern SAT solvers within reasonable time
if a sufficient number of faults are injected at proper locations.

The above-mentioned observation clearly specifies the condition for distin-
guishing the exploitable faults from the non-exploitable ones. To be precise, if
a SAT solver terminates with the solution within a prespecified time limit, the
fault instance is considered to be exploitable. Otherwise, the fault is consid-
ered non-malicious. Setting a proper time-limit for the SAT solver is, however,
a critical task. A relatively low time-limit is unreliable as it may fail to capture
some potential attack instances. As an example, for the PRESENT cipher we
observed that most of the 1-bit fault instances with fault multiplicity 2, injected
at the inputs of 28-th round S-Box operation, are solvable within 3 minutes.
This observation is similar to that mentioned in [11]. However, we observed that
when nibble faults are considered at the 28th round, the variation of solving time
is significantly high; in fact, there are cases with solving times around 16 − 24
hours. Moreover, such cases comprise nearly 12% of the total number of cases
for the total number of samples considered which is not insignificant in a statis-
tical sense, where failure in detecting some attack instances cannot be tolerated.
Such instances do not follow any specific pattern through which one can visually
characterize them without solving them. This observation necessarily implies
that one has to be more careful while setting solver timeouts and a high value
of timeout is preferable. However, setting high timeout limits the number of
instances one can acquire through exhaustive SAT solving.

According to the fault model described at Section 3.1, the size of the fault
space in a cipher is prohibitively large. As a concrete example, there are total
2(64+4) = 268 possible nibble fault instances, with fault multiplicity N = 1,
for any specific position T , on any sub-operation oir in the PRESENT cipher.
The number is even larger if one considers other positions, sub-operations, fault-
multiplicity, and fault-models. Moreover, the ratio of exploitable faults to the
total number of faults is unknown apriori. The whole situation suggests that in
order to obtain a reliable understanding of the exploitable fault space even in a
statistical sense, one must test a significantly large sample from fault space. Also,
to obtain a sufficiently large set of exploitable faults for testing purpose, a large
number of fault instances must be examined. With a high timeout required for
SAT solvers, exhaustive SAT solving is thus clearly impractical for fault space
characterization and a fast mechanism is required, which we shall describe from
the next section onwards.

4.2 Empirical Hardness Prediction of Satisfiability Problems

NP-Complete problems are ubiquitous in various fields of computer science, es-
pecially in AI. While they are hard-to-solve on worst case inputs, there exists
numerous “easy” instances which are of great practical value. In general, the
algorithms for solving NP-Complete problems are exhibit extreme runtime vari-
ations even across the solvable instances and there is no describable relationship
between the instance size and the algorithm runtime as such. Over the past
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decade, a considerable body of work has shown how to use supervised ML mod-
els to answer questions regarding solvability or runtime using features of the
problem instances and algorithm performance data [26–31]. Such ML models
are popularly known as Empirical Hardness Models (EHM). Some applications
of EHMs include proper algorithm portfolio selection for a problem instance [31],
algorithm parameter tuning [27], hard benchmark construction [32], and analysis
of algorithm performance and instance hardness [32].

In the context of the present work, we are interested in EHMs which pre-
dict the hardness of SAT instances. The most prominent result in the context of
empirical runtime estimation of SAT problems is due to Hutter et. al., who con-
structed a portfolio based SAT solver SATzilla [31] based on EHMs. The aim of
SATzilla was to select the best solver for a given SAT instance, depending upon
the runtime predictions of different EHMs constructed for a set of representa-
tive SAT solvers. SATzilla project also provided a large set of 138 features for
the model construction depending on various structural properties of the CNF
descriptions of the problem instance as well as some typical features obtained
from runtime probing of some basic SAT solvers. In this work, we utilize some
of these features for constructing EHMs which will predict the exploitability of
a given fault instance without solving it explicitly. Detailed description of our
feature set will be provided later in this section.

4.3 Machine Learning based Model for Exploitable Fault Identifier

Cipher Ek Fault Space F = fF1; F2; :::; FHg

fANF (E
Fh
k )g

Set of Fault induced Cipher Equations

Set of CNFs

fCNF (E
Fh
k )g

Itr ⊂ fCNF (E
Fh
k )g

Get Runtimes
via SAT Solving

Extract CNF Features
(T (Itr))

and Label with Runtimes

fCNF (E
Fh
k )g n Itr

Verify Exploitability

MF ⊂ fCNF (E
Fh
k )g

1

2

3

4
Model Training

5

6

M

Fig. 1: The Exploitable Fault Characterization Framework: Basic Idea

In this subsection, we shall describe the ML-based framework in detail. In
nutshell, our aim is to construct a binary classifier, which, if trained with cer-
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tain number of exploitable and unexploitable fault instances, can predict the
exploitability of any fault instance queried to it. Before going to further details,
we formally describe the exploitable fault space for a given block cipher and an
exploitable fault in the context of SAT solvability.

