
Round and Communication Efficient Unconditionally-secure
MPC with t < n/3 in Partially Synchronous Network

Abstract

In this work, we study unconditionally-secure multi-party computation (MPC) tolerating t < n/3 corrupti-
ons, where n is the total number of parties involved. In this setting, it is well known that if the underlying
network is completely asynchronous, then one can achieve only statistical security; moreover it is impos-
sible to ensure input provision and consider inputs of all the honest parties. The best known statistically-
secure asynchronous MPC (AMPC) with t < n/3 requires a communication of Ω(n5) field elements per
multiplication. We consider a partially synchronous setting, where the parties are assumed to be globally
synchronized initially for few rounds and then the network becomes completely asynchronous. In such a
setting, we present a MPC protocol, which requiresO(n2) communication per multiplication while ensuring
input provision. Our MPC protocol relies on a new four round, communication efficient statistical verifia-
ble secret-sharing (VSS) protocol with broadcast communication complexity independent of the number of
secret-shared values.

1 Introduction

Threshold unconditionally-secure multiparty computation (MPC) is a fundamental problem in secure distribu-
ted computing [40, 26, 8, 12, 38, 2]. Informally, an MPC protocol enables a set of nmutually distrusting parties
to jointly and securely compute a publicly known function f of their private inputs over some finite field F,
even in the presence of a computationally unbounded active adversary Adv, who can corrupt any t out of the
n parties. Let the parties be connected by pair-wise secure (private and authentic) channels. Then in the syn-
chronous communication setting, where the parties are assumed to be synchronized through a global clock, it is
known that perfectly-secure MPC is possible if and only if t < n/3 [8]. If a common broadcast channel is also
available to the parties in addition to the pair-wise secure channels, then one can tolerate upto t < n/2 corrupti-
ons, albeit with statistical security1 [38]. The resilience bounds become different if one considers a completely
asynchronous setting, where parties are not synchronized and messages can be arbitrarily delayed. Specifically,
perfectly-secure asynchronous MPC (AMPC) is possible if and only if t < n/4 [7], while statistically-secure
AMPC is possible if and only if t < n/3 [9].

Feasibility Results for Unconditionally-secure MPC: In any general MPC protocol [8, 12, 38, 2, 27, 3, 20,
4, 5, 10, 15], the function f is usually expressed as an arithmetic circuit (consisting of addition and multipli-
cation gates) over F and then the protocol “securely" evaluates each gate in the circuit in a shared/distributed
fashion. More specifically, each party secret-shares its inputs among the parties using a linear secret-sharing
scheme (LSS) [17], say Shamir [39], with threshold2 t. The parties then interact to maintain the following
invariant for each gate: given the gate inputs in a secret-shared fashion, the gate output is computed in a secret-
shared fashion. Finally the (shared) circuit output is publicly reconstructed. Intuitively, the privacy follows

1The outcome of a perfectly-secure protocol is error-free, while a negligible error is allowed in a statistically-secure protocol.
2Informally such a scheme ensures that the shared value remains information-theoretically secure even if upto t shares are revealed.

Shamir sharing of a secret with threshold t is done by selecting a random polynomial of degree at most t with the secret as the constant
term and defining the individual shares as distinct evaluations of the polynomial.

1

since each intermediate value in the above process remains secret-shared with threshold t. Due to the linearity
of the LSS, the addition (linear) gates are evaluated locally by the parties. However, maintaining the above
invariant for the multiplication (non-linear) gates requires interaction among the parties. The focus therefore
is rightfully placed on measuring the communication complexity (namely the total number of field elements
communicated) required to evaluate the multiplication gates in the circuit. In the recent past, a lot of work has
been done to design communication-efficient MPC protocols; we summarize the relevant works here.

With t < n/3, [5] presents a perfectly-secure MPC protocol withO(n) amortized communication complex-
ity3 per multiplication, while [10] presents a statistically-secure MPC protocol with t < n/2 with almost O(n)
communication complexity per multiplication. Both these results are in the synchronous setting and require
non-constant number of rounds of interaction among the parties. While the protocol of [5] requires Θ(n+D)
rounds, the protocol of [10] requires Θ(n2+D) rounds, whereD denotes the multiplicative depth of the circuit.

A major drawback of the synchronous setting is that it does not model real life networks like the Internet
accurately where it is very hard to ensure that the users are synchronized through a global clock and that there
exists a strict a priori known upper bound on the message delivery. Real life networks can be modelled more
appropriately by the asynchronous setting, where there are no known upper bounds and messages are delivered
arbitrarily (the only guarantee given in this model is that the messages sent by the honest parties will reach to
their desitination eventually). Hence designing AMPC protocols is practically motivated. However, an inherent
challenge in designing protocols in a completely asynchronous setting is that it is impossible to distinguish
between a slow, but honest party (whose messages are delayed arbitrarily) and a corrupt party (who do not send
any message at all). Hence in a completely asynchronous protocol, no party can afford to receive messages from
all the n parties, as the wait may turn out to be an endless wait. So as soon a party receives messages from n− t
parties, it has to proceed to the next “step" of the protocol. However, in this process, messages from t potentially
honest, but slow parties may get ignored. Due to this inherent phenomena, designing efficient AMPC protocols
is a challenging task, as evident from the known feasibility results for AMPC protocols summarized below.

In a completely asynchronous setting, [36] presents a perfectly-secure AMPC protocol with t < n/4 and
O(n2) communication per multiplication, while [34] presents a statistically-secure AMPC with t < n/3 and
O(n5) communication per multiplication. As it is clear, there is a significant gap in the communication com-
plexity of MPC and AMPC protocols. In addition, any AMPC protocol cannot ensure input provision, namely
the inputs of all the honest parties may not be considered for the circuit evaluation, as this may turn out to be
an endless wait and so inputs of upto t potentially honest parties may get ignored. With an aim to bridge the
gap in the communication complexity of synchronous and asynchronous MPC and to enforce input provision,
the works of [4, 14] motivate and consider hybrid asynchronous setting, where the network is assumed to be
synchronized for few initial rounds and then it becomes completely asynchronous. This is a practically moti-
vated communication setting, which has been well considered in the recent past for bridging the efficiency gap
between synchronous and asynchronous protocols for various distributed computing tasks [30, 4, 23, 6, 14].

With t < n/4, a perfectly-secure hybrid MPC protocol with one synchronous round is presented in [14],
with O(n) amortized communication complexity per multiplication. In [15], four MPC protocols in the hybrid
setting are proposed with t < n/3; while two of these protocols are perfectly-secure, the remaining two are
statistically-secure. These protocols are obtained by instantiating the efficient framework for unconditionally-
secure MPC proposed in [15] with existing VSS schemes with t < n/3 (more on this later). Among the
perfectly-secure protocols, the first one requires less number of synchronous rounds, namely4 (12, 3), but requi-
res a higher communication of O(n5) per multiplication. The second perfectly-secure protocol requires more
number of synchronous rounds, namely (21, 7), but provides a better communication complexity of O(n4)
per multiplication. So a tradeoff is attained between the amount of synchrony required and communication
achieved per multiplication. The statistically-secure hybrid protocols of [15] with t < n/3 retain the same

3The amortized communication complexity is derived under the assumption that the circuit is large enough so that the terms that
are independent of the circuit size can be ignored.

4We say a protocol requires (r, r′) (synchronous) rounds, if it requires a total of r rounds of interaction among the parties and out
of these r rounds, r′ rounds require broadcast by the parties, where r′ ≤ r.

2

communication complexity as their perfect counterparts, but reduces the number of synchronous rounds. Na-
mely the first statistically-secure protocol requires (7, 2) rounds and O(n5) communication per multiplication,
the second statistically-secure protocol requires (16, 6) rounds and O(n4) communication per multiplication.
As it is clear from these results, with t < n/3, significant improvement in the communication complexity is
not achieved, even if partial synchrony is provided in the network. Our goal is to design more efficient hybrid
MPC protocol with t < n/3 using minimal level of synchrony.

Our Results. We present a hybrid MPC protocol with t < n/3. Our protocol is statistically-secure, requires
(4, 3) synchronous rounds and O(n2) communication per multiplication. Moreover, our protocol also ensures
input provision. Our protocol outperforms the existing hybrid MPC protocols with t < n/3, both in terms of
communication complexity as well as in terms of the number of synchronous rounds required in the protocol.

To design our protocol, we follow the standard offline-online paradigm, based on Beaver’s circuit-randomization
technique [2] and which is now the de facto style of designing efficient MPC protocols [3, 4, 5, 10, 14, 15]. In
this paradigm, an MPC protocol is divided into two phases, a circuit-independent offline phase and a circuit-
dependent online phase. While the offline phase generates “raw data", independent of the circuit and actual
inputs for the computation, the online phase utilizes this raw data for the circuit evaluation. In a more detail,
the offline phase generates random multiplication triples of the form (a, b, c), Shamir-shared with threshold t;
here a, b are random and private and c = ab holds. Later, using such triples, multiplication gates are evaluated
in a shared fashion. For each multiplication gate, one multiplication triple from the offline phase is utilized
and the multiplication gate is evaluated at the cost of publicly reconstructing two Shamir-shared values. Re-
constructing a Shamir-shared valued (with threshold t) can be done efficiently with t < n/3 using the standard
Reed-Solomon (RS) error correction [31], even in a completely asynchronous setting [11, 7]. Hence we shift
the focus to design an efficient offline phase in the hybrid setting for generating multiplication triples. For this
we follow the recent framework of [15], which shows how to efficiently generate Shamir-shared multiplication
triples in offline phase, using any (polynomial based) verifiable secret-sharing (VSS) protocol [13] as a black-
box. Informally, a VSS protocol allows a designated party called dealer (D) to verifiably Shamir-share a secret
with threshold t. Thus at the end of the VSS protocol it is ensured that there exists some polynomial of degree
at most twith the secret as the constant term and every share-holder has a distinct evaluation of this polynomial.
Moreover this is ensured irrespective of whether the dealer is under the influence of the adversary or not. In
addition, if the dealer is honest then it is ensured that the secret remains information-theoretically secure from
t corrupted share-holders.

In this work, our proposed VSS protocol in the setting of t < n/3 is plugged into the framework of [15]
and the result is a more efficient hybrid MPC protocol. Communication-wise, our VSS protocol stands out
with an amortized overhead of O(n2) per secret-shared value, whereas the best known bound is only O(n3)
[25, 28]. The improvement comes from the fact that our VSS protocol requires a broadcast complexity that
is independent of the number of secrets shared, a property that is not achieved by the known constructions
[25, 28]. To induce a better complexity over point-to-point channels, we use the best known broadcast am-
plification protocols (aka multi-valued broadcast protocols) [22] to simulate the broadcast invocations in the
VSS protocols of [25, 28]. Informally, in a multi-valued protocol, broadcasting a “sufficiently large" message
of size ` has communication complexity of O(n`) over point-to-point channels and a broadcast complexity of
poly(n). With t < n/3, the most efficient multi-valued broadcast protocol is due to [37]. The protocol requires
a communication complexity of O(n`) over point-to-point channels and broadcast of n2 bits for broadcasting
an `-bit message. Detailed analysis and comparison of our VSS with existing ones is deferred later in the paper
(see section 4.3). In Table 1, we compare our MPC and VSS protocols with their previous best counter parts.

Other Related Work. In the synchronous setting, MPC protocols with O(n) communication per multiplica-
tion has been reported in [5] with perfect security and t < n/3 and in [10] with statistical security and t < n/2.
These protocols deploy non-robust secret-sharing protocols in the player-elimination and dispute-control fra-

3

Figure 1

(a) Communication complexity (in bits) per multiplication of various
AMPC and hybrid MPC protocols with t < n/3

Security Underlying Network VSS Deployed Communication
Offline Phase Online Phase in the Offline Phase Complexity

Statistical Asynchronous Asynchronous [34] O(n5 log |F|) [34]
Perfect Hybrid Asynchronous [28] O(n5 log |F|) [15]

(12, 3) rounds
Perfect Hybrid Asynchronous [25] O(n4 log |F|) [15]

(21, 7) rounds
Statistical Hybrid Asynchronous [28] O(n5 log |F|) [15]

(7, 2) rounds
Statistical Hybrid Asynchronous [25] O(n4 log |F|) [15]

(16, 6) rounds
Statistical Hybrid Asynchronous [This work] O(n2 log |F|)

(4, 3) rounds [This work]

(b) Amortized communication complexity
per shared-secret of the underlying VSS de-
ployed in the offline phase.

Security Network Type Overhead
Statistical Asynchronous O(n4)[34]

Perfect Synchronous O(n4) [28]
(7, 2) rounds

Perfect Synchronous O(n3) [25]
(16, 6) rounds

Statistical Synchronous O(n2)
(4, 3) rounds [This work]

mework. The non-robustness of the underlying primitives inflates the round complexity of their offline phase
to O(n) and O(n2) respectively. The naive approach of adopting these protocols in hybrid setting will lead to
protocols with O(n) or O(n2) synchronous (broadcast) rounds to execute the offline phase. The online phase
of these protocols can be executed asynchronously. Our hybrid MPC protocol on the other hand requires only
a constant number of synchronous broadcast rounds.

The reported works [19, 18] in the synchronous setting with polylogarithmic (in n) communication per gate
(denoted as Õ(n)) 5 are only non-optimally resilient. While [19] works with t < (12−ε)n and provides statistical
security, [18] works with t < (13−ε)n and provides perfect security, where ε > 0. These protocols also evaluate
the underlying circuit in a secret-shared fashion. However, instead of Shamir secret-sharing, they use packed
secret-sharing [24] taking advantage of the presence of larger subset of honest parties (due to the non-optimal
resilience). Due to the use of packed secret-sharing, “multiple" gates can be evaluated simultaneously by doing
a fixed set of operations on the shares. However, this requires “special" structure from the underlying circuit
being available at each layer, maintaining which, demands additional circuitry to be incorporated between
different layers of the circuit. Evaluating the overall circuit using packed secret-sharing makes these protocols
highly non-trivial and complex. It is not known how to adapt these protocols in a completely asynchronous or
a partially synchronous setting. Specifically, it is not clear whether these protocols can be executed in a hybrid
setting, with a constant number of synchronous rounds. Therefore, while treating VSS as an MPC functionality
and evaluating the resultant “VSS circuit" using the MPC protocols of [19, 18] may lead to sublinear (namely
Õ(n)) overhead per secret-shared value, it is not clear if the resultant protocols runs with a constant number of
synchronous rounds in hybrid setting.

New Techniques. Our VSS protocol is built upon a new primitive called information checking with succinct
proof of possession (ICPoP) that takes motivation from information checking protocol (ICP) introduced in
[38, 16, 35]. An ICP allows a D to privately authenticate some data for an intermediary INT, who can later
publicly reveal this data and prove that it originated from D. On the other hand, in an ICPoP protocol INT gives
a proof of possession publicly of the data originated from D, instead of publicly revealing the data. The proof
preserves data privacy and is “succinct" i.e. its size is independent of the size of the data. The succinctness of
the proof makes the broadcast complexity of our VSS protocol independent of the number of shared secrets.
Our ICPoP also offers transferability that allows any designated party to take possession of INT’s authenticated

5The actual complexity (communication, computation and round) of these protocols are of the form O((logk n · poly(log |C|)) ·
|C|) +O(poly(n, log |C|,D)), where D is the multiplicative depth of the underlying circuit C.

4

(by D) data and to be able to give a proof of possession on the “behalf" of INT. The existing ICPs do not
support transferability.

We next give a high level overview of our VSS. To share a secret s, we embed s in the constant term of
a random bivariate polynomial F (x, y) of degree t in x and y. Every party Pi then obtains a row polynomial
fi(x) = F (x, αi). The parties then publicly verify whether the row polynomials of at least n − t parties
called VCORE define a unique bivariate polynomial. The standard way to do this is to perform the “pair-wise
checking", where every pair of parties (Pi, Pj) is asked to verify the consistency of the common values on their
respective polynomials and publicly complain if there is any inconsistency, in which case D publicly resolves the
complaint by making the common value public [25, 21, 28]. This approach will lead to a broadcast complexity
of O(n2) per secret-shared value; instead we use a statistical protocol called Poly-Check (section 4.1), adapted
from [36], which performs the same task in parallel for ` secrets (and hence ` bivariate polynomials), but
keeping the broadcast complexity independent of `. Once VCORE is found, it is ensured that D has committed
a unique F (x, y) and the secret F (0, 0) to the parties in VCORE. To enable the parties to obtain their shares,
the goal will be to enable each party Pj to compute its column polynomial gj(y) = F (αj , y). For this each
party Pi ∈ VCORE transfers its common value on gj(y) (namely fi(αj)) to Pj . To ensure that correct values
are transferred, Pj publicly gives a proof of possession of all the transferred values originated from D via the
intermediary parties in VCORE. This is done in parallel for ` secrets (and hence ` bivariate polynomials); the
succinctness of the proof ensures that this step has broadcast complexity, independent of `.

