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Abstract. The HFEv- signature scheme is one of the most promising
candidates for post-quantum digital signatures. Most notably here is the
short signature size of the scheme.

It has long been known that direct attacks against HFEv- systems work
more efficiently than against random systems. The reason for this was
found by Jintai Ding et al., who proved an upper bound on the degree
of regularity of these systems. However, not much is known about the
efficiency of the hybrid approach against the HFEv- scheme. In order to
find suitable parameter sets for HFEv- for higher levels of security, this
topic has to be studied in more detail.

In this article we consider this question by performing a large number of
computer experiments. As our experiments show, guessing variables does
not help to speed up direct attacks against HFEv- systems. Therefore,
in the parameter selection of these schemes, we do not have to consider
the hybrid approach. Furthermore, we develop in this article a simple
formula to estimate the degree of regularity of a determined HFEv- sys-
tem. Together with our results on the behavior of the hybrid approach,
this formula gives us an easy way to estimate the complexity of direct
attacks against HFEv- systems.

Keywords: Multivariate Cryptography, HFEv-, Direct Attack, Hybrid
Approach

1 Introduction

The HFEv- signature scheme as proposed by Patarin, Courtois and Goubin in
[11] is one of the best studied multivariate schemes and one of the most promis-
ing candidates for post-quantum digital signatures. Most notably is the short
signature size of the scheme, which allows us to generate signatures of length
less than two times the security level. Therefore, HFEv- produces the shortest
signatures of all existing signature schemes.

Experiments [7,10] have shown that direct attacks can solve the public systems
of HFEv- much faster than random systems. The reason for this was found by
Jintai Ding and Bo Yin Yang in [5], who proved an upper bound on the degree of
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regularity of HFEv- systems. However, not much is known about the effect of the
hybrid approach [1] against HFEv- systems. Guessing variables before applying
a direct attack often reduces the overall complexity of the attack, even if this
implies to perform the algorithm several times. With respect to a possible future
standardization of the HFEv- signature scheme, we therefore have to study the
efficiency of the hybrid approach against HFEv- schemes in detail.

In this article we study the efficiency of direct attacks using the hybrid ap-
proach against HFEv- schemes and answer the question whether it is sensible to
guess variables before applying an algorithm like XL or a Groébner basis tech-
nique such as Fy [6] or F5. To do this, we perform a large number of computer
experiments with HFEv- systems of different size using MAGMA.

As our experiments show, guessing variables does not help to speed up direct
attacks against HFEv- schemes. In detail, when guessing a reasonably small num-
ber of variables, the degree of regularity of the system does not change; when
guessing more variables, the system behaves exactly like a random system of
the same size. Therefore, we do not have to consider the hybrid approach when
selecting parameters for the HFEv- scheme. Furthermore, we derive from our
experiments a simple formula to estimate the degree of regularity of an HFEv-
system in practice. Together with our results on the behavior of the hybrid ap-
proach, this formula give us an easy way to estimate the complexity of a direct
algebraic attack against an HFEv- scheme.

2 The HFEv- Cryptosystem

2.1 Multivariate cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials over a finite field F = F,. The security of multivariate schemes is
based on the M@ Problem of solving such a system. The MQ Problem is proven

to be NP-Hard even for quadratic polynomials over the field GF(2) [8] and be-
lieved to be hard on average (both for classical and quantum computers).

To build a multivariate public key cryptosystem (MPKC), one starts with an
easily invertible quadratic map F : F™ — F™ (central map). To hide the struc-
ture of F in the public key, we compose it with two invertible affine (or linear)
maps S : F™ — F™ and T : F* — F™. The public key of the scheme is therefore
given by P=SoFoT :F* — F™.

The private key consists of the three maps S, F and T and therefore allows to
invert the public key.

To generate a signature for a document (hash value) h € F™, one computes
recursively x =S~ '(h) e ", y = F!(x) e F* and z = T (y).
To check the authenticity of a signature z € F™, one simply computes h’ =
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P(z) € F™. If the result is equal to h, the signature is accepted, otherwise re-
jected. This process is illustrated in Figure 1.