Definition 1 (Exploitable Fault Space) Given a cipher Ek and a correspond-
ing fault space F , the exploitable fault space MF ⊂ F for Ek is defined as a set
of faults such that ∀Fh ∈MF , it is possible to extract ne bits of the secret key k,
where 0 < ne ≤ |k| .

In other words, exploitable fault space denotes the set of faults for which the
combination of the injected fault and a plaintext results in the extraction of ne
bits of the secret key. From the perspective of a cipher evaluator, two distinct
scenarios can be considered at this point. In the first one, it is assumed that none
of the key bits are known apriori and faults are inserted to extract the complete
master key of the cipher. Indeed, one may increase the number of injections
to reduce the complexity of the search space in this scenario. However, it is
reasonable to assume some upper bound on the number of injections from a
practical point of view. In other words, the fault multiplicity N in the fault
model is always ≤ some pre-specified threshold. The second scenario in this
context occurs when some specific key bits are assumed to be known. This model
is extremely useful when only a subset of the key can be extracted by the fault
injection due to incomplete diffusion of the faults. In a typical AFA framework,
it is not possible to obtain a unique solution for the incompletely defused faults
unless some of the key bits are known. However, in this work, we mainly elaborate
the first scenario. It is worth to mention that, the second scenario can be dealt
with the framework we are going to propose, without any significant changes
made.

The framework for exploitable fault space characterization is depicted in
Figure. 1. Referring to the figure, let EFh

k indicate the cipher Ek, with a fault
Fh form its fault space F injected in it. This can be easily modelled as an
ANF equation system denoted as ANF (EFh

k ). The very next step is to convert

ANF (EFh

k ) to the corresponding CNF model denoted by CNF (EFh

k ). At this
point, we specify the exploitable faults in terms of solvability of SAT problems,
with the following definition:

Definition 2 (Exploitable Fault) A fault Fh ∈ F for the cipher Ek is called
exploitable if the CNF (EFh

k ) is solvable by a SAT solver within a pre-specified
time bound τ .

Given fault instances from the fault space of a cipher, we construct CNF
encoding for each of them. A small fraction Itr of these CNFs are solved ex-
haustively with SAT solver and labeled accordingly depending on whether they
are solvable or not within the threshold τ . Next, a binary classifierM is trained
with these labeled instances, which is the EHM in this case. Formally, the ML
model can defined as:

M : T (CNF (EFh

k )) 7→ {0, 1} (7)
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Here, T is an abstract function which represents the features extracted from
the CNFs. In the present context, the function T outputs the feature vectors
defined in the SATzilla feature set [31]. Further, for convenience here we use the
following nomenclature:

Class 0 : Denotes the class of exploitable faults.
Class 1 : Denotes the class of benign/unexploitable faults.

One important difference of our EHM model with the conventional EHM
models is that we do not predict the runtime of an instance but use the labels 0
and 1 to classify the faults into two classes. In other words, we solve a classifi-
cation rather than a regression problem solved in conventional EHMs [30]. The
reason is that we just do not exploit the runtime information our framework. The
main motive of ours is to classify instances whose search space size is within the
practical search capability of a solver, from those instances which are beyond the
practical limit. It is apparent that our classifier based construction is sufficient
for this purpose. In the next section, we describe the feature set utilized for the
classification.

4.4 Feature Set Description

In this work, we use the features suggested by the SATzilla – a portfolio based
SAT solving tool [31]. The SATzilla project proposed a rich set of 138 features to
be extracted from the CNF description of a SAT instances for the construction
of runtime predicting EHMs. The feature set of SATzilla is a compilation of sev-
eral algorithm-independent properties of SAT instances made by the Artificial
Intelligence (AI) community on various occations [29]. A widely known exam-
ple of such algorithm-independent properties is the so-called phase-transition
of random 3-SAT instances. In short, SAT instances, generated randomly on a
fixed number of variables, and containing only 3-variable clauses, tend to become
unsatisfiable as the clause-to-variable ratio crosses a specific value of 4.26 [26].
Intuitively, the reason for such a behavior is that instances with fewer clauses
are underconstrained and thus almost always satisfiable, while those with many
clauses are overconstrained and unsatisfiable for most of the cases. The SATzilla
feature set is divided into 12 groups. Some of the feature groups consist of struc-
tural features like the one described in the example, whereas the others include
features extracted from runtime behaviors of the SAT instances on solvers from
different genre – like Davis-Putnam-Logemann-Loveland (DPLL) solvers, or lo-
cal search solvers [30,31].