2 Network Model, Definitions and Existing Tools

We consider a set P = {P1, . . . , Pn} of n parties, connected by pair-wise private and authentic channels.
For simplicity we assume n = 3t + 1, so t = Θ(n). There exists a computationally unbounded adversary
Adv who can maliciously corrupt any t parties and may force them to behave in any arbitrary fashion during
the execution of a protocol. We assume the adversary to be static, who decides the set of corrupted parties
at the beginning of the protocol execution. We assume a partially synchronous network, where the first four
rounds are synchronous, after which the entire communication is done asynchronously. Moreover, we assume
that the parties have access to a broadcast channel during the second, third and fourth synchronous round.
Our protocols operate over a finite field F, where |F| > 2n. We assume that there exists 2n distinct non-
zero elements α1, . . . , αn, β1, . . . , βn in F. Each element of F can be represented by O(log |F|) bits. The
communication complexity of any protocol is defined to be the total number of field elements communicated
by the honest parties in that protocol. We denote the point-to-point communication complexity by PC() and
the broadcast communication complexity as BC().

Without loss of generality, we assume that the parties want to securely compute the function f : Fn → F
via an MPC protocol, where f(x1, . . . , xn) = y, such that xi ∈ F is the input of Pi and every party is supposed
to receive the output y ∈ F. The function f is assumed to be represented by a publicly known arithmetic circuit
C over F. The circuit C consists of n input gates, two-input addition (linear) and multiplication (non-linear)
gates, zero-input random gates (for generating random values during the computation) and one output gate. We
denote by cM and cR the number of multiplication and random gates in C respectively. By [X] and [X,Y] for
Y ≥ X , we denote the sets {1, . . . , X} and {X,X + 1, . . . , Y }, respectively. We use i ∈ [k] to denote that i
can take a value from the set {1, 2 . . . k}. We will also require that |F| > 4n4(cM + cR)(3t + 1)2κ to ensure
that the error-probability of our MPC protocol is at most 2−κ, for a given error parameter κ.

2.1 Definitions

Definition 2.1 (d-sharing [3, 20, 5]). A value s ∈ F is said to be d-shared if there exists a polynomial over F,
say f(·), of degree at most d, such that f(0) = s and every (honest) party Pi ∈ P holds a share si of s, where
si = f(αi). We denote by [s]d, the vector of shares of s corresponding to the (honest) parties in P .

5

A vector ~S = (s(1), . . . , s(`)) ∈ F` is said to be d-shared if each s(i) is d-shared. Note that d-sharings are linear:
given [a]d and [b]d, then [a + b]d = [a]d + [b]d and [c · a]d = c · [a]d holds, for a public constant c. In general,
given ` sharings [x(1)]d, . . . , [x

(`)]d and a public linear function g : F` → Fm, where g(x(1), . . . , x(`)) =
(y(1), . . . , y(m)), then g([x(1)]d, . . . , [x

(`)]d) = ([y(1)]d, . . . , [y
(m)]d). We say that the parties locally compute

([y(1)]d, . . . , [y
(m)]d) = g([x(1)]d, . . . , [x

(`)]d) to mean that every Pi (locally) computes (y
(1)
i , . . . , y

(m)
i) =

g(x
(1)
i , . . . , x

(`)
i), where y(l)i and x(l)i denotes the ith share of y(l) and x(l) respectively.

Definition 2.2 ((Polynomial-based) Verifiable Secret Sharing (VSS) [3, 4, 5]). Let ~S = (s(1), . . . , s(L)) ∈ FL
be a set of L values that a dealer D ∈ P wants to t-share among P . Let Sh be a protocol for the n parties,
where D has the input ~S. Then Sh is a VSS scheme if the following holds for every possible Adv, on all possible
inputs: (1) Correctness: If D is honest then ~S is t-shared among P at the end of Sh. Moreover even if D
is corrupted there exists a set of L values, say (s(1), . . . , s(L)), which is t-shared among P at the end of Sh.
(2) Privacy: If D is honest then Sh reveals no information about ~S to Adv in the information-theoretic sense;
i.e. Adv’s view is identically distributed for all possible ~S.

If Sh satisfies all its properties without any error then it is called perfectly-secure. If the correctness is
satisfied with probability at least 1− ε, for a given error parameter ε, then it is called statistically-secure.

Unconditionally-secure MPC: Recent papers on efficient unconditionally-secure MPC follow a simpler “pro-
perty based” security definition of secure MPC [3, 20, 5, 10], instead of the more rigorous “real-world/ideal-
world” paradigm based definition [29, 1]. As our main goal is to provide an efficient VSS and MPC, to avoid
blurring the main focus of the paper and to avoid additional technicalities, we also use the property based se-
curity definition. However, we confirm that using standard techniques, like the above efficient protocols, our
MPC protocol can be also proved secure according to the simulation based definition.

Let f : Fn → F be a publicly known function and party Pi has input xi ∈ F. In any (unconditionally-
secure) multiparty computation, each party Pi t-shares its input. Let xi be the value shared by Pi. If Pi is honest
then xi = xi. The parties then compute f as y = f(x1, . . . , xn) and everyone receives y.

Definition 2.3 (Unconditionally-secure MPC). A protocol Π among the n parties securely computes f , if it
satisfies the following for every possible Adv, on all possible inputs: (1) Correctness: All honest parties obtain
y at the end of Π. (2) Privacy: Adv obtains no additional information about the inputs of the honest parties,
other than what is inferred from the inputs of the corrupted parties and y.

Protocol Π is called perfectly-secure if it satisfies all its properties without any error. If the correctness is
satisfied with probability at least 1− 2−κ, for a given error parameter κ, then Π is called statistically-secure.

Information Checking with Succinct Proof of Possession (ICPoP): An ICPoP protocol involves three enti-
ties: a designated dealer D ∈ P who holds a set of L private values S = {s(1), . . . , s(L)}, an intermediary INT
∈ P and the set of parties P acting as verifiers (note that D and INT will also play the role of verifiers, apart
from their designated role of dealer and intermediary respectively). The protocol proceeds in three phases, each
of which is implemented by a dedicated sub-protocol: (1) Distribution Phase: Here D, sends S to INT along
with some auxiliary information. For the purpose of verification, some verification information is additionally
sent to each individual verifier. (2) Authentication Phase: This phase is initiated by INT who interacts with D
and the verifiers to ensure that the information it received from D is consistent with the verification information
distributed to the individual verifiers. If D wants it can publicly abort this phase, which is interpreted as if D is
accusing INT of malicious behaviour. (3) Revelation Phase: This phase is carried out by INT and the verifiers
in P only if D has not aborted the previous phase. Here INT reveals a proof of possession of the values received
from D. The verifiers in P check this proof with respect to their verification information. Then based on cer-
tain criteria, each verifier either outputs AcceptProof (indicating that it accepts the proof) or RejectProof
(indicating that it rejects the proof).

Definition 2.4 (ICPoP). A triplet of protocols (Distr,AuthVal,RevealPoP) (implementing the distribution,
authentication and revelation phase respectively) is a (1 - ε)-secure ICPoP, for an error parameter ε, if the

6

following holds: (1) ICPoP-Correctness1: If D and INT are honest, then each honest verifier Pi ∈ P outputs
AcceptProof at the end of RevealPoP. (2) ICPoP-Correctness2: If D is corrupted and INT is honest and if
ICPoP proceeds to RevealPoP, then except with probability at most ε, all honest verifiers output AcceptProof
at the end of RevealPoP. (3) ICPoP-Correctness3: If D is honest, INT is corrupted, ICPoP proceeds to
RevealPoP and if the honest verifiers output AcceptProof, then except with probability at most ε, the proof
produced by INT corresponds6 to the values in S. (4) ICPoP-Privacy: If D and INT are honest, then informa-
tion obtained by Adv during ICPoP is independent of S. (5) ICPoP-Succinctness of the Proof: The size of the
proof produced by INT during RevealPoP is independent of L.

Properties of Polynomials: A bivariate polynomial F (x, y) of degree at most t is of the form F (x, y) =∑i,j=t
i,j=0 rijx

iyj , where rij ∈ F. Let fi(x)
def
= F (x, αi), gi(y)

def
= F (αi, y) for i ∈ [n]. We call fi(x) and gi(y)

as ith row polynomial and column polynomial respectively of F (x, y). We say that a row polynomial f i(x) lies
on a bivariate polynomial F (x, y) of degree at most t if F (x, αi) = f i(x) holds. Similarly we will say that a
column polynomial gi(y) lies on F (x, y) if F (αi, y) = gi(y) holds. We will use some well known standard
properties of bivariate and univariate polynomials, which are stated in Appendix A.

3 Efficient ICPoP

We present a (1 − ε)-secure ICPoP protocol, where |S| = L = ` × pack, with ` ≥ 1 and 1 ≤ pack ≤ n − t;
moreover ε = max{ n`

|F|−1 ,
n(n−1)
|F |−pack}. The protocol has communication complexity PC(O(n`)) and BC(O(n)).

Hence the broadcast complexity is independent of `. Our ICPoP is similar to the asynchronous ICP of [35],
adapted to the synchronous setting with the following differences: in ICP the whole S is revealed during the
revelation phase, as only its authenticity is required during the revelation phase. We require INT to be able to
publicly prove the possession of S while maintaining its privacy. Hence the auxiliary information distributed in
our ICPoP differs and also used differently; the details follow.

Let S = {(s(1,1), . . . , s(1,pack)), . . . , (s(`,1), . . . , s(`,pack))}. During the distribution phase, D embeds the
values (s(k,1), . . . , s(k,pack)) for k ∈ [`] in a random degree d secret-encoding polynomial G(k)(x) at x =
β1, . . . , βpack, where d = pack+t−1. In addition, D picks a masking setM, consisting of 2·pack random values
{(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))}, which are embedded in two random degree d polynomials
H(1)(x) and H(2)(x) respectively at x = β1, . . . , βpack; we call these polynomials as masking polynomials.
The polynomials are sent to INT, while each verifier Pi receives the values v1,i, . . . , v`,i,m1,i,m2,i of these
polynomials at a secret evaluation point γi. This distribution achieves ICPoP-Privacy, as each secret-encoding
polynomial has degree d and adversary may get at most t values on these polynomials; so it will lack pack
values on each polynomial to uniquely interpolate them.

During revelation phase, to give a proof of possession of S, INT produces a random linear combination of

the values in S ∪ M by making public a random linear combiner, say e and a linear combination C(x)
def
=

eH(1)(x) + e2H(2)(x) + e3G(1)(x) + . . . + e`+2G(`)(x). The values C(β1), . . . , C(βpack) define pack linear
combinations of S ∪M with respect to e. The pair (e, C(x)) is considered as a proof of possession of S (union
M) and verified as follows: each verifier locally verifies if the corresponding linear combination em1,i +
e2m2,i + e3v1,i + . . . + e`+2v`,i satisfies C(x) at x = γi and accordingly broadcast an Accept or a Reject

message. If more than t verifiers broadcast Accept then the proof (e, C(x)) is said to be accepted, otherwise
it is rejected. The proof will always be accepted for an honest D and INT, implying ICPoP-Correctness1.
The size of the proof is O(n) (as d = O(n)), which is independent of `, implying ICPoP-Succinctness of the
Proof. No additional information about the secret-encoding polynomials is revealed from C(x), thanks to the
masking polynomials. If D is honest and INT is corrupted then the evaluation points of the honest verifiers will
be private. So if INT gives a proof of possession of S? ∪M? 6= S ∪M by revealing a linear combination of

6The interpretation of a proof corresponding to a set of values will be clear later during the formal presentation of our ICPoP.

7

S? ∪M? through (e, C?(x)) where C?(x) 6= C(x), then with high probability, every honest verifier will reject
the proof. This is because the corresponding linear combination of the values possessed by the honest verifiers
will fail to satisfy C?(x); this implies ICPoP-Correctness 3.

The above mechanism, however, fails to achieve ICPoP-Correctness 2, as a corrupted D can distribute
“inconsistent" polynomials and values to an honest INT and honest verifiers respectively; later on the proof
produced by INT will be rejected by every honest verifier. To verify the consistency of the distributed informa-
tion, during the authentication phase, INT “challenges" D by making public a random linear combination A(x)
of the received polynomials. In response, D either instructs to abort the protocol or continue, after verifying
whether the A(x) polynomial satisfies the corresponding random linear combination of the values held by each
verifier. The idea here is that if D distributed inconsistent data, then with very high probability, any random
linear combination of the distributed polynomials would fail to satisfy the corresponding linear combination of
the values given to the honest verifiers. And this will be locally learned by the honest verifiers after A(x) is
made public. So if D still instructs to continue the protocol, then clearly D is corrupted; so later even if the proof
produced in the revelation phase turns out to be inconsistent with the information held by the honest verifiers,
the proof is accepted by adding an additional acceptance condition to deal with this particular case. We stress
that the additional acceptance condition never gets satisfied for an honest D and a corrupted INT. The privacy
of the secret-encoding polynomials is still preserved during the authentication phase (for an honest INT and
D), thanks to the masking polynomials7. The formal steps of ICPoP are given in Fig. 3. In the protocol, if the
output is AcceptProof then we additionally let the parties output pack linear combinations of the values in
S ∪M possessed by INT; looking ahead this will be useful in our VSS.

In Fig. 2 we present a pictorial representation of the values distributed and revealed in ICPoP.

Figure 2: Pictorial representation of the information generated and communicated during ICPoP protocol.

(a) The values communicated during
Distr. The two masking polynomials
of degree d are H(1)(x) and H(2)(x)
(shown in blue) which embeds the mas-
king values {m(1,1) . . .m(1,pack)} and
{m(2,1) . . .m(2,pack)} respectively. The `
secret-encoding polynomials of degree d
are G(1)(x) · · ·G(`)(x) (shown in red)
where G(k)(x) embeds pack secrets i.e
{s(k,1) . . . s(k,pack)}. All embeddings are
done at x = β1, . . . , βpack.

H(1)(x) ⇒ m(1,1) · · · m(1,pack)

H(2)(x) ⇒ m(2,1) · · · m(2,pack)

G(1)(x) ⇒ s(1,1) · · · s(1,pack)

...
...

...
...

G(`)(x) ⇒ s(`,1) · · · s(`,pack)

(b) The output vector (comb1, . . . , combpack) = (C(β1), . . . , C(βpack)) that
is revealed by INT during RevealPoP (shown in blue color) via the proof
(e, C(x)). We note that combk is a linear combination of the kth value em-
bedded in H(1)(x), H(2)(x), G(1)(x), . . . , G(`)(x) with respect to the combiner
e, for k = 1, . . . , pack. This is represented as the kth column in the matrix
representation (shown in green color).

H(1)(x) ⇒ m(1,1) · · · m(1,k) · · · m(1,pack)

H(2)(x) ⇒ m(2,1) · · · m(2,k) · · · m(2,pack)

G(1)(x) ⇒ s(1,1) · · · s(1,k) · · · s(1,pack)

...
...

...
...

...
...

...
G(`)(x) ⇒ s(`,1) · · · s(`,k) · · · s(`,pack)

⇓ ⇓ ⇓
comb1 combk combpack

combk = em(1,k) + e2m(2,k) + e3s(1,k) + · · ·+ e`+2s(`,k)

= eH(1)(βk) + e2H(2)(βk) + e3G(1)(βk) + · · ·+ e`+2G(`)(βk)

= C(βk), where

C(x) = eH(1)(x) + e2H(2)(x) + e3G(1)(x) + . . .+ e`+1G(`)(x)

In ICPoP, the correspondence between a proof and a set of values is defined as follows: Let S = {(s(1,1), . . . ,
s(1,pack)), . . . , (s(`,1), . . . , s(`,pack))} andM = {(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))}. We say that
a proof (e, C(x)) corresponds to S ∪M if C(x) embeds linear combination of S ∪M with respect to e at
x = β1, . . . , βpack; i.e. if C(βi) = em(1,i) + e2m(2,i) + e3s(1,i) + . . .+ e(`+2)s(`,i) holds for i ∈ [pack].
The following theorem, stating the properties of ICPoP is proved in Appendix B.

