Differentially Private Access Patterns in Secure
Computation

Sahar Mazloom! and S. Dov Gordon!

1George Mason University

October 17, 2017

Abstract

We explore a new security model for secure computation on large
datasets. We assume that two servers have been employed to compute
on private data that was collected from many users, and, in order to im-
prove the efficiency of their computation, we establish a new tradeoff with
privacy. Specifically, instead of claiming that the servers learn nothing
about the input values, we claim that what they do learn from the com-
putation preserves the differential privacy of the input. Leveraging this
relaxation of the security model allows us to build a protocol that leaks
some information in the form of access patterns to memory, while also
providing a formal bound on what is learned from the leakage.

We then demonstrate that this leakage is useful in a broad class of com-
putations. We show that computations such as histograms, PageRank and
matrix factorization, which can be performed in common graph-parallel
frameworks such as MapReduce or Pregel, benefit from our relaxation.
We implement a protocol for securely executing graph-parallel computa-
tions, and evaluate the performance on the three examples just mentioned
above. We demonstrate marked improvement over prior implementations
for these computations.

1 Introduction

Privacy and utility in today’s Internet is a tradeoff, and for most users, utility
is the clear priority. We continue to contribute greater amounts of private data
to an increasing number of entities in exchange for a wider variety of services.
From a theoretical perspective, we can maintain privacy and utility if these
entities are willing and able to compute on encrypted data. The theory of secure
computation has been around since the earliest days of modern cryptography,
but the practice of secure computation is relatively new, and still lags behind the
advancements in data-mining and machine learning that have helped to create
today’s tradeoft.

Recently, we have seen some signs that the gap might be narrowing. The
advancements in the field of secure computation have been tremendous in the
last decade. The first implementations computed roughly 30 circuit gates per
second, and today they compute as many as 6 million per second [1]. Scattered
examples of live deployments have been referenced repeatedly, but most recently,
in one of the more promising signs of change, Google has started using secure
computation to help advertisers compute the value of their ads, and they will
soon start using it to securely construct machine learning classifiers from mobile
user data [2]. A separate, more recent line of research also offers promise: the
theory and techniques of differential privacy give service providers new mecha-
nisms for aggregating user data in a way that reasonably combines utility and
privacy. The guarantee of these mechanisms is that, whatever can be learned
from the aggregated data, the amount that it reveals about any single user in-
put is minimal. The Chrome browser uses these techniques when aggregating
crash reports [3], and Apple claims to be employing them for collecting usage
information from mobile devices. In May, 2017, Senator Ron Wyden wrote an
open letter to the commission on evidence-based policymaking urging that both
secure computation and differential privacy be employed by “agencies and orga-
nizations that seek to draw public policy related insights from the private data
of Americans [4].”

The common thread in these applications is large scale computation, run by
big organizations, on data that has been collected from many individual users.
To address this category of problems, we explore new improvements for two-
party secure computation, carried out by two dedicated computational servers,
over secret shares of user data. We use a novel approach: rather than attempting
to improve on known generic constructions, or tailoring a new solution for a
particular problem, we instead explore a trade-off between efficiency and privacy.
Specifically, we propose a model of secure computation in which some small
information is leaked to the computation servers, but this leakage is proven to
preserve differential privacy for the users that have contributed data. More
technically, the leakage is a random function of the input, revealed in the form
of access patterns to memory, and the output of this function does not change
“by too much” when one user’s input is modified or removed.

The question of what is leaked by access patterns to input during a com-
putation is central to secure computation. Although the circuit model of com-
putation allows us to skirt the issue, because circuits are data oblivious, when
computing on large data there are better ways of handling the problem, the
most well-studied being the use of secure two-party ORAM [5, 6, 7, 8, 9]. How-
ever, when looking at very large data sets, it is often the case that both circuits
and ORAM are too slow for practical requirements, and there is strong motiva-
tion to look for better approaches. In the area of encrypted search, cryptogra-
phers have frequently proposed access-pattern leakage as a tradeoff for efficiency
[10, 11, 12, 13]. Unfortunately, analyzing and quantifying the leakage caused by
the computation’s access pattern is quite difficult, as it depends heavily on the
specific computation, the particulars of the data, and even the auxiliary infor-
mation of the adversary. Furthermore, recent progress on studying this leakage

has mostly drawn negative conclusions, suggesting that a lot more is revealed
than we might originally have hoped [14, 15, 16, 17, 18]. Employing the defi-
nition of differential privacy as a way to bound the leakage of our computation
allows us to offer an efficiency / privacy tradeoff that cryptographers have been
trying to provide, while quantifying, in a rigorous and meaningful way, precisely
what we have leaked.

1.1 Graph-Parallel Computations

In designing our protocol, we aimed to strike another balance as well; one be-
tween generality and efficiency. Accordingly, we have identified a broad class
of highly parallelizable computations that are amenable to the privacy tradeoff
we propose. Recently, Nikolaenko et al. constructed a tailored secure compu-
tation for performing matrix factorization of sparse matrices, with application
to building recommendation systems while user input remains hidden [19]. A
generic circuit for matrix factorization would grow with the size of the matrix,
rather with the number of entries in the matrix. When dealing with large,
sparse matrices of size n X m but with only O(n + m) entries, the quadratic
growth in circuit size is prohibitive. By instead performing a sequence of generic
computations, which includes several oblivious sorts over the secret-shared en-
tries of the matrix, they are able to construct a computation that requires
O((n+m)log?(n+m)) garbled AND gates, instead of O(nm) AND gates. The
log® factor comes from the cost of performing oblivious sorting on the input
data.

Generalizing this work, Nayak et al., recognized that a similar, though
more elaborate, secure computation could be used to perform parallelizable
computation on graph-structured data while the input remains encrypted [20].
When computing on plaintext data, frameworks such as MapReduce, Pregel,
GraphLab and PowerGraph have very successfully enabled developers to lever-
age large networks of parallelized CPUs [21, 22, 23, 24]. The latter three men-
tioned systems are specifically designed to support computations on data that
resides in a graph, either at the nodes or edges. The computation proceeds by
iteratively gathering data from incoming edges to the nodes, performing some
simple computation at the node, and pushing the data back to the outgoing
edges. This simple iterative procedure captures many important computational
tasks, including histogram, matrix factorization and page-rank, which we fo-
cus on here (as did Nayak et al.), as well as Markov random field parameter
learning, parallelized Gibbs samplers, and name entity resolution, to name a
few more. Nayak et al. built a parallelizable system for securely computing on
graph-structured data. The complexity of their computation is similar to that
of Nikolaenko et al., requiring O(|E| + |V|)log®(|E| + |V|) garbled AND gates.

1.2 A Connection to Differential Privacy

It turns out that there is a natural connection between building differentially
private access patterns, and these graph-parallel frameworks. The memory ac-

cess pattern induced by this computation is easily described: during the gather
stage, each edge is touched when fetching the data, and the identifier of the
adjacent node is exposed when copying the data. A similar pattern is revealed
during the scatter phase. (The computation performed during the apply phase
is typically very simple, and can be executed in a circuit, which is memory obliv-
ious.) In the computations we perform, each user is represented by a node in the
graph, and provides the data that starts out on the edges adjacent to that node.
For example, in a recommendation system, the graph is bipartite, each user is
represented by one node on the left, each node on the right represents an item
that users might review, and the edges are labeled with scores indicating the
user’s review of an item. The access pattern just described would reveal exactly
which items every user reviewed! Our first observation is that if we use a secure
computation to obliviously shuffle all of the edges in between the gather and
apply phases, we break the correlation between the nodes, and the only thing
revealed to the computing parties is a histogram of how many times each node is
accessed — i.e. a count of each node’s in-degree and out-degree. When building a
recommendation system, this would reveal how many items each user reviewed,
as well as how many times each item was reviewed. Fortunately, histograms
are the canonical problem for differential privacy. Our second observation is
that we can shuffle in dummy edges to help obscure this information, and by
sampling the dummy edges from an appropriate distribution (which has to be
done within a secure computation), we can claim that the degrees of each node
remain differentially private.

Differentially Private Output: As is typical in secure computation, we are
concerned here with how to securely compute some agreed upon function, rather
than what function ought to be computed. In other words, we view the question
of what the output itself might reveal about the input to be beyond scope of our
work. Our concern is only that the process of computing that output does not
reveal too much. Admittedly, if the parties that perform the computation will
ultimately learn something that breaks differential privacy, it’s not clear why we
would insist that the process of performing that computation should preserve
differential privacy. We could resolve this tension by insisting that the output
of all computations preserve differential privacy, which, at least for the class of
computations we support in this work, would not be that hard to do. Indeed,
in the specific case of histograms, which we present as an example in Section 3,
adding differentially private noise to the output is substantially more efficient
than preserving an exact count.