The structural features of SATzilla are divided into five feature groups. The
first group includes properties related to the problem size, measured in terms of
the number of clauses, variables, and the ratio of the two. The next three feature
groups consist of features extracted from various graph representations of SAT
instances, namely Variable-Clause Graphs (VCG), Variable-Graphs (VG) and
Clause Graphs (CG). Graphical abstraction of complex clause-variable interac-
tions quite efficiently represents the difficulty in solving an instance. Statistics
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(mean, standard deviation, min, max, entropy) on the degrees of the nodes, the
graph diameters, and special clustering-coefficients are extracted as features from
these graphs. Intuitively, these statistical measurements somewhat quantify the
difficulty of an instance. The fourth feature group of SATzilla is called balanced
features which include some simple statistical measurements on the variables
and clauses of an instance. The next feature group, which is the last one among
structural features, measures the proximity of an instance to a Horn formula,
which is a class of SAT instances relatively easier to deal with.

The so-called runtime features in SATzilla, also known as “probing” features,
are computed with short-time runs of the instances on different genres of can-
didate solvers. The seventh feature group consists of DPLL probing features,
which include the unit propagation statistics on the corresponding DPLL search
tree, as well as an unbiased estimation of the size of the search space estimated
with the average depth of contradictions in DPLL search trees [33]. The eighth
group of features is obtained by solving a linear programming relaxation of an
integer program representing the SAT instance under consideration, whereas
the ninth group consists of probing features from two stochastic local search
algorithms, GSAT and SAPS. The next feature group contains the statistics of
learned clauses for an instance obtained with a 2 second run on ZChaff SAT
solver. Finally, there are the survey propagation features which are based on
estimates of variable bias in a SAT formula obtained using probabilistic infer-
ence [34]. The computation times for these 12 groups of features are not uniform
and there exist both structural and runtime features which are computationally
expensive. The computation time of the features also provide significant infor-
mation regarding the instance hardness and as a result, they are included as the
final feature group in SATzilla. Further details on SATzilla feature set can be
found in [28,30].

4.5 Handling the False Negatives:

Class 0Class 1 Sensitive Region

Fig. 2: Sensitive Region: Conceptual Illustration

The ML model proposed in this work provides quick answers regarding the
exploitability of the fault instances queried to it. Such a quick answering system
has an enormous impact on the exploitable characterization problem as it makes
the problem tractable from a practical sense. However, the efficiency comes at
the cost of accuracy. Being a ML-based approach, there will always be some false
positives (a benign fault instance classified as exploitable) and false negatives (an
exploitable instance classified as benign). While a small number of false positives
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can still be tolerated, false negatives can be crucial for some applications, for
example, generating a test set of exploitable faults for testing countermeasures.
If some typical exploitable faults are missed, they may lead to successful attacks
on the countermeasure.

In this work, we provide a somewhat problem-specific solution for the mis-
classification issue. More precisely, we try to statistically eliminate the chances
false negative cases – that is the chances of an attack getting misclassified. The
main idea is to first determine the cases for which the classification confidence
of the classifier is not very high. We denote such cases as sensitive instances.
Note that, sensitive instances are determined on the validation data-set once the
classifier is trained and deployed for use. Intuitively, such sensitive instances are
prone to misclassification (we have also validated this claim experimentally.).
Each sensitive instance is exhaustively tested with SAT solver. Fig. 2 presents
a conceptual schematic of what do we mean by sensitive instances. Typically,
we assumed that the two classes defined in terms of the feature vectors can be
overlapping, and the region of overlap constitute the set of sensitive instances.

Determination of the sensitive instances or this region of overlap is, however,
is not straightforward and could be dealt in many ways. In this paper, we take
a very simple albeit effective strategy for this purpose as described in the next
paragraph. We use Random Forest (RF) of decision trees as our classification
algorithm [39]. Random forest is constructed several decision trees, each of which
is a weak learner. Usually, such ensemble methods of learning performs majority
voting among the decisions of the constituent weak learners (decision trees in
the present context) to determine the class of the instance. Here, we propose
a simple methodology for eliminating the false negatives using the properties
of the RF algorithm. Let Cl be the random variable denoting the predicted
class of a given instance x in the two-class classification problem we are dealing
with. For any instance x, we try to figure out the quantities Pr[Cl = 0 | x]
and Pr[Cl = 1 | x], which are basically the probabilities of x lying in any of
the two classes. Evidently, the sum of these two quantities is 1. Note that the
probabilities are calculated purely based on the decisions made by the classifier.
In other words, it is calculated exploiting the properties of the classification
algorithm. Next, we calculate the following quantity:

δ = abs(Pr[Cl = 0 | x]− Pr[Cl = 1 | x]) (8)

It is easy to observe that having a large value for δ implies the classifier is
reasonably confident about the class of the instance x. In that case, we consider
the decision of the classifier as the correct decision. For the other case, where δ
is less than some predefined threshold S, we invoke the SAT solver to determine
the actual class of the instance.