7This explains the need for two masking polynomials: one is used to preserve the privacy of the secret-encoding polynomials
during the authentication phase while the other is used to maintain the privacy during the revelation phase.

8

Figure 3: Efficient ICPoP protocol where ` ≥ 1 and 1 ≤ pack ≤ n− t.

ICPoP(D, INT,P, `, pack,S) : S = {(s(1,1), . . . , s(1,pack)), . . . , (s(`,1), . . . , s(`,pack))}

Distr(D, INT,P, `, pack,S ∪M)
Round 1:

• D defines a masking setM def
= {(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))} consisting of 2 ·pack random elements from

F. Let d def
= pack + t − 1. Dealer D selects ` random secret-encoding polynomials G(1)(x), G(2)(x), . . . G(`)(x) of degree

at most d, such that G(k)(β1) = s(k,1), . . . , G(k)(βpack) = s(k,pack) for k ∈ [`]. In addition, D selects two random masking
polynomials H(1)(x), H(2)(x) of degree d, such that H(k)(β1) = m(k,1), . . . , H(k)(βpack) = m(k,pack) for k ∈ [2]. For each
verifier Pi ∈ P , dealer D selects a random evaluation point γi such that γi ∈ F \ {β1, . . . , βpack}.

• D gives S ∪M to INT by sendingG(1)(x), . . . G(`)(x), H(1)(x) andH(2)(x) to INT. To each verifier Pi ∈ P , dealer D sends

(γi, v1,i, v2,i, . . . v`,i,m1,i,m2,i), where vk,i
def
= G(k)(γi) for k ∈ [`] and mk,i

def
= H(k)(γi) for k ∈ [2].

Local Computation by INT: Let G
(1)

(x), . . . G
(`)

(x), H
(1)

(x) and H
(2)

(x) be the polynomials received from D (if D is honest
then these will be the same polynomials as selected by D). INT sets S = {(s(1,1), . . . , s(1,pack)), . . . , (s(`,1), . . . , s(`,pack))} and
M = {(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))}, where s(k,1) = G

(k)
(β1), . . . , s

(k,pack) = G
(k)

(βpack) for k ∈ [`] and
m(k,1) = H

(k)
(β1), . . . ,m

(k,pack) = H
(k)

(βpack) for k ∈ [2]; S ∪M are considered to be received by INT from D.

Local Computation Each Verifier Pi: Let (γi, v1,i, v2,i, . . . v`,i,m1,i,m2,i) be the tuple received from D (if D is honest
then this will be the same tuple as computed by D).

AuthVal(D, INT,P, `, pack,S ∪M)

Round 1: INT selects a random element d ∈ F\{0} and broadcasts (d,A(x)), whereA(x) def
= dH

(1)
(x)+d2H

(2)
(x)+d3G

(1)
(x)+

d4G
(2)

(x) + . . . d`+2G
(`)

(x).

Round 2: Upon receiving (d,A(x)) from the broadcast of INT, D checks if A(γi) = dm1,i+ d2m2,i+ d3v1,i+ d4v2,i . . . d
`+2v`,i

holds for every Pi ∈ P . If not then it broadcasts an Abort messages, else it broadcasts an OK message.

RevealPoP(D, INT,P, `, pack,S ∪M) : Executed only if D broadcasted OK during AuthVal.

Round 1: INT chooses a random element e ∈ F \ {0} and broadcasts (e, C(x)) as a proof of possession of S ∪ M, where

C(x)
def
= eH

(1)
(x) + e2H

(2)
(x) + e3G

(1)
(x) + e4G

(2)
(x) . . . e`+2G

(`)
(x) .

Round 2: Upon receiving the broadcast of (e, C(x)) from INT, every verifier Pi ∈ P locally verifies the following conditions:

• C(γi)
?
= emi,1 + e2mi,2 + e3v1,i + . . . e`+2v`,i — we call this condition C1.

• A(γi) 6= dm1,i + d2m2,i + d3v1,i + d4v2,i + . . . d`+2v`,i holds during AuthVal — we call this condition C2.

Verifier Pi broadcasts Accept if condition C1 or C2 is true for Pi, else it broadcasts Reject.

Output Determination: If more than t verifiers broadcast Accept then each verifier Pi outputs AcceptProof along with the vector

(comb1, . . . , combpack)
def
= (C(β1), . . . , C(βpack)), else each verifier Pi outputs RejectProof.

Theorem 3.1. Protocols (Distr,AuthVal,RevealPoP) constitute a (1 − ε)-secure ICPoP for L = ` × pack
values with ` ≥ 1 and 1 ≤ pack ≤ n− t, where ε = max{ n`

|F|−1 ,
nd

|F |−pack} and d = pack + t− 1. The protocol
has communication complexity PC(O(n`)) and BC(O(n)).

Transferability of ICPoP: In our VSS protocol we will use ICPoP as follows: after receiving S ∪M from
D via the secret-encoding and masking polynomials, INT will send these polynomials (and hence S ∪M) to
another designated party, say PR ∈ P (if INT is corrupted then it can send incorrect polynomials to PR). Later
on, party PR will act as an INT and produce a proof of possession of S ∪M, which got “transferred" to PR
from INT; the proof gets verified with respect to the verification information held by the verifiers. This transfer
of S ∪M will satisfy all the properties of ICPoP, imagining PR as the new INT. Specifically if D is honest
and both INT and PR are honest, then the privacy will hold. Moreover if PR produces a proof of possession
of incorrect sets (this can be the case if either INT or PR is corrupted), then the proof gets rejected. If D is

9

corrupted and both INT and PR are honest then the proof given by PR will be accepted.

4 Statistical VSS with a Quadratic Overhead

We present a 4-round VSS protocol Sh to t-share `× (n− t) = Θ(n`) values with communication complexity
PC(O(n3`)) and BC(O(n3)). So for sufficiently large `, the broadcast complexity will be independent of `.
For simplicity, we will present a 5-round statistical VSS protocol Sh-Single for sharing a single secret. We will
then explain how to reduce the number of rounds of Sh-Single from five to four. Finally we extend this four
round Sh-Single to get Sh. We first discuss a protocol Poly-Check adapted from [36], used in our VSS.

4.1 Verifiably Distributing Values on Bivariate Polynomials of Degree at most t

In our VSS protocol we will come across the following situation: D will select L bivariate polynomials
F (1)(x, y), . . . , F (L)(x, y), each of degree at most t and send the ith row polynomials f (1)i (x), . . . , f

(L)
i (x)

of F (1)(x, y), . . . , F (L)(x, y) respectively to each Pi; we stress that the corresponding column polynomials are
retained by D. The parties now want to publicly verify if there is a set of at least t + 1 honest parties, who
received row polynomials, lying on L unique bivariate polynomials of degree at most t without revealing any
additional information about the polynomials. For this we use a two round protocol Poly-Check (see Fig 4),
which is adapted from an asynchronous protocol for the same purpose, presented in [36].

In the protocol Poly-Check, there is a designated verifier V, who challenges D to broadcast a random
linear combination of the n column polynomials of all the bivariate polynomials selected by D. Specifically
V provides a challenge combiner, say r and in response D makes public a linear combination of its column
polynomials with respect to r; to maintain the privacy of the column polynomials, this linear combination is
blinded by a random degree t blinding polynomial B(y), selected by D, with each party Pi having a value on
this polynomial. Corresponding to the linear combination of the column polynomials produced by D, each
party Pi makes public a linear combination of n values of all its row polynomials, with respect to the combiner
r, which is blinded by the value of B(y) possessed by it. The idea here is the following: if indeed there exists
a set of t+ 1 honest parties that we are looking for, then the values of the row polynomials possessed by these
parties will define degree t column polynomials. And these column and row polynomials will be "pair-wise
consistent". Based on this idea we check if the blinded linear combination of the column polynomials produced
by D is of degree t. Moreover it is also checked if there exists a witness set W(V) of at least 2t + 1 parties,
such that their blinded linear combination of row polynomial values satisfies the linear combination produced
by D. If any one of the above conditions is not satisfied the parties output ⊥, otherwise they outputW(V). It
is ensured that if V is honest, then except with probability nL

|F| , the honest parties inW(V) constitute the desired
set of row polynomial holders.
The properties of Poly-Check are stated in Lemma 4.1; we refer to [36] for the complete proof.

Lemma 4.1 (Properties of Protocol Poly-Check [36]). In protocol Poly-Check, the following holds:

• If D is honest then every honest party outputs aW(V) set which includes all the honest parties. Moreover
the row polynomials of the honest parties in W(V) will lie on F (1)(x, y), . . . , F (L)(x, y). Furthermore
Adv gets no additional information about F (1)(x, y), . . . , F (L)(x, y) in the protocol.

• If D is corrupted and V is honest and if the parties output aW(V), then except with probability at most
nL
|F| , there exists L bivariate polynomials, say F (1)

(x, y), . . . , F
(L)

(x, y), of degree at most t, such that

the row polynomials of the honest parties inW(V) lie on F (1)
(x, y), . . . , F

(L)
(x, y).

• The protocol requires two rounds and has communication complexity BC(O(n)).

10

Figure 4: Checking the consistency of row polynomials distributed by D under the supervision of a designated
verifier V. The inputs for (an honest) D are L secret bivariate polynomials F (1)(x, y), . . . , F (L)(x, y) of degree
at most t and a secret blinding polynomial B(y) of degree at most t. The inputs for (an honest) party Pi are L
row polynomials f

(1)
i (x), . . . , f

(L)
i (x) of degree at most t and a share bi of blinding polynomial. If D and Pi

are honest then these values are private and f
(k)
i (x) = F (k)(x, αi) and bi = B(αi) will hold for each k ∈ [L].

Poly-Check(D,V,P, L, {F (1)(x, y), . . . , F (L)(x, y), B(y)}, {f (1)

i (x), . . . , f
(L)

i (x), bi}i∈[n])

Round 1: Verifier V selects a random combiner r ∈ F \ {0} and broadcasts r.

Round 2: The parties on receiving r from the broadcast of V do the following:

• D broadcasts the polynomialE(y)
def
= B(y)+rg

(1)
1 (y)+r2g

(1)
2 (y)+. . .+rng

(1)
n (y)+r(n+1)g

(2)
1 (y)+r(n+2)g

(2)
2 (y)+

. . .+ r2ng
(2)
n (y) + . . .+ r(L−1)n+1g

(L)
1 (y) + r(L−1)n+2g

(L)
2 (y) + . . .+ rLng

(L)
n (y). Here g(k)i (y) = F (k)(αi, y) for

k ∈ [L] and i ∈ [n].

• Each party Pi ∈ P (including D) broadcasts the linear combination ei
def
= bi + rf

(1)

i (α1) + r2f
(1)

i (α2) + . . . +

rnf
(1)

i (αn)+r
(n+1)f

(2)

i (α1)+r
(n+2)f

(2)

i (α2)+. . .+r
2nf

(2)

i (αn)+. . .+r
(L−1)n+1f

(L)

i (α1)+r
(L−1)n+2f

(L)

i (α2)+

. . .+ rLnf
(L)

i (αn)

Output determination: If E(y) has degree more than t then each party Pj ∈ P outputs ⊥ and terminate. Else each party Pj ∈ P
creates a witness setW(V), initialized to ∅ and then does the following:

• Include party Pi toW(V) if the relation E(αi)
?
= ei is true.

• If |W(V)| ≥ 2t+ 1 then Pj outputsW(V), else Pj outputs ⊥.

4.2 Five Round Statistical VSS for a Single Secret

To t-share s, D selects a random secret-carrying bivariate polynomial F (x, y) of degree at most t such that
s = F (0, 0). The ith row polynomial fi(x) of F (x, y) is given to each Pi. We stress that only the row
polynomials are distributed. The parties then verify the consistency of the distributed polynomials by publicly
verifying the existence of a set VCORE of at least 2t + 1 parties, such that the row polynomials of the honest
parties in VCORE lie on a unique bivariate polynomial, say F (x, y), of degree at most t. For this, n instances of
Poly-Check are executed (one on the behalf of each party playing the role of the designated verifier V) and it is
verified if there is common subset of at least 2t+1 parties, present across all the generated witness sets. As there
will be at least one instance of Poly-Check executed on the behalf of an honest verifier, clearly the common
subset of 2t + 1 parties satisfies the properties of VCORE. To maintain the privacy of the row polynomials
during the Poly-Check instances, n independent blinding polynomials are used by D, one for each instance. If a
VCORE is found, then we say that D has “committed" the secret s = F (0, 0) to the parties in VCORE via their
row polynomials and the next goal will be to ensure that each party Pj obtains its column polynomial gj(y) of
F (x, y); party Pj can then output its share sj = gj(0) of s and hence s will be t-shared via F (x, 0). If D is
honest then F (x, y) = F (x, y) will hold (and hence s = s), as VCORE will include all the honest parties.

To enable Pj obtain gj(y), each Pi ∈ VCORE can send the common point f i(αj) on gj(y) to Pj , where
f i(αj) denotes the jth value on the ith row polynomial received by Pi (if D is honest then f i(αj) = fi(αj)
holds). The honest parties in VCORE will always send the correct values; however the corrupted parties may
send incorrect values. Due to insufficient redundancy in the received f i(αj) values, party Pj cannot error-
correct them (for this we require |VCORE| to be of size at least 3t + 1). The way out is that Pj gives a proof
of possession of the f i(αj) values received from the parties Pi in VCORE. Namely the values on the row
polynomials are initially distributed by D by executing instances of Distr. There will be n2 such instances and
instance Distrij is executed to distribute fi(αj) to Pi, considering Pi as an INT; the corresponding instances

11

AuthValij are also executed and it is ensured that the AuthVal instances, involving any party from VCORE as
an INT, is not aborted by D. Now when a party Pi in VCORE sends f i(αj) to Pj , party Pj acts as an INT and
publicly gives a proof of possession of f i(αj) by executing an instance RevealPoPji of RevealPoP. The idea is
to use the transferability property of ICPoP to identify the incorrectly transferred values. Namely if D is honest
and an incorrect f i(αj) is transferred to Pj , then the corresponding proof gets rejected during RevealPoPji and
Pj discard such values.

Unfortunately, if D is corrupted then the above mechanism alone is not sufficient for Pj to robustly re-
construct gj(y). Because a corrupted Pi in VCORE can then transfer an incorrect f i(αj) to Pj and still the
proof will get accepted; this is because if both D and INT are corrupted, then INT will know the full auxili-
ary and verification information involved in ICPoP. As a result, Pj will end up not reconstructing a degree t
column polynomial from the received f i(αj) values. To deal with this particular case, we ensure that theM
sets used by D in the ICPoP instances have a similar “structure" as the corresponding S sets. Specifically, D
selects two random masking bivariate polynomials M (1)(x, y) and M (2)(x, y) each of degree at most t. Let
m

(1)
i (x),m

(2)
i (x) denote the corresponding row polynomials. The instances Distrij are executed by setting

Sij = {fi(αj)} and Mij = {m(1)
i (αj),m

(2)
i (αj)} (thus ` = 1 and pack = 1 in these instances). The cor-

responding AuthValij instances are executed with Sij = {f i(αj)} andMij = {m(1)
i (αj),m

(2)
i (αj)}, which

denotes the S andM sets respectively received by Pi during Distrij (if D is honest then these will be the same
as Sij andMij). The existence of VCORE will now imply that D has committed a secret-carrying polynomial,

say F (x, y) and two masking bivariate polynomials, sayM (1)
(x, y),M

(2)
(x, y) to the parties in VCORE, where

all these polynomials have degree at most t. It follows that any linear combination of the column polynomials
F (αj , y),M

(1)
(αj , y) and M (2)

(αj , y) will be a degree t univariate polynomial. And this property is used by
Pj to identify the correctly transferred Sij ∪Mij sets. Namely the values in the transferred Sij ∪Mij sets
should lie on degree t univariate polynomials and hence any random linear combination of these sets should
also lie on a degree t polynomial. Based on this observation, party Pj selects a common random combiner, say
ej , for all the transferred Sij ∪ Mij sets and publicly reveals a linear combination of these Sij ∪ Mij sets
via the RevealPoPji instances. It is then publicly verified if these linearly combined values lie on a degree t
polynomial. If not then it implies that D is corrupted and it is discarded; see Fig. 5 for the formal details. For the
ease of understanding, a pictorial representation of the information distributed in Sh-Single is given in Fig. 6.