Nevertheless, we take a different approach here. In all of our computations,
the output of each server is a secret share of the desired output. The question of
where to deliver these shares is left to the user, though we can imagine several
scenarios in which the party receiving the shares might not require that the
result preserve differential privacy. For example, it might be that the users of
the system have entrusted their data to a single entity, such as a government
agency, and that this entity is now outsourcing a complicated learning task to
the computation servers, with the requirement that they not learn about the

underlying data. We might even imagine that the shares are never reconstructed,
but are used later inside another secure computation in order to make decisions
that are driven by the output. The advantage of separating out the question
of what is revealed by the output is that it allows us to compare apples to
apples: we can isolate the question of what can be gained in performance when
we employ our proposed tradeoff. In particular, as we described above, the class
of computations that we support has been studied in prior work. In Section 5 we
will give a direct comparison to the performance in that work, and demonstrate
substantial improvement. Modifying the computational tasks would make such
a comparison difficult.

1.3 Contributions and Related Work

Contributions. We make several new contributions, of both a theoretical and
a practical nature.

Introducing the model. As cryptographers have attempted to support se-
cure computation on increasingly large datasets, they have often allowed their
protocols to leak some information to the computing parties in the form of ac-
cess patterns to memory. This is especially true in the literature on encrypted
search. The idea of bounding the leakage in a formal way, using the definitions
from literature on differential privacy, is novel and important.

More efficient asymptotic analysis. The relaxation we introduce enables us
to improve the asymptotic complexity of the target computations by a factor
of logn. While the more practical construction of Nayak et al. [20] has run-
ning time O(n log? n), if they instead use the best known asymptotic result for
oblivious sorting, their protocol becomes less practical, but in fact runs in time
O(nlogn). In contrast, while our practical construction runs in time O(nlogn),
if we are willing to perform encryption and decryption inside a garbled circuit,
we can modify our construction to achieve O(n) run-time. We will provide the
details of this improvement in the full version of this paper.

An implementation. We demonstrate that the asymptotic improvements lead
to tangible gains. We have implemented our system, and compared the results
to the system of Nayak et al. [20]. We demonstrate up to a 20X factor improve-
ment in the number of garbled AND gates required in the computation, while
preserving differential privacy with strong parameters: € = .3 and § = 2740,

Related Work. Nayak et al. [20] were the first to consider parallelizing the
secure computation of graph-structured data, and we use their work as the basis
for evaluating the efficiency of our own construction. Their construction gen-
eralized the protocol designed by Nikolaenko for matrix factorization of sparse
matrices. However, since the protocol of Nayak et al. out-performs theirs, we
only compare to the former. In both works, the constructions are fully secure,
in contrast to our own construction that intentionally leverages some bounded
leakage in exchange for improved efficiency.

Concurrent with our own work, Papadimitriou et al. [25] also build a system
for secure computation of graph-structured data, and they even offer differential

privacy of the output. However, as we mention above, we view this property as
being orthogonal to the question of whether the protocol itself leaks differentially
private information. Indeed, their construction is fully-secure, so they do not
leverage differential privacy in order to construct a more efficient protocol, as
we do. Their model also differs from our own (and those of Nayak et al. and
Nikolaenko et al.) in that they consider a set of parties that are unwilling to
entrust their input to computation servers. Instead, each party holds their own
piece of the graph-structured data, and the authors construct a multi-party
protocol where the communication patterns hide the structure of the graph.
This setting is more challenging, and the result is much less efficient; the authors
do not provide a comparison of their performance to that of Nayak et al., so we
do not provide one here.

In an unpublished work (which pre-dates our own), Kellaris et al. construct
differentially private storage systems that allow a client to outsource their data
to an untrusted server while supporting arbitrary queries to the data [26]. They
define a model in which the access pattern to storage leaks information to the
server, but prove that the leakage preserves the differential privacy of the users.
Communication with the authors about their work helped to inspire our own
ideas. The primary difference between their work and ours is that we explore
secure computation on the data, rather than search. Since database queries
can be viewed as a particular instance of secure computation, one could view
the idea of leveraging differentially private leakage in secure computation as a
generalization of their idea to leverage such leakage in the setting of encrypted
search. In practical terms, though, this is mostly inaccurate, because of many
other differences in the model: they assume a single computation server, a client
that provides all of the (pre-processed) data, and require computation times that
are sub-linear. Our protocol is not meant to capture arbitrary computation, and,
in particular, it runs in time super-linear in the input size, so it only provides
benefit when compared with protocols that are super-linear.

In another unpublished work (which also pre-dates our own), Wagh et al. de-
fine and construct differentially private ORAM [27]. This is an oblivious memory
structure that guarantees that two “neighboring access patterns” are indistin-
guishable. This is an extremely interesting relaxation of the standard definition
for ORAM, in which all access patterns must be indistinguishable. Further-
more, as the authors point out, their construction composes: allowing for a
degradation in the privacy parameter, they can provide differential privacy for
any two access patterns of bounded distance from one another. Although their
construction is in the client/server model, in which all of the data is known to
the client, and security / privacy is only guaranteed with respect to the server,
using standard techniques we could execute their ORAM in a two-party com-
putation to achieve precisely the privacy / efficiency tradeoff we have proposed,
for all RAM-model computations. However, the authors did not address this
question, and in particular did not define secure computation with differentially
private leakage, which we view as one of our contributions. More importantly,
the resulting construction, while more general than our own, would also be much
less efficient than ours. The primary savings in Root ORAM (as compared to

Path ORAM [28]) stems from a modification to the read/write operation: in-
stead of always assigning the last touched memory item to a new leaf node in
the binary tree, in Root ORAM the mapping is occasionally left untouched,
which allows for operating with a smaller stash. We have not attempted to
implement it, and a good estimation is hard to make, but, using ¢ = .3 with
Root ORAM, for about 3 in 10,000 memory accesses, a data item would not
be re-mapped to a new leaf node in the ORAM. On a computation involving
105 edges and 4000 nodes, this amounts to 300 data lookups (on average) out
of 105. Although the authors do not give a direct analysis of the required stash
size for preventing an over-flow event (and, in particular, they do not compare
the needed stash size with that of Path ORAM), we are quite certain that the
overhead of implementing garbled ORAM would make this far less efficient than
our own construction, in which there are no hidden constants in the asymptotic
notation. (Indeed, even if the stash were eliminated entirely, we think it is very
unlikely that garbled ORAM would outperform our own construction.)

2 Definitions and Notation

Throughout the paper, we use the following notations. We view a database as a
multi-set of elements drawn from some fixed set S. We represent the database
by a function D : S — N, and we use | D| in the natural way to mean), ¢ D(3).
We use DB; to denote the set of all databases of size ¢, and DB = |J, DB;. We
consider two databases D and Dy to be adjacent if the two multi-sets differ
in exactly one element. Technically, |D; \ D2| = 1 and |D3 \ Dy| = 0. For
simplicity, we will sometimes denote this by |D; — Ds| = 1. For example,
Dy ={A,A,B,B,B,C,C} and D; = {A, A, B, B,C,C} have distance 1.

We let (x) denote a variable which is XOR secret-shared between parties.
Arrays have a public length and are accessed via public indices; we use (z), to
specify element ¢ within a shared array, and (x),, ; to indicate a specific portion
of the array containing elements 7 through j, inclusive. When we write (x) + ¢,
we mean that both users should fix their shares of (using some agreed upon
manner) to ensure that = ¢. For example, one party might set his share to be
c while the other sets his share to 0.

2.1 Differential Privacy
We use the definition that appears in [29].

Definition 1 A randomized algorithm F : D — Rr, with an input domain D
that is the set of all databases and output Ry C {0,1}* is (e, d)-differentially
private if for all T C Rx and VD1, Dy € D such that |Dy — D] < 1:

Pr[F(D1) € T] < e‘Pr[F(Dy) € T| + 6

where the probability space is over the coin flips of the mechanism F.

