
A formal model of Bitcoin transactions

Nicola Atzei1, Massimo Bartoletti1, Stefano Lande1, Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Università degli Studi di Trento, Trento, Italy

Abstract. We propose a formal model of Bitcoin transactions, which
is sufficiently abstract to enable formal reasoning, and at the same time
is concrete enough to serve as an alternative documentation to Bitcoin.
We use our model to formally prove some well-formedness properties of
the Bitcoin blockchain, for instance that each transaction can only be
spent once. We release an open-source tool through which programmers
can write transactions in our abstract model, and compile them into
standard Bitcoin transactions.

1 Introduction

In recent years we have observed a growing interest around cryptocurrencies.
Bitcoin [10], the first decentralized cryptocurrency, was introduced in 2009, and
through the years it has consolidated its position as the most popular one. Bitcoin
and other cryptocurrencies have pushed forward the concept of decentralization,
providing means for reliable interactions between mutually distrusting parties
on an open network.

The nodes of the Bitcoin network maintain a public and immutable data
structure, called blockchain. The blockchain stores the historical record of all
transfers of bitcoins, which are referred to as transactions. When a node up-
dates the blockchain, the other nodes verify if the appended transactions are
valid, e.g. by checking if the conditions specified in scripts are satisfied. Scripts
are programmable boolean functions: in their standard (and mostly used) form
they verify a digital signature against a public key. Since the blockchain is im-
mutable, tampering with a stored transaction would result in the invalidation
of all the subsequent ones. Updating the state of the blockchain, i.e. appending
new transactions, requires solving a moderately difficult cryptographic puzzle.
In case of conflicting updates, the chain that required the largest computational
effort is considered the valid one. Hence, the immutability and the consistency
of the blockchain is bounded by the total computational power of honest nodes.
An adversary with enough resources can append invalid transactions, e.g. with
incorrect digital signatures, or rewrite a part of the blockchain, e.g. to perform
a double-spending attack. The attack consists in paying someone by publishing a
transaction on the blockchain, and then removing it (making the funds unspent).

Besides the intended monetary application, the Bitcoin blockchain can be
seen as a way to consistently maintain the state of a system over a peer-to-peer
network, without the need of a trusted authority. If the system is a currency, its

state is the amount of funds in each account. This concept can be generalised to
the case where the system is a smart contract [12], namely an executable com-
puter protocol which can also handle transfers of currency. The idea of exploiting
the Bitcoin blockchain to build smart contracts has recently been explored by
several works. Lotteries [2, 4, 5, 8], gambling games [7], contingent payments [3],
covenants [9, 11], and other kinds of fair computations [1, 6] are some examples
of the capabilities of Bitcoin as a smart contracts platform.

Smart contracts often rely on features of Bitcoin that go beyond the standard
transfers of currency. For instance, while the vast majority of Bitcoin transac-
tions uses scripts only to verify signatures, smart contracts like the ones above
exploit more complex scripts, e.g. to determine the winner of a lottery, or to
check if a secret has been revealed. Smart contracts may also exploit other (infre-
quently used) features of Bitcoin, e.g. various signature modifiers, and temporal
constraints on transactions.

As a matter of fact, using these advanced features to design a new smart
contract is not a trivial matter, for two reasons. First, while the overall behaviour
of Bitcoin is clear, the details of many of its crucial aspects is poorly documented.
To understand the details of how a mechanism actually works, one has to explore
various web pages (often inaccurate, or inconsistent, or overly technical), and
eventually resort to the source code of the Bitcoin client3 to have the correct
answer. Second, the description of advanced features is often too concrete to be
effectively used in the design and analysis of a smart contract (indeed, in many
cases the only available description coincides with the implementation).

Contributions. We propose a formal model of Bitcoin transactions. This model
is abstract enough to allow for formal reasoning on the behaviour of Bitcoin
transactions. For instance, we use our model to formally prove some properties
of the Bitcoin blockchain, e.g. that transactions cannot be spent twice (Theo-
rem 1), and that the overall value contained in the blockchains (excluding the
coinbase transactions) is decreasing (Theorem 2).

Our model formally specifies some poorly documented features of Bitcoin,
e.g. transaction signatures and signature modifiers (Definition 4), output scripts
(Definitions 1 and 7), multi-signature verification (Definition 6), Segregated Wit-
nesses (Definitions 2 and 9), paving the way towards automatic verification.

We make available an open-source tool4 which translates transactions speci-
fied in our model to standard Bitcoin transactions.

Structure of the paper. Section 2 briefly recaps Bitcoin transactions, which
we formalise in Section 3. Besides transactions, we also provide an high-level
model of the blockchain, and we study its basic properties. In Section 4 we
illustrate, through a basic case study, the impact of the Segregated Witness
feature on the expressiveness of Bitcoin smart contracts. In Section 5 we show
how to translate transactions from our model to standard Bitcoin transactions.
We discuss the differences between our model and the actual Bitcoin in Section 6.

3 https://github.com/bitcoin/bitcoin
4 https://github.com/bitcoin-transaction-model/bitcoin-transaction-model

https://github.com/bitcoin/bitcoin
https://github.com/bitcoin-transaction-model/bitcoin-transaction-model

T0

in: · · ·
wit: · · ·
out: (versigk(x), v0B)

T1

in: T0

wit: σ
out: (e, v1B)

Fig. 1: Two Bitcoin transactions.

2 Bitcoin transactions in a nutshell

We now give a minimalistic introduction to the behaviour of Bitcoin transactions.