Each tree in an RF is capable of returning the class probabilities for a given
instance. The class probability of a single tree is the fraction of samples of the
same class in a leaf node of the tree. Let the total number of trees in the forest
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Algorithm 1 Procedure CLASSIFY FAULTS

Input: A random fault instance Fh

Output: Exploitability status of Fh

1: Construct ANF (EFh
k ) and then CNF (EFh

k )

2: Get x = T (CNF (EFh
k ))

3: Get 〈Pr[Cl = 0 | x], Pr[Cl = 1 | x]〉 = M(x)
4: Compute δ using Equation (8)
5: if (δ < S) then . S is a predefined threshold

6: Query the SAT engine with CNF (EFh
k )

7: if (CNF (EFh
k ) is solvable within τ) then

8: Return Fh ∈MF
9: else
10: Return Fh 6∈MF
11: end if
12: else
13: if (Pr[Cl = 0 | x] > Pr[Cl = 1 | x]) then
14: Return Fh ∈MF
15: else
16: Return Fh 6∈MF
17: end if
18: end if

be tr. The class probability a random instance x is defined as:

Pr[Cl = c | x] =
1

tr

tr∑
h=1

Prh[Cl = c | x] (9)

where, Prh[Cl = c | x] denotes the probability of x being a member of a class c
according to the tree h in the forest.

The success of this mechanism, however, critically depends on the threshold
S, which is somewhat specific to the cipher under consideration, and is deter-
mined experimentally utilizing the validation data. Ideally, one would expect
to nullify the false negatives without doing too many exhaustive validations.
Although no theoretical guarantee can be provided by our mechanism for this,
experimentally we found that for typical block ciphers, such as PRESENT and
LED, one can reasonably fulfill this criterion. Detailed results supporting this
claim will be provided in Sec. 5.

5 Case Studies

This section presents the experimental validation of the proposed framework by
means of case studies. Two state-of-the-art block ciphers – PRESENT and LED
are selected for this purpose. The motivation behind selecting these two specific
ciphers is that they utilize the same S-Box, but significantly distinct diffusion
layers. One main application of the proposed framework is to quantitatively ex-
amine the effect of different cipher sub-operations in the context of fault attacks,
and in this paper, we mainly elaborate this application. The structural features of
PRESENT and LED allow us to make a fair comparison between their diffusion
layers. In order to evaluate the effect of the nonlinear S-Box layer, we further
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perform a series of experiments on the PRESENT block cipher by replacing
its S-Box with three alternative S-Boxes of similar mathematical properties. In
the following two subsections, we present the detailed study of the PRESENT
and LED ciphers with the proposed framework. The study involving the S-Box
replacement will be presented after that.

5.1 Learning Exploitable Faults for PRESENT

Table 2: Setup for the ML Experiments on PRESENT and LED
Cipher PRESENT LED

Target Rounds 27− 30 29− 32

Maximum number of times a fault is injected (N) 2 2

Timeout for the SAT solver (τ) 24 hrs 48 hrs

The basics of PRESENT block cipher has already been described in Sec. 3.2.
Several fault attack examples have been proposed on PRESENT, mostly tar-
geting the 29-th and 28-th round of the cipher as well as the key schedule of
PRESENT [11, 23, 35–38]. Zhang et.al. [11] presented an AFA on PRESENT,
requiring 2 bit-fault instances on average, at the 28-th round of the cipher in
the best case. The solving times of the corresponding CNFs are mostly around
3 minutes.

