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Abstract

We consider repairable threshold schemes (RTSs), which are threshold
schemes that enable a player to securely reconstruct a lost share with help
from their peers. We summarise and, where possible, refine existing RTSs
and introduce a new parameter for analysis, called the repair metric. We
then explore using secure regenerating codes as RTSs and find them to
be immediately applicable. We compare all RTS constructions considered
and conclude by presenting the best candidate solutions for when either
communication complexity or information rate is prioritised.

1 Introduction

1.1 Threshold Schemes

We briefly introduce threshold schemes, then discuss the notation of share re-
pairability in threshold schemes.

Definition 1.1. Suppose t and n are positive integers such that 2 ≤ t ≤ n. A
(t, n)-threshold scheme is a method in which a dealer chooses a secret s and
distributes a share to each of the n players P1, . . . , Pn, such that the following
two properties are satisfied:

• recoverability: any subset of t players can compute the secret from the
shares they collectively hold, and
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• secrecy: no subset of fewer than t players can determine any information
about the secret.

A threshold scheme consists of two algorithms: a share algorithm run by the
dealer that receives as input the secret s and outputs n shares, and a recover
algorithm, which receives as input at least t distinct, valid shares from the players
and outputs the secret.

All threshold schemes we consider here are unconditionally secure, meaning
all security results are valid against adversaries with unlimited computational
power. Such schemes were introduced independently by Blakley and Shamir in
1979 [3, 16] and have been extensively studied since [2, 9].

The following construction is due to Shamir and yields a (t, n)-threshold
scheme:

Construction 1.2. Let P be a set of n players, and let p > n be a prime
number. Let the secret space S be equal to the finite field of p elements, Zp. For
a given secret s ∈ Zp, the share and recover algorithms comprising Shamir’s
threshold scheme are as follows.

• Share: Select t − 1 values r1, r2, . . . , rt−1 uniformly at random from Zp,
and let f ∈ Zp[x] be the polynomial defined by

f(x) = rt−1x
t−1 + rt−2x

t−2 + · · ·+ r1x+ s.

We give each player Pi, for 1 ≤ i ≤ n, the share vi = f(i).

• Recover: A collection of t (or more) players perform polynomial inter-
polation on their shares in order to recover the polynomial f and hence
determine the secret s = f(0).

Shamir’s scheme is recoverable, as any set of t players can recover the secret
via interpolation. Shamir’s scheme also maintains secrecy, as for any set of t−1
or fewer players, and for any element s′ ∈ Zp, there exists a polynomial of degree
at most t − 1 consistent with their shares and having constant term s′. Thus
the shares of an unauthorised set of players yield no information about the true
value of s.

1.2 Share repairability

Consider a scenario in which a player in a (t, n)-threshold scheme loses or cor-
rupts their share and must repair it. In some settings, the player wishing to
repair their share, called the repairing player, could communicate with the dealer
and request, then receive, a copy of their share. However, the dealer may not
always be accessible when a player needs to repair their share. Ideally, in this
dealer-less setting, the repairing player could ask for help from its cohort of play-
ers to repair its share. A scheme in which this is possible is called a repairable
threshold scheme (RTS).
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Definition 1.3. As before, let t and n be positive integers such that 2 ≤ t ≤ n
and let d ∈ N be such that t ≤ d ≤ n−1. Call d the repairing degree. A (t, n, d)-
repairable threshold scheme, denoted (t, n, d)-RTS, is a (t, n)-threshold scheme
which, in addition to the share and recover algorithms, has a repair algorithm
that allows a repairing player Pr to securely reconstruct their share with help
from a set of d players, called the helping players.

We must define what it means for the repair algorithm to be secure. Assume
a setting in which all players execute the repair algorithm correctly. Inherited
from the security definition of a (t, n)-threshold scheme, consider an adversary
with access to a coalition of at most t−1 players, which may or may not include
the repairing player. Each time the repair algorithm is executed, the coalition
of at most t−1 players will pool their information; this includes the information
stored prior to the algorithm being executed, as well as all messages sent and
received during. In order to be secure, the accumulated information should yield
no information about the secret distributed by the RTS.

We briefly note the bounds on the repairing degree d. First, consider the
lower bound t ≤ d. This is a necessary condition since, if a coalition of fewer than
t players were able to construct a share for a player not in the coalition, then a
coalition of t − 1 players would be able to construct a tth share and thus have
enough shares to recover the secret s via the recover algorithm. This would
contradict the privacy of the RTS, inherited from the threshold scheme, and
would thus be insecure. The upper bound on the repairing degree is d ≤ n− 1.
This is also obvious since, if one of the n players lost their share, there are at
most n − 1 players that could possibly help. We remark that it is desirable to
have a small d, as this allows repairability to be more robust. For example, if
d = n−1 and if two players are unavailable (they may be offline or corrupted), no
players will be able to repair their shares. In contrast, if d is small, repairability
would be possible even in a setting where several players are unavailable.