Given a database D over a set V, defined as above, we define our mechanism
Fe,5(D) to output a “noisy” database, D, where for each i € V, D(i) = D(i) +
v;, and each ~y; is drawn independently from a shifted geometric distribution,
parameterized by a probability p, and denoted by ®,. The shift ensures that
negative values are negligible likely to occur. This is necessary because the noisy
set will determine our access pattern to memory, and we cannot accommodate
a negative number of accesses. More specifically, we will define below a “shift
function” o : R x R — N that maps every (e, §) pair to a natural number. When
€ and ¢ are fixed, we will simply use a to denote a(e,d), and F to denote F 5.
Intuitively, we sample v; by flipping a biased coin p until it comes up heads. We
flip one more unbiased coin to determine the sign of the noise, and then add the
result to a. We will determine p based on € and §. Formally, -; is sampled as
follows:

1
Vk €N k#0:Prly; = a+k] = 31— D)p(1—p)*HI L

As just previously described, we view p as the stopping probability. How-
ever, in the first coin flip, we stop with probability p/2. We note that this is
a slight modification to the normalized 2-sided geometric distribution, which
would typically be written as Pr[y; = a + k] = 32p(1 — p)¥l. The advantage
of the distribution as it is written above is that it is very easy to sample in a
garbled circuit, so long as p is an inverse power of 2; normalizing by ﬁ intro-
duces problems of finite precision and greatly complicates the sampling circuit.
An analysis of this mechanism, including concrete settings of the parameters,
and a brief description of how we implement it in a garbled circuit, appears in
Section 4.

We note that with some probability that is dependent on the choice of «,
for D = F(D), 3i € V,D(i) < 0, which leaves us with a bad representation of
a multi-set. We therefore modify the definition of F to output @ whenever this
occurs, and we always choose « so that this occurs with probability bound by
§ =274,

2.2 Secure computation with differentially private access
patterns

Input model: We try to keep the definitions general, as we expect they will
find application beyond the space of graph-structured data. However, we use
notation that is suggestive of computation on graphs, in order to keep our
notation consistent with the later sections. We assume that two computation
servers have been entrusted to compute on behalf of a large set of users, V, with
|V| = n, and having sequential identifiers, 1, ..., n. Each user ¢ contributes data
v;. They might each entrust their data to one of the two servers (we call this
the disjoint collection setting), or they might each secret-share their input with
the two-servers (joint collection setting). In the latter case, we note that both
servers learn the size of each v; but neither learns the input values; in the former

case, each server learns a subset of the input values, but learns nothing about
the remaining inputs (other than the sum of their sizes).! Below we will define
two variant security notions that capture these two scenarios.

In all computations that we consider in our constructions, the input is rep-
resented by a graph. In every case, each user is represented as a node in this
graph, and each user input is a set of weighted, directed edges that originate at
their node. In some applications, the graph is bipartite, with user nodes on the
left, and some distinct set of item nodes on the right: in this case, all edges go
from user nodes to item nodes. In other applications, there are only user nodes,
and every edge is from one user to another. In the joint collection setting, we
can leak the out-degree of each node, which is the same as the user input size,
but must hide (among other things) the in-degree of each node. In the disjoint
collection setting, the protocol has to hide both the in-degree and out-degree
of each node. In the case of a bipartite graph, it is publicly known that the
in-degree of every user is 0 (i.e. items have no input). In the joint collection
setting, this knowledge allows for some improvement in efficiency that we will
leverage in Section 5.

Secure computation with leakage: In this section, we define secure com-
putation with differentially private leakage. For simplicity, we start with a
standard definition of semi-honest security?, but make two important changes.
The first change is that we allow certain leakage in the ideal world, in order to
reflect what is learned by the adversary in the real world through the observed
access pattern on memory. The leakage function is a randomized function of
the inputs. The second change is an additional requirement that this leak-
age function be proven to preserve the differential privacy for the users that
contribute data. Our ideal world experiment is as follows. There are two par-
ties, P, and P», and an adversary S that corrupts one of them. The parties
are given input, as described above; we use V3 and V5 to denote the inputs
of the computing parties, regardless of whether we are in the joint collection
setting or the disjoint collection setting, and we let V = {vy,...,v,} denote
the user input. Technically, in the joint collection setting, V' = V; @& V5, while
in the disjoint collection setting, V' = V; U V5. Each computing party submits
their input to the ideal functionality, unchanged. The ideal functionality recon-
structs the n user inputs, vi,...,v,, either by taking the union of the inputs
submitted by the computation servers in the disjoint collection setting, or by
reconstructing the input set from the provided secret shares in the joint col-
lection setting. The ideal functionality then outputs fi(v1,...,v,) to P; and

IWe note that the disjoint collection setting corresponds to the “standard” setting for
secure computation where each computing party contributes one set of inputs. Just as in
that setting, each of the two computing parties could pad their inputs to some maximum size,
hiding even the sum of the user input sizes. In fact, we could have them pad their inputs
using a randomized mechanism that preserves differential privacy, possibly leading to smaller
padding sizes, depending on what the maximum and average input sizes are. We don’t explore
this option further in this work.

2We stress that our use of differentially private leakage leads to gains in the circuit con-
struction, so we could use any generic secure computation of Boolean circuits, including those
that are maliciously secure, and benefit from the same gains. See more details below.

fa(vi,...,v,) to Pa. These outputs might be correlated, and, in particular, in
our own use-cases, each party receives a secret share of a single function eval-
uation: (f(v1,...,vn))1, (f(v1,...,vs))2. The ideal functionality also computes
L(D) and provides this, along with ., [v;] to 8. Additionally, depending
on the choice of security definition, the ideal functionality might or might not
give the simulator, Vi € V, |v;|.

Our protocols are described in a hybrid world, in which the parties are given
access to several secure, ideal functionalities. In our implementation, these are
replaced using generic constructions of secure computation (i.e. garbled circuits).
Relying on a classic result of Canetti [30], when proving security, it suffices to
treat these as calls to a trusted functionality. In the definitions that follow, we
let G denote an appropriate collection of ideal functionalities.

As is conventionally done in the literature on secure computation, we let
HYBRIDi A(2) (V1, Va, k) denote a joint distribution over the output of the honest
party and the view of the adversary A with auxiliary input z € {0,1}*, when
the parties interact in the hybrid protocol 79 on inputs Vi and Vs, each held
by one of the two parties, and computational security parameter k. We let
IDEALF §(z,2(v),VieV:|u|)(V1, V2, k) denote the joint distribution over the output
of the honest party and the view output by the simulator § with auxiliary input
z € {0,1}*, when the parties interact with an ideal functionality F on inputs
V1 and V3, each submitted by one of the two parties, and security parameters k.
We define the joint distribution IDEALFE S(2,L(V),5;cy |1,7A/D(V17 Va, k) in a similar
way, the only difference being that the simulator is given the sum of the input
sizes and not the value of each input size.

Definition 2 Let F be some functionality, and let m be a two-party protocol
for computing F, while making calls to an ideal functionality G. 7 is said to
securely compute F in the G-hybrid model with £ leakage, known input sizes,
and (k,€,0)-security if L is (e,0)-differentially private, and, for every PPT,
semi-honest, non-uniform adversary A corrupting a party in the G-hybrid model,
there exists a PPT, non-uniform adversary S corrupting the same party in the
ideal model, such that, on any valid inputs V1 and Va
{HYBRIDg (W, V- n)} =
mA(z) VD T 2€{0,1}*,kEN
{IDEALSfl,)S(z,a(V),WeV:m\) (1, V2, “)}Ze{m}meN (1)
The above definition is the one that we use in our implementations. However,
in Section 4 we also describe a modified protocol that achieves the stronger
security definition that follows, where the adversary does not learn the sizes of
individual inputs. This property might be desirable (or maybe even essential)
in the disjoint collection model, where users have not entrusted one of the two
computing parties with their inputs, or even the sizes of their inputs.

3In the joint collection setting, the simulator can infer this value from the size of the
input that was submitted to the ideal functionality. But it simplifies things to give it to him
explicitly.

10

Definition 3 Let F be some functionality, and let ™ be a two-party protocol
for computing F, while making calls to an ideal functionality G. w is said
to securely compute F in the G-hybrid model with £ leakage, and (k,e¢,d)-
security if L is (e,0)-differentially private, and, for every PPT, semi-honest,
non-uniform adversary A corrupting a party in the G-hybrid model, there exists
a PPT, non-uniform adversary S corrupting the same party in the ideal model,
such that, on any valid inputs Vi and Vs

IIfo

g
HYBRID Vi, Va, }
{ maez) (V1 V2, 1) 2€{0,1}*,kEN

(2)

{0l ey o (Ve Ve ”)}Ze{o;}»«,new (2)
Extensions to other models: Extending these definitions to other common
models, including those with malicious adversaries and/or multi-party compu-
tation is straightforward, so we do not provide redundant detail. However, we
stress that our improvements over prior work are at the circuit level

3 A Differentially Private Protocol for Comput-
ing Histograms

To illustrate our main idea, we describe an algorithm that computes the data
histogram (counting or data frequency) with differentially private access pat-
terns. Although this computation can be formalized in the context of our gen-
eral framework, it is instructive to demonstrate some of the main technical ideas
with this simple example before considering how they generalize (which we do
in Section 4). We defer a discussion about security until we present the more
general protocol.