Users interact with Bitcoin through addresses, which they can freely generate.
Transactions describe transfers of bitcoins (B) between addresses. The log of all
transactions is recorded on a public, immutable and decentralised data structure
called blockchain. To explain how the blockchain works, consider the transactions
T0 and T1 displayed in Figure 1. The transaction T0 contains v0B, which can be
redeemed by putting on the blockchain a transaction (e.g., T1), whose in field is
a reference to T0. To redeem T0, the witness of the redeeming transaction (the
value in its wit field) must make the output script of T0 (the first element of
the pair in the out field) evaluate to true. When this happens, the value of T0 is
transferred to the new transaction, and T0 is no longer redeemable.

In the example displayed before, the output script of T0 evaluates to true
when receiving a digital signature on the redeeming transaction T1, with a given
key pair k. We denote with versigk(x) the verification of the signature x on
the redeeming transaction: of course, since the signature must be included in
the witness of the redeeming transaction, it will consider all the parts of that
transaction except its wit field. We assume that σ is the signature of T1.

Now, assume that the blockchain contains T0, not yet redeemed, and some-
one tries to append T1. To validate this operation, the nodes of the Bitcoin
network check that v1 ≤ v0, and then they evaluate the output script of T0, by
instantiating its formal parameter x to the signature σ in the witness of T1. The
function versigk(σ) verifies that σ is actually the signature of T1: therefore, the
output script succeeds, and T1 redeems T0. Subsequently, a new transaction can
redeem T1 by satisfying its output script e (not specified in the figure).

Bitcoin transactions may be more general than the ones illustrated by the
previous example. First, there can be multiple inputs and outputs. Each output
has an associated output script and value, and can be redeemed independently
from others. Consequently, in fields must specify which output they are redeem-
ing. Similarly, a transaction with multiple inputs associates a witness to each of
them. To be valid, the sum of the values of all the inputs must be greater or equal
to the sum of the values of all the outputs. In its general form, the output script
is a program in a (not Turing-complete) scripting language, featuring a limited
set of logic, arithmetic, and cryptographic operators. Finally, a transaction can
specify time constraints (absolute, or relative to its input transactions) about
when it can appear on the blockchain.

A,B, . . . ∈ Part Participants
x, y, . . . ∈ Var Variables
ν, ν′, . . . ∈ Den Denotations, i.e.:
k, k′ . . . ∈ Z Constants
t, t′ . . . ∈ N Time
v, v′ . . . ∈ N Currency values
σ, σ′, . . . ∈ Z Signatures
true, false Boolean values
⊥ Undefined

e, e′, . . . ∈ Exp Script expressions
T,T′, . . . ∈ Tx Transactions
µ, µ′ Signature modifier
sigµk (T) Transaction signature

versigk((ν, µ),T) Signature verification
T, i |= λx.e Script verification

(T, i, t)
v
 (T′, j, t′) Transaction redeem

B = (T1, t1) · · · Blockchains
B B (T, t) Consistent update

Table 1: Summary of notation.

3 A formal model of Bitcoin transactions

In this section we introduce a formal model of Bitcoin transactions. We start
in Section 3.1 by defining the scripts that can be used in transaction outputs.
Then, in Section 3.2 we formalise transactions, and in Section 3.3 we define a
signature scheme for them. Sections 3.4 and 3.5 give semantics, respectively, to
scripts and transactions. In Section 3.6 we model the Bitcoin blockchain, and
in particular we define the crucial notion of consistency, which corresponds to
the one enforced by the Bitcoin consensus protocol. We then state a few results
about consistent blockchains (their proofs are in Appendix A).

We start by introducing some auxiliary notation. We assume several sets,
ranged over by meta-variables as shown in the left column of Table 1. We use
the bold notation to denote finite sequences of elements, e.g. x stands for a
sequence of variables. We denote with xi the i-th element of the sequence, i.e.
xi = xi if x = x1 . . . xn, and with xi..j the subsequence of x starting from the
i-th element and ending to the j-th element. We denote with |x| the number of
elements of x, and with [] the empty sequence. We denote with f : A ⇀ B a
partial function f from A to B, with dom f the domain of f , i.e. the subset of A
where f is defined, and with ran f the range of f , i.e. ran f = {f(x) |x ∈ dom f}.
We use ⊥ to represent an “undefined” element; in particular, when the element
is a partial function, ⊥ denotes the function with empty domain.

3.1 Scripts

Each output in a Bitcoin transaction contains a script, which is used to establish
when the output can be redeemed by another transaction. Intuitively, a script
is a first-order function (written in a non Turing-equivalent language), which is
applied to the witness provided by the redeeming transaction. The output can
be redeemed only if such function application evaluates to true.

In our model, we abstract from the actual stack-based scripting language
implemented in Bitcoin5, by using instead a minimalistic language of expressions.

5 https://en.bitcoin.it/wiki/Script

https://en.bitcoin.it/wiki/Script

Definition 1 (Scripts). We define the set Exp of script expressions (ranged
over by e, e′, . . .) as follows:

e ::= x | k | e+ e | e− e | e = e | e < e | if e then e else e | |e| |
H(e) | versigk(e) | absAfter t : e | relAfter t : e

We denote with Script the set of terms of the form λz.e such that all the variables
in e occur in z.

Besides some basic arithmetic and logical operators, script expressions in-
clude a few operators inspired from the actual Bitcoin scripting language. The
expression |e| denotes the size, in bytes, of the evaluation of e. The expression
H(e) evaluates to the hash of e. The expression versigk(e) takes as arguments a
sequence of m script expressions, representing signatures of the enclosing trans-
actions, and a sequence of n public keys. Intuitively, it evaluates to true whenever
the provided signatures are verified by using m out of the n provided keys. The
expressions absAfter t : e and relAfter t : e define temporal constraints (see Sec-
tion 3.4). They evaluate as e if the constraints are satisfied, otherwise they fail.