Finally, we introduce a notion, defined in [18], regarding the repairability of
an RTS. As motivation for this definition, we note that in Definition 1.3 not
every d-subset of the n − 1 players is required to be able to help the repairing
player Pr repair their share. Instead, it is necessary that at least one d-subset
can help Pr. In order to distinguish between schemes in which all d-subsets, or
some d-subsets, are able to help Pr, we introduce the following definition.

Definition 1.4. A (t, n, d)-RTS has universal repairability if all d-subsets of
the n − 1 players are able to repair Pr’s share. A (t, n, d)-RTS has restricted
repairability if some, but not all, d-subsets are able to repair Pr’s share.

1.3 Our Contributions

This paper aims to survey the currently fragmented field of repairable threshold
schemes. We summarise the existing work and, where possible, enhance the
schemes and conduct a more thorough analysis, then explore applying the rich
field of secure regenerating codes to RTSs and find them to be immediately
applicable. We then conduct a comparison between all known schemes, finding
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the best candidate solutions for RTSs with differing priorities. Besides unifying
the current research, we highlight the following as explicit, novel contributions:

• We introduce a new efficiency metric which measures the repairability of
an RTS scheme. We use this metric to analyse existing RTSs, in particular,
the combinatorial schemes presented in [18].

• We enhance the enrolment scheme from [18] to achieve a smaller commu-
nication complexity whilst maintaining the information rate. We prove
the minimality of the communication complexity.

• We explore using secure regenerating codes as RTSs and present a number
of implications on the resulting RTSs.

• Based on our results, we propose the best candidate solutions for RTSs
that prioritise either communication complexity or information rate.

1.4 Organisation

In Section 2, the relevant notions and definitions are introduced. This includes
necessary definitions from combinatorial design theory and an overview of re-
generating codes. In Section 3 we present a näıve construction for an RTS and
introduce the metrics used to measure the efficiency of an RTS. Following this,
Section 4 introduces, refines and analyses all known RTS constructions. This
includes the both enrolment and combinatorial schemes presented in [18] and
the scheme presented in [8]. In Section 5 we explore using regenerating codes
as RTSs and find them to be immediately applicable. We then compare all the
discussed RTS constructions in Section 6 and conclude in Section 7.

2 Preliminaries

In this section, we present some core ideas in combinatorial design theory from
[17] and regenerating codes that we will need later.

2.1 Combinatorial design theory

Combinatorial design theory deals with arranging elements into finite sets with
certain properties.

Definition 2.1. A design is a pair (X,D) such that X is a set of elements,
called points, and D is a collection of non-empty subsets, called blocks, of X.

There is no restriction on the collection D to have distinct blocks; this is
why D is called a collection, rather than a set. If all the blocks are distinct, the
design is called simple.

The degree of a point x ∈ X is the number of blocks the point x occurs in.
The design is called regular if all points have the same degree. The rank, k, of
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a design is the largest block in the collection D. If all blocks are the same size,
the design is said to be uniform.

Balanced incomplete block designs are a widely studied type of design and
are defined as follows:

Definition 2.2. A (m, k, λ)-balanced incomplete block design, (m, k, λ)-BIBD,
is a design such that

1. |X| = m,

2. each block in D contains exactly k points, and,

3. every pair of distinct points is contained in exactly λ blocks.

For convenience, blocks will be written in the form abc, rather than {a, b, c}.
Note that a BIBD is a regular, uniform, simple design.

Example 2.1. The pair (X,D) is a (9, 3, 1)-BIBD, where

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

D = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

The following theorem, presented without proof, shows the degree of every
point x in a BIBD.

Theorem 2.3. In an (m, k, λ)-BIBD, every point occurs in exactly

τ =
λ(m− 1)

k − 1

blocks.

The value τ in Theorem 2.3 is called the replication number of the design.
The following result, given without proof, provides more information about the
structure of a BIBD and defines how many blocks a BIBD must have.

Theorem 2.4. An (m, k, λ)-BIBD has exactly

b =
mr

k
=
mλ(m− 1)

k(k − 1)

blocks.

Continuing from Example 2.1, we compute the replication number τ and the
number of blocks b for the BIBD.