Signature Generation

-1 —1 -1
he]FmS—> xeFmL yeF*—— zcF"

P

Signature Verification

Fig. 1. Signature Generation and Verification for Multivariate Signature Schemes

2.2 The HFEv- Signature Scheme

The HFEv- signature scheme was proposed by Patarin, Courtois and Goubin in
[11]. Tt is an example of a multivariate BigField scheme, which means that the
central map F is a univariate polynomial map over a degree n extension field E
of F. In order to switch between the ground field F and the extension field E, we
use an isomorphism ¢ : F”* — E.

The central map F of the HFEv- scheme has the form

q'+¢’<D ) v
F(X) = Z ainq'J“qJ + Z Bi(x1,. s 20) X +y(21,. .., Ty),
0<i,j i=0
where (; and  are linear and quadratic maps in the vinegar variables z1, ..., x,

respectively. The public key has the form
P:$o¢7lofo¢oT:Fn+” — Fre

with two affine maps S : F* — F*~% and 7 : F**? — F**" and is a multivariate
quadratic map with coefficients and variables over F.
The private key consists of the three maps S, F and 7.

Signature Generation: To generate a signature z for a document d, one uses
a hash function H : {0,1} — F"~“ to compute a hash value h = H(d) € F*~¢
and performs the following four steps

1. Compute a preimage x € F™ of h under the affine map S and set X = ¢(x) €
E.
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2. Choose random values for the vinegar variables x1,...,x, and substitute
them into the central map to obtain the parametrized map Fy .

3. Solve the equation Fy (Y) = X over the extension field E by Berlekamp’s
algorithm.

4. Computey = ¢~ (V) and the signaturez € F*** by z = T~ (y||z1]| . - . ||z0)-

Signature Verification: To check the authenticity of a signature z, the verifier
computes h = #(d) and h' = P(z). If h’ = h holds, the signature is accepted,
otherwise it is rejected.

2.3 Gui

For performance reasons, the HFEv- signature scheme is mostly used over the
field GF(2). However, in order to prevent colission attacks against the scheme,
this would lead to a very large public key (In order to reach a security level of k
bits against colission attacks, we would need 2k equations over GF(2)). To avoid
this, Petzoldt et al. developed in [12] a specially designed signature generation
process for HFEv- based schemes. The scheme was named Gui.

In the signature generation process of Gui, k HFEv- signatures are created (for
different hash values of the same message d). These k HFEv- signatures are then
combined to a single Gui signature of length (n—a)+k-(a+v) bit (see Algorithm
1). Analogously, the verification algorithm of Gui evaluates the HFEv- public
key k times (see Algorithm 2).

Algorithm 1 Signature Generation Algorithm 2 Signature Verification

Process of Gui Process of Gui

Input: Gui private key (S, F, 7T), Input: Gui public key P, message d,
message d, repetition factor k signature o € GF(2)n- k@t

Output: signature repetition factor k
o € GF(2)(n- @) Thlatv) Output: TRUE or FALSE

1: h + SHA-256(d) 1: h + SHA-256(d)

2: So(—O 2: (Sk7Xk,...,X1)<—O'

3: for i =1to k do 3: fori=1to k do

4: D; < first n — a bits of h 4: D; + first n — a bits of h

5. (S;,Xi) « HFEv—"'(D; ®S;-1) 5 h+ SHA-256(h)

6: h <+ SHA-256(h) 6: end for

7: end for 7: fort:=k—1to0do

8: 0+ (SkHXkHHXl) 8: Si<—'P(S—L‘+1||X1‘+1)@Di+1

9: return o 9: end for

10: 10: if Sp = 0 then

11: 11: return TRUE

12: 12: else

13: 13: return FALSE

14: 14: end if
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The Gui signature scheme solves the above problem with the colission resistance
of the hash function by using a hash of effective length k - |H|. Therefore, with
regard to the hash function, it would be possible to use in Gui an HFEv- scheme
with an arbitrary small number of equations (and adjusting the repetition factor
k appropriately). However, there are other attacks which put a lower bound on
the number of equations. Despite the new signature generation process of Gui,
its security is equivalent to that of HFEv- and all known attacks against Gui are
attacks against the underlying HFEv- scheme.

2.4 Attacks against HFEv-
The main attacks against the HFEv- cryptosystem are

— (quantum) brute force attacks
— direct attacks
— Rank attacks of the Kipnis-Shamir type

While the first two of these attacks are signature forgery attacks, which have
to be performed for each message separately (and, due to the specially designed
signature generation process of Gui, for every message k times), the Kipnis-
Shamir attack is a key recovery attack. After having recovered the HFEv- private
key using this method, it is possible to generate Gui signatures in the same way
as a legitimate user.