Notation 1. We use the following syntactic sugar for expressions: (i) false to
denote 1 = 0 (ii) true to denote 1 = 1 (iii) e ∧ e′ to denote if e then e′ else false
(iv) e∨e′ to denote if e then true else e′ (v) not e to denote if e then false else true.

3.2 Transactions

The following definition formalises Bitcoin transactions.

Definition 2 (Transactions). We inductively define the set Tx of transactions
as follows. A transaction T is a tuple (in,wit, out, absLock, relLock), where:

– in : N⇀ Tx× N
– wit : N⇀ Z∗, where dom wit = dom in
– out : N⇀ Script× N
– absLock : N
– relLock : N⇀ N, where dom relLock = dom in

where: ∀i, j ∈ dom in : fst(in(i)).wit = ⊥ and i 6= j =⇒ in(i) 6= in(j).

We denote with T.f the value of field f of T, for f ∈ {in,wit, out, absLock, relLock}.
We say that T is initial when T.in = T.relLock = ⊥ and T.absLock = 0.

The fields in and out represent, respectively, the inputs and the outputs of
a transaction. There is an input for each i ∈ dom in, and an output for each
j ∈ dom out. When T.in(i) = (T′, j), it means that the i-th input of T wants to
redeem the j-th output of T′. The side condition i 6= j ⇒ in(i) 6= in(j) ensures
that inputs are pairwise distinct. The side condition fst(in(i)).wit = ⊥ is related
to the Segregated Witness (SegWit) feature6, and it requires that the witness of

6 This feature, specified in the BIP 141 and activated on August 24th 2017, implies
that witnesses are not used in the computation of transaction hashes.

the input transaction is left unspecified. The output T′.out(j) is a pair (λz.e, v),
meaning that v Satoshis (1B = 108 Satoshis) can be redeemed by whoever can
provide a witness which satisfies λz.e. Such witness is defined by T.wit(i). The
fields T.absLock and T.relLock(i) specify a constraint on when T can be put on
the blockchain: the first in absolute terms, whereas the second is relative to the
transaction in the input T.in(i). More specifically, T.absLock = t means that T
can appear on the blockchain only after time t. If T.relLock(i) = t, then T can
appear only after time t since the transaction in T.in(i) appeared.

To improve readability, we use the following conventions: (i) if T has exactly
one input, we denote it by T.in (omitting the index, which we assume to be 1);
We act similarly for T.wit, T.out, and T.relLock; (ii) if T.absLock = 0, we omit it
(similarly for T.relLock when it is ⊥); (iii) we denote with script(T.out(i)) and
val(T.out(i)), respectively, the first and the second element of the pair T.out(i).

3.3 Transaction signatures

We extend to transactions the signing and verification functions of the signature
schemes, denoted respectively as sigk(·) and verk(·, ·). For simplicity, although
we will always use k = (kp, ks) for key pairs, we implicitly assume that sigk(·)
only uses the private part ks, while verk(·, ·) only uses the public part kp.

In Bitcoin, transaction signatures never apply to the whole transaction: users
can specify which parts of a transaction are signed (with the exception of the
wit field, which is never signed). However, not all possible combinations of trans-
action parts are possible; the legit ones are listed in Definition 4. In order to
specify which parts of a transaction are signed, we first introduce the auxiliary
notion of transaction substitution.

Definition 3 (Transaction substitutions). A transaction substitution Σ is
a function from Tx to Tx. For a transaction field f , we denote with {f 7→ d} the
substitution which replaces the value of f with d. For f 6= absLock and i ∈ N, we
denote with {f (i) 7→ d} the substitution which replaces f (i) with d. Further, for
◦ ∈ {<,>, 6=}, we denote with {f (◦ i) 7→ d} the substitution which replaces f (j)
with d, for all j ◦ i ∈ dom f .

Definition 4 (Signature modifiers). We define signature modifiers µi (with
i ∈ N) in Figure 2. We associate to each modifier a substitution, and we denote
with µi(T) the result of applying it to the transaction T.

Each modifier is represented by a pair of symbols, describing, respectively,
the subset of inputs and of outputs being signed (a = all, s = single, n = none).
In case of s, the parameter i determines the index of the signed input/output.

Definition 5 (Transaction signatures). We define the transaction signature
(under modifier µ and index i) and verification as follows:

sigµ,ik (T) = (sigk(µi(T)), µ) verk((w, µ),T, i) = verk(w, µi(T))

Hereafter, we use σ, σ′, . . . to range over transaction signatures.

aai(T) = T{wit 7→ ⊥}
ani(T) = T{wit 7→ ⊥}{out 7→ ⊥}
asi(T) = T{wit 7→ ⊥}{out(< i) 7→ (false, 0)}{out(> i) 7→ ⊥}
sai(T) = T{wit 7→ ⊥}{in(1) 7→ T.in(i)}{in(6= 1) 7→ ⊥}

{relLock(1) 7→ T.relLock(i)}{relLock(6= i) 7→ ⊥}
sni(T) = sai(ani(T))

ssi(T) = sai(asi(T))

Fig. 2: Signature modifiers.

Notation 2. Note that sigµ,ik (T) can meaningfully appear within T.wit(i), since
the signature always neglects the wit field of transactions (as all signature mod-
ifiers set wit to ⊥). In this case, as a shorthand we denote it with sigµk , or just
sigk when µ = aa.

