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Abstract. In this paper, using probability transition matrix, at first
we revisit the work of Mantin on finding the probability distribution of
RC4 permutation after the completion of KSA. After that, we extend
the same idea to analyse the probabilities during any iteration of Pseudo
Random Generation Algorithm. Next, we study the bias Zr = r (where
Zr is the r-th output keystream bit), which is one of the significant biases
observed in RC4 output keystream. This bias has played an important
role in the plaintext recovery attack proposed by Isobe et al. in FSE 2013.
However, the accurate theoretical explanation of the bias of Zr = r is
still a mystery. Though several attempts have been made to prove this
bias, none of those provides accurate justification. Here, using the results
found with the help of probability transition matrix we justify this bias
of Zr = r accurately and settle this issue. The bias obtained from our
proof matches perfectly with the experimental observations.
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1 Introduction

RC4 has been one of the most famous ciphers for research in last twenty years.
Since 1994 when it was made public, it has gone through rigorous cryptanalysis
from cryptologists around the world [1, 2, 11, 7, 26, 25, 28]. Several weaknesses of
this cipher have been found, and some of them still do not have proper theoretical
justification. Due to so many weaknesses RC4 has been dropped by Google
recently. But it is still an active area of research. The importance of research on
this cipher can be observed in the recently published works on this cipher [29,
7, 17, 18, 21]. In 2017, two works [4, 20] on RC4 are going to appear in Designs,
Codes and Cryptography.

RC4 is the most used stream cipher in last two decades. It has been widely
used in different areas by different companies. It was designed by Ron Rivest in
1987, but was made public after 1994. First being adopted by TLS, RC4 was
used in various applications later. In 1997, it was used in WEP. After that, it
was used by Microsoft Lotus, Oracle Secure, WPA.

Due to its huge application and very simple structure, RC4 became the
source of attention in last two decades. There are so many attacks proposed



against it. Here we are going to mention only a few of them. The attacks have
several directions. For example, distinguishing attacks [6, 16, 12], state recovery
attacks [10, 15], etc. The attacks are mostly based on the correlations found
between keystream and keys, or between keystream and some constant values.
In FSE 2001, Mantin and Shamir presented a broadcast attack using a bias of
Z2 [13]. Another influential attack was provided by Fluhrer et al. [5], which was
based on the biases in Key Scheduling Algorithm. Some more interesting re-
sults and attacks are provided in [29, 23, 17–19, 27]. The biases obtained in RC4
keystreams resulted attack on protocol WEP [5, 10]. This led to the introduction
of a new protocol WPA, which was designed to block the attacks against WEP.
Though both of them used RC4, WPA had better key mixing features. But,
WPA also faced attack after a period. Based on the attacks proposed against
RC4, in 2014 Crypto, Rivest and Schuldt proposed a variant of RC4, named
Spritz [22]. It was designed mostly to defend the attacks against RC4. Proposal
of ciphers like Spritz even after so many years of proposal of RC4 shows the
usefulness of the design model of RC4-like structures. However, in FSE 2015,
Banik et al. [3] attacked Spritz based on a short term bias and a long term bias
of keystream.

Among all the biases used in attacks against RC4, most have been theoret-
ically explained. However, both the biases of Zr = 0 and Zr = r did not have
proper justification for a long period. But both have significant contribution in
attacks against RC4. In FSE 2013, Isobe et al. [8] provided a full plaintext re-
covery attack where they used the bias of Zr = r. Also, bias of Zr = 0 has been
used by Maitra et al. [12] in attacks on broadcast RC4.

After severe analysis, in Journal of Cryptology (2014), the explanation of
Zr = 0 has was given by Sen Gupta et al. [24], which very closely matched with
the experimental result. But the bias of Zr = r is still not properly explained.

We describe the structure of the RC4 cipher here in short. It has two phases,
namely Key scheduling algorithm (KSA) & Pseudo Random Generation algo-
rithm (PRGA). In KSA, the 256 byte key is given as input. The algorithm
starts with an identity permutation of 0 to 255. A scrambling is performed over
this permutation using the key and finally another permutation of 0 to 255 is
achieved. In this phase, no output keystream is generated. After this, the scram-
bled permutation of KSA goes to the PRGA phase. Here, the output keystreams
Z1, Z2, . . . are produced using the scrambled permutation. Table 1 describes
briefly the KSA and PRGA, where all operations are over ZN .

Our contribution: As already mentioned, the reason behind this bias of Zr = r
is not properly known. In [8], Isobe et al. provided a theoretical (Theorem 8)
justification for this. The theoretical result is plotted against the experimental
result in a graph. But the probability P(Zr = r) achieved by their theory does
not match properly with the experimental result. As mentioned in that paper:

“Since the theoretical values do not exactly coincide with the experi-
mental values, we do not claim that Theorem 8 completely prove this
bias”.