Example 2.2. Consider the (9, 3, 1)-BIBD in Example 2.1. The replication
number of the design is τ = 4 and D contains b = 12 blocks.

In [18], the concept of a repairable distribution design and a basic repairing
set are introduced, which will be used later to construct RTSs. We define the
concept here and continue our example.
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Definition 2.5. A (t, `1, `2)-distribution design is a design that satisfies the
following two properties:

1. the union of any t blocks contain at least `2 points, and

2. the union of any t− 1 blocks contains at most `1 points,

where `2 − `1 ≥ 1. The distribution design is repairable if every point in the
distribution design occurs in at least two blocks.

Example 2.3. The (9, 3, 1)-BIBD in Example 2.1 is a (2, 3, 5)-distribution de-
sign, as the union of any two blocks contains at least five points, and an individ-
ual block contains at most three points. As every point occurs in τ = 4 blocks,
the distribution design is repairable.

Finally, we consider the definition of a basic repairing set.

Definition 2.6. A subset of y blocks contained in a (t, `1, `2)-distribution design
is a basic repairing set of size y if every point in the design is contained in at
least two blocks of the subset.

Obviously, y ≤ b. The following theorem lower bounds y; the proof is very
similar to the proof of Theorem 2.4.

Theorem 2.7. A basic repairing set of a (t, `1, `2)-distribution design, con-
structed from an (m, d, λ)-BIBD, has at least 2m/k blocks.

Proof. Let (X,D) be a basic repairing set of an (m, k, λ)-BIBD. Define a set

I = {(y,A) : y ∈ X,A ∈ D, y ∈ A}.

We will compute |I| in two different ways. First, there are m ways to choose
y ∈ X. For each y, there are at least two blocks A such that y ∈ A. Hence,
|I| ≥ 2m. On the other hand, there are y ways to choose a block A ∈ D. For
each choice of A, there are k ways to choose y ∈ A. Hence, |I| = yk. Combining
these two equations, we see that

y ≥ 2m

k
, (1)

as required.

We illustrate the concept of basic repairing sets for our ongoing example.

Example 2.4. For the (9, 3, 1)-BIBD in Example 2.1, we can calculate the lower
bound on the basic repairing set to be 6 ≤ y. The set {123, 456, 789, 147, 258, 369}
is a basic repairing set of minimal size.
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2.2 Regenerating codes

Regenerating codes are a class of distributed storage codes introduced in 2010
by Dimakis et al. [5]. Regenerating codes distribute data between nodes and
guarantee recoverability of the data with the cooperation of a sufficient number
of nodes, and regeneration of lost or corrupted shares. Regenerating codes
optimally trade the bandwidth needed for the regeneration of a failed node with
the amount of data stored per node in the network.

There are no security requirements for regenerating codes. However, there
exists literature exploring how to secure them. Here, we present an introduction
to regenerating codes followed by a discussion on securing them.

2.2.1 Introduction to Regenerating Codes

Regenerating codes, and the notation used to describe them as in [5], is as
follows.

Definition 2.8. Let Fq be a finite field, and let D denote the data to be dis-
tributed, where D ∈ (Fq)B. Say B is the number of data symbols. Let n ∈ N.
Consider a distributed storage system consisting of n nodes, each with the ca-
pacity to store α symbols in Fq. Let t, d ∈ N, such that t ≤ d < n. An
(n, t, d)-regenerating code distributes D amongst n nodes such that each node
stores a share of the data, where each share consists of α elements in Fq. The
distribution should be:

• recoverable, meaning that D can be recovered by any t of the n nodes, and

• repairable, meaning that any node can repair their share of the data by
downloading β elements in Fq from each of the d repairing nodes.

The following bound on the number of data symbols distributed by an
(n, t, d)- regenerating code is:

B ≤
t−1∑
i=0

min{α, (d− i)β}. (2)

Using this bound, it can be deduced that, when B, t and d are fixed, there is
a trade-off between the size of the shares, α, and the bandwidth β required for
repair. At one extreme of this trade-off we minimise β first and then α; this is
the minimum bandwidth regenerating (MBR) condition. At the other extreme
we minimise α and then β to get the minimum storage regenerating (MSR)
condition.

This gives us the following parameters for the MBR condition:

β =
2B

t(2d− t+ 1)
(3)

α =
2dB

t(2d− t+ 1)
. (4)
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At the MSR condition, the parameters are:

α =
B

t
(5)

β =
B

t(d− t+ 1)
. (6)

Using these extreme condition, we can define MBR and MSR codes.