We now extend the signature verification verk(σ,T, i) to the case where,
instead of providing a single key k and a single signature σ, one has many keys
and signatures, i.e. verk(σ,T, i). Intuitively, if |σ| = m and |k| = n, the function
verk(σ,T, i) implements a m-of-n multi-signature scheme, i.e. it evaluates to true
if all the m signatures match with (some of) the keys in k. The actual definition
is a bit more complex, to be coherent with the one implemented in Bitcoin.

Definition 6 (Multi-signature verification). Let k and σ be sequences of
(public) keys and signatures such that |k| ≥ |σ|. We define the function:

vern,mk (σ,T, i) ≡


true if m = 0

false if m 6= 0 and n = 0

vern−1,m−1k (σ,T, i) if m,n 6= 0 and verkn
(σm,T, i)

vern−1,mk (σ,T, i) otherwise

Then, we define verk(σ,T, i) = ver
|k|,|σ|
k (σ,T, i).

Our formalisation of multi-signature verification (Definition 6) follows closely
the implementation of Bitcoin, whose stack-based scripting language imposes
that the sequence σ is read in reverse order. Accordingly, the function ver tries
to verify the last signature in σ with the last key in k. If they match, the function
ver proceeds to verify the previous signature in the sequence, otherwise it tries
to verify the signature with the previous key.

Example 1 (2-of-3 multi-signature). Let k = kakbkc, and let σp, σq be such
that verka(σp,T, i) = verkb(σq,T, i) = true, false otherwise. We can check that
verk(σpσq,T, i) = true, while verk(σqσp,T, i) = false. ut

3.4 Semantics of scripts

Definition 7 gives the semantics to script expressions. This semantics will be then
used in Section 3.5 to define when a transaction can redeem another one. We

JxKT,i,ρ = ρ(x)

JkKT,i,ρ = k

Jversigk(e)KT,i,ρ = verk(JeKT,i,ρ,T, i)
JH(e)KT,i,ρ = H(JeKT,i,ρ) (H is a public hash function)

JabsAfter t : eKT,i,ρ = if T.absLock ≥ t then JeKT,i,ρ else ⊥
JrelAfter t : eKT,i,ρ = if T.relLock(i) ≥ t then JeKT,i,ρ else ⊥

Je ◦ e′KT,i,ρ = JeKT,i,ρ ◦⊥ Je′KT,i,ρ (◦ ∈ {+,−,=, <})
J|e|KT,i,ρ = size(JeKT,i,ρ)

Jif e0 then e1 else e2KT,i,ρ = if Je0KT,i,ρ then Je1KT,i,ρ else Je2KT,i,ρ

Fig. 3: Semantics of script expressions.

use an environment ρ : Var ⇀ Z which associates a denotation to each variable
occurring in it. Further, we use a transaction T ∈ Tx and an index i ∈ N to
indicate the witness redeeming the script, both used to evaluate the timelock
expressions. We use the denotation ⊥ to represent “failure” of the evaluation.
This is the case e.g. of timelock expressions, when the temporal constraint is
not satisfied. All the semantic operators used in Definition 7 are strict, i.e. they
evaluate to ⊥ if some of their operands is ⊥.

Definition 7 (Expression evaluation). Let ρ : Var ⇀ Z, let T ∈ Tx and
i ∈ N. We define the function J·KT,i,ρ : Exp→ Den in Figure 3, where we use the
following operators on denotations:

if ν0 then ν1 else ν2 ≡


ν1 if ν0 = true

ν2 if ν0 = false

⊥ otherwise

size(ν) ≡


⊥ if ν 6∈ Z
0 if ν = 0⌈
log2 |ν|

7

⌉
otherwise

ν0 ◦⊥ ν1 ≡ if ν0, ν1 ∈ Z then ν0 ◦ ν1 else ⊥ (◦ ∈ {+,−,=, <})

Definition 8 (Script verification). We say that the input i of T verifies λx.e
(in symbols: T, i |= λx.e) when x = x1 . . . xn, T.wit(i) = k1 . . . kn, and:

JeKT,i,{xj 7→kj | j∈1...n} = true

Example 2. Let H he a hash function, let s, h ∈ Z be such that h = H(s), and
let T be such that T.wit(1) = (σ, s), with σ = sigaa

k (T). We prove that:

T, 1 |= λ(ς, x).
(
versigk(ς) and H(x) = h

)
To do this, let ρ = {ς 7→ σ, x 7→ s}. We have that:

Jversigk(ς) and H(x) = hKT,1,ρ = Jversigk(ς)KT,1,ρ and JH(x) = hKT,1,ρ
= verk(JςKT,1,ρ,T, 1) and (JH(x)KT,1,ρ =⊥ JhKT,1,ρ)
= verk(ρ(ς),T, 1) and (H(JxKT,1,ρ) =⊥ h) = verk(σ,T, 1) and (H(ρ(x)) =⊥ h)

= true ut

T0

in: · · ·
wit: · · ·
out: (λς.versigk(ς), v0)

T1

in: (T0, 1)
wit: sigk
out: (λς.versigk′(ς), v1)

T′
1

in: (T0, 1)
wit: sigk
out: (λς.versigk′(ς), v1)

absLock: 5.1.2017
relLock: 2 days

Fig. 4: Three transactions. For notational conciseness, when displaying transac-
tions we omit the substitution {wit 7→ ⊥} for the transaction within the in field
(e.g., we just write T0 within T1.in). Also, we use dates in time constraints.