In this computation, we assume that each user in the system contributes
a single input value, xz; € S, where we call the set S the set of types. The
computation servers (parties) each begin the computation with secret shares
of the input array, denoted by (real) in output a secret share of |S| counters,
where each counter contains the exact count of the number of inputs of the
corresponding type. The full protocol specification appears in Figure 1.

The two parties begin by generating some number of dummy inputs. The
functionality for this is described in the left of Figure 2, and it is realized using a
generic secure two-party computation. As part of this computation, the parties
have to securely sample the distribution ©,,, which is also done using a generic
protocol for secure computation: we implemented one of the circuits described
by Dwork et al. [31]. The output of DumGen,, ,, is a secret sharing of values in
S U {L}: the size of the output is 2a|S|, where « is some constant determined
by the desired privacy values € and § (see Section 4). The number of dummy
items of each type is random, and neither party should learn this value; shares
of L are used to pad the number of dummy items of each type until they total
2ax.

11

Each party locally concatenates their share of the real input array with
their share of the dummy values. They also initialize shares of an array of
flags, which will be used to keep track of which items are real and which are
dummy. They then shuffle the real and dummy items together using an oblivious
shuffle. We implement this using two sequential, generic secure computations
of the Waksman permutation network, with each party randomly choose one
of the two permutations. The same permutations are used to shuffle the flags,
ensuring that the flags are “moved around with” the items. We note that all
secret shares are updated during the process of shuffling, so while the parties
knew which items and flags were real and which were not before the shuffle,
they have no way of knowing this after they receive fresh shares of the shuffled
items and flags.

The parties now open their shares of the data types, while leaving the flag
values unknown. This is where our protocol leaks some information: revealing
the data types allows the parties to see a noisy sum of the number inputs of each
type. On the other hand, this is also where we gain in efficiency: the remainder
of the protocol requires only a linear scan over the data array, with a small
secure computation for each element in order to update the appropriate counter
value. More specifically, the parties iterate through the shuffled array. On
data type i, they fetch their shares of the counter for type ¢ from memory and
perform a secure computation that adds the (reconstructed) flag value to the
(reconstructed) counter. If the item was a real item, the parties receive fresh
shares of the incremented counter value, while if it was dummy, they receive
fresh shares of the counter’s prior value; in either case, they never learn whether
they fetched that counter from memory because of a real input value, or because
of a dummy value.

Simple extensions: In Section 4 we show how to generalize this protocol to
the wider function class. However, we note that in this specific case, if we did
want to add noise to the output, we could simply instruct the servers to count
the number of times each counter is accessed. They would not need to update
the counter values through a secure computation, so this would be a (slightly)
faster protocol. The output would have one-sided noise, but they could simply
subtract off o from each counter at the end to get a more accurate estimate of
the counts. We also note that the protocol in Figure 1 can be applied to other
similar computations such as taking averages or sums over r values of |S| types.
For example, if each user contributed a salary value and a zip-code, we could use
the above method for computing the average salary in each zip-code: instead
of incrementing the counter by 1 when we encounter a real item, we simply
increment it by the value of the secret-shared input. In this case, though, the
access pattern alone does not suffice for creating noisy output. If that is desired
for these computations, the noise would have to be generated independently,
through a secure computation for sampling the desired distribution, and then
added obliviously to the output.

12

Differentially Private Histogram Protocol

Input: Each party, P; and P», receives a secret-share of real items (real)

Computation:
(Counter),, g = 0

dummy), ., < DumGenp o
flagg),.q <= 0, (flag)),, <1
data > (r+d) T
ﬂag)1 (rray = (flagy)|[(flagg)
(data) « Fspuire((data), (p))
(ﬁa\g> Fsnuttie((flag), (p))
data < Open((data))
fori=1...(r+d)

Fadd((flag),, (Counter),) where t = data;

(
(
((rea|)||<dummy)
(

Output: (Counter)

Figure 1: A protocol for two parties to compute a histogram on secret-shared
data with an access pattern that preserves differential privacy.

4 OblivGraph: Differentially Private protocol
for Secure Graph-Parallel Computation

When considering how the protocol from the previous section might be general-
ized, it is helpful to recognize the essential property of the computation’s access
pattern that we were leveraging. When computing a histogram, the access pat-
tern to memory exactly leaks a histogram of the input! This might sound like
a trivial observation, but it is in fact fairly important, as histograms are the
canonical example in the field of differential privacy, and finding other compu-
tations where the access pattern reveals a histogram of the input will allow us
to broadly apply our techniques.

With that in mind, we extend our techniques to graph structured data,
and the graph-parallel frameworks that support highly parallelized computa-
tion. There are several frameworks of this type, including MapReduce, Pregel,
GraphLab and others [21, 23, 22]. We describe the framework by Gonzalez
et al. [24] called PowerGraph since it combines the best features from both
Pregel and GraphLab. PowerGraph is a graph-parallel abstraction that consists
of a sparse graph that encodes computation as vertex-programs, which run in
parallel and interact along edges in the graph. While the implementation of
vertex-programs in Pregel and GraphLab differ in how they collect and dis-
seminate information, they share a common structure called the GAS model
of graph computation. The GAS model represents three conceptual phases of
a vertex-program: Gather, Apply, and Scatter. The computation proceeds in

13

DumGeny o

Input: None.

Computation:
d=2a|V]|
dummyy.q < L
fori=0...]V|-1

7 =2
Vi ¢ Dp
k=~+7

dummy;.p, =1

Output: (dummy)

DumGenp,q

Input: None.

Computation:
d = 2a|V]|
dummyEdges;.; ¢ L
fori=0...|V|-1

Jj =2
'Yi<_©p
k=it

dummyEdges;.;.v =
i

Output: (dummyEdges)

DumGeny. o

Input: None.

Computation:
d = 2a|V|
dummyEdges;.; <
1
fori=0...]V|-1
j =201
Yi < i)p
5,' «— Qp
k=~i+3J
C=6,+7
dummyEdges;.;;.v 5

dummyEdges, ;.u 1

Output:
(dummyEdges)

Figure 2: Three variations on the Ideal functionality, DumGen, . Each is
parameterized by «,p. The leftmost functionality is used in the histogram
protocol described in Section 3. The middle definition is the one used in our
implementation. The right-most adds differential privacy to out-degrees, which
is needed in the disjoint collection model (i.e. when hiding the input sizes for

all users).

14

fgas
GAS Model Operations

Inputs: (Vertices), (Edges)

Gather
for e(u,v) € Edges
v.data < copy(e.data)
Applyy
v.data + f(v)
Scatter
for e(u,v) € Edges
e.data < copy(u.data)

Outputs: (Vertices), (Edges)

3!

igure 3: Ideal functionality for a single iteration of the GAS model operations

Tlgas
Secure Graph-Parallel Computation with Differentially Private
Access Patterns

Input: (Vertices), (realEdges)

Computation:
(dummyEdges), , < DumGeny o
(dummyEdges. flag) < 0
(realEdges. flag) < 1
(Edges),.(,.4) < (realEdges)||[(dummyEdges)
(Edges) < Fshuftie((Edges))

Gather
(Edges) < Fsnufrie({Edges))
fori=1...r+d
Open(Edges;.u)
(D) < copy((Edges;.D.))

Apply
(Vertices) < Frunc((Vertices))

Scatter

(Edges) « Fshutne((Edges))

fori=1...r+d
Open(Edges;.v)
(Edges;.D.,) < copy({Dy))

Output: (Vertices) (realEdges)

Figure 4: A protocol for two parties to compute a single iteration of the
GAS model operation on secret-shared data. This protocol realizes the ideal
functionality described in Figure 3.

iterations, and in each iteration, every node gathers data from their incoming

15

edges, applies some simple computation to the data, and then scatters the re-
sult to their outgoing edges. Viewing each node as a CPU (or by assigning
multiple nodes to each CPU), the apply step, which constitutes the bulk of the
computational work, is easily parallelized. The framework is quite general, and
captures computations such as gradient descent, which is used in matrix factor-
ization for recommendation systems, as well PageRank, histograms, and many
other computations. Taking matrix factorization as an example, an edge (u,v)
indicates that user u reviewed item v, and the data stored on the edge indicates
the value of the user’s review.