Brute Force Attacks Since the public system of Gui is defined over the field
GF(2) with two elements, the parameters of the scheme have to be chosen in a
way that prevents brute force attacks against binary MQ systems. In the classical
world, we have to mention here the Gray Code enumeration of [3]. In order to
solve a public HFEv- system using this technique, one first fixes a 4+ v variables
to get a determined system. The resulting system of n — a equations in n — a
variables can then be evaluated for every possible input using 2"~%+2.log, (n—a)
bit operations. In order to forge a Gui signature, we have to perform this step k
times. Therefore, the complexity of this attack can be estimated as

. _ n—a+2
CompleXIthrutc force; classical — k-2 ' 10g2 (’fl - a)

bit operations.

In the quantum world, brute force attacks can be additionally sped up using
Grover’s algorithm. As shown in [13], we can find the solution of a binary MQ
system of n — a equations in n — a variables using 2(*~*/2.2. (n — a)? quantum
bit operations. The complexity of forging a Gui signature using this technique
can be estimated as

Complexithrute force; quantum — k - 2(7L—a)/2 2 (TL - a)3

(quantum) bit operations.
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Direct Attacks Besides brute force attacks, direct algebraic attacks are the most
straightforward way to attack a multivariate scheme such as HFEv-. One con-
siders the public equation

P(z) =w (1)

as an instance of the MQ Problem and tries to solve it using a system solver like
XL or a Grébner basis technique such as Fy [6] or F5. In the case of a multi-
variate signature scheme such as HFEv-, the equation (1) is an underdetermined
multivariate quadratic system (i.e .the number n of variables is larger than the
number m of equations). In this case it is the best strategy to fix n — m of
the variables before applying the Grébner basis algorithm. One can assume that
the so projected system has exactly one solution. The complexity of a direct
attack against a determined system of n quadratic equations in n variables can
be estimated by

dreg ) ”
Complexity girect = 3 - (n * g) : <Z>7 (2)

dreg

where d.c is the so called degree of regularity of the system.

For GF(2) as the underlying field, we have to consider the field equations {z? —
x;}, which reduces the number of monomials in the extended systems produced
by the Fj algorithm. Therefore, we have to change the above formual slightly.
We get

2
. n n
CompleXItYdirect; GF(2) — 3- (d > ' (2)1 (3)
reg
Since HFEv- is mainly used over the field GF(2), we use in the following this
formula.

The Hybrid Approach The idea of the hybrid approch [1] is to guess some (say
¢) additional variables (therefore creating an overdetermined system) before ap-
plying the Grébner basis algorithm. Even if this implies to run the algorithm ¢°
times, it often leads to better results. The complexity of solving a binary system
by the hybrid approach can be estimated by

— 0\ (n—t
CompleXityh brid; classical — miny qﬂ -3 " ! " . (4)
y 5 dreg 2

In the presence of quantum computers, we can use Grover’s algorithm to reduce
this complexity to

2
i ) n—4 n—~4
CompleXItYhybrid; quantum — ming qZ/Q ! 3( dreg > : < 9 > (5)

In order to forge a Gui signature, we have to perform this attack k£ times.
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Rank Attacks In [9] Kipnis and Shamir proposed a rank attack against the HFE
cryptosystem. The key idea of this attack is to consider the public and private
maps of HFE as univariate polynomial maps over the extension field. Due to the
special structure of the HFE central map, the rank of the corresponding matrix
is limited by r = [logy(D — 1)] 4+ 1. It is therefore possible to reconstruct the
affine transformation S by solving an instance of the MinRank problem.

In [2], Bouillaget et al. improved this attack by showing that the map S can be
found by computing a Grobner Basis over the base field GF(2). By doing so, we
can estimate the complexity of a Rank attack of the Kipnis Shamir type against
the basic HFE scheme by

. n+4r\“
Complexityks attack; HFE = ( , > ;
where r = [logy(D — 1)] + 1 is the rank of the matrix corresponding to the
central map and 2 < w < 3 is the linear algebra factor.
In the case of HFEv-, the rank of the matrix is given by r 4+ a + v. Therefore,
we can estimate the complexity of our attack by

n—l—r—l—a—&—v)w

Complexitst attack; HFEv— — ( r+a-+wv

Since the quadratic systems to be solved during this attack are highly overde-
termined, the attack can not be sped up with the help of Grover’s algorithm.