The following theorem, which states the properties of Sh-Single is proved in Appendix C.

Theorem 4.2. Sh-Single is a five round VSS protocol for a single secret, satisfying the requirements of VSS
except with probability n3t

|F|−1 . The protocol has communication complexity PC(O(n3)) and BC(O(n3)).

From Five Rounds to Four Rounds: In Sh-Single, the instances of RevealPoP which start getting executed
during Round 4 can be instead instantiated during Round 3 itself. Namely irrespective of the formation of
VCORE, each party Pj starts executing the instance RevealPoPji corresponding to each party Pi ∈ P , based
on the set of values in Sij∪Mij which were transferred to Pj by Pi during Round 2. Next VCORE is computed
and if Pi is found not to be present in VCORE, then the instance RevealPoPji can be halted; otherwise the re-
maining steps of the RevealPoPji instance are executed during Round 4. Based on this modification, Sh-Single
now requires four rounds, while the rest of the properties remain the same.

Sharing ` × (n − t) Secrets: To share ` × (n − t) secrets, the underlying instances of Distr,AuthVal and
RevealPoP are executed to deal with `×pack values simultaneously, where pack = n− t. The steps for consis-
tency checking of the values transferred by the parties in VCORE are also generalized to deal with `× (n− t)
values. With these modifications, we get a four round Sh for sharing `(n− t) values; for details, see Appendix
C. The properties of Sh are stated in Theorem 4.3, which is proved in Appendix C.

Theorem 4.3. Sh is a four round VSS for `×(n−t) values, with an error probability of max{ n
3(n−1)
|F|−(n−t) ,

n3`
|F|−1}.

The protocol has communication complexity PC(O(n3`)) and BC(O(n3)).

12

Figure 5: VSS for sharing a single secret

Sh-Single(D,P, s)
Round 1: Dealer D does the following:

• Select a random secret-carrying bivariate polynomial F (x, y) of degree at most twith F (0, 0) = s. Select two random masking
bivariate polynomials M (1)(x, y) and M (2)(x, y), each of degree at most t. In addition select n random blinding univariate
polynomials B(P1)(y), . . . , B(Pn)(y), each of degree at most t, where B(Pi) is associated with party Pi ∈ P . Corresponding

to each Pi ∈ P , compute row polynomials fi(x)
def
= F (x, αi),m

(1)
i (x)

def
= M (1)(x, αi),m

(2)
i (x)

def
= M (2)(x, αi) and

share-vector (b(P1)
i , . . . , b

(Pn)
i) of blinding polynomials, where b(Pj)

i

def
= B(Pj)(αi) for j ∈ [n]. Let Sij

def
= {fi(αj)} and

Mij
def
= {m(1)

i (αj),m
(2)
i (αj)} for i, j ∈ [n].

• To each Pi ∈ P , send (b
(P1)
i , . . . , b

(Pn)
i). In addition, for j ∈ [n], execute an instance Distr(D, Pi,P, 1, 1,Sij ∪Mij) of Distr

to give Sij ∪Mij to Pi, considering Pi as an INT. Let Distrij denote the corresponding instance of Distr.

Round 2: Each Pi ∈ P (including D) does the following: let Sij = {f ij} andMij = {m(1)
ij ,m

(2)
ij } be the secret and masking set

respectively received from D in Distrij . In addition, let (b
(P1)
i , . . . , b

(Pn)
i) denote the vector received afrom D. Let f i(x),m

(1)
i (x)

andm(2)
i (x) be the polynomials defined by the points {(αj , f ij)}j∈[n], {(αj ,m

(1)
ij)}j∈[n] and {(αj ,m(2)

ij)}j∈[n] respectively. If these
polynomials are not of degree t then Pi broadcasts (Abort, Pi), else it does the following:

• Transfer Sij ∪Mij to Pj by sending all the information received from D in the instance Distrij .

• As an INT, execute the steps of Round 1 of an instance AuthVal(D, Pi,P, 1, 1,Sij ∪Mij) of AuthVal, corresponding to the
instance Distrij , for j ∈ [n]. Let this instance of AuthVal be denoted as AuthValij .

• As a verifier V, execute the steps of Round 1 of an instance Poly-Check(D, Pi,P, 3, {M (1)(x, y),M (2)(x, y), F (x, y),

B(Pi)(y)}, {m(1)
j (x),m

(2)
j (x), f j(x), b

(Pi)
j }j∈[n]) of Poly-Check; denote this instance as Poly-Check(Pi).

Round 3: Each Pi ∈ P (including D) does the following: If (Abort, ?) message is received from the broadcast of more than t parties
then discard D and abort Sh-Single. Else Pi does the following:

• Corresponding to each j, k ∈ [n], participate as a verifier during Round 2 of AuthVal, in the instances AuthValjk

• Execute the steps of Round 2 of Poly-Check, corresponding to the instances Poly-Check(P1), . . . ,Poly-Check(Pn).

• [Additional steps, If Pi = D] — In addition to the above steps, Pi executes the following steps if Pi is D:

– As a D, execute the steps of Round 2 of AuthVal, corresponding to the instances AuthValjk for each j, k ∈ [n].

– As a D, execute the steps of Round 2 of Poly-Check, corresponding to Poly-Check(P1), . . . ,Poly-Check(Pn).

Computation of VCORE — Every party Pi ∈ P (including D) executes the following steps:

• If in any of the instances Poly-Check(P1), . . . ,Poly-Check(Pn) the output is ⊥, then discard D and abort Sh-Single.

• Let W(P1), . . . ,W(Pn) denote the witness sets obtained in Poly-Check(P1), . . . ,Poly-Check(Pn) respectively. If |W(P1) ∩

W(P2) ∩ . . . ∩W(Pn)| < 2t+ 1, then discard D and abort Sh-Single. Else set VCORE
def
= W(P1) ∩W(P2) ∩ . . . ∩W(Pn).

• If there exists any Pj ∈ VCORE, such that D broadcasted Abort message in some instance AuthValjk involving Pj as an INT,
where k ∈ [n], then remove Pj from VCORE. If finally |VCORE| < 2t+ 1 then discard D and abort Sh-Single.

Round 4: Each party Pj ∈ P executes the following steps:

• Corresponding to each Pi ∈ VCORE, act as an INT and execute the steps of Round 1 of an instance RevealPoP(D, Pj ,P,
1, 1,Sij ∪Mij) of RevealPoP, to reveal a random linear combination of the values in Sij ∪Mij , which were transferred from
Pi to Pj during Round 2 of Sh-Single. In all these instances of RevealPoP, party Pj uses the same random combiner, say ej .
Let these instances of RevealPoP be denoted by RevealPoPji.

Round 5: Every party Pk ∈ P (including D) acts as a verifier and executes the steps of Round 2 of RevealPoP, corresponding to the
instances RevealPoPji, where j ∈ [n] and Pi ∈ VCORE.

Consistency checking of the values transferred by the parties in VCORE: Each Pk ∈ P verifies the following for each Pj ∈ P:

• Let supj denote the set of all Pi ∈ VCORE, such that in the corresponding RevealPoPji instances, the output is AcceptProof,
along with a linear combination of values, say combji.

• Discard D and abort Sh-Single if {(αi, combji)}Pi∈supj
lie on a polynomial of degree more than t.

Share determination — Each Pj ∈ P interpolates a polynomial gj(y) through {(αi, f ij)}Pi∈supj
, where Sij = {f ij} denotes the

secret set transferred to Pj from Pi during Round 2 of Sh-Single. Party Pj outputs sj = gj(0) as its share and terminates.
a If D is honest then Sij = Sij ,Mij =Mij and (b

(P1)
i , . . . , b

(Pn)
i) = (b

(P1)
i , . . . , b

(Pn)
i) holds.

13

Figure 6: Pictorial representation of the values distributed in Sh-Single protocol.

(a) M (1)(x, y) with ith row being possessed by Pi.

M(1)(α1, y) · · · M(1)(αn, y)
⇓ ⇓

m
(1)
1 (x)⇒ M(1)(α1, α1) · · · M(1)(αn, α1)

.

.

.
.
.
.

.

.

.
.
.
.

m
(1)
i (x)⇒ M(1)(α1, αi) · · · M(1)(αn, αi)

.

.

.
.
.
.

.

.

.
.
.
.

m
(1)
n (x)⇒ M(1)(α1, αn) · · · M(1)(αn, αn)

(b) M (2)(x, y) with ith row being possessed by Pi.

M(2)(α1, y) · · · M(2)(αn, y)
⇓ ⇓

m
(2)
1 (x)⇒ M(2)(α1, α1) · · · M(2)(αn, α1)

.

.

.
.
.
.

.

.

.
.
.
.

m
(2)
i (x)⇒ M(2)(α1, αi) · · · M(2)(αn, αi)

.

.

.
.
.
.

.

.

.
.
.
.

m
(2)
n (x)⇒ M(2)(α1, αn) · · · M(2)(αn, αn)

(c) F (x, y) with the ith row being possessed by Pi.

g1(y) · · · gj(y) · · · gn(y)
⇓ ⇓ ⇓

f1(x)⇒ F (α1, α1) · · · F (αj , α1) · · · F (αn, α1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

fi(x)⇒ F (α1, αi) · · · F (αj , αi) · · · F (αn, αi)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

fn(x)⇒ F (α1, αn) · · · F (αj , αn) · · · F (αn, αn)

(d) Blinding polynomials with ith row being posses-
sed by Pi.

B(P1)(y) · · · B(Pn)(y)
⇓ ⇓

{b
(Pj)

1 }j=1,...,n ⇒ B(P1)(α1) · · · B(Pn)(α1)

.

.

.
.
.
.

.

.

.
.
.
.

{b
(Pj)

i }j=1,...,n ⇒ B(P1)(αi) · · · B(Pn)(αi)

.

.

.
.
.
.

.

.

.
.
.
.

{b
(Pj)
n }j=1,...,n ⇒ B(P1)(αn) · · · B(Pn)(αn)

(e) Linear combination of the polynomials that are revealed during Poly-Check(Pi).

B(Pi)(y) M(1)(α1, y) · · · M(1)(αn, y) M(2)(α1, y) · · · M(2)(αn, y) g1(y) g2(y) · · · gn(y)

(f) Distrij = Distr(D, Pi,P, 1, 1,Sij ∪
Mij) where Sij = {fi(αj)} andMij =

{m(1)
i (αj),m

(2)
i (αj)} for i, j ∈ [n]. Re-

fer to the corresponding figure 2a which
shows the distribution of values during
Distr. We observe that for Distrij , ` = 1
pack = 1.

H(1)(x)⇒ m
(1)
i (αj)

H(2)(x)⇒ m
(2)
i (αj)

G(1)(x)⇒ fi(αj)

(g) RevealPoPji instances executed by Party Pj corresponding to the parties
Pi ∈ VCORE. The same random combiner ej is used in all these instances.
combji denotes the linear combination of values output during RevealPoPji .
This is analogous to figure 2b with ` = 1, pack = 1.

RevealPoPj1 RevealPoPji RevealPoPjn︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
m

(1)
1 (αj) · · · m

(1)
i (αj) · · · m

(1)
n (αj) ⇒ M(1)(αj , y)

m
(2)
1 (αj) · · · m

(2)
i (αj) · · · m

(2)
n (αj) ⇒ M(2)(αj , y)

f1(αj) · · · fi(αj) · · · fn(αj) ⇒ F (αj , y)
⇓ ⇓ ⇓

combj1 combji combjn ⇒ejM
(1)(αj , y)+

e2jM
(2)(αj , y)+

e3jF (αj , y)

combj1 = ejm
(1)
1 (αj) + e

2
jm

(2)
1 (αj) + e

3
jf1(αj)

· · ·

combji = ejm
(1)
i (αj) + e

2
jm

(2)
i (αj) + e

3
jfi(αj)

· · ·

combjn = ejm
(1)
n (αj) + e

2
jm

(2)
n (αj) + e

3
jfn(αj)

{m(1)
1 (αj) · · ·m(1)

n (αj)} defines M (1)(αj , y) (refer fig 6a). Similarly
{m(2)

1 (αj) · · ·m(2)
n (αj)} defines M (2)(αj , y) (refer fig 6b).

{f1(αj), f2(αj) · · · fn(αj)} defines F (αj , y) (refer fig 6c). Therefore
ejM

(1)(αj , y) + e2jM
(2)(αj , y) + e3jF (αj , y) is a t degree polynomial defined

by the combji values

14

4.3 Comparison of Our VSS with Existing Protocols

Our VSS protocol is statistically-secure and requires (4, 3) rounds. It generates Shamir sharing of Θ(n`) se-
crets and requires a communication of O(n3`) field elements over the point-to-point channels and broadcast of
O(n3) field elements. By instantiating the broadcast in our protocol by a communication-optimal reliable bro-
adcast protocol over the point-to-point channels [32], the total communication complexity of our VSS protocol
becomes PC(O(n3`+n5)) for Shamir-sharing Θ(n`) secrets. If ` is sufficiently large, say ` = Ω(n2), then the
total communication complexity of our protocol will be PC(O(n3`)) for Shamir-sharing Θ(n`) secrets; hence
the overhead per secret-shared value is quadratic, namely O(n2).

Our VSS protocol is to be compared with the previous best VSS protocols of [25, 28] with t < n/3, which
are used in the hybrid MPC protocols of [15]; both these VSS protocols are perfectly-secure. The VSS protocol
of [25] requires (4, 3) rounds, while the protocol of [28] requires (3, 1) rounds. To share ` secrets, the VSS
protocol of [25] has communication complexity PC(O(n2`)) + BC(O(n2`)), while the VSS protocol of [28]
has communication complexity PC(O(n3`)) + BC(O(n3`)). The VSS protocols of [25, 28] has broadcast
communication complexity, which is dependent on the number of secrets to be shared, namely `. On the
contrary, the broadcast complexity of our VSS protocol is independent of `. Instantiating broadcast by running
a reliable broadcast protocol over the point-to-point channels is an expensive task in terms of communication
complexity [30]. Hence it is desirable to have a VSS protocol with broadcast complexity being independent of
the number of secret-shared values.

One can make the broadcast complexity of the VSS protocols of [25, 28] independent of ` by using bro-
adcast amplification (aka multi-valued broadcast protocols) [22]. Informally, in such a protocol, broadcas-
ting a “sufficiently large" message of size ` has communication complexity PC(O(n`)) + BC(poly(n)). So
for sufficiently large `, the total communication complexity of such broadcast protocols (after emulating the
message-independent broadcasts inside the protocol with a communication-optimal reliable broadcast over the
point-to-point channels) asymptotically becomes PC(O(n`)). With t < n/3, the most efficient multi-valued
broadcast protocol is due to [37]. The protocol requires (5, 2) rounds and has communication complexity
PC(O(`n)) + BC(n2) bits for broadcasting an `-bit message; emulating the message-independent broadcasts
by a reliable broadcast protocol ensures that the total communication complexity of the multi-valued broadcast
protocol of [37] becomesPC(O(n`+n4)) bits. Deploying a multi-valued broadcast protocol to emulate the bro-
adcasts required in the existing VSS protocols will further add anO(n) factor in the communication complexity
over the point-to-point channels. More specifically, if we deploy the multi-valued broadcast protocol of [37] to
emulate the broadcasts required in the VSS protocols of [25, 28], then we get the following complexity figures:
the VSS protocol of [28] will require (7, 2) rounds and communication complexity PC(O(`n4)) + BC(n2) for
sharing ` secrets. The VSS protocol of [25] will lead to a (16, 6)-round VSS protocol with communication com-
plexity PC(O(`n3))+BC(n2). So for sufficiently large `, the total communication communication complexity
of the VSS protocol of [28] and [25] becomes PC(O(`n4)) and PC(O(`n3)) respectively for secret-sharing `
values, implying an overhead of O(n4) and O(n3) respectively per secret-shared value. On contrary, our VSS
involves an O(n2) overhead per secret-shared value. Moreover in terms of the number of rounds, our VSS is
better than that of [25, 28]; however the VSS of [28] is better than ours in terms of the number of broadcast
rounds.