Table 1. Description of the RC4 Algorithm – KSA and PRGA.

KSA

Initialization:

For i = 0, . . . , N − 1

S[i] = i;

j = 0;

Scrambling :

For i = 0, . . . , N − 1

j = (j + S[i] + K[i]);

Swap(S[i], S[j]);

PRGA

Initialization:

i = j = 0;

Keystream Generation Loop:

i = i + 1;

j = j + S[i];

Swap(S[i], S[j]);

t = S[i] + S[j];

Output Z = S[t];

After this, in FSE 2014, Sen Gupta et al. [23] gave another theoretical ex-
planation of this bias. Their values provided better result than [8]. In our paper,
we further improve this result which matches perfectly with experiment.

In 2001, Mantin [14] found the expression for probability P(S[u] = v) after
the completion of KSA. We analyse this probability using matrix form. Though
both ideas are actually same, our presentation is different. We use matrix form
so that one can visualize the transition probabilities easily. Though the proba-
bility P(S[u] = v) after the completion of KSA has been found by Mantin, the
probability P(S[u] = v) during any iteration of PRGA was not studied in his
work. Here, we also study these probabilities using same idea.

In Journal of Cryptography 2014 [24], Sen Gupta et al. attempted to find
the probability for Su−1[u] = v. Applying our probability transition matrix, we
can find the probability P(Sr[u] = v) for any u, v at any iteration r of PRGA.
After finding the probability during any iteration of PRGA, we use that in this
paper to prove the probability Zr = r.

Paper Organisation:

– In Section 2.1, we explain the idea of probability transition matrix in RC4.
We describe its properties and structure after transition.

– After that, in Section 2.2 we apply these properties to find the probability
P(S[u] = v) after any iteration of KSA and PRGA. Also we plot the heat
maps for our obtained result.

– In Section 3, we give theoretical explanation of the bias Zr = r. We compare
our result with experimentally observed result and the theory given by [8]
and [23].



2 Probability Transition Matrix and its application

2.1 Idea of Probability Transition in RC4

For any N, let S be a permutation of integers from 0 to N − 1. The value at
r-th position of permutation S is denoted by S[r] (starting from 0-th position
S[0]). Now, suppose we choose a particular position i of the permutation. Next,
we randomly choose a number j from 0 to N − 1. Now, we interchange S[i]
and S[j], i.e., we interchange the positions of the values located at i-th and j-
th position. We call this new permutation S′. Using the transition matrix we
find the change of probability for presence of v at u-th position from initial
permutation S to final permutation S′, i.e., from P(S[u] = v) to P(S′[u] = v)
for any u and v after the interchange.

Let pu,v be the probability P(S[u] = v), and p′u,v be the probability P(S′[u] =
v). Let MS be an N×N matrix. We number the columns and rows starting from
0 and ending at N − 1. In this matrix, at (u, v)-th cell, i.e., at the cell located at
u-th row and v-th column, we put the probability P(S[u] = v) = pu.v. Similarly,
MS′ is the respective matrix for the probabilities of final permutation S′. So,
we fill the (u, v)-th cell of MS′ by p′u,v. Now, we try to find the relation between
the entries of MS and MS′ .

MS=


p0,0 p0,1 . . . p0,N−1

p1,0 p1,1 . . . p1,N−1

.

.

.

.

.

.

.
.
.

.

.

.

pN−1,0 pN−1,1 . . . pN−1,N−1

 transition
−−−−−−−−→MS′=


p′0,0 p′0,1 . . . p′0,N−1

p′1,0 p′1,1 . . . p′1,N−1

.

.

.

.

.

.

.
.
.

.

.

.

p′N−1,0 p′N−1,1 . . . p′N−1,N−1

 .

Lemma 1. For any chosen position i which interchanges value with some j, the
probabilities p′u,v are of the form:

p′u,v =

pu,v(1− 1
N ) + 1

N pi,v, if u 6= i

1
N , if u = i

Proof. Let i be the chosen position. So, we focus on the i-th row of MS. It
contains the probabilities of presence for any v ∈ [0, N − 1] at i-th position.
Now, since j is arbitrary, for any j0 ∈ [0, N − 1], P(j = j0) = 1

N . Now, suppose
we want to find p′j0,v0 for some v0. For this, we consider the following two cases:

Case 1: j0 6= i : Now, after the interchange, v0 can come at position j0 by two
possible disjoint ways:

1. S[j0] = v0 and j 6= j0 : If in the initial permutation S, v0 is located at
position j0 and j 6= j0, then the swap between position i and j does not
effect j0. So, v0 remains at j0. Probability of this event is

P(S[j0] = v0) · P(j 6= j0) = pj0,v0 ·
(

1− 1

N

)
.



2. S[i] = v0 and j = j0: In this case, in the initial matrix S, v0 was at position
i. Since j = j0, due to swap, S′[j0] becomes v0. The probability of this event
is

P(S[i] = v0) · P(j = j0) = pi,v0 ·
1

N
.