3.5 Semantics of transactions

Definition 9 describes when the j-th input of a transaction T′ (put on the
blockchain at time t′) can redeem v Satoshis from the i-th output of the transac-

tion T (put on the blockchain at time t). We denote this by (T, i, t)
v
 (T′, j, t′).

Definition 9 (Output redeeming). We write (T, i, t)
v
 (T′, j, t′) iff all the

following conditions hold:

(a) T′.in(j) = (T{wit 7→ ⊥}, i)
(b) T′, j |= script(T.out(i))

(c) v = val(T.out(i))

(d) t′ ≥ T′.absLock

(e) t′ − t ≥ T′.relLock(j) if j ∈ dom T′.relLock

We write (T, i, t) 6 (T′, j, t′) when for no v it holds that (T, i, t)
v
 (T′, j, t′).

Item (a) links the j-th input of T′ to the i-th output of T. Note that, since we
are modelling SegWit, the witness in the transaction T′.in(j) is left unspecified:
this is why we set to ⊥ also the witness of T. Item (b) requires that the j-th
witness of T′ verifies the i-th output script of T. Item (c) just defines v as the
value in the i-th output of T. Items (d) and (e) check the absolute and relative
timelocks, respectively. The first constraint states that T′ cannot appear on the
blockchain before T′.absLock; the second one states that T′ cannot appear until
at least T′.relLock(j) time units have elapsed since T was put on the blockchain.

Example 3. With the transactions in Figure 4, we have (T0, 1, t0)
v0 (T1, 1, t1).

Indeed, for item (a) we have that T1.in(1) = (T0{wit 7→ ⊥}, 1); for item (b),
T1, 1 |= λς.versigk(ς); for item (c), v0 = val(T0.out(1)). The other two items

trivially hold, as there are no time constraints. We also have (T0, 1, 2.1.2017)
v0

(T′1, 1, 6.1.2017). To show that, we have to check also items (d) and (e). For
item (d), we have that 6.1.2017 ≥ T′1.absLock = 5.1.2017. For item (e), we have
that 6.1.2017− 2.1.2017 ≥ T′1.relLock(1) = 2 days. ut

T1

in: ⊥
wit: ⊥

out:
1 7→ (λς.versigk1(ς), 3)
2 7→ (λς.versigk2(ς), 5)
3 7→ (λς.versigk3(ς), 7)

T2

in: 1 7→ (T1, 2), 2 7→ (T1, 3)
wit: 1 7→ sigk2 , 2 7→ sigk3
out: (λς.versigk2(ς), 10)

T3

in: (T1, 2)
wit: sigk2
out: (λς.versigk2(ς), 5)

Fig. 5: Three transactions for Examples 4 to 6.

3.6 Blockchain and consistency

In Definition 10 we model blockchains as sequences of timed transactions (T, t),
where t represents the time when the transaction T has been added. Note that
our definition is very permissive: for instance, it allows a blockchain to contain
transactions which do not redeem any transactions, or double-spent transactions.
We will rule out such inconsistent blockchains later on in Definition 13.

Definition 10 (Blockchain). A blockchain B is a sequence (T1, t1) · · · (Tn, tn),
where T1 is the only transaction with in = ⊥, and ti ≤ tj for all 1 ≤ i ≤ j ≤ n.

We denote with transB the set of transactions occurring in B, and with timeB(Ti)
the time ti of transaction Ti in B. Given a transaction T, we define matchB(T)
as the set of transactions Ti such that T{wit 7→ ⊥} = Ti{wit 7→ ⊥}.

Definition 11 (Unspent output). Let B = (T1, t1) · · · (Tn, tn) be a blockchain.
We say that the output j of transaction Ti is unspent in B whenever:

∀i′ ≤ n, j′ ∈ N : (Ti, j, ti) 6 (Ti′ , j
′, ti′)

Given a blockchain B, we define:

– UTXOB , the Unspent Transaction Output of B, as the set of pairs (Ti, j)
such that output j of Ti is unspent in B.

– val(B), the value of B, as the sum of the values of all outputs in its UTXO .

Example 4. Consider the transactions in Figure 5, and let B = (T1, 0)(T2, t2).

We have that (T1, 2, 0)
5
 (T2, 1, t2) and (T1, 3, 0)

7
 (T2, 2, t2), while the other

outputs are unspent. Hence, the UTXO of B is {(T1, 1), (T2, 1)}. ut

The following definition establishes when (T, t) is a consistent update of B.

Definition 12 (Consistent update). We write BB (T, t) iff either B = [], T
is initial and t = 0, or, given, for all i ∈ dom (T.in):

{T′i} = matchB(fst(T.in(i))) (redeemed transaction)

oi = snd(T.in(i)) (redeemed output index)

t′i = timeB(T′i) (time when T′i was added to B)

vi = val(T′i .out(oi)) (value of the redeemed output)

the following conditions hold:

(1) ∀i ∈ dom T.in : (T′i , oi) ∈ UTXOB

(2) ∀i ∈ dom T.in : (T′i , oi, t
′
i)

vi (T, i, t)

(3)
∑
{vi | i ∈ dom T.in} ≥

∑
{val(T.out(j)) | j ∈ dom T.out}

(4) B = B′(T′, t′) =⇒ t ≥ t′

Firstly, for each T.in(i) we obtain the singleton {T′i} from the blockchain,
using matchB , such that fst(T.in(i)){wit 7→ ⊥} = T′i{wit 7→ ⊥}. The update is
inconsistent if matchB(fst(T.in(i))) is not a singleton for some i. Condition (1)
requires that the redeemed outputs are currently unspent in B. Condition (2)
asks that each input of T redeems an output of a transaction in B. Condition (3)
requires that the sum of the values of the outputs of T is not greater than the
total value it redeems. Finally, (4) requires that the time of T is greater than or
equal to the time of the last transaction in B.