When computing in this manner, the access pattern to memory reveals the
edges between nodes. However, because we touch only the left node of every
edge during the gather, and only the right node of every edge during the scatter,
by adding an oblivious shuffle of the edges between these two steps, we can hide
the connection between neighboring nodes. The leakage of the computation
is then reduced to two histograms: the in-degrees of all nodes, and the out-
degrees of all nodes! We preserve deferential privacy by adding noise to these
two histograms, just as we did in the previous section. Details follow below, the
formal protocol specification appears in Figure 4, and the ideal functionality for
the PowerGraph framework appears in Figure 3.

We denote the data graph by G = (V, E). We denote the data associated
with each vertex v € V and each edge e € E, with v.data, and e.data, respec-
tively. As in Section 3, our protocol is in a hybrid model where we assume
we have access to three ideal functionalities: DumGeny o, Fshuffle; Frunc. AS
compared to Section 3, here we have dropped an explicit specification of the
permutation used in the Fshufe. In all instances, we use a random permutation.
(Since the dummy flags are now included inside the edge structure, we no longer
need to specify that they are shuffled using the same permutation as the data
elements.) We note that only the shuffle operations inside Gather and Scatter
are repeated in each iteration.

In the protocol, Apply makes a call to an ideal functionality, Fgnc. This
functionality takes secret shares of all vertices, applies the specified function
to the data at each vertex, and returns fresh secret shares of the aggregated
data. In our protocol, we implement this ideal functionality using generic secure
computation. We don’t focus on the details here, as they have been described
elsewhere (e.g. [20, 19]).

The ideal functionality for DumGen,, o appears in the middle column of
Figure 2. The only difference between the functionality described there and the
one in the left portion of the figure (which was used in Section 3) is that our
“types” are now node identifiers, and they are stored within edge structures.
However, the reader should note that only the right node in each edge is assigned
a dummy value, while the left nodes all remain 1. This design choice is for
efficiency, and comes at the cost of leaking the exact histogram defined by the
out-degrees of the graph nodes. For example, when computing gradient descent
for matrix factorization, this reveals the number of reviews written by each
user, while ensuring that the number of reviews received by each item remains
differentially private. In particular, then, the noise hides whether any given

16

user reviewed any specific item. This suffices for achieving security with known
input sizes, as defined in Definition 2. This is the protocol that we use in our
implementation, but we also include a third variant of DumGen,, ,, on the right
side of the Figure. In that variant, separate noise is added to the left node of
each edge as well, which provides security according to Definition 3. We do not
implement or analyze the security of this variant. However, it is not hard to
see that this doubles the “sensitivity” of the “query”, and that e will have to
be cut in half in order to provide the same security guarantee. This roughly
amounts to doubling the number of dummy edges in the system. The impact
this would have on performance depends on the ratio of real edges to dummy
edges in the system, which itself depends on the data set and the number of
vertices in the graph. See Section 5 for a general sense of how these parameters
impact performance.

In some computations, the graph is known to be bipartite, with all edges
starting in the left vertex set and ending in the right vertex set (again, recom-
mendation systems are a natural example). In this case, since it is known that
all nodes in the left vertex set have in-degree 0, we do not need to add dummy
edges containing nodes. This cuts down on the number of dummies required,
and we take advantage of this when implementing matrix factorization.

In our implementation of DumGen,, o, we instantiate D, with the distribu-
tion described in Section 2. Intuitively, as outlined in the work of Dwork et
al. [31], we sample this distribution by repeatedly flipping a coin until it comes
up heads, and letting the number of coin flips determine the number of dummy
items. The bias of the coin is p € [0,1], and we assume p = 1/2¢ for some
integer ¢. (The exact value depends on the choice of ¢, as described in the next
subsection.) Each party inputs a random string, and we let the XOR of these
strings define the random tape for flipping the biased coins. If the first ¢ bits
of the random tape are 1, the first coin is set to heads, and otherwise it set to
tails: this is computed with a single ¢-input AND gate. We iterate through the
random tape, ¢ bits at a time, determining the value of each coin, and setting
the dummy elements appropriately. Recall that ©,, is a two-sided distribution,
so we also use one bit from the random tape to determine the sign of the sample.
To prevent a negative number of dummy items, we add o dummies to the result
of ®,. Therefore, when setting values based on the coin flip, we either add
or subtract dummy values from the initial «, based on the sign of the sample
drawn from ©,,. Note that the output length is fixed, regardless of this random
tape, so after we set the appropriate number of dummy items based on our coin
flips, the remaining output values are set to L.

The cost of this implementation of DumGen,, o is O(V'), though this hides
a dependence on € and §: an exact accounting for various values can be found
in Section 5. This cost is small relative to the cost of the oblivious shuffle, but
we did first consider a much simpler protocol for DumGen, , that is worth
describing. Instead of performing a coin flip inside a secure computation, by
choosing a different distribution, we can implement DumGen, , without any
interaction at alll To do this, we have each party choose d random values from
{1,...,]V]}, and view them as additive shares (modulo |V|) of each dummy

17

item. Note that this distribution is already one-sided, so we do not need to
worry about «, and it already has fixed length output, so we do not need to
worry about padding the dummy array with | values. Intuitively, this can be
viewed as |V| correlated samples from the binomial distribution, where the bias
of the coin is 1/|V|. Unfortunately, the binomial distribution performs far worse
than the geometric distribution, and in concrete terms, for the same values of
€ and 6, this protocol resulted in 250X more dummy items. The savings from
avoiding the secure computation of DumGen,, , were easily washed away by
the cost of shuffling so many additional items. It is interesting to note that
in the “standard” settings where differential privacy is employed, additional
noise affects the accuracy of the result, whereas here it costs us in terms of
performance.

4.1 Proof of security

We begin by describing the leakage function £(Vertices, Edges). For each v € V|
we let out-deg(v) denote the nodes out-degree, and we use out-deg(V') to de-
note the set of integers, {out-deg(v)},ev. We use in-deg() analogously. Note
that |V| and |E| are both determined by out-deg(V'), and these values will
be used by the simulator as well. Recall that the edges are formatted as
D, :=< u,v,e,isReal, D,, D, >. We define a database DB} by taking ev-
ery edge D, € Edges, and adding D..v to DBy. Intuitively, this is a multi-set
over the node identifiers from the input graph, with each node identifier v ap-
pearing k times if in-deg(v) = k. The leakage function is L(Vertices, Edges) =
(Fe,5(DBL), out-deg(V)) (where F s is the mechanism defined in Section 2). We
note that out-deg(V') can both be modeled as auxiliary information about DBy,
— intuitively, it can be viewed as the number of rows that each user contributed
to the database — so the proof that £ preserves differential privacy follows from
the fact that the mechanism F. 5 is differentially private. It is well known that
similar methods of generating 1-sided noise preserve differential privacy, but, for
completeness, we prove it below for our modified distribution, which is much
simpler to execute in a garbled circuit.

Analyzing our mechanism: We remind the reader that we use the following
distribution for sampling noise:

Prly; = o] = g

1
Uk € Z,k#0:Prlyi=a+k = (1- g)p(l —)k,

Consider any two neighboring databases, D1, D2, and some fixed D e RF,
D # () for F as just defined. Let D; = F(Dy), let Dy = F(Ds), and let i
be the value for which Dy (i) = D(¢) + 1. By the definition of F, for j # i,
Pr[D; (j) = D(j)] = Pr[Da(j) = D(j)]. Furthermore, for k # j,k # i, b € {1,2},

18

ﬁb(k) and ﬁb(j) are sampled independently. Therefore,

(1) = D()] 1

: <

(i) =D(@)] (1-7)

|

Pr[D, =D] Prf
D, =D] Prf
(Note that the case [D(i)| = |Dy(i)| — i.e. where there is no noise of type i

added to the first dataset — SH21=Dl « 1 —_.) By choosing 1 —p = e~¢

Pr[D,=D] — 1-p/2 > 1-p
we achieve the desired bound. Then, for any T, C Fg \ {0},

Dy
D,

)

Pr[F(Dy) €T,] = > Pr[F(Dy)=D]
DET,

> e Pr[F(Dy) = D]
DET,

= e Pr[F(Dy) € Ty

IN

We now consider the probability that F(D) = (). Recall, this is exactly the
probability that for some i € V', 7; < 0, which grows as a negligible function in a.
We choose « such that this probability is . (We will derive the exact function
below, and demonstrate some sample parameters.) Then, for any T' C Fg,
letting Ty = T\ {0},

Pr[F(Dy) € T

Pr[F(D,) € T,] + Pr[F(D1) = 0]
1“[]:(D2) S Tg] + 6
r[F(D2) € T]+ 6

€

IAIA

P
e P

Setting the parameters We set § = /2\’40, and show how to calculate «; this
allows us to give the expected size of D as a function of € and §. We first fix
some ¢ € V and calculate Pr[y; < 0], and then we take a union bound over |V/|.