So, total probability: p′j0,v0 = pj0,v0(1− 1
N ) + pi,v0

1
N .

Case 2: j0 = i : For any j, if S[j] = v0, then after swap, S′[i] becomes v0.
We know, for any j′ ∈ 0, 1, · · · , N − 1, P(j = j′) is 1

N , since j is random. Now,

P(S[j] = v0) = pj,v0
. So, total probability p′i,v0 = 1

N

N−1∑
j=0

pj,v0

 = 1
N . (since

N−1∑
j=0

pj,v0 = 1)

So, the entries p′u,v’s of matrix M′S can be expressed by the entries of matrix
MS as follows:

MS′ =



p0,0
(
1 − 1

N

)
+ 1

N
pi,0 p0,1

(
1 − 1

N

)
+ 1

N
pi,1 . . . p0,N−1

(
1 − 1

N

)
+ 1

N
pi,N−1

p1,0
(
1 − 1

N

)
+ 1

N
pi,0 p1,1

(
1 − 1

N

)
+ 1

N
pi,1 . . . p1,N−1

(
1 − 1

N

)
+ 1

N
pi,N−1

.

.

.

.

.

.

.
.
.

.

.

.

pi−1,0
(
1 − 1

N

)
+ 1

N
pi,0 pi−1,1

(
1 − 1

N

)
+ 1

N
pi,1 . . . pi−1,N−1

(
1 − 1

N

)
+ 1

N
pi,N−1

1
N

1
N

. . . 1
N

pi+1,0
(
1 − 1

N

)
+ 1

N
pi,0 pi+1,1

(
1 − 1

N

)
+ 1

N
pi,1 . . . pi+1,N−1

(
1 − 1

N

)
+ 1

N
pi,N−1

.

.

.

.

.

.

.
.
.

.

.

.

pN−1,0
(
1 − 1

N

)
+ 1

N
pi,0 pN−1,1

(
1 − 1

N

)
+ 1

N
pi,1 . . . pN−1,N−1

(
1 − 1

N

)
+ 1

N
pi,N−1


.

2.2 Explanation of the probabilities after KSA phase and during
PRGA of RC4:

Using the idea of probability transition matrix, we can achieve the probability
of S[u] = v for any u, v ∈ {0, 1, 2, · · · , N} during any iteration of KSA in RC4
and also after any iteration of PRGA. For this, we start with a genral matrix
M0 with the initial probabilities pi,j ’s and check how the entries of the matrix
change with each iteration. For convenience, we study for only a single column
of the matrix. During the transition, the column changes independently, i.e., the
transition of each entry is not effected by any entry of the other column. So, we
can study the change for a single column and the other columns will also change
in similar manner. So, suppose, C0 be a particular column of the initial matrix.

C0 =



p
(0)
0

p
(1)
0

p
(2)
0

...

p
(N−1)
0


=



p(0)

p(1)

p(2)

...

p(N−1)


.



In RC4, the i-th position swaps value with j-th position at iteration i. So, both
the iteration and the chosen can be denoted by same variable i. Let C(i) be the
respective column after i iterations. Then, the entries of C(i) can be given as in
the following:

Theorem 1. Let p
(u)
i be the u-th entry of C(i) where u ∈ [0, N − 1], then

p
(u)
i =



p(u)
(
1− 1

N

)i
+ 1

N

i−1∑
r=0

p(r)
(
1− 1

N

)r
, if u ≥ i

1
N
, if u = i− 1

1
N

(
1− 1

N

)i−u−1
+ 1

N

[∑i
r=u+1 p

(r)
(
1− 1

N

)r]
+
∑u

r=0

[
p(r)

N2 .
(
1− 1

N

)r
.
∑i−u−1

j=0

(
1− 1

N

)j]
, if u < i− 1

Proof. We prove it by induction on i.

For u ≥ i: When i = 0, the expression given for p
(u)
i becomes p(u). So, for i = 0,

it is true. Now, suppose for some i = k, p
(u)
i = p(u)

(
1− 1

N

)i
+ 1

N

∑i−1
r=0 p

(r)
(
1− 1

N

)r
for all u ≥ k. We show that this is also true for the next iteration i = k + 1.

Now from Lemma 1, p
(u)
k+1 = p

(u)
k

(
1 − 1

N

)
+ 1

N .p
(k)
k . Here, p

(u)
k = p(u)

(
1 −

1
N

)k
+ 1

N

∑k−1
r=0 p

(r)
(
1− 1

N

)r
and p

(k)
k = p(k)

(
1− 1

N

)k
+ 1

N

∑k−1
r=0 p

(r)
(
1− 1

N

)r
.

For convenience of the reader and to shorten the calculations, we introduce
variables x and y where x denotes the term 1− 1

N and y denotes 1
N . So, (x+y) = 1.