Experimental Setup In order to validate the proposed framework, we create
random AFA instances following different fault models. In order to make the
model generic, we decided to train it on instances from different fault models.
Two competitive fault models for PRESENT are the bit and nibble fault models,
both of which can generate plenty of exploitable fault instances. In any case, we
end up getting a CNF, the solvability of which determines the exploitability of
an instance. So the model is supposed to learn to estimate the search complexity
of an instance in some way. Hence, there is no harm in combining instances from
two models as such. Table 2, presents the basic setup we used for the experiments
on PRESENT. We mainly targeted the rounds 27−30 in our experiments as one
can hardly found any exploitable fault beyond these rounds. Further, the number
of times a fault is injected (N) was kept maximum 2, (that is the parameter N
in the fault model can assume values 1 and 2) considering low fault-complexities
of DFAs. Interestingly, it was observed that the nibble fault instances (injected
2 times in succession) at 28-th round do not result in successful attacks, even
after 2 days. Further, many of these instances (almost 12%) take 16− 24 hrs of
solving time. No, successful attack instances were found taking time beyond 24
hours in our experiments, which were conducted on a 24 core machine running
CryptominiSAT5 as the SAT solver. We thus set the SAT timeout τ = 24 hours.
For the sake of experimentation, we exhaustively characterized a set of 1000
samples from the fault space of PRESENT. However, one should note that such
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Fig. 3: Machine learning results for PRESENT. (a) ROC Curve; and (b) Varia-
tion of accuracy with the size of training set.

exhaustive characterization was only required to prove the applicability of the
proposed methodology, and in practice, a much smaller number of instances are
required for training the ML model.

Feature Selection The first step in our experiments is to evaluate the feature
set. Although we started with a well-accepted feature set, it is always interesting
to know how these features impact the learning process and which are the most
important features in the present context. Some of the SATzilla features might
be computationally expensive depending on problem instances. It was found that
the unit propagation features (belongs to the group of DPLL probing features)
and the linear programming features in our case takes even more than 15 min-
utes of computing time for certain instances. As a result, we did not consider
them in our experiments which left us with 123 features in total. We apply the
random forest algorithm for feature selection, as they are quite well-suited for
this purpose [39]. The result of the feature importance assessment experiment
is presented in Figure 3a, where the X-axis represents the index of a feature
and the Y-axis represents its importance scaled within an interval of [0, 1]. The
importance of a feature for a decision tree is estimated based on how much the
specific feature decreases the entropy if selected for splitting the dataset. For
the forest, the average of these values over all the trees compute the importance
of each feature. It is interesting to observe that, there are almost 66 features,
for which the importance value is 0. Further investigation reveals that these fea-
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tures obtain constant values for all the instances. As a result, they can be safely
ignored for the further experiments.

It can be observed from Figure 3a, that the feature no. 42 is the most im-
portant one for our experiments. This feature corresponds to the aggregated
computation time for the VCG and VG graph-based features. A VCG is a bi-
partite graph, with nodes corresponding to each variable and clause. The edges
in this graph represent the occurrence of a variable in a clause. The VG has
a node for each variable and an edge between variables that occur together in
at least one clause. Intuitively, the computation time is a crude representative
for the dense-nature of these graphs, which is usually high if the search space is
very large and complex. However, it is difficult to directly relate this feature with
quick solvability of an instance as other selected features also play a significant
role. In fact, it was observed that every structural feature group have some con-
tribution in the classification, which is somewhat expected (feature no. 0− 59 in
Figure 3a). In contrast, the contributions from the runtime features were not so
regular. In particular, only the survey propagation features were found to play
some role in the classification (feature no. 79-96 in Figure 3a). Interestingly, the
features 98− 100, which corresponds to the approximate search-space size, were
found to play some role in the classification. This is indeed expected, as the
classification margin in this work is defined based on the search space size.

Table 3: Misclassification Handling for PRESENT
S Value % Sensitive Instances % False Positives beyond S
0.10 6.0 4.1

0.12 6.0 4.1

0.14 10.0 3.0

0.16 13.2 1.8

0.18 17.2 0.6

0.20 20.4 0.2

0.22 20.4 0.0

0.24 22.0 0.0

0.26 22.8 0.0

0.28 24.8 0.0

0.30 27.6 0.0

Classification We next measured the classification accuracy of the RF model
with the reduced set of features. In order to check the robustness of the learning,
we ran each of our experiments several times. For each repetition, new training
and validation sets were chosen from the set of 640 labeled samples provided,
where the sizes of them are in the ratio 7 : 3. The sample set consists of 320
exploitable and 320 unexploitable fault instances in order to achieve an unbiased
training. The average accuracy obtained in our experiment was 85%. We also
provide the Receiver Operating Characteristics (ROC) curve for the RF model,
which is considered to be a good representative for the quality of a classifier.
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The Area Under Curve (AUC) represents the goodness of a classifier, which
ranges between 0 to 1 with higher values representing a better classifier model.
The ROC curve for the PRESENT example is provided in Fig. 3c, which shows
that the classifier performs reasonably well in this case. Fig. 3b presents the
variation of accuracy with the size of training dataset in terms of a box plot. It
can be observed that the reasonable accuracy can be reached within 450 training
instances (which is around 70% of our present dataset size) and accuracy does
not improve much after that.