Example 5. Consider again the transactions in Figure 5, and let B = (T1, 0).
We prove that B B (T2, t2). Let o1 = 2, o2 = 3, t′1 = t′2 = 0, v1 = 5, v2 = 7. We
now prove that the conditions of Definition 12 are satisfied. For condition (1),
note that both (T1, 2) and (T1, 3) are unspent, according to Definition 11. For
condition (2), note that:

(T1, 2, 0)
v1 (T2, 1, t2) (T1, 3, 0)

v2 (T2, 2, t2)

hold, according to Definition 9. Finally, for condition (3), we have that:∑
{vi | i ∈ {1, 2}} = 5 + 7 ≥

∑
{val(T2.out(j)) | j ∈ dom T2.out} = 10

Therefore, (T2, t2) is a consistent update of B. ut

Example 6 (Double spending). Consider again the transactions in Figure 5, and
let B = (T1, 0)(T2, t2). We prove that (T3, t3) is not a consistent update of B.
Although condition (2) of Definition 12 holds:

(T1, 2, 0)
5
 (T3, 1, t3)

we have that condition (1) is not satisfied. In fact, according to Definition 11,
(T1, 2) is already spent in B because

(T1, 2, 0)
5
 (T2, 1, t2)

holds and both T1 and T2 are in B. Since T3 is trying to spend an output already
spent, this transaction should not be appended to B. ut

We now define when a blockchain is consistent. Intuitively, consistency holds
when the blockchain has been constructed, started from the empty one, by ap-
pending consistent updates, only. The actual definition is given by induction.

Definition 13 (Consistency). We say that a blockchain B is consistent if
either B = [], or B = B′(T, t) with B′ consistent and B′ B (T, t).

Note that the empty blockchain is consistent; the blockchain with a single
transaction (T1, t1) is consistent iff T1 is initial and t1 = 0. The transaction T1

models the first transaction in the genesis block (as discussed in Section 6, we
are abstracting away the coinbase transactions, which forge new bitcoins).

We now establish some basic properties of consistent blockchains. Lemma 1
states that, in a consistent blockchain, the inputs of a transaction point back-
wards to the output of some transaction in the blockchain.

Lemma 1. If (T1, t1) · · · (Tn, tn) is consistent, then:

∀i ∈ 2 . . . n : ∀(T, h) ∈ ran (Ti.in) : ∃j < i : Tj{wit 7→ ⊥} = T ∧ h ∈ dom (Tj .out)

The following theorem establishes that a transaction output cannot be re-
deemed twice in a consistent blockchain.

Theorem 1 (No double spending). If (T1, t1) · · · (Tn, tn) is consistent, then:

∀i 6= j ∈ 1 . . . n : ran (Ti.in) ∩ ran (Tj .in) = ∅

The following lemma states that there can be at most a single match of an
arbitrary transaction within a consistent blockchain. This implies that the in
field of an arbitrary transaction points at most to one transaction output within
the blockchain.

Lemma 2. If B is consistent, then for all transactions T, matchB(T) contains
at most one element.

Lemma 3 ensures that all the transactions on a consistent blockchain are
pairwise distinct, even when neglecting their witnesses.

Lemma 3. If (T1, t1) · · · (Tn, tn) is consistent, then:

∀i 6= j ∈ 1 . . . n : Ti{wit 7→ ⊥} 6= Tj{wit 7→ ⊥}

The following theorem states that the overall value of a blockchain decreases
as the blockchain grows. This is because our model does not keep track of the
coinbase transactions, which in Bitcoin allow miners to collect transaction fees
(the difference between inputs and outputs of a transaction), and block rewards.

Theorem 2 (Decreasing value). Let B be a consistent blockchain, and let B′

be a non-empty prefix of B. Then, val(B′) ≥ val(B).

Note that the scripting language and its semantics are immaterial in all
the statements above. Actually, proving these results never involves checking
condition (b) of Definition 9. Of course, the choice of the scripting language
affects the expressiveness of the smart contracts built upon Bitcoin.

TAB

in: (TA , 1)
wit: ⊥
out: (λςAςB .versigkAkB (ςAςB), 1.1B)

TBC

in: (TAB , 1)
wit: ⊥

out:
1 7→ (λςB .versigkB (ςB), 0.1B)

2 7→ (λςC .versigkC (ςC), 1B)

Fig. 6: Transactions of the chain contract.

4 Example: static chains of transactions

We now formally specify in our model a simple smart contract7, which illustrates
the impact of SegWit on the expressiveness of Bitcoin contracts.

A participant A wants to send an indirect payment of 1B to C, routing it
through B. To authorize the payment, B wants to keep a fee of 0.1B. However, A
is afraid that B will keep all the money for himself, so she exploits the following
contract. She creates a chain of transactions, as shown in Figure 6. The trans-
action TAB transfers 1.1B from A to B (but it is not signed by A, yet), while
TBC transfers 1B from B to C. We assume that (TA , 1) is a transaction output
redeemable by A through her key kA , and that kB is the key of B.

The protocol of A is the following: A starts by asking B for his signature on
TBC , ensuring that C will be paid. After receiving and verifying the signature,
A puts TAB on the blockchain, adding her signature on the wit field. Then, she
also appends TBC , replacing the wit field with her signature and B’s one. Since
A takes care of publishing the transactions, the behaviour of B consists just in
sending his signature on TBC .