Therefore,

p
(u)
k+1 = x

[
p(u)xk + y

k−1∑
r=0

p(r)xr]+ y
[
p(k)xk + y

k−1∑
r=0

p(r)xr]
= p(u)xk+1 + xy

k−1∑
r=0

p(r)xr + y.p(k)xk + y2
k−1∑
r=0

p(r)xr

= p(u)xk+1 + (xy + y2)

k−1∑
r=0

p(r)xr + yp(k)xk

= p(u)xk+1 + y

k−1∑
r=0

prx
r + yp(k)xk

= p(u)xk+1 + y

k∑
r=0

p(r)xr

= p(u)
(

1− 1

N

)k+1

+
1

N

k∑
r=0

p(r)
(

1− 1

N

)r

So, the result is true for i = k + 1.



For u = (i− 1): It comes directly from Lemma 1.

For u ≤ (i − 1): When i = u + 1, p
(u)
i = p

(i−1)
i = 1

N . So the result is true for
u = i− 1.

Next, when i = u + 2, we know from Lemma 1,

p
(u)
u+2 = p

(u)
u+1

(
1−

1

N

)
+

1

N
p
(u+1)
u+1

=
1

N

(
1−

1

N

)
+

1

N

[
p
(u+1)

(
1−

1

N

)u+1

+
1

N

u∑
r=0

p
(r)

(
1−

1

N

)r]

So, it satisfies for i = u + 2. Now, suppose, for some i = k, it is true. This
means,

p
(u)
k =

1

N

(
1−

1

N

)k−u−1

+
1

N

[ k∑
r=u+1

p
(r)

(
1−

1

N

)r]
+

u∑
r=0

[
p(r)

N2

(
1−

1

N

)r k−u−1∑
j=0

(
1−

1

N

)j]
.

So, for i = k + 1,

p
(u)
k+1 = p

(u)
k x + yp

(k)
k

where

p
(u)
k x = x

[
yx

k−u−1
+ y

( k∑
r=u+1

p
(r)

x
r

)
+

u∑
r=0

(
p
(r)

y
2
x
r

k−u−1∑
j=0

x
j

)]

= yx
k−u

+ xy

( k∑
r=u+1

p
(r)

x
r

)
+ x

u∑
r=0

(
p
(r)

y
2
x
r

k−u−1∑
j=0

x
j

)

and

yp
(k)
k = y

[
p
(k)

x
k
+ y

k−1∑
r=0

p
(r)

x
r

]

= y[p
(k)

x
k
+ y

u∑
r=0

p
(r)

x
r
+ y

k−1∑
r=u+1

p
(r)

x
r
]

= yp
(k)

x
k
+ y

2
u∑

r=0

p
(r)

x
r
+ y

2
k−1∑

r=u+1

p
(r)

x
r



Adding these two, we have:

p
(u)
k+1 = yx

k−u
+ xy

( k∑
r=u+1

p
(r)

x
r

)
+ x

u∑
r=0

(
p
(r)

y
2
x
r

k−u−1∑
j=0

x
j

)
+ yp

(k)
x
k

+ y
2

u∑
r=0

p
(r)

x
r
+ y

2
k−1∑

r=u+1

p
(r)

x
r

= yx
k−u

+ (xy + y
2
)

( k∑
r=u+1

p
(r)

(x)
r

)
+ yp

(k)
(x)

k
+

[ u∑
r=0

(
p
(r)

y
2
x
r

k−u∑
j=1

x
j

)
+ y

2
u∑

r=0

p
(r)

x
r

]

= yx
k−u

+ y

( k∑
r=u+1

p
(r)

x
r

)
+ yp

(k)
x
k
+

[ u∑
r=0

(
p
(r)

y
2
x
r

k−u∑
j=1

x
j

)
+

( u∑
r=0

p
(r)

y
2
x
r

)]

= yx
k−u

+ y

( k+1∑
r=u+1

p
(r)

x
r

)
+

[ u∑
r=0

(
p
(r)

y
2
x
r

k−u∑
j=0

x
j

)]

=
1

N
(1−

1

N
)
k+1−u−1

+
1

N

( k+1∑
r=u+1

p
(r)

(1−
1

N
)
r

)
+

[ u∑
r=0

(
p(r)

N2
(1−

1

N
)
r

k+1−u−1∑
j=0

(1−
1

N
)
j

)]

P(S[u] = v) after KSA: In key scheduling algorithm, j is updated as j =
j+S[i]+k[i]. Since a keybit is involved in the sum and keybits are random, j can
be treated as random, without caring about the other variables involved in the
sum. This is because for any j0 ∈ [0, N−1], = P(j = j0) = P(j+S[i]+k[i] = j0) =
P(k[i] = j0−j−S[i]) = 1