Handling False Negatives Although our classifier reaches a reasonable good
accuracy of 85%, there are almost 15% instances which get misclassified in this
process, which contains both false positives and false negatives. As pointed out
in Sec. 4.5, false negatives are not acceptable in certain scenarios. The approach
presented in Sec. 4.5 critically depends on the threshold parameter S, which
must be set in a way so that the percentage of false negatives become 0 or
at least negligibly small. If the percentage of instances below S is too high, it
would be costly to estimate all of them via exhaustive SAT solving. However, the
reasonably good accuracy of our classifier model suggests that the percentage
of such sensitive instances may not be very high. We tested our proposed fix
on a new set of 250 test instances with different S values. Table 3 presents the
outcome of the experiment. We begin with a value of 0.10. The percentage of
instances to be justified via SAT solver and the percentage of false negatives
beyond the S (if any) is also presented in the table for each choice of S. It can
be observed from Table 3 that, a threshold of 0.22 nullifies the number of false
negatives and keeps the percentage of sensitive instances around 20%, which is
indeed reasonable.

Gain over Exhaustive SAT Solving It would be interesting to estimate the
overall gain of our ML assisted methodology compared to exhaustive character-
ization via SAT solving. For the sake of elaboration, let us consider a scenario
where only nibble faults are injected at the 28th round of PRESENT. Further,
each fault is assumed to be injected exactly two times. The size of the resulting
fault space is 22×(64+4) = 2136, which is anyway impossible to enumerate. Even
if one considers a reasonable-sized sample of 10000 fault instances, the exhaus-
tive characterization with SAT solving only would be impractical. Considering
a timeout threshold of 24 hrs (τ = 24 hrs), characterization of these many in-
stances even with a parallel machine with a reasonable number of cores would
take an impractical amount of time. For example, if one considers a 24 core sys-
tem, the characterization would require 416 days, in the worst case. Even with
an optimistic consideration of roughly 50% of the instances hitting the timeout
threshold, the time requirement is still high. In contrast, the proposed framework
can provide a fairly reasonable solution. Firstly, the size of the training set is ex-
tremely small, and also saturates after reaching a reasonable accuracy. One can
characterize any number of fault instances after training with a reasonable error
probability. For a statistical understanding of the exploitable fault space, such
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error bounds can be reasonably tolerated. For even more security-critical appli-
cations, like evaluating a countermeasure or quantification of security bounds,
the misclassified attack instances can be crucial. The proposed method works
fine even in those cases with a reasonable overhead of characterizing 22% of the
instances exhaustively. For a set of 10000 fault instances, it would require 83
days, even in the worst case which is much better than the figures obtained with
exhaustive characterization.

Discussion: One of the goals of the ML framework is to discover new attacks
while trained on a set of known attack instances. It was found that the proposed
framework is able to do that with reasonably high accuracy. More specifically,
we found that if the training set contains only of fault instances injected at even-
numbered nibbles at the 28th round, it can successfully predict all attacks from
odd-numbered nibbles. This clearly indicates the capability of discovering new
attacks. The proposed framework also successfully validated the claim that with
the bit permutation based linear layer of PRESENT, the fault diffusion (and thus
the attack) strongly depends on the plaintext and the value of the injected fault.
Although this might not be a totally new observation, our framework figures it
out, automatically, and can quantify this claim statistically within reasonable
amount of time.

5.2 Exploitable Fault Space Characterization for LED

LED is a 64-bit block cipher proposed in CHES 2011 [6]. LED utilizes a round
function which is similar to that of AES; more specifically it has the following
sub-operations in sequence – SubByte ShiftRow, MixColumn and addRoundKey.
In contrast to AES, the 64-bit key is added once in each 4 rounds. All the
diffusion layer operations have identifiable nibble-wise structures. The 4 × 4S-
Box of PRESENT is used as the confusion layer. Interestingly LED has no key
schedule and the same key is used in all rounds. Like PRESENT, LED has
also been subjected to DFA and DFIA [23,40,41]. Most of the DFA attempts on
LED targeted the last 3 rounds of LED [8,10,40,41]. Recently, Li et. al. [42] have
proposed an Impossible Differential Fault Analysis attack on the 29-th round of
the cipher which requires 43 nibble faults to be injected at a particular nibble.
This is the only attack so far, targeting the 29th round of the cipher. Jovanovic
et. al. [8] and Zhao et. al. [10] independently presented AFA attacks on LED,
where they show that it is possible to attack the cipher at 30th round with a
single fault instance.