5 Efficient Statistical MPC Protocol in the Partially Synchronous Setting

Using Sh, we design a statistical MPC protocol in the partially synchronous setting. The protocol is designed
in the offline-online paradigm, where in the offline phase, the parties generate t-sharing of random and private
multiplication triples of the form (a, b, c), where c = ab. Later in the online phase, these triples are used for
the shared evaluation of the circuit using the standard Beaver multiplication triple based technique [2, 3, 5, 14].
For designing the offline phase protocol, we use the protocol Sh and deploy the efficient framework of [15].
The shared evaluation of the circuit is done in a completely asynchronous fashion in the online phase. We get

15

the following theorem; we refer to Appendix D for the complete details.

Theorem 5.1. Let f : Fn → F be a function expressed as an arithmetic circuit over a finite field F, consisting of
cM and cR multiplication and random gates respectively. Assuming that the first four communication rounds are
synchronous broadcast rounds after which the entire communication is asynchronous, there exists a statistical
MPC protocol to securely compute f , provided |F| ≥ 4n4(cM + cR)(3t+ 1)2κ for a given error parameter κ.
The protocol has communication complexity PC(O(n2(cM + cR) + n4)) and BC(O(n4)).

References

[1] G. Asharov and Y. Lindell. A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computa-
tion. J. Cryptology, 30(1):58–151, 2017.

[2] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In CRYPTO, LNCS 576 , pp
420–432. Springer Verlag, 1991.

[3] Z. Beerliová-Trubíniová and M. Hirt. Efficient Multi-party Computation with Dispute Control. In TCC,
LNCS 3876, pp 305–328. Springer Verlag, 2006.

[4] Z. Beerliová-Trubíniová and M. Hirt. Simple and Efficient Perfectly-Secure Asynchronous MPC. In
ASIACRYPT, LNCS 4833, pp 376–392. Springer Verlag, 2007.

[5] Z. Beerliová-Trubíniová and M. Hirt. Perfectly-Secure MPC with Linear Communication Complexity. In
TCC, LNCS 4948, pp 213–230. Springer Verlag, 2008.

[6] Z. Beerliová-Trubíniová, M. Hirt, and J. B. Nielsen. On the Theoretical Gap between Synchronous and
Asynchronous MPC Protocols. In PODC, pp 211–218. ACM, 2010.

[7] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Computation. In STOC, pp 52–61. ACM,
1993.

[8] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation (Extended Abstract). In STOC, pp 1–10. ACM, 1988.

[9] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous Secure Computations with Optimal Resilience (Ex-
tended Abstract). In PODC, pp 183–192. ACM, 1994.

[10] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-Linear Unconditionally-Secure Multiparty Computation
with a Dishonest Minority. In CRYPTO, LNCS 7417, pp 663–680. Springer, 2012.

[11] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute,
Israel, 1995.

[12] D. Chaum, C. Crépeau, and I. Damgård. Multiparty Unconditionally Secure Protocols (Extended Ab-
stract). In STOC, pp 11–19. ACM, 1988.

[13] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing and Achieving Simulta-
neity in the Presence of Faults. In FOCS, pp 383–395. IEEE Computer Society, 1985.

[14] A. Choudhury, M. Hirt, and A. Patra. Asynchronous Multiparty Computation with Linear Communication
Complexity. In DISC, LNCS 8205, pp 388–402. Springer, 2013.

[15] A. Choudhury and A. Patra. An Efficient Framework for Unconditionally Secure Multiparty Computation.
IEEE Trans. Information Theory, 63(1):428–468, 2017.

16

[16] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient Multiparty Computations Secure
Against an Adaptive Adversary. In EUROCRYPT, LNCS 1592, pp 311–326. Springer, 1999.

[17] R. Cramer, I. Damgård, and U. M. Maurer. General Secure Multi-party Computation from any Linear
Secret-Sharing Scheme. In EUROCRYPT, LNCS 1807, pp 316–334. Springer Verlag, 2000.

[18] I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly Secure Multiparty Computation and the Computational
Overhead of Cryptography. In EUROCRYPT, LNCS 6110, pp 445–465. Springer, 2010.

[19] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable Multiparty Computation with
Nearly Optimal Work and Resilience. In CRYPTO, LNCS 5157, pp 241–261. Springer, 2008.

[20] I. Damgård and J. B. Nielsen. Scalable and Unconditionally Secure Multiparty Computation. In CRYPTO,
LNCS 4622, pp 572–590. Springer Verlag, 2007.

[21] M. Fitzi, J. A. Garay, S. Gollakota, C. Pandu Rangan, and K. Srinathan. Round-Optimal and Efficient
Verifiable Secret Sharing. In TCC, LNCS 3876, pp 329–342. Springer, 2006.

[22] M. Fitzi and M. Hirt. Optimally Efficient Multi-valued Byzantine Agreement. In PODC, pp 163–168.
ACM Press, 2006.

[23] M. Fitzi and J. B. Nielsen. On the Number of Synchronous Rounds Sufficient for Authenticated Byzantine
Agreement. In DISC, LNCS 5805, pp 449–463. Springer, 2009.

[24] M. K. Franklin and M. Yung. Communication Complexity of Secure Computation (Extended Abstract).
In STOC, pp 699–710. ACM, 1992.

[25] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The Round Complexity of Verifiable Secret Sharing
and Secure Multicast. In STOC, pp 580–589. ACM, 2001.

[26] O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game or A Completeness Theorem
for Protocols with Honest Majority. In STOC, pp 218–229. ACM, 1987.

[27] M. Hirt, U. M. Maurer, and B. Przydatek. Efficient Secure Multi-party Computation. In ASIACRYPT,
LNCS 1976, pp 143–161. Springer, 2000.

[28] J. Katz, C. Y. Koo, and R. Kumaresan. Improving the Round Complexity of VSS in Point-to-point Net-
works. Inf. Comput., 207(8):889–899, 2009.

[29] E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols and security under
composition. SIAM J. Comput., 39(5):2090–2112, 2010.

[30] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[31] R. J. McEliece and D. V. Sarwate. On Sharing Secrets and Reed-Solomon Codes. Commun. ACM,
24(9):583–584, 1981.

[32] J. A. Garay P. Berman and K. J. Perry. Bit Optimal Distributed Consensus. In Computer Science Research,
pages 313–322, 1992. Preliminary version appeared in STOC 89.

[33] A. Patra, A. Choudhary, T. Rabin, and C. Pandu Rangan. The Round Complexity of Verifiable Secret
Sharing Revisited. In CRYPTO, LNCS 5677, pp 487–504. Springer, 2009.

[34] A. Patra, A. Choudhary, and C. Pandu Rangan. Efficient Statistical Asynchronous Verifiable Secret
Sharing and Multiparty Computation with Optimal Resilience. IACR Cryptology ePrint Archive, 2009:
492.

17

[35] A. Patra, A. Choudhury, and C. Pandu Rangan. Asynchronous Byzantine Agreement with Optimal Resi-
lience. Distributed Computing, 27(2):111–146, 2014.

[36] A. Patra, A. Choudhury, and C. Pandu Rangan. Efficient Asynchronous Verifiable Secret Sharing and
Multiparty Computation. J. Cryptology, 28(1):49–109, 2015.

[37] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal communication
complexity. In OPODIS, LNCS 7109, pp 34–49. Springer, 2011.

[38] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest Majority (Ex-
tended Abstract). In STOC, pp 73–85. ACM, 1989.

[39] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[40] A. C. Yao. Protocols for Secure Computations. In FOCS, pp 160–164. IEEE Computer Society, 1982.

A Properties of Polynomials

The following properties of bivariate polynomials are well known.

Lemma A.1 ([11, 1, 36]). Let f1(x), . . . , f`(x), g1(y), . . . , g`(y) be degree t univariate polynomials with t +
1 ≤ ` ≤ n, such that fi(αj) = gj(αi) holds for every αi, αj ∈ {α1, . . . , α`}. Then there exists a unique
bivariate polynomial F (x, y) of degree t, such that fi(x) and gi(y) lie on F (x, y), for i ∈ [`].

Lemma A.2 ([11, 1, 36]). Let f1(x), . . . , f`(x) be univariate polynomials of degree at most t where t + 1 ≤
` ≤ n. Let F (x, y) and G(x, y) be two bivariate polynomials of degree at most t, such that fi(x) lies on both
F (x, y) and G(x, y) for each i ∈ [`]. Then F (x, y) = G(x, y).

The following properties of univariate polynomials are standard.

Lemma A.3 ([36]). Let G(1)(x), . . . G(L)(x) be degree d polynomials and let A(x)
def
= eG(1)(x) + · · · +

eLG(L)(x), where e is a random value from F \ {0}. Let a tuple (γ, v1, v2, . . . vL) be such that vi 6= G(i)(γ)
for some i ∈ [L]. Then except with probability at most L−2

|F|−1 , the condition A(γ) 6= ev1 + . . . eLvL holds.

Lemma A.4 ([36]). Let h(0)(y), . . . h(L)(y) be L+ 1 polynomials and r be a random value from F \ {0}. Let

hcom(y)
def
= h(0)(y) + rh(1)(y) + . . . rLh(L)(y). If at least one of h(0)(y), . . . h(L)(y) has degree more than t,

then except with probability at most L
|F| , the polynomial hcom(y) will have degree more than t.

B Proof of the Properties of ICPoP

Lemma B.1 (ICPoP-Correctness1). If D and INT are honest then each honest verifier Pi ∈ P outputs
AcceptProof along with (C(β1), . . . , C(βpack)) at the end of RevealPoP.

Proof. If D is honest, then for each honest verifier Pi ∈ P , the relationship G(k)(γi) = vk,i holds for each
k ∈ [`] and also H(1)(γi) = m1,i and H(2)(γi) = m2,i holds. Moreover if INT is honest then it correctly
broadcasts the C(x) polynomial during RevealPoP and each honest verifier Pi finds that the condition C1 is
true. Hence each honest verifier broadcasts Accept. As there are more than t honest verifiers who broadcast
Accept messages, each honest verifier see more than t Accept messages and hence outputs AcceptProof.

Lemma B.2 (ICPoP-Correctness2). If D is corrupt and INT is honest, and if ICPoP proceeds to RevealPoP,
then all honest verifiers output AcceptProof, except with probability at most n`

|F|−1 .

18

Proof. We claim that if INT is honest and ICPoP proceeds to RevealPoP, then an honest verifier Pi broadcasts
Accept, except with probability at most `

|F|−1 . Assuming that the claim is true, from the union bound it follows

that the probability any honest verifier fails to broadcast an Accept message is at most n`
|F|−1 , as the number of

honest parties is upper bounded by n. This ensures that there will be more than t Accept messages broadcasted
by honest verifiers implying that each honest verifier outputs AcceptProof at the end of RevealPoP.

We next proceed to prove our claim. For this we focus on a designated honest verifier Pi and consider
the relationship that holds between the polynomials G(1)

(x), . . . , G
(`)

(x), H
(1)

(x), H
(2)

(x) distributed by a
corrupted D to INT and the tuple (γi, v1,i, v2,i, . . . v`,i,m1,i,m2,i) distributed by D to Pi. We have two cases:

• vk,i = G
(k)

(γi) for each k ∈ [`] and m1,i = H
(1)

(γi),m2,i = H
(2)

(γi): In this case, the claim is true
without any error as Pi will find that condition C1 is true for the C(x) polynomial during RevealPoP.

• At least one of the following holds — either vk,i 6= G
(k)

(γi) for some k ∈ [`] or m1,i 6= H
(1)

(γi) or

m2,i 6= H
(2)

(γi): In this case,A(γi) 6= dm1,i+d
2m2,i+d

3v1,i+d
4v2,i+ . . . d

`+2v`,i holds, except with
probability at most `

|F|−1 (follows from Lemma A.3 by substituting L = `+ 2). So clearly the verifier Pi
will find that condition C2 is true during RevealPoP

Lemma B.3 (ICPoP-Correctness3). If D is honest, INT is corrupted, ICPoP proceeds to RevealPoP and if the
honest verifiers output AcceptProof, then except with probability at most nd

|F|−pack , the proof produced by INT
corresponds to the values in S ∪M.

Proof. If ICPoP proceeds to RevealPoP then it implies that D broadcasted OK message during AuthVal which
implies that INT broadcasted the correct A(x) polynomial during AuthVal. More specifically, the condition
A(γi) = dm1,i + d2m2,i + d3v1,i + d4v2,i . . . d

`+2v`,i holds for every verifier Pi ∈ P . This further implies that
during RevealPoP, the condition C2 is never satisfied for any honest verifier Pi. To prove the lemma statement,
we have to consider the case when a corrupted INT reveals a polynomial C?(x) 6= eH(1)(x) + e2H(2)(x) +
e3G(1)(x) + e4G(2)(x) + . . .+ e`+2G(`)(x) during RevealPoP (if INT produces the correct C(x) polynomial
then the lemma statement is true without any error probability). We claim that the probability that an honest
verifier Pi ∈ P broadcasts Accept message corresponding to C?(x) is at most d

|F|−pack . Assuming that the
claim is true, it follows via the union bound that the probability that any honest verifier broadcasts Accept

message corresponding to C?(x) is at most nd
|F|−pack , as the number of honest verifiers is upper bounded by n.

This implies that there can be at most t Accept messages corresponding to C?(x), broadcasted by t potentially
corrupted verifiers, implying that each honest verifier outputs RejectProof.

We next prove our claim. For this we focus on a designated honest verifier Pi. As discussed above, the
condition C2 never happens for Pi. So Pi broadcasts Accept message only if condition C1 holds for Pi.
In order that C1 is satisfied for Pi, it should hold that C?(γi) = C(γi). However since D is honest, the
adversary will have no information about the secret evaluation point γi. So the only way a corrupted INT
can ensure that C?(γi) = C(γi) holds is by correctly guessing γi, which it can do with probability at most

d
|F|−pack . This is because two different polynomials of degree at most d can have at most d common roots and
γi ∈ F \ {β1, . . . , βpack}.

Lemma B.4 (ICPoP-Privacy). If D and INT are honest, then the information obtained by Adv during ICPoP
is independent of the values in S.

Proof. Without loss of generality, let us assume that P1, P2 . . . Pt are under the control of Adv. We claim that
adversary learns nothing about G(1)(x), . . . , G(`)(x) beyond t distinct values on these polynomials, different
from x = β1, . . . , βpack. As each of these polynomials are of degree at most d = t+ pack− 1, this implies that

19

Adv learns nothing about the value of these polynomials at β1, . . . , βpack, which are nothing but elements of S.
We next proceed to prove our claim.

During Distr, adversary obtains the tuple (γi, v1,i, v2,i, . . . v`,i,m1,i,m2,i) corresponding to each Pi ∈ {P1,
. . . , Pt} via which it obtains t distinct values of G(1)(x), . . . , G(`)(x), H(1)(x), H(2)(x). During AuthVal, ad-
versary obtains d,A(x). In addition, during RevealPoP, adversary obtains e, C(x). However even after seeing
A(x) and C(x), the privacy of G(k)(β1), . . . , G

(k)(βpack) is preserved for each k ∈ [`]. This is because the po-
lynomials G(1)(x), . . . , G(`)(x) are masked with H(1)(x) and H(2)(x) in the A(x) and C(x) polynomials and
adversary will lack pack values of H(1)(x) and H(2)(x) to uniquely interpolate them. More specifically, from
the view point of the adversary, for every choice S = {(s(1,1), . . . , s(1,pack)), . . . , (s(`,1), . . . , s(`,pack))} of the
secret values, there exists corresponding secret-encoding polynomials G(1)

(x), . . . , G
(`)

(x) of degree d, with
G

(k)
(β1) = s(k,1), . . . , G

(k)
(βpack) = s(k,pack) for each k ∈ [`], such that G(k)

(γi) = vk,i holds corresponding

to each Pi ∈ {P1, . . . , Pt}. Moreover corresponding to G(1)
(x), . . . , G

(`)
(x) and the polynomials A(x), C(x),

there exists a corresponding masking set of values M = {(m(1,1), . . . ,m(1,pack)), (m(2,1), . . . ,m(2,pack))}
and corresponding masking polynomials H(1)

(x) and H(2)
(x) each of degree at most d, such that A(x) =

dH
(1)

(x) + d2H
(2)

(x) + d3G
(1)

(x) + d4G
(2)

(x) + . . .+ d`+2G
(`)

(x) and C(x) = eH
(1)

(x) + e2H
(2)

(x) +

e3G
(1)

(x) + e4G
(2)

(x) + . . . + e`+2G
(`)

(x) holds, where H(1)
(β1) = m(1,1), . . . ,H

(1)
(βpack) = m(1,pack)

and H(2)
(β1) = m(2,1), . . . ,H

(2)
(βpack) = m(2,pack) with H(1)

(γi) = m1,i, H
(2)

(γi) = m2,i holding for each
Pi ∈ {P1, . . . , Pt+1}.