N , since k[i] is random. Now, in KSA, i starts from 0 and
at each iteration increases by 1. Here we find the probability transition matrix
for the permutation S after each round of KSA. The permutation obtained after
r-th iteration is denoted by Sr. We denote the probability matrix corresponding
to the initial permutation S0 as M(S0) and the matrix corresponding to any

Sr as M(Sr). Also, the entries of the matrix M(Sr) are denoted as p
(r)
u,v. After

each iteration, the probability transition matrix is updated by the probability
transition formula given in Lemma 1. We denote this transition operation as
T R. So, T R(M(Sr)) = M(Sr+1).
Since initially KSA starts with the identity permutation, we can express the
probability P(S[u] = v) for any u, v as follows:

1. P(S[u] = v) = 1 if u = v
2. P(S[u] = v) = 0 if u 6= v

So, the matrix M(S0) is basically an identity permutation.
Initial Matrix:

MS0 =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


.



Now, after each iteration, we update the matrix by the transition operation.
After the first transition, T R(MS0) = MS1 .

In the next iteration, i = 1 and then by the same transition formula (Lemma
1) on MS1 , we can obtain the matrix MS2 . Thus, by consecutive application
of transition for each iteration, at the end we can achieve the final transition
matrix MSN

.

MS0

T R−−→MS1

T R−−→MS2 · · ·
T R−−→MSN

Therefore, the entries of the matrix obtained after any number of iterations can
be directly found by Theorem 1. Here, in particular, we find the entries after the
final iteration and show that it matches with Mantin’s result [14].

One important point to note is that, in every transition update, each entry
is effected by the entries of same column only. The entries of other columns do

not have any influence on it. So, to find any entry p
(r)
u,v of the final matrix MSN

,
we can only concentrate on the respective column only, i.e., v-th column. Let us
denote the v-th column of any transition matrix MSr as Cv(MSr). Now, in the
initial matrix MS0 , the entries of v-th column Cv(MS0) was as follows:

Cv(MS0) =



p
(0)
0,v

p
(0)
1,v

.

.

.

p
(0)
u−1,u

p(0)
u,u

p
(0)
u+1,u

.

.

.

p
(0)
N−1,u


=



0

0

.

.

.

0

1

0

.

.

.

0


Now, after N iterations, the probability P(S[u] = v) can be directly found by
Theorem 1. So, we use the formula:

p
(u)
i =

1

N
(1−

1

N
)
i−u−1

+
1

N

( i∑
r=u+1

p
(r)

(1−
1

N
)
r

)
+

u∑
r=0

(
p(r)

N2
.(1−

1

N
)
r
.

i−u−1∑
j=0

(1−
1

N
)
j

)

Here, i = N and p(v) = 1. So, if v > u, the third term in the sum becomes 0
(since all pi for i = 1, 2, · · · , u are 0).

So,

P(S[u] = v) =
1

N
(1−

1

N
)
N−u−1

+
1

N

( N∑
r=u+1

p
(r)

(1−
1

N
)
r

)

=
1

N
(1−

1

N
)
N−u−1

+
1

N

(
p
(v)

(1−
1

N
)
v

)
=

1

N
(1−

1

N
)
N−u−1

+
1

N
(1−

1

N
)
v

=
1

N

(
(1−

1

N
)
N−u−1

+ (1−
1

N
)
v

)



For, v ≤ u, the second term in the sum vanishes, since for all r > v, p(r) = 0.
So,

P(S[u] = v) =
1

N
(1−

1

N
)
N−u−1

+
u∑

r=0

(
p(r)

N2
(1−

1

N
)
r

N−u−1∑
j=0

(1−
1

N
)
j

)

=
1

N
(1−

1

N
)
N−u−1

+
p(v)

N2
(1−

1

N
)
v

N−u−1∑
j=0

(1−
1

N
)
j

=
1

N
(1−

1

N
)
N−u−1

+
1

N2
(1−

1

N
)
v

N−u−1∑
j=0

(1−
1

N
)
j

=
1

N
(1−

1

N
)
N−u−1

+
1

N
(1−

1

N
)
v
(1− (1−

1

N
)
N−u

)

=
1

N

(
(1−

1

N
)
N−u−1

+ (1−
1

N
)
v
(1− (1−

1

N
)
N−u

)

)

So, we have:

P(S[u] = v) =


1
N

(
(1− 1

N )N−u−1 + (1− 1
N )v

)
if v ≥ u

1
N

(
(1− 1

N )N−u−1 + (1− 1
N )v(1− (1− 1

N )N−u)

)
, if v < u

This matches exactly with the result obtained by Mantin [14]. Here, we show
the transition of the column in the diagram.