Priu <0 =), %(1—2)1)(1—17)’“
k=a+1
- U=y a-pra-pt
P, P N 1
= S0-D0-P

After taking a union bound over |V|, we have Pr[F(D) = 0] < 2740 when

—40—lop(L_2)—
a> 2 IOﬁgg(la) eV | Recall that (1—p) = e “. So, as an example, setting

e =3 and |V| = 22, we have a = 118, and E(|F(D)|) = 118|V| + |D|.

Theorem 1 The protocol mg,s defined in Figure 4 securely computes Fgas with
L leakage in the (Fiunc, Fshuffie, DumGeny,)-hybrid model.

19

Proof: (sketch.) We construct a simulator for a semi-honest P;. For all
three ideal functionalities, the output is simply and XOR secret sharing of some
computed value. The output of all calls to these functionalities can be simply
simulated using random binary strings of the appropriate length. Let simEdges;
denote the random string used to simulate the output of Fspuse the first time
the functionality is called, and let simEdges, denote the random string used to
simulate the output on the second call. Let simEdges;.u denote the restriction
of simEdges; to the bits that make up the sharings Edges.u, and let simEdges,.v
be defined similarly.

There are only two remaining messages to simulate: Open(Edges.u), and
Open(Edges.v). Recall that there are |E|+2a|V| edges in the Edges: the original
|E| real edges, and the 2a|V| dummy edges generated in DumGen, . To
simulate the message sent when opening Edges.u, the simulator uses the values
|V| and out-deg(V') to create a bit string representing a random shuffling of the
following array of size |E| + 2a|V|. For each u € V, the array contains the
identifier of u exactly out-deg(u) times. This accounts for |E| = out-deg(u)
positions of the array; the remaining 2a|V| positions are set to L, consistent
with the left nodes output by DumGen, . Letting r denote the resulting bit-
string, the simulator sends r @ simEdges;.u to the adversary.

To simulate simEdges,.v, the simulator creates another bit-string represent-
ing a random shuffling of the following array, again of size |E| + 2«|V|. Letting
D=7F (DBp) denote the first element output by the leakage £, the simula-
tor.adds the node identifiers in D to the array. In the remaining |E|+ 2|V |—|D|
positions of the array, he adds 1. Letting r denote the resulting bit-string, the
simulator sends r @ simEdges,.v to the adversary.

Hiding the out-degree of each node. We don’t formally prove that using
the third variant of DumGen,, , suffices for achieving security as described in
Definition 3. We instead provide a brief intuition for the argument. For a graph
G = (E,V), it is helpful to think of the edge set as defining two databases of
elements over V: for each (directed) edge (u,v), we will view u as an element
in database FE;, and v as an element in database Er. Because the oblivious
shuffle hides the edges between these two databases, the access pattern can be
fully simulated from two noisy histograms (one for each database). Because
differential privacy composes, the added noisy information has the affect of
cutting € in half.

Hiding a user’s full edge set. The leakage function described above provide
edge privacy to each contributing party. That is, we have defined two databases
to be neighboring when they differ in a single edge. We could also define two
neighboring databases as differing in a single node. This would require more
noise: if the maximum degree of each node is d, it would have the affect of
scaling € by d. In our experiments, we have included some smaller values of € to
help the reader evaluate how this additional noise would impact performance.

20

5 Implementation and Evaluation

In this section, we describe and evaluate the implementation of our proposed
framework called OblivGraph.

We implemented OblivGraph using the FlexSC multi-party computation
framework, which executes Yao’s Garbled Circuits protocol with a Java-based
garbled circuit implementation. We measured the performance of our framework
on a set of micro-benchmarks in order to evaluate our design. These micro-
benchmarks consist of histogram, PageRank and matrix factorization problems
which are commonly used for evaluating highly-parallelizable frameworks.

5.1 Implementation

Using the OblivGraph framework, the histogram and matrix factorization prob-
lems can be represented as directed bipartite graphs, and PageRank as a directed
non-bipartite graph. When we are computing on bipartite graphs, if we consider
the Definition 2.2 where we aim to hide the in-degree of the nodes (nodes on
the left have in-degree 0), the growth rate of dummy edges is linear with the
number of nodes on the right and it is independent of the real edges or users.
However, considering the stronger Definition 2.3, the growth rate of dummy
edges is linear with max(users, items).

Histogram: In histogram, left vertices represent data elements, right vertices
are the counters for each type of data element, and existence of an edge indicates
that the data element on the left has the type on the right.

Matrix Factorization: In matrix factorization, left vertices represent the
users, right vertices are items (e.g. movies in movie recommendation systems),
the edges show if a user ranked that item, and the weight of the edge represents
the rating value.

PageRank: In PageRank, each vertex corresponds to a webpage and each edge
is the link between two webpages. The vertex data comprises of two real values,
one for the PageRank of the vertex and the other for the number of its outgoing
edges. Edge data is a real value corresponding to the weighted contribution of
PageRank of the source vertex to the PageRank of the sink vertex.

Vertex and Edge representation: In all scenarios, vertices are identified
using 16-bit integers and 1 bit is used to indicate if the edge is real or dummy.
For Histograms, besides 16 bits for the vertex id of data elements, we use 20
bits to represent the counter values. In PageRank, we represent the PageRank
value using a 40-bit fixed-point representation, with 20-bit for the fractional
part. In our matrix factorization experiments, we used synthetic data with
variable number of users, variable number of items, a dimension of 10 for the
user and item profiles, each with 20 bits for the fractional part of the 40-bit
fixed-point representation. We chose these values to be consistent with GraphSC
representation.

System setting: We run each benchmark on a pair of processors, one as
garbler, and the other as evaluator, on a machine with 2.30GHz 24-processor

21

Histogram

1le9

3.0 1

2.5 1
@ 204 —— GraphSC
8 —— OblivGraph, eps =0.03
% —— OblivGraph,eps =0.1
< 154 —— OblivGraph,eps=0.3
o
HH OblivGraph,eps =1

1.0 A

0.5 1

200000 300000 400000

of Edges

0 100000

Figure 5: Histogram with 4000 users and 128 types and varying €

and 60GB RAM.

5.2 Evaluation

We used circuit complexity as the main metric to study the performance of our
system. We report the total number of AND gates generated in the garbled
system. This metric helps us to have a more fair comparison with other frame-
works, since it is independent of the hardware configuration and of the chosen
secure computation implementation. We run all the benchmarks with the same
set of parameters that have been used in the GraphSC framework. In our his-
togram and matrix factorization experiments, we run the experiments for 4000
users and 128 items. The number of nodes in our PageRank experiment is set
to be 2000.

Histogram: To assess the performance of OblivGraph, first we show the results
for the histogram example that we used to explain our main construction. Figure
5 demonstrates the number of AND gates for histogram in both the GraphSC
and OblivGraph frameworks. In Histogram, with 2000 data elements and 128
data types, we always do better than GraphSC when ¢ >= 0.3. When ¢ = 0.1,
we start outperforming GraphSC when there are at least 3400 edges.

22

Matrix Factorization: We run the same set of experiments for the matrix
factorization problem and provide the results in Figure 7. We consider a scenario
with 4000 users and a movie set of size 128 movies; we use the (batch) gradient
decent method for generating the recommendation model, as in [19, 20]. In MF,
with 2000 users, 128 items, and € = 0.3, we outperform GraphSC once there
are at least 15000 edges. When ¢ = 0.1, we start outperforming them on 54000
edges. We always do better than GraphSC when the € = 1 or higher.

PageRank: Figure 6 provides the result of running PageRank in our framework
with 2000 nodes and different values of e. With e = 0.3, we outperform GraphSC
when the number of edges are about 400000, and with € = 1 we outperform them
on just 130000 edges. In both cases, the graph is quite sparse, compared to a
complete graph of 2 million edges. Note, though, that our comparison is slightly
less favorable for this computation. Recall, the number of dummy edges grow
with the number of nodes in the graph, and, when hiding only in-degree in a
bipartite graph, this amounts to growing only with the number of nodes on the
right. In contrast, the runtime of GraphSC grows equivalently with any increase
in users, items, or edges, because their protocol hides any distinction between
these data types. We therefore compare best with them when there are more
users than items. When looking at a non-bipartite graph, such as PageRank,
our protocol grows with any increase in the size of the singular set of nodes,
just as theirs does. If we increase the number of items in matrix factorization
to 2000, or decrease the number of nodes in PageRank to 128, the comparison
to GraphSC in the resulting experiments would look similar. We let the reader
extrapolate, and avoid the redundancy of adding such experiments.