ML Experiments In this work, we mainly focus on the last 5 rounds of the
LED cipher. However, unlike the previous experiment on PRESENT, a slightly
different strategy was adopted. In order to examine the proper potential of the
ML model in discovering newer attack instances across different rounds, we in-
tentionally trained it with samples from the 30 and the 31st rounds and test it on
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Fig. 4: Machine learning results for LED. (a) ROC Curve; and (b) Variation of
accuracy with the size of training set.

instances from rounds 29 and 32. The RF model is trained with a total of 450 in-
stances from the 30 and the 31st rounds and tested on 190 instances from rounds
29 and 32. The setup for the data acquisition is given in Table 2. The accuracy
box plot and ROC curve for the classifier are provided in Fig. 4(a) and (b),
respectively. It can be observed that the accuracy is almost 93%. The features
used were similar to the PRESENT experiments. Handling of misclassification
was also performed and the result is presented in Table. 4.

Discovery of New Attacks: We observed a quite interesting phenomenon
in this experiment which clearly establishes the capability of the ML tool in
discovering newer attack instances. More specifically, we found that the ML tool
can identify attacks on 29th round of the cipher, even if it not trained with any
instances from the 29th round. The attack instances observed at the 29th round
of LED are all bit-fault instances with 2 fault injections, and nibble faults do not
result in successful attacks. To the best of the authors’ knowledge, no work has
reported attacks on the 29th round of LED ciphers with only 2 fault injection.
The IDFA attack on the 29 round of LED requires nearly 43 nibble faults to be
injected [42].

Discussion: So far we have discussed two ciphers with same S-Box and different
diffusion layers. A comparative study of these two experiments establishes that
compared to PRESENT, the fault space of LED is quite regular in nature. For
example, almost all of the 30 round nibble faults in LED resulted in a successful
attack, whereas for PRESENT there was a significant number of unexploitable
instances at 28th round. Form the perspective of an adversary, targeting a ci-
pher having bit-permutation based diffusion layers thus become a little more
challenging as he/she must attack it with more number of fault injections in
order to obtain a successful attack.

5.3 Analyzing the Effect of S-Boxes on Fault Attacks

The S-Boxes are one of the most important resources in a block cipher con-
struction. However, till date, no quantitative analysis was performed to evaluate
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Table 4: Misclassification Handling for LED
S Value % Sensitive Instances % False Positives beyond S
0.10 4.2 2.4

0.12 6.0 1.6

0.14 6.0 0.9

0.16 11.6 0.3

0.18 13.2 0.18

0.20 15.2 0.0

0.22 17.6 0.0

0.24 17.6 0.0

0.26 21.2 0.0

0.28 23.8 0.0

0.30 23.8 0.0

Table 5: Mathematical Properties of PRESENT, SERPENT, and SKINNY S-
Boxes

Property PRESENT SERPENT SKINNY

Size 4× 4 4× 4 4× 4

Differential Branch Number 3 3 2

Differential Uniformity 4 4 4

Max. Degree of Component Functions 3 3 3

Min. Degree of Component Functions 2 2 2

Linearity 8 8 8

Nonlinearity 4 4 4

Max. Differential Probability 0.25 0.25 0.25

Max. Degree of Polynomial Representation
(with Lexicographic Variable Ordering)

3 3 3
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Fig. 5: Exploitable Fault Spaces with. (a) PRESENT S-Box; (b) SERPENT S-
Box; and, (c) SKINNY S-Box.

the effect of S-Boxes on the fault attacks as such. In classical DFA, the attack
complexity is related with the average number of solutions of the S-Box differ-
ence equations having the form S(x) ⊕ S(x ⊕ α) = β. However, S-Boxes were
never characterized in the context of fault attacks considering the cipher as a
whole. The characterization of the exploitable fault space in this work gives us
the opportunity to perform such analysis.