Proof of Theorem 3.1 The properties of ICPoP follow from Lemma B.1-B.4. We next prove the communi-
cation complexity. During Distr, D sends ` + 2 polynomials of degree d to INT and a tuple of ` + 3 values
to each individual verifier. During AuthVal a polynomial of degree d is broadcasted by INT and D broadcasts
either an OK or Abort message. During RevealPoP, INT broadcasts a polynomial of degree d and each indi-
vidual verifier broadcasts either an Accept or a Reject message. So overall the protocol has communication
complexity PC(O(n`)) and BC(O(n)), as d = O(n). This also proves the ICPoP-Succinctness of the Proof
property, as the size of the proof is independent of `.

C Properties of Sh-Single and Sh

We analyse the properties of Sh-Single.

Lemma C.1. If D is honest then except with probability at most n3t
|F|−1 , it is not discarded during Sh-Single.

Proof. If D is honest then no honest Pi broadcasts (Abort, ?) message as the received row polynomials will
be of degree at most t. More specifically, fi(x) = f i(x) = F (x, αi),m

(1)
i (x) = m

(1)
i (x) = M (1)(x, αi) and

m
(2)
i (x) = m

(2)
i (x) = M (2)(x, αi) holds for Pi. So there can be at most t (Abort, ?) messages corresponding

to t potentially corrupted parties. Since D will distribute consistent row polynomials to all the parties, it follows
from Lemma 4.1 and protocol steps of Poly-Check that all honest parties will be present inW(P1), . . . ,W(Pn)

and so clearly |VCORE| ≥ 2t + 1 will hold. Now consider a pair of parties Pi, Pj , with at least one of them
being corrupted, such that in the RevealPoPji instance the revealed proof does not correspond to Sij ∪Mij

8.
It follows via Lemma B.3 (by substituting pack = 1 and d = t+ pack− 1 = t) that except with probability at
most nt

|F|−1 , the proof will be rejected. As there can be at most n2 such pairs of (Pi, Pj), from the union bound

it follows that except with probability at most n3t
|F|−1 , the values which are finally considered for reconstructing

the column polynomials for the parties will be correct and lie on polynomials of degree at most t. So except
with probability at most n3t

|F|−1 , the conditions which lead to an honest D being discarded never occur.
8This may happen if a corrupted Pi transfers incorrect values to an honest Pj or if a corrupted Pj purposely tries to reveal a proof

corresponding to an incorrect set of values.

20

Lemma C.2 (Correctness for an honest D). If D is honest then except with probability at most n3t
|F|−1 , the value

s is t-shared at the end of Sh-Single.

Proof. If D is honest then from Lemma C.1 it follows that except with probability at most n3t
|F|−1 , any incorrect

linear combination of values revealed in any of the RevealPoP instances is rejected. More specifically, if Pj
is honest and Pi ∈ supj , then the linear combination combji revealed by Pj in the instance RevealPoPji will
be correct and correspond to the values in Sij ∪ Mij . This further implies that Pi transferred the correct
Sij ∪Mij to Pj . Thus the values used by an honest Pj to determine its column polynomial are correct (lying on
gj(y) = F (αj , y)). So gj(y) = gj(y) holds for each honest Pj , implying that s is t-shared via the polynomial

f0(x)
def
= F (x, 0), with Pj holding the share f0(j) = gj(0).

Lemma C.3. Let f i(x),m
(1)
i (x) and m(2)

i (x) be the row polynomials defined by the values in Sij ∪ Mij

received by party Pi ∈ P from D for j ∈ [n]. If D is corrupted and a VCORE is formed during Sh-Single then
except with probability at most 3n2

|F| , there exist bivariate polynomials, say F (x, y),M
(1)

(x, y) and M (2)
(x, y),

each of degree at most t, such that for each honest Pi ∈ VCORE, the polynomials f i(x),m
(1)
i (x) and m(2)

i (x)

lie on F (x, y),M
(1)

(x, y) and M (2)
(x, y) respectively.

Proof. From the definition, VCORE = W(P1) ∩ W(P2) ∩ . . . ∩ W(Pn) and |VCORE| ≥ 2t + 1. This ensu-
res that there are at least t + 1 common honest parties in VCORE, say HVCORE. Consider an honest party
Pj ∈ P , playing the role of the verifier V in the instance Poly-Check(Pj). It follows from Lemma 4.1 (by
substituting L = 3) that for the instance Poly-Check(Pj), except with probability at most 3n

|F| , the row po-

lynomials f i(x),m
(1)
i (x) and m(2)

i (x) of the parties Pi ∈ HVCORE together lie on three unique bivariate

polynomials, say F (x, y),M
(1)

(x, y) and M (2)
(x, y) respectively of degree at most t. The same will be true

with respect to every other instance Poly-Check(Pk), corresponding to every other honest verifier Pk 6= Pj .
Moreover, the set of three bivariate polynomials defined via each of these instances of Poly-Check will be the
same, namely F (x, y),M

(1)
(x, y) and M (2)

(x, y) respectively. This follows from Lemma A.2 (by substituting
` = |HVCORE|) and the fact that |HVCORE| ≥ t + 1. The lemma now follows from the union bound and the
fact that there are Θ(n) honest parties, playing the role of V.

Lemma C.4 (Correctness for a corrupted D). If D is corrupted and not discarded during Sh-Single, then
there exists some value, say s, such that except with probability at most n3

|F|−1 , s is t-shared at the end of
Sh-Single.

Proof. If a corrupted D is not discarded then it implies that a set VCORE with |VCORE| ≥ 2t+1 is constructed
during Sh-Single. Let HVCORE be the set of honest parties in VCORE; clearly |HVCORE| ≥ t + 1. From
Lemma C.3 it follows that except with probability at most 3n2

|F| , the row polynomials f i(x),m
(1)
i (x) andm(2)

i (x)

of the parties in HVCORE lie on unique bivariate polynomials, say F (x, y),M
(1)

(x, y) and M
(2)

(x, y) of

degree at most t. We define s def
= F (0, 0) and claim that s is t-shared via the polynomial f0(x)

def
= F (x, 0),

with each honest Pj holding the share sj
def
= F (αj , 0). To prove our claim, we show that each honest party Pj

outputs its degree t univariate polynomial gj(y)
def
= F (αj , y) except with probability at most n2

|F|−1 ; this ensures

that Pj obtains the correct share, as sj = gj(0). For this, we further need to show that the Sij set transferred
by each party Pi ∈ supj to Pj contains the value gj(αi).

Consider an honest Pj . Notice that supj ⊆ VCORE. We first argue that every Pi ∈ HVCORE is present
in supj , except with probability at most n2

|F|−1 . This is because there are Θ(n) such parties Pi and in each
corresponding RevealPoPji instance, the output is AcceptProof, which follows from Lemma B.2 (by substi-
tuting ` = 1). Now consider the set of values Sij = {f ij} andMij = {m(1)

ij ,m
(2)
ij } transferred by the parties

21

Pi ∈ HVCORE to Pj . Since f ij = f i(αj) = gj(αi) holds, it follows that the values {f ij}Pi∈HVCORE define the

degree t univariate polynomial gj(y). Similarly the values {m(1)
ij }Pi∈HVCORE and {m(2)

ij }Pi∈HVCORE define de-

gree t univariate polynomials M (1)
(y, αj) and M (2)

(y, αj) respectively. To complete the proof, we argue that
except with probability at most 2

|F| , the values in the Sij andMij set transferred by a corrupted party Pi ∈ supj

lie on gj(y),M
(1)

(y, αj) and M (2)
(y, αj) respectively. This is because the combiner ej selected by the honest

Pj in the RevealPoPji instances corresponding to the parties in supj is truly random and unknown to the adver-
sary in advance, when the Sij andMij sets are transferred to Pj . The rest follows from Lemma A.4 (by sub-
stituting L = 2) and the fact that the values {combji}Pi∈supj lie on a polynomial of degree at most t (otherwise

D would have been discarded), say combj(y), where combj(y)
def
= ejM

(1)
(y, αj) + e2jM

(2)
(y, αj) + e3jgj(y).

As there can be n2 pair of parties involving a corrupted party, it follows by the union bound that except with
probability at most 2n2

|F| , the corrupted parties in VCORE transfer the correct values to the honest parties.

As each honest Pj correctly obtains its column polynomial except with probability at most n2

|F|−1 and as there

are Θ(n) such honest parties, it follows that except with probability at most n3

|F|−1 , the value s is t-shared.

Lemma C.5 (Privacy). In protocol Sh-Single, the value s remains information theoretically secure.

Proof. For privacy, we have to consider an honest D. Without loss of generality, let P1, . . . , Pt be under the
control of Adv. We argue that throughout Sh-Single, the adversary learns nothing about F (x, y), beyond the
row polynomials f1(x), . . . , ft(x) and the column polynomials g1(y), . . . , gt(y). Through these polynomials,
the adversary learns t2 + 2t distinct values of F (x, y). As the degree of F (x, y) is t, the adversary lacks one
additional value on F (x, y) to uniquely interpolate F (x, y), implying information-theoretic security for s.

Through the instances Distrij where i ∈ [t] and j ∈ [n], the adversary Adv learns the row polynomials
f1(x), . . . , ft(x),m

(1)
1 (x), . . . ,m

(1)
t (x),m

(2)
1 (x), . . . ,m

(2)
t (x) on the bivariate polynomialsF (x, y),M (1)(x, y)

and M (2)(x, y) respectively. From Lemma 4.1, during Poly-Check(P1), . . . , Poly-Check(Pn), no additional in-
formation about F (x, y),M (1)(x, y) and M (2)(x, y) is revealed to the adversary, because in each instance
Poly-Check(Pi), a random blinding univariate polynomial B(Pi)(y) is used. Now consider a pair of honest
parties Pi, Pj ∈ P . In the protocol, party Pi executes an instance AuthValij involving Sij = {fi(αj)} and
Mij = {m(1)

i (αj),m
(2)
i (αj)}. Moreover, the set Sij ∪Mij is privately transferred to Pj by Pi and later on

during Round 4 and 5, an instance RevealPoPji is instantiated again involving Sij ∪Mij . We claim that during
AuthValij and RevealPoPji, the privacy of Sij is preserved. This follows from the privacy property of ICPoP
(Lemma B.4) and the fact that the corresponding masking setMij used in these instances are private. Thus for
every pair of honest parties Pi, Pj , no additional information about the fi(αj) values (which are the same as the
gj(αi) values) are revealed during the instances AuthValij and RevealPoPji. The adversary is able to compute
the column polynomials g1(y), . . . , gt(y) through the common values on these column polynomials which are
transferred to P1, . . . , Pt by the honest parties. Hence throughout the protocol, the adversary learns t row and
column polynomials, proving the privacy.

Proof of Theorem 4.2: The properties of VSS follow from Lemma C.2-C.5. In the protocol n2 instances of
ICPoP (with ` = 1, pack = 1) and n instances of Poly-Check (each with L = 3) are executed. The rest follows
from the communication complexity of ICPoP (Theorem 3.1) and Poly-Check (Lemma 4.1).

C.1 Four Round Statistical VSS with a Quadratic Overhead

We now discuss the modifications to be made to Sh-Single to get a four round VSS protocol Sh, which allows
D to t-share ` × (n − t) = Θ(n`) secrets with communication complexity PC(O(n3`)) and BC(O(n3)). For
simplicity, we first discuss how to t-share n − t = Θ(n) secrets with communication complexity PC(O(n3))
and BC(O(n3)). The modifications to share `× (n− t) secrets follow in a straight forward fashion.

22

Sharing n − t Secrets: The idea behind efficiently sharing n − t secrets is to invoke the underlying in-
stances of Distr,AuthVal and RevealPoP in Sh-Single with the maximum possible value of pack, which is
n − t (for the moment we will restrict to ` = 1). The rest of the protocol steps remain the same, with a
slight modification in the steps for consistency checking of the values transferred by the parties in VCORE.
More specifically, let ~S = (s(1), . . . , s(n−t)) be the set of values, which need to be t-shared. To do so D se-
lects n− t random degree t secret-carrying bivariate polynomials F (1)(x, y), . . . , F (n−t)(x, y), embedding the
secrets s(1), . . . , s(n−t) respectively in their constant terms. In addition, D picks 2(n − t) random masking
bivariate polynomials M (1,1)(x, y), . . . ,M (1,n−t)(x, y),M (2,1)(x, y), . . ., M (2,n−t)(x, y) polynomials. The
reason for picking so many masking polynomials will be clear in the sequel. Let f (1)i (x), . . . , f

(n−t)
i (x)

and g(1)(y), . . . , g(n−t)(y) denote the ith row and column polynomials of F (1)(x, y), . . . , F (n−t)(x, y) re-
spectively. Similarly, let m(1,1)

i (x), . . . ,m
(1,n−t)
i (x), m

(2,1)
i (x), . . . ,m

(2,n−t)
i (x) denote the ith row poly-

nomials of the masking bivariate polynomials. Corresponding to each party Pi, the dealer D sets Sij =

{f (1)i (αj), . . . , f
(n−t)
i (αj)} and Mij = {(m(1,1)

i (αj), . . . ,m
(1,n−t)
i (αj)), (m

(2,1)
i (αj), . . . ,m

(2,n−t)
i (αj))}.

An instance Distrij is executed, considering Pi as an INT to give Sij ∪ Mij to Pi, for j = 1, . . . , n. The
instances of Distr are executed by setting ` = 1 and pack = n− t (hence d will be n− 1 in these instances).