DumGen Procedure: Figure 8 shows the number of AND gates in the Dum-
Gen procedure for different algorithms and varying values of €. Due to the
nature of the DumGen procedure, the number of items (or nodes in the case of
PageRank) affects the number of dummy edges. Therefore the number of AND
gates in PageRank is higher than in histogram and matrix factorization, and
the number of AND gates for histogram and matrix factorization are the same
due to having the same number of items. By relaxing the privacy notion and
increasing the value of € (recall the value of 0 is always fixed), the number of
required dummy edges will decrease, and consequently the size of the DumGen
procedure will shrink. More specifically, increasing € increases the value of p in
our geometric distribution, which hastens the halting probability and creates
fewer dummy edges on average. We do not include the cost of DumGen in our
comparison to GraphSC because it is a one time overhead and we want to cap-
ture the cost of one iteration, and note that they have a much more expensive
sort that we do not include.

Optimization using Compaction: It is important to note that the measured
circuit sizes in our OblivGraph experiments correspond to the worst-case sce-
nario in which the number of dummy edges are equal to d = 2«|V|, which is the
maximum number of dummies per type. Consequently the time for OblivShuffle
is its maximum value. However, looking at the geothermic distribution used in
the DumGen procedure, the expected number of dummy edges is a|V|, so half of

23

PageRank

—— GraphSC
—— OblivGraph,eps=0.1
—— OblivGraph, eps =0.3
—— OblivGraph, eps =0.5
6+ —— OblivGraph, eps =0.7
OblivGraph, eps =1

of AND Gates
N

0 250000 500000 750000 1000000 1250000 1500000 1750000 2000000
of Edges

Figure 6: PageRank with 2000 nodes and varying e

the dummy items are unnecessary. Removing these extra dummy items during
DumGen is non-trivial, because, while it is safe to reveal the total number of
dummy items in the system, revealing the number of dummy items of each type
would violate differential privacy. After the first iteration of the computation,
once the dummy items are shuffled in with the real items, an extra flag marking
the excessive dummy items can be used to safely remove them from the sys-
tem; this optimization can significantly reduce the shuffling time (roughly by
half) in the following iterations. However, our graphs are showing only the first
iteration of the algorithm and they do not reflect this simple optimization.

Oblivious Shuffle: We use an Oblivious Shuffle in our OblivGraph framework
which has a factor of log(n) less overhead than the Bitonic sort used in GraphSC.
We designed the Oblivious Shuffle operation based on the Waksman network
[32]. The cost of shuffling is approximately BW (n) using a Waksman network,
where W(n) = nlogn —n+ 1 is the number of oblivious swaps required to per-
mute n input elements, and B indicates the size of the elements being shuffled.
In the original Waksman switching network, the size of the input, n, is assumed
to be a power of two. However, in order to have an Oblivious Shuffle for arbi-
trary sized input, we must use an improved version of the Waksman network
proposed in [33] which is called AS-Waksman (Arbitrary-Sized Waksman). The
number of necessary swapper gates in AS-Waksman can be calculated using the
following formula:

24

Matrix Factorization
1lel0

of AND Gates
S

GraphSC
—— OblivGraph, eps =0.03
—— OblivGraph,eps=0.1
—— OblivGraph,eps=0.3
OblivGraph,eps =1

0 100000 200000 300000 400000
of Edges

Figure 7: Matrix factorization with 4000 users and 128 movies and varying €

wor=w([3) e w((3) en =Sl o

In our current set of experiments, we have only implemented the original ver-
sion of the Waksman network and have not implemented AS-Waksman. How-
ever, we used the aforementioned formula for AS-Waksman to calculate the
number of necessary swapper gates in our Oblivious Shuffle when using arbi-
trary sized input, and we report these projected values in the graphs. For
example in Figure 9 the green line shows the values that we obtained from
the Waksman implementation where the input size must be power of two, and
the red dotted line represents the projection values we computed with the AS-
Waksman formula for any arbitrary sized inputs. Since all of the operations in
ObliveGraph, including DumGen, Gather, Apply and Scatter, can work with
arbitrary sized inputs, and the only limitation of our current implementation is
imposed by using the conventional Waksman switching network, in all graphs
we used the estimated circuit size of the OblivShuffle for non-power of two in-
puts and the exact circuit size of the OblivShuffle for power of two inputs. (To
avoid confusion, we did not show the step function in the rest of the graphs.)

In order to understand how expensive the DumGen and ObliveShuffle proce-

25

DumGen operation

5 le7
—— Histogram, MatrixFactorization
—— PageRank
4 |
(%]
g
G
a3
=
<
Y—
(o]
8 21
£
>
=
1 |
0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Epsilon

Figure 8: DumGen for different algorithms with different values of €. Histogram
and Matrix Factorization with 4000 users and 128 types and PageRank with
2000 number of nodes.

dures are, as compared to other GAS model operations, we show the number of
AND gates for each of these procedures in Table 1. A single (and only) iteration
in the Histogram computation includes one OblivShuffle. PageRank and Matrix
Factorization have two OblivShuffle in a single iteration. The results shown in
this table are for Histogram and Matrix Factorization with 4000 users and 128
types and PageRank with 2000 number of nodes. In all experiments, we used
e = 0.3, and the number of real edges is 250000. The last column estimates
the run time of the framework in one single iteration, assuming, conservatively,
that 5 million gates can be processed per second. We demonstrate the result for
GraphSC framework with similar parameters in Table 2. In all of these exper-
iments we eliminate the effect of parallelization by running the computations
on a single machine. As demonstrated in Table 3 and discussed below, the only
overhead in parallelizing our protocol lies in the communication cost; roughly,
the estimated times reported in Table 1 can be reduced by a factor of P by
using P processors.

Effect of Parallelization: Table 3 shows the effect of parallelization in our
framework as compared to GraphSC. Adding more processors in GraphSC in-

26

Computation DumGen Shuffle GAS Operations Total AND Gates | Estimated
in a Single Iteration | in a Single Iteration
Histogram 5.02E+05 1.61FE+ 08 1.11E + 07 1.72E 4 08
PageRank 1.64E +07 297E + 09 3.62F + 09 9.56F + 09 1
Matrix Factorization | 5.02E 4+ 05 4.49E 4+ 09 3.22F + 10 4.11E + 10 8

Table 1: Cost of DumGen and ObliveShuffle versus GAS operation for a single

iteration in OblivGraph

Computation Total AND Gates | Estimated Run Time (s)
in a Single Iteration in a Single Iteration
Histogram 3.24F + 09 647
PageRank 7.34E + 09 1468
Matrix Factorization 8.23F + 10 16463

Table 2: Cost of all operations in a single iteration in GraphSC

creases the total number of AND Gates by some small amount. However, the
size of the circuit generated in OblivGraph framework is constant in the num-
ber of processors: parallelization does not affect the number of AND gates in
the OblivGraph GAS operations, DumGen, or the OblivShuffle procedures. It
does, of course, increase the total communication in the network, but, as already
demonstrated in GraphSC, this has small impact on the value of parallelizing
(and is even smaller in our own protocol).

Processors GraphSC OblivGraph
|E| = 8192 24576 |E| = 8192 24576
1 4.047TF +09 1.035E 410 | 2.018E +09 4.480F + 09
2 4.055F +09 1.039FE + 10 | 2.018E + 09 4.480F + 09
4 4.070F +09 1.046FE + 10 | 2.018E +09 4.480F 4 09
8 4.092E+09 1.057FE +10 | 2.018E +09 4.480F + 09

Table 3: Cost of Parallelization on OblivGraph vs.
Matrix Factorization

27

6 Conclusion and Open Problems

GraphSC in computing

We have established a new tradeoff between privacy and efficiency in secure
computation by defining a new security model in which the adversary is provided
some leakage that is proven to preserve differential privacy. We show that this
leakage allows us to construct a more efficient protocol for a broad class of
computations: those that can be computed in graph-parallel frameworks such

Matrix Factorization

lel0
] / S
8 / -
/,/
7 ,//
,/

6 /"
8 -~
© -
O 51 -7

g
S
< 4 A ,
5 / i
*] /,/
,/
,/
2 . 7
/ L —— GraphSC
1 _/’ —— OblivGraph, eps =0.3
y’z === OblivGraph — projection, eps = 0.3
0 T T T T T
0 100000 200000 300000 400000 500000
of Edges

Figure 9: The effect of using Waksman network vs. AS-Waksman network in
OblivShuffle procedure in Matrix factorization with 4000 users, 128 movies and
e=20.3

as MapReduce. We have evaluated the impact of our relaxation by comparing
the performance of our protocol with the best prior implementation of secure
computation for graph-parallel frameworks.