Remarkably, this contract relies on the SegWit feature: indeed, without Seg-
Wit it no longer works. We can disable SegWit by changing our model as follows:

– in Definition 2, we no longer require that ∀i ∈ dom in : fst(in(i)).wit = ⊥
– in Definition 9, we replace item (a) with the condition: T′.in(j) = (T, i)
– in Definition 10, we let matchB(T) = {T} if T occurs in B, empty otherwise.

To see why disabling SegWit breaks the contract, assume that the transaction
T = TAB{wit 7→ sigaa

kA
(TAB)} is unspent on the blockchain, when participant

A attempts to append also T′ = TBC{wit 7→ sigaa
kA

(TBC) sigaa
kB

(TBC)}. To be a

consistent update, by item (2) of Definition 12 we must have (for some t1 ≤ t2):

(T, 1, t1)
1B
 (T′, 1, t2) (1)

For this, all the conditions in Definition 9 must hold. However, since we have
disabled SegWit, for item (a) we no longer check that:

T′.in(1) = (T{wit 7→ ⊥}, 1)

7 https://www.bitcoinhk.org/media/presentations/2016-03-16/2016-03-16-
Segregated_Witness.pdf

https://www.bitcoinhk.org/media/presentations/2016-03-16/2016-03-16-Segregated_Witness.pdf
https://www.bitcoinhk.org/media/presentations/2016-03-16/2016-03-16-Segregated_Witness.pdf

but instead we need to check the condition:

T̃′.in(1) = (T̃, 1) (2)

where the transactions T̃, T̃′ correspond to the non-SegWit versions of T,T′, i.e.
their in fields point to their actual parents, according to the new Definition 2.

Hence, condition (2) checks the equality between T̃AB (the transaction in the
input of T̃′) and T̃AB{wit 7→ sigaa

kA
(T̃AB)} (the transaction T̃). Note that all the

fields of the second transaction — but the wit field — are equal to those of the
first transaction. Instead, the witness of T̃AB is ⊥, while the one of T̃ contains
the signature of A. This difference in the wit field is ignored with the SegWit
semantics, while it is discriminating for the older version of Bitcoin.

A näıve attempt to amend the contract would be to set the input field of T̃′

to T̃. However, this would invalidate the signature of A on T̃′.

5 Compiling to standard Bitcoin transactions

We now sketch how to compile the transactions of our abstract model into con-
crete Bitcoin transactions. In particular, we aim at producing standard Bitcoin
transactions, which respect further constraints on their fields8. This is crucial,
because non-standard transactions are mostly discarded by the Bitcoin network.

Our compiler produces output scripts of the following kinds, which are all
allowed in standard transactions:

Pay to Public Key Hash (P2PKH) takes as parameters a public key and a
signature, and checks that (i) the hash of the public key matches the hash
hardcoded in the script; (ii) the signature is verified against the public key.

Pay to Script Hash (P2SH) contains only a hash (say, h). The actual script
λx.e — which is not required to be standard — is contained instead in the
wit field of the redeeming transaction, alongside with the actual parameters
k. The evaluation succeeds if H(λx.e) = h and (λx.e)k evaluates to true.
The only constraint imposed by P2SH is on the size of the script, which is
limited to the size of a stack element (520 bytes).

OP RETURN allows to put up to 80 bytes of data in an output script, making
the output unredeemable.

We compile the scripts of the form λς.versigk(ς) to P2PKH, and those of the
form λ.k to OP RETURN. All other scripts are compiled to P2SH when they
comply with the size constraint, otherwise compilation fails. In this way, our
compiler always produces standard transactions.

Our compiler exploits the alternative stack as temporary storage of the vari-
able values. In this way we cope with the stack-based nature of the Bitcoin
scripting language. For instance, for the script λx.H(x) = H(x+ 1), the variable
x is pushed on the alternative stack beforehand, then duplicated and copied in
the main stack before each operation involving x.

8 https://bitcoin.org/en/developer-guide#standard-transactions

https://bitcoin.org/en/developer-guide#standard-transactions

6 Conclusions

We have proposed a formal model for Bitcoin transactions. Our model abstractly
describes their essential aspects, at the same time enabling formal reasoning,
and providing a formal specification to some of Bitcoin’s less documented fea-
tures. This work provides the theoretical foundations to model Bitcoin smart
contracts, reducing the gap between cryptography and programming languages
communities. A formal description of smart contracts would enable their auto-
mated verification and analysis, which are of crucial importance in a context
where bugs in design or implementation may result in loss of money.

There are some differences between our model and the actual Bitcoin, which
we outline below.

In Definition 2, we stipulate that the in field of a transaction points to another
transaction. Instead, in Bitcoin the in field contains the identifier of the input
transaction. More specifically, this identifier is defined as H(µ(T)), where:

– µ = {wit 7→ ⊥} since the activation of the SegWit feature;
– µ = ⊥, beforehand.

Consequently, the condition (T, i, t)
v
 (T′, j, t′) item (a) of Definition 9 would be

translated in Bitcoin as: T′.in(j) = (H(µ(T′′)), i), where H(µ(T′′)) = H(µ(T)).
Intuitively, the in field specifies the transaction (and the output index) to redeem.
Since the activation of SegWit, the computation of the transaction identifier does
not take in account the wit field.

The scripting language in Definition 1 is a bit more expressive than Bitcoin’s.
For instance, the script λx.H(x) < k is admissible in our model, while it is not in
Bitcoin. Indeed, the Bitcoin scripting language only admits the comparison (via
the OP LESSTHANOREQUAL opcode) on 32-bit integers, while two arbitrary values
can only be tested for equality (via the OP EQUAL opcode). Similar restrictions
apply to arithmetic operations. It is straightforward to adapt our model to apply
the same restrictions on Bitcoin scripts. Indeed, our compiler already implements
a simple type system which rules away scripts not admissible in Bitcoin.