Let f
(1)
i (x), . . . , f

(n−t)
i (x),m

(1,1)
i (x), . . . ,m

(1,n−t)
i (x),m

(2,1)
i (x), . . . ,m

(2,n−t)
i (x) denote the row polyno-

mials received by Pi via the instances Distrij . The parties check for the existence of VCORE as in Sh-Single by
executing n instances of Poly-Check, where Pi plays the role of the designated verifier in the ith instance. For
each instance, one independent blinding polynomial will be used, which will be shared by D during the first
round. If a VCORE is obtained, then it implies that the row polynomials of the honest parties Pi in VCORE lie on
n− t secret-carrying bivariate polynomials of degree t, say F (1)

(x, y), . . . , F
(n−t)

(x, y) and 2(n− t) masking
bivariate polynomials, say M (1,1)

(x, y), . . . ,M
(1,n−t)

(x, y),M
(2,1)

(x, y), . . . ,M
(2,n−t)

(x, y) respectively We
define (F

(1)
(0, 0), . . . , F

(n−t)
(0, 0)) to be the n − t secrets “committed" by D (if D is honest then these will

be the same as ~S) and proceed to complete t-sharing of these values by ensuring that each Pj gets its degree t

column polynomials F (1)
(αj , y), . . . , F

(n−t)
(αj , y) and outputs their constant terms as its shares. This is done

as follows.
Let Sij = {f (1)i (αj), . . . , f

(n−t)
i (αj)} andMij = {(m(1,1)

i (αj), . . . ,m
(1,n−t)
i (αj)), (m

(2,1)
i (αj) , . . . ,m

(2,n−t)
i

(αj))} denote the sets received by Pi at the end of Distrij . By the properties of VCORE, each honest Pi ∈
VCORE will be able to give a proof of possession of Sij ∪Mij , as the corresponding AuthValij instance would
not be aborted by D. Hence if Pi transfers these sets to Pj , then even Pj can give a proof of possession of these
sets. So Each Pi (in VCORE) 9 sends the set Sij ∪Mij to Pj , who then publicly verifies these values by exe-
cuting an instance RevealPoPji of RevealPoP and giving a proof of possession of these sets of values. Party Pj
ensures that the same randomness ej is used in all the RevealPoPji instances. Let supj denote the set of parties
Pi from VCORE, such that in the corresponding RevealPoPji instance the output is AcceptProof, along with a
set of n−t linearly combined values, say (comb

(1)
ji , . . . , comb

(n−t)
ji) (recall that now the instances of RevealPoP

are executed with pack = n− t and so n− t linearly combined values will be produced in these instances). If D
is honest then with high probability, only the parties sending the correct Sij ∪Mij sets will be present in supj .
However if D is corrupted then a corrupted Pi can send incorrect sets and still be present in supj . To check this,

it is publicly verified if the sets of values {(αi, comb
(1)
ji)}Pi∈supj , . . . , {(αi, comb

(n−t)
ji)}Pi∈supj lie on n−t uni-

variate polynomials of degree at most t. If so then it ensures that with high probability, the parties in supj sent
the correct sets to Pj . This is because the values in Sij ∪M ij corresponding to the honest parties in supj cle-

arly define degree t column polynomials F (1)
(αj , y), . . . , F

(n−t)
(αj , y),M

(1,1)
(αj , y), . . . ,M

(1,n−t)
(αj , y),

M
(2,1)

(αj , y), . . . ,M
(2,n−t)

(αj , y). Since Pj uses the same combiner ej to produce the linear combi-
nation of the values in Sij ∪ M ij in all the RevealPoPji instances, it follows that the linear combinations
comb

(1)
ji , . . . , comb

(n−t)
ji of these Sij ∪M ij sets also lie on a degree t univariate polynomial; specifically the

9Even though each Pi sends the corresponding Sij ∪Mij to Pj , party Pj will focus only on the Pis in VCORE

23

set of values {(αi, comb
(k)
ji)} corresponding to the honest parties Pi in supj will define a degree t univariate

polynomial ejM
(1,k)

(αj , y) + e2jM
(2,k)

(αj , y) + e3jF
(k)

(αj , y) for k = 1, . . . , n − t. Now if a corrupted Pi
in supj sent an incorrect set to Pj , then with high probability, the corresponding comb

(k)
ji values will not lie on

the degree t univariate polynomial ejM
(1,k)

(αj , y) + e2jM
(2,k)

(αj , y) + e3jF
(k)

(αj , y), in which case D will be
discarded. For the ease of understanding, a pictorial representation of the values distributed during Sh to share
n− t secrets is shown in Fig. 7.

Sharing `× (n− t) Secrets Simultaneously: The principle behind sharing `× (n− t) secrets ~S = (s(1,1),
. . . , s(1,n−t), . . . , s(`,1), . . . , s(`,n−t)) will be similar to that of sharing n − t secrets as discussed above. The
only difference will be that the Sij sets in the underlying Distrij ,AuthVal and RevealPoPji instances will be
of size ` × (n − t), instead of n − t; theMij sets will remain the same as above. More specifically, D will
now select ` × (n − t) secret-carrying random bivariate polynomials of degree t, say F (l,k)(x, y) for l ∈ [`]
and k ∈ [n − t], each embedding a secret from ~S in its constant term; the number of masking polynomials
remain 2(n − t). Now the {(αi, comb

(k)
ji)} values corresponding to the honest parties Pi in supj will define a

linear combination of `+ 2 column polynomials M (1,k)(αj , y),M (2,k)(αj , y), F (1,k)(αj , y), . . . , F (`,k)(αj , y)
for k ∈ [n− t]. The rest of the protocol steps remain the same as above. To avoid repetition, we do not present
the complete formal steps of Sh and the detailed proof of its properties. Instead we state the formal properties
of Sh which follow in a straight forward fashion from the corresponding properties of Sh-Single, taking into
account that the underlying instances of ICPoP that are executed deal with `× (n− t) values.

Lemma C.6. If D is honest then except with probability at most n3(n−1)
|F|−(n−t) , it is not discarded during Sh.

Proof. Similar to Lemma C.1, except that now each instance of ICPoP satisfies the ICPoP-Correctness3 pro-
perty except with probability at most nd

|F|−pack , where pack = n− t and d = t+ pack−1 = n−1. This ensures
that if a corrupted Pi ∈ VCORE transfers incorrect values to an honest Pj , then it is caught in the corresponding
RevealPoPji instance. And there are n2 such instances, involving a corrupted Pi and an honest Pj .

Lemma C.7 (Correctness for an honest D). If D is honest then except with probability at most n3(n−1)
|F|−(n−t) , the

`× (n− t) values (s(1,1), . . . , s(1,n−t), . . . , s(`,1), . . . , s(`,n−t)) are t-shared at the end of Sh.

Proof. Similar to Lemma C.2, except that now we rely on Lemma C.6.

Lemma C.8. Let f
(1,1)
i (x), . . . , f

(1,n−t)
i (x), . . . , f

(`,1)
i (x), . . . , f

(`,n−t)
i (x),m

(1,1)
i (x), . . . ,m

(1,n−t)
i (x) andm(2,1)

i

(x), . . . ,m
(2,n−t)
i (x) be the row polynomials defined by the values in Sij ∪ Mij received by party Pi ∈ P

from D for j ∈ [n]. If D is corrupted and a VCORE is formed during Sh then except with probability at
most n

2(`+2)(n−t)
|F| , there exist (` + 2)(n − t) bivariate polynomials, say F (1,1)

(x, y), . . . , F
(1,n−t)

(x, y), . . . ,

F
(`,1)

(x, y), . . . , F
(`,n−t)

(x, y),M
(1,1)

(x, y), . . . , M
(1,n−t)

(x, y),M
(2,1)

(x, y), . . . , M
(2,n−t)

(x, y), each

of degree at most t, such that for each honest Pi ∈ VCORE, the polynomial f
(l,k)
i (x) lie on F (l,k)

(x, y) for
l ∈ [`], k ∈ [n− t], the polynomial m(1,k)

i (x) lie on M (1,k)
(x, y) for k ∈ [n− t] and the polynomial m(2,k)

i (x)

lie on M (2,k)
(x, y) for k ∈ [n− t].

Proof. Similar to Lemma C.3, except that now we rely on Lemma 4.1 with L = (`+ 2)(n− t).

Lemma C.9 (Correctness for a corrupted D). If D is corrupted and not discarded during Sh-Single, then
there exists ` × (n − t) values, say (s(1,1), . . . , s(1,n−t), . . . , s(`,1), . . . , s(`,n−t)), such that then except with
probability at most n3`

|F|−1 , the values s(l,k) are t-shared at the end of Sh for l ∈ [`] and k ∈ [n− t].

24

Figure 7: Pictorial representation of the values distributed in Sh protocol that shares n− t secrets.

(a) Polynomials M (1,1)(x, y), · · ·M (1,n−t)(x, y) and
M (2,1)(x, y), · · ·M (2,n−t)(x, y).

M(1,1)(x, y) · · · M(1,n−t)(x, y) M(2,1)(x, y) · · · M(2,n−t)(x, y)
⇓ ⇓ ⇓ ⇓

m
(1,1)
1 (x) · · · m

(1,n−t)
1 (x) m

(2,1)
1 (x) · · · m

(2,n−t)
1 (x)

.

.

.
.
.
.

.

.

.
.
.
.

m
(1,1)
i (x) · · · m

(1,n−t)
i (x) m

(2,1)
i (x) · · · m

(2,n−t)
i (x)

.

.

.
.
.
.

.

.

.
.
.
.

m
(1,1)
n (x) · · · m

(1,n−t)
n (x) m

(2,1)
n (x) · · · m

(2,n−t)
n (x)

(b) Polynomial F (k)(x, y) where k ∈
[n− t].

F (1)(x, y) · · · F (n−t)(x, y)
⇓ ⇓

f
(1)
1 (x) · · · f

(n−t)
1 (x)

.

.

.
.
.
.

f
(1)
i (x) · · · f

(n−t)
i (x)

.

.

.
.
.
.

f
(1)
n (x) · · · f

(n−t)
n (x)

(c) Closer look at M (1,k)(x, y) with party Pi holding the ith row.

M(1,k)(α1, y) · · · M(1,k)(αj , y) · · · M(1,k)(αn, y)
⇓ ⇓ ⇓

m
(1,k)
1 (x)⇒ M(1,k)(α1, α1) · · · M(1,k)(αj , α1) · · · M(1,k)(αn, α1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m
(1,k)
i (x)⇒ M(1,k)(α1, αi) · · · M(1,k)(αj , αi) · · · M(1,k)(αn, αi)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m
(1,k)
n (x)⇒ M(1,k)(α1, αn) · · · M(1,k)(αj , αn) · · · M(1,k)(αn, αn)

(d) Closer look at M (2,k)(x, y) withPi holding the ith row.

M(2,k)(α1, y) · · · M(2,k)(αj , y) · · · M(2,k)(αn, y)
⇓ ⇓ ⇓

m
(2,k)
1 (x)⇒ M(2,k)(α1, α1) · · · M(2,k)(αj , α1) · · · M(2,k)(αn, α1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m
(2,k)
i (x)⇒ M(2,k)(α1, αi) · · · M(2,k)(αj , αi) · · · M(2,k)(αn, αi)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

m
(2,k)
n (x)⇒ M(2,k)(α1, αn) · · · M(2,k)(αj , αn) · · · M(2,k)(αn, αn)

(e) Closer look at F (k)(x, y) with party Pi holding the ith row.

g
(k)
1 (y) · · · g

(k)
j (y) · · · g

(k)
n (y)

⇓ ⇓ ⇓
f
(k)
1 (x)⇒ F (k)(α1, α1) · · · F (k)(αj , α1) · · · F (k)(αn, α1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

f
(k)
i (x)⇒ F (k)(α1, αi) · · · F (k)(αj , αi) · · · F (k)(αn, αi)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

f
(k)
n (x)⇒ F (k)(α1, αn) · · · F (k)(αj , αn) · · · F (k)(αn, αn)

(f) Blinding polynomials with party Pi holding
the ith row.

B(P1)(y) · · · B(Pn)(y)
⇓ ⇓

{b
(Pj)

1 }j=1,...,n ⇒ B(P1)(α1) · · · B(Pn)(α1)

.

.

.
.
.
.

.

.

.
.
.
.

{b
(Pj)

i }j=1,...,n ⇒ B(P1)(αi) · · · B(Pn)(αi)

.

.

.
.
.
.

.

.

.
.
.
.

{b
(Pj)
n }j=1,...,n ⇒B(P1)(αn) · · ·B(Pn)(αn)

(g) Distrij = Distr(D, Pi,P, 1, (n − t),Sij ∪ Mij)

where Sij = {f (1)
i (αj), . . . , f

(n−t)
i (αj)} and Mij =

{(m(1,1)
i (αj), . . . ,m

(1,n−t)
i (αj)), (m

(2,1)
i (αj), . . . ,m

(2,n−t)
i (αj))}

for i, j ∈ [n].This is similar to the figure 6f with pack = (n− t).

H(1)(x)⇒ m
(1,1)
i (αj) m

(1,2)
i (αj) · · · m(1,n−t)

i (αj)

H(2)(x)⇒ m
(2,1)
i (αj) m

(2,2)
i (αj) · · · m(2,n−t)

i (αj)

G(1)(x)⇒ f
(1)
i (αj) f

(2)
i (αj) · · · f

(n−t)
i (αj)

25

(h) RevealPoPji instances executed by Party Pj corresponding to the parties Pi ∈ VCORE. The same random combiner ej is used in
all these instances. comb

(k)
ji denotes the linear combination of values revealed in these instances for k ∈ [n− t]. This is analogous to

figure 6g with ` = 1, pack = n− t .
RevealPoPj1 RevealPoPjn︷ ︸︸ ︷ ︷ ︸︸ ︷

m
(1,1)
1 (αj) · · · m

(1,k)
1 (αj) · · · m

(1,n−t)
1 (αj) · · · m

(1,1)
n (αj) · · · m

(1,k)
n (αj) · · · m

(1,n−t)
n (αj)

m
(2,1)
1 (αj) · · · m

(2,k)
1 (αj) · · · m

(2,n−t)
1 (αj) · · · m

(2,1)
n (αj) · · · m

(2,k)
n (αj) · · · m

(2,n−t)
n (αj)

f
(1)
1 (αj) · · · f

(k)
1 (αj) · · · f

(n−t)
1 (αj) · · · f

(1)
n (αj) · · · f

(k)
n (αj) · · · f

(n−t)
n (αj)

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
comb

(1)
j1 comb

(k)
j1 comb

(n−t)
j1 comb

(1)
jn comb

(k)
jn comb

(n−t)
jn

comb
(k)
ji = ejm

(1,k)
1 (αj) + e

2
jm

(2,k)
1 (αj) + e

3
jf

(k)
1 (αj)

comb
(k)
j2 = ejm

(1,k)
2 (αj) + e

2
jm

(2,k)
2 (αj) + e

3
jf

(k)
2 (αj)

· · ·

comb
(k)
jn = ejm

(1,k)
n (αj) + e

2
jm

(2,k)
n (αj) + e

3
jf

(k)
n (αj)

Note from figure 7c that {m(1,k)
1 (αj),m

(1,k)
2 (αj) · · ·m(1,k)

n (αj)} define M (1,k)(αj , y). From figure 7d,
{m(2,k)

1 (αj), · · ·m(2,k)
n (αj)} define M (2,k)(αj , y). Also from figure 7e, {f (k)

1 (αj), f
(k)
2 (αj) · · · f (k)

n (αj)} define F (k)(αj , y)
where k ∈ [n− t]. Hence, the combination i.e ejM (1.k)(αj , y) + e2jM

(2,k)(αj , y) + e3jF
(k)(αj , y) is a univariate t-degree

polynomial defined by the comb
(k)
ji values

Proof. Similar to Lemma C.4, except that we now use Lemma C.8. Moreover, for every pair of honest parties
(Pi, Pj), where Pi ∈ VCORE, it is ensured that except with probability at most n`

|F|−1 , party Pi is present in
supj ; this follows from Lemma B.2. As there are Θ(n2) such pairs, from the union bound it is ensured that
except with probability at most n3`

|F|−1 , every honest party from VCORE is present in the supj set of every honest

Pj . Furthermore it is ensured that except with probability at most (`+1)
|F| , no corrupted party Pi ∈ VCORE is

present in supj set of an honest Pj ; this follows from Lemma A.4 (by substituting L = `+ 1). As there can be

O(n2) pairs of parties, from the union bound it follows that except with probability at most n
2(`+1)
|F| , the values

transferred by the corrupted parties in VCORE to the honest parties are correct. So overall the error probability
is at most n3`

|F|−1 .

Lemma C.10 (Privacy). In protocol Sh, the values (s(1,1), . . . , s(1,n−t), . . . , s(`,1), . . . , s(`,n−t)) remain information-
theoretically secure.

Proof. Similar to the proof of Lemma C.5.

Proof of Theorem 4.3: The properties of VSS follow from Lemma C.7-C.10. In the protocol n2 instances of
ICPoP (with pack = n− t) and n instances of Poly-Check (each with L = (` + 2)(n− t)) are executed. The
rest follows from the communication complexity of ICPoP (Theorem 3.1) and Poly-Check (Lemma 4.1).

D Partially Synchronous Statistical MPC Protocol

D.1 Existing Asynchronous Primitives

Reconstruction of a t-shared Value by a Designated Party [11, 4, 36, 14]: Let v be a value, t-shared
through a polynomial p(·). The well-know online error correction (OEC) algorithm allows some designated
party PR ∈ P to reconstruct p(·) and thus p(0) = v, in an asynchronous fashion. We denote the protocol as
OEC, whose communication complexity PC(O(n)); every honest party eventually terminates the protocol.

Multiplication of Pairs of t-shared Values using Beaver’s Technique [2]: It securely computes [x ·y]t from
[x]t and [y]t, at the expense of two public reconstructions, using a pre-computed t-shared random multiplication

26

triple (from the offline phase), say ([a]t, [b]t, [c]t). For this, the parties first (locally) compute [e]t and [d]t,

where [e]t
def
= [x]t − [a]t = [x − a]t and [d]t

def
= [y]t − [b]t = [y − b]t, followed by the public reconstruction

of e = (x− a) and d = (y − b); to do the public reconstruction 2n instances of OEC are executed, two on the
behalf of each party. Since xy = ((x− a) + a)((y − b) + b) = de+ eb+ da+ c holds, the parties can locally
compute [xy]t = de + e[b]t + d[a]t + [c]t, once d and e are publicly known. The above computation leaks no
information about x and y if a and b are random and unknown to Adv. We call the protocol as Beaver, whose
communication complexity is PC(O(n2)); the protocol eventually terminates for every honest party.