Our work demonstrates that differentially private leakage is useful, in that
it provides opportunity for more efficient protocols. The protocol we present
has broad applicability, but we leave open the very interesting question of de-
termining, more precisely, for which class of computations this leakage might
be help. Graph-parallel algorithms have the property that the access pattern
to memory can be easily reduced to revealing only a histogram of the memory
that is accessed, and histograms are the canonical example in the differential
privacy literature. Looking at other algorithms will likely introduce very inter-
esting leakage functions that are new to the differential privacy literature, and
security might not naturally follow from known mechanisms in that space. A
wonderful example is the stable matching problem, which is another large-scale
computation that has been the focus of some research in secure computation.

28

References

[1]

S. Zahur and D. Evans, “Obliv-c: A language for extensible data-oblivious
computation,” Cryptology ePrint Archive, Report 2015/1153, 2015, http:
//eprint.iacr.org/2015/1153.

B. Kreuter, “Secure multiparty computation at google,” https://www.
youtube.com/watch?v=eeToRsDnNNc, 2017, real World Crypto.

U. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized aggre-
gatable privacy-preserving ordinal response,” in ACM CCS 14, G.-J. Ahn,
M. Yung, and N. Li, Eds. ACM Press, Nov. 2014, pp. 1054-1067.

R. Wyden, “Letter to commission on evidence-based pol-
icymaking,” https://www.wyden.senate.gov/download /?id=
B10146F5-EDEB-4A2C-AD5E-812B363EEOD C&download=1, 2017,

u.S. Senate.

S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and
Y. Vahlis, “Secure two-party computation in sublinear (amortized) time,”
in ACM CCS 12, T. Yu, G. Danezis, and V. D. Gligor, Eds. ACM Press,
Oct. 2012, pp. 513-524.

X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi, “SCORAM:
Oblivious RAM for secure computation,” in ACM CCS 14, G.-J. Ahn,
M. Yung, and N. Li, Eds. ACM Press, Nov. 2014, pp. 191-202.

C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A pro-
gramming framework for secure computation,” in 2015 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, May 2015, pp.
359-376.

S. Zahur, X. S. Wang, M. Raykova, A. Gascoén, J. Doerner, D. Evans, and
J. Katz, “Revisiting square-root ORAM: Efficient random access in multi-
party computation,” in 2016 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2016, pp. 218-234.

S. Zahur and D. Evans, “Obliv-C: A language for extensible data-oblivious
computation,” Cryptology ePrint Archive, Report 2015/1153, 2015, http:
//eprint.iacr.org/2015/1153.

D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for Boolean
queries,” in CRYPTO 2013, Part I, ser. LNCS, R. Canetti and J. A. Garay,
Eds., vol. 8042. Springer, Heidelberg, Aug. 2013, pp. 353-373.

D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases: Data
structures and implementation,” in NDSS 2014. The Internet Society,
Feb. 2014.

29

http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153
https://www.youtube.com/watch?v=ee7oRsDnNNc
https://www.youtube.com/watch?v=ee7oRsDnNNc
https://www.wyden.senate.gov/download/?id=B10146F5-EDEB-4A2C-AD5E-812B363EE0DC&download=1
https://www.wyden.senate.gov/download/?id=B10146F5-EDEB-4A2C-AD5E-812B363EE0DC&download=1
http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153

[12]

[13]

[16]

[17]

[18]

[19]

V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi,
W. George, A. D. Keromytis, and S. Bellovin, “Blind seer: A scalable pri-
vate DBMS,” in 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2014, pp. 359-374.

S. Kamara and T. Moataz, “Boolean searchable symmetric encryption
with worst-case sub-linear complexity,” in Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part III, ser. Lecture Notes in Computer
Science, J. Coron and J. B. Nielsen, Eds., vol. 10212, 2017, pp. 94-124.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-56617-7_4

M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclo-
sure on searchable encryption: Ramification, attack and mitigation,” in
NDSS 2012. The Internet Society, Feb. 2012.

M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in ACM CCS 15, 1. Ray, N. Li, and
C. Kruegel:, Eds. ACM Press, Oct. 2015, pp. 644—-655.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse at-
tacks against searchable encryption,” in ACM CCS 15, 1. Ray, N. Li, and
C. Kruegel:, Eds. ACM Press, Oct. 2015, pp. 668-679.

G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks on
secure outsourced databases,” in ACM CCS 16, E. R. Weippl, S. Katzen-
beisser, C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM Press, Oct.
2016, pp. 1329-1340.

F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is revealed by
order-revealing encryption?” in ACM CCS 16, E. R. Weippl, S. Katzen-
beisser, C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM Press, Oct.
2016, pp. 1155-1166.

V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh,
“Privacy-preserving matrix factorization,” in ACM CCS 13, A.-R. Sadeghi,
V. D. Gligor, and M. Yung, Eds. ACM Press, Nov. 2013, pp. 801-812.

K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi,
“GraphSC: Parallel secure computation made easy,” in 2015 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, May 2015,
pp. 377-394.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design € Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10-10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

30

http://dx.doi.org/10.1007/978-3-319-56617-7_4
http://dl.acm.org/citation.cfm?id=1251254.1251264

[22] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-
scale graph processing,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’'10.
New York, NY, USA: ACM, 2010, pp. 135-146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

23] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein, “Graphlab: A new framework for parallel
machine learning,” CoRR, vol. abs/1408.2041, 2014. [Online]. Available:
http://arxiv.org/abs/1408.2041

[24] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
Distributed graph-parallel computation on natural graphs,” in Presented
as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). Hollywood, CA: USENIX, 2012, pp.
17-30. [Online]. Available: https://www.usenix.org/conference/osdil2/
technical-sessions/presentation/gonzalez

[25] A. Papadimitriou, A. Narayan, and A. Haeberlen, “Dstress: Efficient
differentially private computations on distributed data,” in Proceedings
of the Tuwelfth European Conference on Computer Systems, FEuroSys
2017, Belgrade, Serbia, April 23-26, 2017, G. Alonso, R. Bianchini,
and M. Vukolic, Eds. ACM, 2017, pp. 560-574. [Ounline]. Available:
http://doi.acm.org/10.1145/3064176.3064218

[26] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Accessing data while
preserving privacy,” https://www.youtube.com/watch?v=u9LIU4FrceS,
2017, communication with the authors.

[27] S. Wagh, P. Cuff, and P. Mittal, “Root ORAM: A tunable differentially
private oblivious RAM,” CoRR, vol. abs/1601.03378, 2016. [Online].
Available: http://arxiv.org/abs/1601.03378

[28] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: an extremely simple oblivious RAM protocol,”
in ACM CCS 18, A.-R. Sadeghi, V. D. Gligor, and M. Yung, Eds. ACM
Press, Nov. 2013, pp. 299-310.

[29] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, mno. 3-4, pp. 211407, 2014. [Online]. Available: http:
//dx.doi.org/10.1561/0400000042

[30] R. Canetti, “Security and composition of multiparty cryptographic proto-
cols,” Journal of Cryptology, vol. 13, no. 1, pp. 143-202, 2000.

31

http://doi.acm.org/10.1145/1807167.1807184
http://arxiv.org/abs/1408.2041
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
http://doi.acm.org/10.1145/3064176.3064218
https://www.youtube.com/watch?v=u9LIU4Frce8
http://arxiv.org/abs/1601.03378
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1561/0400000042

[31]

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
data, ourselves: Privacy via distributed noise generation,” in FURO-
CRYPT 2006, ser. LNCS, S. Vaudenay, Ed., vol. 4004. Springer, Hei-
delberg, May / Jun. 2006, pp. 486-503.

A. Waksman, “A permutation network,” Journal of the ACM (JACM),
vol. 15, no. 1, pp. 159-163, 1968.

B. Beauquier and E. Darrot, “On arbitrary size waksman networks and
their vulnerability,” Parallel Processing Letters, vol. 12, no. 03n04, pp.
287-296, 2002.

32

	Introduction
	Graph-Parallel Computations
	A Connection to Differential Privacy
	Contributions and Related Work

	Definitions and Notation
	Differential Privacy
	Secure computation with differentially private access patterns

	A Differentially Private Protocol for Computing Histograms
	OblivGraph: Differentially Private protocol for Secure Graph-Parallel Computation
	Proof of security

	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion and Open Problems