In this experiment, we study the effect of 3 different S-Boxes on the PRESENT
cipher, with respect to fault attack. More specifically, we replace the original S-
Box of PRESENT with the S-Box of SKINNY [43], and the S0 S-Box of the
SERPENT [4], and study their effect on the exploitable fault space. The alge-
braic characteristics of these 3 S-Boxes are almost identical and presented in
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activated and (d) 1 S-box activated at the ith level.
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Table. 5. The exploitable fault space in each case was characterized with our
ML-based framework. For the sake of simplicity, we only tested with nibble
faults injected with N = 2 (that is two times for each fault instances) at the
28th round. The obtained test accuracies were similar to that of the PRESENT
experiment and so we do not repeat them here. Further, for each of the S-Box
case, we consider 1000 fault instances for each nibble location (there are total 16
nibble locations.). The characterized fault spaces of the three S-Box test cases
are depicted in Fig. 5(a), 5(b) and 5(c) , respectively. It is interesting to observe
that although the PRESENT and SERPENT S-Box results in almost similar be-
havior, the SKINNY S-Box results in a significantly different fault distribution.
More specifically, whereas most of the fault instances for the PRESENT and
SERPENT are exploitable (60% exploitable faults on average), the situation is
reverse in the case of SKINNY (23% exploitable faults on average).

Analysis of the Observations: In order to explain the observations made in
this experiment, we had an in-depth look in the 3 S-Boxes as well as the diffusion
layer of PRESENT. The fault diffusion in PRESENT linear layer depends on the
number of active S-Boxes (S-Boxes whose inputs are affected by the faults.). For
a multi-round fault propagation, the number of active S-Boxes in the ith round
depends on the Hamming Weights (HW) of the output S-Box differential in the
(i−1)th round. Fig. 6 emphasizes this claim with a very simple example. The lines
colored red indicate non-zero differential value and the red S-Boxes are the active
S-Boxes. Now let us consider the fault diffusion tree for the 28th round nibble
fault injection in the PRESENT structure, shown in Fig. 6(e) up to 30th round,
for convenience. It can be observed that most of the S-Boxes obtain an input
difference of 1 bit. In other words, the inputs of the S-Boxes will have a single
bit flipped. With this observation, the investigation boils down to the following
question – If the HW of the input difference of an S-Box is 1, what is the HW of
the output difference? For all three S-Boxes considered, the average HW of the
output difference should be 2 when the average is considered over all possible
input differences (this is due to the Strict Avalanche Criteria (SAC)). However,
for the typical case, where the HW of the input difference is restricted to 1, the
average HW of the output differences vary significantly. More specifically, the
average is quite low for the SKINNY S-Box where it attains a value of 2.2. For
the PRESENT S-Box, the value is 2.45 and for SERPENT it is 2.5. This stems
from the fact that, for the SKINNY S-Box, there exists input difference values,
for which the HW of the output differences become 1. Whereas for PRESENT
and SERPENT S-Boxes, the minimum HW of the output differences is 2. for
any given input difference. In essence, the fault diffusion with PRESENT and
SERPENT S-Box is more rapid on average, than the SKINNY S-Box, which got
reflected in the profile observed for exploitable fault spaces.

It is worth to mention that if the number of injected faults are increased,
SKINNY will give similar behaviors like PRESENT and SERPENT. In partic-
ular, we observed that 4 fault injections are sufficient for the SKINNY S-Box.
The result presented in this subsection is however unique from several aspects.
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Firstly, it shows empirically that even if the S-Boxes are mathematically equiv-
alent, they may have different effects in the context of fault attacks. Secondly,
the proposed framework of ours can identify such interesting phenomenon for
different cipher sub-blocks, which are otherwise not exposed from standard char-
acterization. This clearly establishes the efficacy of the proposed approach.

6 Conclusion

Exploitable fault space characterization is an extremely relevant but relatively
less explored topic in the fault attack research. We address this problem in the
context of block ciphers, in this paper, and eventually, come up with a reasonable
solution. The proposed solution is able to efficiently handle the prohibitively large
fault space of a cipher with reasonable computational overhead. The ML-based
framework proposed here is not limited to block ciphers only. It is quite well-
known that even stream ciphers, public key algorithms [44] and hash functions
can be mapped to algebraic systems [45]. From that perspective, the framework
can be easily extended to handle those cases.

In this paper, we have elaborated an application of exploitable fault char-
acterization for the evaluation of cipher sub-operations in the context of fault
attacks. However, several other applications are possible as already anticipated
in the introduction section. One of the potential application could be the guided
synthesis of countermeasures for resource-constrained environments. Through a
statistical characterization of the exploitable fault space in a per-round man-
ner, one can potentially identify locations which are the most sensitive to the
fault attacks. One can then implement costly countermeasures for those posi-
tions only, whereas less sophisticated countermeasures would work well for the
rest of the cipher. Another important application scenario could be the testing of
implementations and countermeasures with a large number of exploitable fault
instances, rather than with random faults. Such testings are highly desired to
correctly evaluate fault attack threats, or to certify a system against such attacks
and can be realized quite efficiently with the proposed framework.
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