Probabilities during PRGA: Using the idea of probability transition matrix,
we can find the probability P(Sr[u] = v) for any u and v after r-th round.
However, here the procedure is slightly tricky. In PRGA, we know that the
iteration starts with i = 1, unlike KSA. And, here j is updated as j = j + S[i].
So, j1 = S[1], which cannot be taken as uniformly distributed. However,in FSE
2011[12], Maitra et al showed that as r increases, the distribution of jr gets closer
to 1

N . They have shown that j2 has much more randomness than j1, and from j3
onwards almost uniformly randomness is observed. So for first two iteration we
take care of the distribution of j, and from third iteration we take it distribution
to be 1

N .

First Iteration: We start with the matrix achieved after the first iteration. The
probabilities P(S[u] = v) after first iteration can be found in [24] in the following
lemma.

Lemma 2. After the first round of RC4 PRGA, the probability P(S1[u] = v) is:

P(S1[u] = v) =



P(S0[1] = 1) +
∑
X 6=1

P(S0[1] = X ∧ S0[X] = 1), u = 1, v = 1;∑
X 6=1,v

P(S0[1] = X ∧ S0[X] = v), u = 1, v 6= 1;

P(S0[1] = u) +
∑
X 6=u

P(S0[1] = X ∧ S0[u] = u), u 6= 1, v = u;∑
X 6=u,v

P(S0[1] = X ∧ S0[u] = v), u 6= 1, v 6= u.



From this, we find the entries of the matrix after first iteration. Now, the
second iteration is i = 2. Then, to deal with iteration starting from i = 2, we
just change the position of the rows of the matrix. The row corresponding to
i = 2 comes to the first. Each of the rows are shifted upwards by 2 rows, and
the 0-th and 1-st row go to the last. So, in this new matrix the iteration starts
from the first row.
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Distribution of j4
Distribution of j5

Fig. 1. Probability distribution of jr for 1 ≤ r ≤ 5.

Second iteration: In [12], the probability distribution of j2 is given as follows:

P(j2 = v) =



P(S0[1] = 2) +

N−1∑
w=0
w 6=2

P(S0[1] = w)P(S0[2] = v − w), if v = 4

N−1∑
w=0
w 6=2

P(S0[1] = w)P(S0[2] = v − w), if v 6= 4

So, instead if using the values 1
N and (1 − 1

N ), we use the expressions given in
the above equations to update the matrix. From third iteration, since j3 behaves
almost uniformly random, we can apply the formulas achieved in Theorem 1
to find the probabilities after any round. Thus,using the idea of probability
transition matrix, we find the probability of S[u] = v after any iteration of KSA
and PRGA. Probability distributions of few j values are given in Figure 1.

We provide the heat maps in Figure 2 for the probabilities for PRGA for
round i = 0, 1, 256 and 512.

Recently in 2017, Paul et al. [21] did a detail study of the probabilities at
every iteration of KSA and PRGA. In [21], for the analysis of PRGA distribution,
the authors have taken j to be uniformly random. But this is not the case in
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Fig. 2. Probability P(S[u] = v) for 1 ≤ u ≤ 255, 0 ≤ v ≤ 255 in PRGA. Here (a)
Round i = 0 (b) Round i = 1 (c) Round i = 256 (d) Round i = 512 .

reality, which has been also mentioned by the authors. The value of j in the
first iteration is a function of KSA permutation and this cannot be taken as
random. The value of j2 also is not random. However, in the next iterations,
the distribution of j becomes very close to random. In conclusion of [21], the
authors clearly mentioned that their rigorous analysis on PRGA distribution is
based on the assumption that j is random. They raised an open problem to
find the actual distribution of PRGA. In our matrix approach, we are able to
deal with this very easily. So, this approach improves the result of the PRGA
distribution from [21].

3 Theoretical Explanation of Zr = r

Here we prove the bias of Zr = r for r ≥ 3. In the following lemma we show
some events. In few of them Zr = r is the only possible output. In some paths
Zr can never be equal to r. After discussing these paths, we find their respective
probabilities of occurrence. Finally, in Theorem 2, we find the probability of
Zr = r. For convenience, we denote by KSA(u, v) the probability of SKSA[u] = v
after the completion of KSA.
Notations:

– Sr[u] : value at u-th position after r-th round of PRGA.
– KSA(u, v) : Probability of occurrence of v at u-th position after KSA.



– jr: j at r-th iteration.

– SKSA[u] : value at u-th position after KSA.

Lemma 3. During PRGA,

P

(
Zr = r | (Sr−2[r − 1] = r ∩ Sr−2[r] = 0 ∩ jr−1 6= r)

)
= 1,

P

(
Zr = r | (Sr−1[r] 6= 0 ∩ Sr−1[jr] = r)

)
= 0.

Proof. Here we have Sr−2[r − 1] = r, Sr−2[r] = 0 and jr−1 6= r. Since jr−1 6= r
and Sr−2[r] = 0, we have jr = jr−1. Thus when i = r, after swap, we have
Sr[r] = r and Sr[jr] = 0. Thus

Zr = Sr[Sr[r] + Sr[jr]] = Sr[r] = r.