The Asynchronous Triple Transformation Protocol [15]: The heart of the efficient framework of [15] is the
asynchronous triple transformation protocol TripTrans. The protocol takes as input a set of (3t+1) independent
t-shared triples, say {([x(i)]t, [y(i)]t, [z(i)]t}i∈[3t+1] and outputs a set of (3t + 1) “co-related" t-shared triples,
say {(x(i), y(i), z(i))}i∈[3t+1], such that the following hold:

• There exist polynomials, say X(·), Y (·) and Z(·) of degree 3t
2 , 3t

2 and 3t respectively, such that X(αi) =

x(i), Y (αi) = y(i) and Z(αi) = z(i) holds for i ∈ [3t+ 1].

• Z(·) = X(·)Y (·) holds if and only if all the input triples are multiplication triples. This further implies
that Z(·) = X(·)Y (·) is true if and only if all the (3t+ 1) input triples are multiplication triples.

• If Adv knows t′ < 3t
2 input triples then Adv learns t′ values on X(·), Y (·) and Z(·), implying 3t

2 + 1− t′
“degree of freedom" on X(·), Y (·) and Z(·). If t′ > 3t

2 , then Adv completely learns X(·), Y (·) and Z(·).

The protocol involves 3t
2 instances of Beaver and has communication complexity PC(O(n3)). The protocol

can be executed in a completely asynchronous fashion and it is ensured that every honest party eventually
terminates the protocol. We refer to [15] for the complete formal details of TripTrans.

D.2 The Framework of [15] for the Offline Phase

In [15] an efficient framework for the offline phase for generating t-shared random multiplication triples is
presented. On a very high level, the framework consists of the following two modules:

Module I — Multiplication Triple Sharing: This module allows a designated dealer D to verifiably t-share
multiplication triples. By verifiability, it means that the triples are guaranteed to be multiplication triples.
Moreover, the triples remain private if D is honest. To achieve this task, the module takes any polynomial based
VSS scheme and plug it with the triple transformation protocol TripTrans. In our context, we will use our VSS
protocol Sh. The module is executed as follows.

D invokes our four round VSS protocol Sh to verifiably t-share l(3t+ 1) values. So we require that the first
four rounds are synchronous broadcast rounds, which ensures that at the end of the fourth round, l(3t+1) values
are shared by D. After this, the rest of the steps are executed in a completely asynchronous fashion10. The values
shared by D can be viewed as l batches of 3t+ 1 triples. Consider a single batch {(x(i), y(i), z(i))}i∈[3t+1]. The
correctness property of Sh ensures that the triples are t-shared among P at the end of Sh. To check whether the
triples are indeed multiplication triples, an instance of the triple transformation protocol TripTrans is invoked
with this set of (3t + 1) t-shared triples as input. Let X(·), Y (·) and Z(·) denote the polynomials of degree
at most 3t

2 ,
3t
2 and 3t respectively, which are guaranteed to exist at the end of the instance of TripTrans. We

next use a probabilistic check to verify whether the relation Z(·) = X(·)Y (·) holds by public checking of

Z(α)
?
= X(α)Y (α) for a random α ∈ F; the random α can be generated by any standard technique11 and

10We note that in [15] this module is designed to work in a completely asynchronous fashion, but with t < n/4. Since we are in the
t < n/3 setting and want to use our VSS protocol Sh, we require the first four rounds to be synchronous broadcast rounds.

11For example, each party Pi can t-share a random r(i) and then we can set [α]t
def
= [r(1)]t + . . . + [r(n)]t. This is followed by

publicly reconstructing α using OEC. We call this protocol as Rand().

27

we do not bother about the communication complexity of this procedure as it will be invoked only a constant
number of times. It is trivial to see that the check passes for an honest D. For a corrupted D, if the input triples
{([x(i)]t, [y(i)]t, [z(i)]t}i∈[3t+1] are not multiplication triples, then Z(α) 6= X(α)Y (α) holds (by the property
of TripTrans). Therefore, the probability of a corrupt D passing the check in this scenario can be computed as
the probability that Z(α) = X(α)Y (α) holds, even though Z(·) 6= X(·)Y (·). This probability is atmost 3t

|F|
for a random α since Z(·) has degree at most 3t.

If D is honest, then through the above check, Adv learns one point on X(·), Y (·) Z(·) i.e the value of
the polynomials at α. However, this still leaves 3t

2 degree of freedom in these polynomials. So if the veri-
fication passes, the parties output 3t

2 shared triples {([a(i)]t, [b(i)]t, [c(i)]t)}i∈[3t
2
] on the “behalf" of D, where

a(i) = X(βi), b
(i) = Y (βi) and c(i) = Z(βi) for 3t

2 distinct βi values, distinct from the random α. Thus the
multiplication triples {([a(i)]t, [b(i)]t, [c(i)]t)}i∈[3t

2
] are finally considered to be shared on the “behalf" of D.

The above idea is applied in parallel on all the l batches of 3t+ 1 t-shared triples and a single α is used for
the probabilistic verification in all the batches. Through each batch 3t

2 multiplication triples are considered to
be shared by D and so overall the parties will get (l · 3t2) t-shared multiplication triples at the end. If D is caught
cheating in any of the batches, then it is discarded and some default l · 3t2 multiplications triples are considered
to be shared on the behalf of D. We call the resultant protocol TripleSh. In TripleSh, D needs to invoke Sh by
setting ` = l(3t+1)

n−t . This ensures that D shares `× (n− t) = l(3t+ 1) triples, which when underwent through
TripTrans and probabilistic check result in (l · 3t2) multiplication triples being shared on the behalf of D.

The communication complexity of TripleSh will be PC(O(n3l)) and BC(O(n3)), which is computed as
follows: the instance of Sh will have communication complexity PC(O(n3`)) and BC(O(n3)) (see Theorem
4.3). Substituting ` = l(3t+1)

n−t and n − t = 2t + 1 = Θ(n), this gives PC(O(n3l)) and BC(O(n3)). There
will be l instances of TripTrans, each having communication complexity PC(O(n3)), thereby contributing
PC(O(n3l)) to the communication complexity.

The error probability of TripleSh is computed as follows. By setting ` = l(3t+1)
n−t in Theorem 4.3 we find that

except with probability at most max{ n
3(n−1)
|F|−(n−t) ,

n3l(3t+1)
|F|(n−t) }, the values shared by D will be t-shared. Given that

the values shared by D are t-shared, the probabilistic check ensures that except with probability at most l · 3t2 ,
the outputs values obtained on the behalf of D are indeed multiplication triples (there are l batches and each
batch can pass the probabilistic check with probability at most 3t

2). So it follows that except with probability

l· 3t2 +max{ n
3(n−1)
|F|−(n−t) ,

n3l(3t+1)
|F|(n−t) } ≈ max{ n

3(n−1)
|F|−(n−t) ,

n3l(3t+1)
|F|(n−t) }, the parties output t-shared multiplication triples.

The protocol will eventually terminate for each honest party: the instance of Sh will terminate, assuming that
the first four communication rounds are synchronous broadcast rounds. Once Sh terminates, the instances of
TripTrans which are executed asynchronously eventually terminate for each honest party. We refer to [15] for
the formal details of TripleSh. For completeness, we state the properties of TripleSh in Lemma D.1, whose
proof follows from the above discussion; for a detailed proof see [15].

Lemma D.1. Given a partially synchronous communication setting where the first four rounds are synchro-
nous broadcast rounds, protocol TripleSh achieves the following for every possible Adv. (1) Termination:
Irrespective of D, every honest party eventually terminates the protocol. (2) Correctness: If D is honest then
l · 3t2 multiplication triples are t-shared. If D is corrupted then l · 3t2 triples are t-shared; moreover except with

probability at most max{ n
3(n−1)
|F|−(n−t) ,

n3l(3t+1)
|F|(n−t) }, the triples will be multiplication triples. (3) Privacy: If D is

honest, then the view of Adv in the protocol is distributed independently of the output multiplication triples.
(4) Communication Complexity: The protocol has communication complexity PC(O(n3l)) and BC(O(n3)).
Additionally one invocation to Rand is required.

Module II : Multiplication Triple Extraction. The second module of the efficient framework of [15] is an
asynchronous protocol TripExt. The input to the protocol is a set of 3t+1 t-shared multiplication triples, where
the ith triple is selected by the party Pi. It will be ensured that if Pi is honest, then the ith triple is random

28

and private. The protocol outputs a set of t
2 = Θ(n) t-shared multiplications triples, each of which is random

and unknown to Adv. The high level idea of TripExt is as follows: the input triples are first transformed using
TripTrans to obtain a new set of t-shared 3t+ 1 triples. Let X(·), Y (·) and Z(·) be the underlying polynomials
associated with the transformed triples. It follows from the correctness of TripTrans that Z(·) = X(·)Y (·)
holds, since the input triples are guaranteed to be multiplication triples. Also, since Adv may know at most t
input triples, by the property of TripTrans, it learns at most t points on X(·), Y (·) and Z(·), leaving 3t

2 − t = t
2

degree of freedom on these polynomials. So the parties output {([X(βi)]t, [Y (βi)]t, [Z(βi)]t)}i∈[t
2
], which

can be computed as a linear function of the transformed triples. These triples are considered to be securely
“extracted" from the set of input triples. The protocol eventually terminates for each honest party. As one
instance of TripTrans is involved, TripExt has communication complexity PC(O(n3)). For completeness the
properties of TripExt are stated in Lemma D.2, which follows from the above discussion; for a detailed proof
we refer to [15].

Lemma D.2. Let {(x(i), y(i), z(i))}i∈[3t+1] be a set of multiplication triples, where party Pi ∈ P has verifiably
t-shared the triple (x(i), y(i), z(i)). Then for every possible Adv, protocol TripExt achieves the following in
a completely asynchronous setting. (1) Termination: All honest parties eventually terminate the protocol.
(2) Correctness: Each of the t

2 output triples is a multiplication triple and t-shared. (3) Privacy: The view
of Adv in the protocol is distributed independently of the output multiplication triples. (4) Communication
Complexity: The protocol has communication complexity PC(O(n3)).

Module I + Module II ⇒ Offline phase protocol in the partial synchronous setting. By combining
TripleSh and TripExt, we get an offline phase protocol Offline in the partial synchronous setting as follows.
The goal of Offline is to generate t-sharing of cM + cR random and private multiplication triples.

• Each party Pi acts a D and ensures that 2(cM+cR)
t random multiplication triples are shared on its behalf.

For this, it invokes an instance TripleShi of TripleSh by setting l = 4(cM+cR)
3t2

; this ensures that at the
end of TripleShi, l · 3t2 = 2(cM+cR)

t t-shared multiplication triples are available on the behalf of Pi. This
step is executed in a partially synchronous setting, where it is assumed that the first four communication
rounds are synchronous broadcast rounds. This is to ensure that all the TripleSh instances are terminated.
From Lemma D.1, by substituting the value of l, this step will have total communication complexity
PC(O(n2(cM + cR))) and BC(O(n4)). Additionally there will be one instance of Rand and its output
can be used as a challenge across all the n instances of TripleSh for the verification of the shared triples.
By substituting the value of l and from the union bound (there are n instances of TripleSh) it follows
that at the end of this step, except with probability at most 4n4(cM+cR)(3t+1)

3t2(n−t)|F| , the triples available on the
behalf of all the parties are indeed multiplication triples.

• The parties then execute the protocol TripExt on the multiplication triples obtained at the end of the
previous step and securely extract cM + cR random and private t-shared multiplication triples. More
specifically, the 2(cM+cR)

t shared triples available on the behalf of each party are considered as 2(cM+cR)
t

batches of 3t+ 1 triples, where the ith batch consists of the ith triple available on the behalf of all 3t+ 1
parties. So each batch is of size 3t + 1. For every batch, the triples contributed by the honest parties
will be random and private. So by applying an instance of TripExt, the parties can extract t

2 random and
private t-shared multiplication triples. For each batch an instance of TripExt is executed and so from
2(cM+cR)

t batches, the parties will get total cM + cR random and private t-shared multiplication triples.
This step is executed in a completely asynchronous fashion and it will eventually terminate for each
honest party, as the underlying instances of TripExt will eventually terminate. As there will be 2(cM+cR)

t
instances of TripExt involved, from Lemma D.2, this step will have total communication complexity
PC(O(n2(cM + cR))).

29

For completeness the properties of Offline are stated in Lemma D.3, which follows from the above discussion;
for a detailed proof we refer to [15].

Lemma D.3. Assuming that the first four rounds are synchronous broadcast rounds, protocol Offline achieves
the following for every possible Adv. (1) Termination: All honest parties eventually terminate the protocol.
(2) Correctness: The cM + cR output triples are t-shared among the parties. Moreover, the output triples
are multiplication triples, except with probability at most 4n4(cM+cR)(3t+1)

3t2(n−t)|F| . (3) Privacy: The view of Adv is
independent of the output multiplication triples. (4) Communication Complexity: The protocol has commu-
nication complexity PC(O(n2(cM + cR))) and BC(O(n4)). In addition, one invocation to Rand is required.

D.3 Statistical MPC Protocol in the Partially Synchronous Setting

In our statistical MPC protocol MPC, the parties first execute the protocol Offline and generate t-sharing of
cM +cR random and private multiplication triples. For this we assume that the network is partially synchronous
and the first four communication rounds are synchronous broadcast round. In parallel, each party Pi t-shares
its input xi for the computation by acting as a dealer D and invoking an instance Shi of Sh. These instances of
Sh also utilise the first four synchronous broadcast rounds, which are utilized by Offline. Once Offline is over,
the parties will have cM + cR t-shared random and private multiplication triplets. In addition, the inputs of all
the parties would be available in a t-shared fashion.

Next the parties start securely evaluating the circuit asynchronously on a gate by gate basis by maintaining
the following invariant for each gate of the circuit: given t-sharing of the input(s) of a gate, the parties securely
compute a t-sharing of the output of the gate. A gate is said to be evaluated if a t-sharing of the output of the
gate is computed. This is achieved as follows for various gates: the linearity of t-sharing ensures that the linear
gates can be evaluated locally. For a multiplication gate, the parties associate a multiplication triple from the set
of preprocessed multiplication triples and then evaluate the gate by applying the Beaver’s circuit randomization
technique, namely by invoking an instance of Beaver. For every random gate in the circuit for generating a
random value, the parties associate a multiplication triple from the set of preprocessed multiplication triples
and the first component of the triple is considered as the outcome of the random gate. This explains the need
for generating cM + cR random t-shared multiplication triples in the offline phase (cM triples corresponding to
cM multiplication gates and cR triples corresponding to cR random gates). Once all the gates are evaluated, the
t-sharing of the output gate is publicly reconstructed. As this approach for circuit evaluation is standard and
used in al most all the recent MPC protocols, we avoid giving the complete formal details of MPC.

If it is ensured that the triples from the offline phase are indeed t-shared and multiplication triples then
protocol MPC correctly computes the function f . The probability that the offline phase protocol Offline

fails to generate t-shared multiplication triples is at most 4n4(cM+cR)(3t+1)
3t2(n−t)|F| . So if we ensure that |F| ≥

4n4(cM + cR)(3t + 1)2κ, then the function will be correctly computed except with an error probability of
at most 2−κ. The protocol will achieve the privacy property, intuitively due to the following reason: the inputs
of the honest parties remain private as they are t-shared. The intermediate gate outputs remain as private as
possible, as they are also t-shared. This intuition can be easily formalized by giving a simulation based security
proof using standard arguments (see for example [1]). The offline phase will have communication complexity
PC(O(n2(cM + cR))) and BC(O(n4)). In addition, sharing the inputs of the parties will cost PC(O(n4)) and
BC(O(n4)). The circuit evaluation will have communication complexity PC(O(cMn

2)), as there will be cM
instances of Beaver, while publicly reconstructing the circuit output will cost PC(O(n2)).

30