Definition 10 represents blockchains as sequences of transactions. Instead, in
Bitcoin they are sequences of blocks of transactions. In this way, we are abstract-
ing both from the cryptographic puzzle that miners have to solve to append a
new block to the blockchain, and from the coinbase transactions, which (like
our initial transaction) do not redeem other transactions, and mint new bitcoins
(the block rewards). Coinbase transactions are also used in Bitcoin to collect
transaction fees, which are just discarded in our model. Note that extending
our model with coinbase transactions would falsify Theorem 2, since the overall
value in the blockchain would no longer be decreasing.

In Definitions 2 and 9, the absLock and relLock fields specify the time when a
transaction can be appended to the blockchain. In Bitcoin transactions, besides
the time we can also use the block height, i.e. the distance between any given block
and the genesis block. Setting the block height to h implies that the transaction
can be mined from the block h onward.

Acknowledgments. This work is partially supported by Aut. Reg. of Sardinia
project P.I.A. 2013 “NOMAD”. Stefano Lande gratefully acknowledges Sardinia
Regional Government for the financial support of his PhD scholarship (P.O.R.
Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia,
European Social Fund 2014-2020).

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via Bitcoin deposits. In: Financial Cryptography Workshops. LNCS,
vol. 8438, pp. 105–121. Springer (2014)

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S & P. pp. 443–458 (2014)

3. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. LNCS, vol. 9879, pp.
261–280. Springer (2016)

4. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin. In:
Financial Cryptography Workshops. LNCS, vol. 10323. Springer (2017), also in
IACR Cryptology ePrint Archive 955/2016

5. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In:
CRYPTO. LNCS, vol. 8617, pp. 421–439. Springer (2014)

6. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS. pp. 30–41 (2014)

7. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized
poker. In: ACM CCS. pp. 195–206 (2015)

8. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum. In: Eu-
roS&P Workshops. pp. 4–13 (2017)

9. Möser, M., Eyal, I., Sirer, E.G.: Bitcoin covenants. In: Financial Cryptography
Workshops. pp. 126–141. Springer (2016)

10. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008)

11. O’Connor, R., Piekarska, M.: Enhancing Bitcoin transactions with covenants. In:
Financial Cryptography Workshops (2017)

12. Szabo, N.: Formalizing and securing relationships on public networks. First Mon-
day 2(9) (1997), http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/
fm/article/view/548

A Proofs

Proof of Lemma 1

By Definition 13, (Ti, ti) is a consistent update of (T1, t1) · · · (Ti−1, ti−1). The
thesis follows from condition (2) of Definition 12. ut

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548

Proof of Theorem 1

Let B = (T1, t1) · · · (Tn, tn) be consistent. By contradiction, assume that there
exist i < j and i′, j′ such that Ti.in(i′) = Tj .in(j′). By consistency, there exist
h, h′ such that (Th{wit 7→ ⊥}, h′) = Ti.in(i′). Since B1..i−1 B (Ti, ti), then by
item (2) of Definition 12 it must be (Th, h

′, th) (Ti, i
′, ti). Hence, by Defini-

tion 11 it follows that (Th, h
′) is already spent in B. Since B1..j−1 B (Tj , tj), by

item (1) of Definition 12, (Th, h
′) must be unspent — contradiction. ut

Proof of Lemma 2

Let B = (T1, t1) · · · (Tn, tn) be consistent. By contradiction, assume that Ti,Tj ∈
matchB(T), with Ti 6= Tj (and so, i 6= j). By Definition 10 it must be Ti{wit 7→
⊥} = T{wit 7→ ⊥} = Tj{wit 7→ ⊥}, hence in particular Ti.in = Tj .in. There are
two cases. If Ti.in = Tj .in = ⊥, then by Definition 10 B is not a blockchain,
since i 6= j. Hence, ran (Ti.in)∩ ran (Tj .in) = ran (Ti.in) 6= ∅. By Theorem 1, this
cannot happen because B is consistent — contradiction. ut

Proof of Lemma 3

Straightforward from Lemma 2, taking T = Tj . ut

Proof of Theorem 2

Let B = (T1, t1) · · · (Tn, tn). By contradiction, there exists some i < n such that,
given Bi = (T1, t1) · · · (Ti, ti):

val(Bi) < val(Bi(Ti+1, ti+1))

Let Ui and Ui+1 be the UTXOs of Bi and of Bi(Ti+1, ti+1), respectively, and
let U = Ui ∩ Ui+1. Since val(Ui) < val(Ui+1), then it must be val(Ui \ U) <
val(Ui+1 \ U). The set Ui \U contains the outputs redeemed by Ti+1, while the
set Ui+1 \ U contains exactly the outputs in Ti+1. Since B is consistent, then
Bi B (Ti+1, ti+1). Then, by Definition 12, for each k ∈ dom Ti+1.in, there exists
a unique j ≤ i such that, given ok = snd(Ti+1.in(k)) and vk = val(Tj .out(ok)):

(Tj , ok, tj)
vk (Ti+1, k, ti+1)

Then, by item (3) of Definition 12:

val(Ui \ U) =
∑
{vk | k ∈ dom Ti+1.in}

≥
∑
{val(Ti+1.out(h)) |h ∈ dom Ti+1.out} = val(Ui+1 \ U)

while we assumed val(Ui \ U) < val(Ui+1 \ U) — contradiction. ut

	A formal model of Bitcoin transactions