3 Owur Experiments

3.1 The Direct Attack on HFEv-

Experiments [7,10] have shown that the public systems (1) of HFE and its
variants can be solved significantly faster than random systems. The reason for
this is the smaller degree of regularity of these systems. In [5] it was shown that
for HFEv- systems, the degree of regularity is upper bounded by

: (6)

Qo < W*’Q for ¢ even and r + a odd,
otherwise.

reg — (g—1)-(r+a+v)
qf +2

where r = |log, (D —1)] + 1.

However, when estimating the actual complexity of a direct attack against HFEv-
(or Gui), this upper bound on d,e,; does not really help. We therefore performed a
number of experiments to estimate the degree of regularity of HFEv- systems in
practice. For this, we created for D € {5,9,17,33,65}, different values of a + v
and increasing values of n the public systems of HFEv-(n, D, a,v) and solved
these systems using the Fy algorithm integrated in MAGMA. Table 1 shows for
D € {5,9,17,33,65} the minimal value of a + v needed to reach various degrees
of regularity ! . Note that the values of a+v listed in the table are not necessarily

! Note that parts of this analysis was already done in [12].
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minimal number of a + v
dreg|D =5|D =9|D = 17|D = 33|D = 65
4 2 1 0 0 0
5 5 4 3 2 1
6 8 7 6 5 4
7 11 10 8 7 6

Table 1. Minimal value of a 4+ v needed to reach given degrees of regularity

the smallest possible. However, with our constrained computing resources, we
could not perform experiments with more than 37 equations. Therefore, for larger
values of n, the values of a + v listed in Table 1 can be seen as sufficient but not
necessarily minimal values to reach the given degree of regularity.

From Table 1 we find

“dreg —10 for D =5

“dreg —11 for D =9

“dreg — 12 for D =17 . (7)
“dreg — 13 for D = 33 and

“dreg — 14 for D =65

<
a—+vn~

W W www

Again we note that, for large values of n, this equation yields sufficient, but not
necessarily minimal values of a 4 v.
By substituting r = [log,(D — 1)] + 1 into equation (7), we get

a—l—vsi’)-dreg—r—? (8)
o +a+v+7
r a v
drcgztf} (9)

In contrast to equation (6), formula (9) yields a lower bound for the degree of
regularity of an HFEv- system over GF(2). By estimating

JHFEv—; GF(2) r+at+v+7

reg L#Ja

we therefore get a lower bound for the complexity of direct attacks against HFEv-

Another important point when studying the complexity of direct attacks against
HFEv- systems is that, for efficiency reasons, the HFEv- signature scheme is
defined over very small fields (in this paper we consider HFEv- schemes over
GF(2)). This means that the guessing part of the hybrid approach is very cheap.
In order to estimate the complexity of direct attacks against HFEv- systems, we
therefore have to carefully study the behavior of the hybrid approach against
these systems.
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3.2 Experiments with the Hybrid Approach against HFEv-

In this section we present the results of our computer experiments with the hy-
brid approach against HFEv- systems. Our goal is to decide whether it is sensible
to guess variables (and creating so an overdetermined system) before applying
a Grobner basis algorithm. Note that guessing implies to run the Grobner basis
algorithm several times.

For our experiments, we generated for n — a € {30,35} and different values
of D, a and v public HFEv- systems in MAGMA code. After adding the field
equations {z?—x; =0:4i=1,...,n+v}, we appended k € {0,...,n+v—10} ran-
domly chosen linear equations to the system (thus projecting down the quadratic
system to n —a — k € {10,...,n — a} variables) and solved the systems using
the F, algorithm integrated in MAGMA. The experiments were performed on a
server with 16 AMD Opteron processors (2.5 GHz) and 128 GB memory. How-
ever, for each experiment, we used only one single core.