Please see the path in Figure 3. Thus

P

(
Zr = r | (Sr−2[r − 1] = r ∩ Sr−2[r] = 0 ∩ jr−1 6= r)

)
= 1.

Also

P(Sr−2[r−1] = r∩Sr−2[r] = 0∩jr−1 6= r) = P(Sr−2[r−1] = r)P(Sr−2[r] = 0)
(
1− 1

N

)
,

where P(Sr−2[r − 1] = r),P(Sr−2[r] = 0) can be calculated using the idea of
Section 2.

Similarly

P

(
Zr = r | (Sr−1[r] 6= 0 ∩ Sr−1[jr] = r)

)
= 0

and

P(Sr−1[r] 6= 0 ∩ Sr−1[jr] = r) =
1

N

(
1− P(Sr−1[r] = 0)

)
,

assuming jr is random.

Lemma 4. Consider the events:

1. E1 : SKSA[1] = r ≥ 3

2. E2 : j2 /∈ [3, r]

3. E3 : jl 6= j2, l ∈ [3, r − 1]

4. E4 : jl 6= r, l ∈ [3, r − 1]

5. E5 : jr = j2
6. E6 : SKSA[2] 6= jr − r



r-1 r jr-1

S r-2

r jr

S r-1

S r

Zr=r

r 0 y

y 0 r

y r 0

Fig. 3. Path for Zr = r given Sr−2[r − 1] = r, Sr−2[r] = 0 and jr−1 6= r.

Then P(Zr = r | ∩5i=1 Ei) = 1, P(Zr = r | E1 ∩ E2 ∩ Ec3 ∩ E4 ∩ E5) = 0,

P(Zr = r | E1 ∩ (E2 ∩ E3)c ∩ E4 ∩ E6) =


KSA(jr,jr−r)
1−KSA(jr,r)

(1− 1
N

)r−3 if jr > r &jr 6= 2r

1
N−1

(1− 1
N

)r−jr−1 if jr < r

0 if jr = r, 2r.

The probabilities are as follows:

1. P(E1) = KSA(1, r)

2. P(E2) = N−r−2
N

3. P(E3) = P(E4) = (1− 1
N )r−3

4. P(E5) = 1
N

5. P(E6) = 1− P(KSA(2, jr − r))

Proof. Due to the event E1, j1 = r. After the swap, S1[r] = r. Now, j2 =
j1 +S1[2] = r+SKSA[2]. (since r > 2, the first swap cannot involve the position
SKSA[2]). Let us denote SKSA[2] by w. So, j2 = r + w. So, after the next
swap, S2[r] = r and S2[r + w] = w. Then, due to event E3, the positions r
and r + w are not affected upto (r − 1)-th iteration. Next, at r-th iteration,
jr = j2 = r + w due to event E4. So, after swap, Sr[r] = w and Sr[r + w] = r.
So, Zr = Sr[Sr[r] + Sr[r + w]] = Sr[z + w] = r.

Now, the probabilities of the events are P(E1) = KSA(1, r),P(E2) = N−r−2
N ,

P(E3) = P(E4) = (1− 1
N )r−3,P(E5) = 1

N .

Assuming the Ei’s are independent,

P(∩5i=1Ei) ≈ KSA(1, r)
N − r − 2

N

(
1− 2

N

)r−3
1

N
.



Now, on the other side, if Ec3 occurs, this means some jl is equal to j2 for
l ∈ [3, r−1]. As a result, the value at position j2 changes. Once it changes, there
is no chance of getting back that value upto (r− 1)-th iteration because i moves
towards the right side at each iteration and it cannot reach the position where
the value has been swapped. As a result, the output Zr cannot be r.

The probability P(Ec3) =

(
1− (1− 1

N )r−3
)

.

Now if E1 and E4 hold, Sr−1[r] = r. Now if Sr−1[jr] = jr − r, Zr = r. Now
we have two cases:

Case 1: jr > r : The only possibility of this is if after KSA, position jr is
occupied by jr − r, and j3, j4 · · · jr−1 does not touch this position. In this case,
the probability is

KSA(jr, jr − r)

1−KSA(jr, r)

(
1− 1

N

)r−3

as by the condition E1, SKSA[1] = r.
In any other case, this would not occur. Suppose, at the end of KSA, jr is

not occupied by jr − r. Then, in order to bring jr − r to jr-th position, at some
iteration between 1 to r, jr − r has to come to jr-th position by swap. This is
possible only if at some iteration either i or j becomes equal to jr. Since jr > r,
i cannot be equal to jr in first r iterations. Suppose, at some iteration m < r, jm
become equal to jr. This means, when i = m, the m-th position contains jr − r
and after the swap between m and jm, it comes to position jm. But, according
to the update rule, jm = jm−1 + S[m] = jm−1 + jr − r. Since jm = jr, we have
jm−1 = r, which is not possible by assumption E4. So, this event is not possible.