Figures 2 and 3 show (some of) the results of our experiments. We found:

5 —

D=5, a=v=0

w—D=5, a=v=1

D=5, a=v=2
/ D=5 3=y=3
2

w—random

degree of regularity

8 9 10 11 12 13 14 15 1 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# variables

Fig. 2. Hybrid attack against HFEv- systems with (n — a) = 30 equations and D =5

— when guessing only a few variables, the degree of regularity of the HFEv-
system does not change; memory requirements and the execution time of
a single run of the algorithm decrease slightly, but not in an amount that
would justify guessing of variables.

— when guessing many variables, the HFEv- systems behave exactly like ran-
dom systems of the same size; this holds not only with respect to the degree
of regularity but also regarding matrix sizes and execution times.

— similar to the results of [12] we found that, as long as the number n — a of
equations, D and s = a + v are constant, the concrete choice of a and v has
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D=9, a=v=0

. —D=9, a=y=1

/ D=9, a=v=2
/ =—[)-9, a=v=3
2

==random

degree of regularity

o
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

# variables

Fig. 3. Hybrid attack against HFEv- systems with (n — a) = 35 equations and D = 9

no significant effect on the behavior of direct attacks against the (projected)
systems

3.3 Estimating the location of the first degree drop

An important question when studying the efficiency of the hybrid approach is
the following;:

How many variables do we have to guess in order to observe a drop of
the degree of regularity?

In this section we consider this question for HFEv- systems over GF(2).

Let the HFEv- parameters n, D,;a and v be fixed. According to formula (9),
we can estimate the degree of regularity of solving the determined HFEv- sys-
tem (without guessing) as

) 7
dgl;Ev—,GF@) _ L%J (10)

In order to estimate the number of variables we have to guess to see a degree
drop, we consider a determined random system of n — a equations over GF(2).
The degree of regularity of solving this system (after guessing k variables) is
given as the smallest index t for which the coefficient of X? in

1 1 —X2 n—a—k 1 —X2 n—a (11)
1-X 1-X 1—- X4

is non positive [14].
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For most HFEv- parameters and k& = 0, the so computed degree of regular-
ity will be much higher than the value computed by equation (10). However,
by increasing k, the degree of regularity needed to solve the random system
will decrease, while the degree of regularity of the HFE system stays constant
(see Section 3.2). We succesively increase k until the degree of regularity of the
projected random system drops below the bound given by equation (10). The
minimal value of k£ for which this happens corresponds to the minimal number
of variables we have to guess to observe a degree drop of the HFEv- system.

In the following, we illustrate this process using the HFEv- parameters (¢, n, D, a,v) =
(2,95,9,5,5). Notethat these are exactly the parameters ofthe scheme Gui-95
[12].
By equation (10) we find that the degree of regularity of the HFEv- system is
given by

JHFEV— _ O+5+4+7

reg - L 3 J = 7 (12)

Note that the Gui-95 scheme is assumed in [12] to have exactly this degree of
regularity leading to the claimed (pre-quantum) security level of 80 bit.

The degree of regularity of a determined system with n —a = 90 equations
over GF(2) can be estimated (c.f. formula (11)) to be 13. We increase the num-

ber of guessed variables in the random system (such creating overdetermined
systems) to decrease its degree of regularity (see Figure 4).

14
12

10

= Random(90,90)

6 \—\- m—hound of eq. (9)

0 2 4 6 81012141618202224262830323436384042444648

Fig. 4. Estimating the location of the first degree drop
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As the figure shows, we meet the bound given by equation (12) for k = 35 and go
below it for k = 42. Therefore, when attacking the given HFEv- instance using
the hybrid approach, we would have to perform the Fj algorithm 242 times (for
a system, whose degree of regularity is only one less than that of the original
system). We therefore come to the conclusion

The hybrid approach does not speed up direct attacks against
HFEv- systems.

4 Conclusion

In this paper we studied the complexity of direct attacks using the hybrid ap-
proach against HFEv- systems. We found that

— when guessing only a few variables, guessing does not decrease the degree of
regularity of the HFEv- system

— when guessing a large number of variables, the HFEv- system behaves just
like a random system

Based on these observations we conclude that

The hybrid approach does not speed up direct attacks against
HFEv- systems.

Furthermore, we developed a simple formula to estimate the degree of regularity
of a determined HFEv- system over GF(2) in practice. Together with our findings
on the behavior of the hybrid approach against HFEv- systems, this formula gives
us an easy way to estimate the complexity of direct algebraic attacks against
HFEv- systems.
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