Case 2: jr < r : In this situation, when i = jr, due to swap Sjr [jr] = jr − r.
This happens with probability 1

N−1 as Sjr [r] = r and jr 6= 2r. Also remaining
jl cannot be jr for l = jr + 1, . . . , l = r − 1. Thus total probability is

1

N − 1

(
1− 1

N

)r−jr−1

.

Lemma 5. Consider the events:

1. E7 : SKSA[r] = r ≥ 3
2. E8 : jl 6= r, l ∈ [2, r − 1]

Then

P(Zr = r | E7 ∩ E8) =


KSA(jr,jr−r)
1−KSA(jr,r)

(1− 1
N

)r−1 if jr > r &jr 6= 2r

1
N−1

(1− 1
N

)r−jr−1 if jr < r

0 if jr = r, 2r.

Proof. Proof is similar to the second part of the proof of Lemma 4. Also P(E7) =

KSA(r, r) and P(E8) =

(
1− 1

N

)r−2

.



Lemma 6. Consider the events:

1. Ex9 : SKSA[x] = r ≥ 3 for x ∈ [2, r − 2]
2. Ex10 : j1, j2, . . . , jx−1 6= x
3. Ex11 : jx = r
4. Ex12 : jx+1 /∈ [x + 2, r]
5. Ex13 : jl 6= r, l ∈ [x + 2, r − 1]
6. Ex14 : jl 6= jx+1, l ∈ [x + 2, r − 1]
7. Ex15 : jr = jx+1

Then P(Zr = r | ∩15i=9Exi ) = 1, P(Zr = r | Ex9 ∩Ex10∩Ex11∩Ex12∩Ex13∩(Ex14)c∩Ex15) =
0

Proof. Proof is similar to the first part of the proof of Lemma 4. Also P(Ex9 ) =

KSA(x, r), P(Ex10) =
(
1− 1

N

)x−1
, P(Ex11) = 1

N , P(Ex12) = 1− r−x−1
N , P(Ex13) =(

1− 1
N

)r−x−2
, P(Ex14) =

(
1− 1

N

)r−x−2
,P(Ex15) = 1

N .

Now we will prove the main result.

Theorem 2. In PRGA phase of RC4, the probability P(Zr = r) for 3 ≤ r ≤ 255
is given by

P(Zr = r) =

5∏
i=1

P(Ei) +
[ N−1∑

jr=r+1
jr 6=2r

KSA(jr, jr − r)

1−KSA(jr, r)

(
1−

1

N

)r−3

+

r−1∑
jr=0

1

N − 1

(
1−

1

N

)r−jr−1]
P(E1)

(
1− P(E2)P(E3)

)
P(E4)P(E6)

+

[ N−1∑
jr=r+1
jr 6=2r

KSA(jr, jr − r)

1−KSA(jr, r)

(
1−

1

N

)r−1

+

r−1∑
jr=0

1

N − 1

(
1−

1

N

)r−jr−1]
P(E7)P(E8)

+

( r−2∑
x=2

15∏
i=9

P(Exi )

)
+ P(Sr−2[r − 1] = r)P(Sr−2[r] = 0)

(
1−

1

N

)

+

(
1−

5∏
i=1
i6=4

P(Ei)− P(E1)
(
1− P(E2)P(E3)

)
P(E4)P(E6)− P(E7)P(E8)−

15∏
i=9
i6=14

P(Exi )

− P(Sr−2[r − 1] = r)P(Sr−2[r] = 0)
(
1−

1

N

)
− (1− P(Sr−1[r] = 0)

1

N

)
1

N
.

Proof. Major paths are coming from Lemma 3, Lemma 4, Lemma 5 and Lemma 6.

The first term

5∏
i=1

P(Ei) comes from Lemma 4, where we assume that

P(∩5i=1(Ei)) =

5∏
i=1

P(Ei)

due to independence.
Similarly in other cases also we assume the independence and find the prob-

ability of the intersection of events by the product. In the complementary path,
we assume that Zr = r holds with probability 1

N . Hence the proof.



Experimental results: We run our experiment for 241 random 256 bit key.
The graph obtained in experiment has been shown in Figure 4. We compare our
theoretical result with the experimental result as well as the theories provided
by [8] and [23]. Where the graph of [8] and [23] have significant difference from
the experimental curve, our theory matches the curve exactly. Thus, our work
provides the accurate justification of the bias observed for Zr = r.
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Fig. 4. Index r of RC4 keystream bytes.

4 Conclusion

In this paper, we accurately justify the bias of Zr = r theoretically. In our proof,
we use the probability distribution of RC4 permutation during PRGA, which we
obtain by the idea of transition matrix. The proof of this bias was attempted
before in FSE 2013 and FSE 2015. But previous theoretical curves did not match
accurately with experimental curve. Our work finally puts an end to this research
by an exact explanation of the bias.
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