Definition 2.9. A minimum bandwidth regenerating (MBR) code is an (n, t, d)-
regenerating code with parameters (α, β,B) satisfying the MBR conditions in
(3) and (4). A minimum storage regenerating (MSR) code is an (n, t, d)-
regenerating code with parameters (α, β,B) satisfying the MSR conditions in
(5) and (6).

Since MBR codes achieve the minimum possible repair bandwidth, a replace-
ment node downloads only what it stores, so α = dβ. By substituting this into
(2), we can see that an MBR code must satisfy

B =

(
td−

(
t

2

))
β. (7)

Similarly, MSR codes must satisfy B = tα and dβ = α+ (t− 1)β.
There exist several constructions in the literature for both MBR and MSR

codes. A construction of MBR codes for all possible parameters n, t and d is
given in [13]. Examples of constructions of MSR codes can be found for all
parameters n, t and d in [7, 19], and for d = 2t− 2 in [13].

Example 2.5 shows a (5, 2, 3)-MBR code, constructed according to [15].

Example 2.5. Let n = 5, t = 2 and d = 3, meaning that any two of the five
nodes can recover the data, and any node can regenerate their share with help
from three other nodes. If we let β = 1, then (7) tells us the number of message
symbols that can be distributed is B = 5. Let all computations be in the field
with eleven elements, Z11, and let

u1 = 7; u2 = 3; u3 = 10; u4 = 6; u5 = 2.

be the five message symbols to be distributed.

Dispersal: Use a (public) generator matrix Ψ, with properties discussed
in [13], and a message matrix M to generate the code C = ΨM as follows:

C = ΨM =


1 1 1
2 4 1
3 2 6
4 2 1
5 4 6


 u1 u2 u4

u2 u3 u5
u4 u5 0

 =


5 4 8
10 4 9
8 8 0
7 1 6
6 1 5

 .

Each node Pi is then given row i, for 1 ≤ i ≤ n, of C. Note that each row,
and therefore each share, consists of α = 3 elements in F11, which satisfies the
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MBR conditions in (3) and (4).

Regeneration: Say node P4 needs to regenerate their share. This can be
done with help from any d = 3 other nodes as follows. Assume nodes P1, P2

and P5 are the helper nodes. Let Ψi denote row i of Ψ. Each helper node Pi

must calculate the inner product (ΨiM)ΨT
4 : note that node Pi knows (ΨiM) as

their share, and Ψ is a public matrix, so Ψ4 is also known. Therefore, the three
helper nodes P1, P2 and P5 each calculate the following, respectively:

(Ψ1M)ΨT
4 =

(
5 4 8

) 4
2
1

 = 3 mod 11

(Ψ2M)ΨT
4 =

(
10 4 9

) 4
2
1

 = 2 mod 11

(Ψ5M)ΨT
4 =

(
6 1 5

) 4
2
1

 = 9 mod 11.

Each helper node then sends this value to P4. So P4 receives the triple (3, 2, 9).
The regenerating node P4 then calculates the repair matrix Ψrepair, consisting of
the rows of Ψ related to the helper nodes, and calculates the inverse of Ψrepair.
So, here, as P1, P2 and P5 are helper nodes, Ψrepair consists of rows 1, 2 and 5
of Ψ, as follows:

Ψrepair =

 1 1 1
2 4 1
5 4 6

 , and (Ψrepair)−1

 3
2
9

 . (8)

Node P4 then multiples (Ψrepair)−1 with the triple (3, 2, 9) received from the
helper nodes:

(Ψrepair)−1

 3
2
9

 =

 9 9 8
4 1 1
10 1 2

 3
2
9

 =

 7
1
6

 , (9)

and thus recovers their lost share.

Recover: Any t = 2 players can recover the data u1, . . . , u5. Assume nodes
P2 and P3 collaborate to recover the data.

Let ΨDC be the data collector matrix, constructed from rows corresponding
to player P2 and P3. So:

ΨDC =

(
2 4 1
3 2 6

)
, (10)
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where the shares belonging to P2 and P3 are:

ΨDCM =

(
10 4 9
8 8 0

)
. (11)

We can use the properties of the message matrix M to observe that(
2 4
3 2

)(
u4
u5

)
=

(
9
0

)
, (12)

which can be solved to give u4 = 6 and u5 = 2. These can then be substituted
into ΨDCM to give:

ΨDCM =

(
2 4 1
3 2 6

) u1 u2 6
u2 u3 2
6 2 0


=

(
2u1 + 4u2 + 6 2u2 + 4u3 + 2 9
3u1 + 2u3 + 3 3u2 + 2u3 + 1 0

)
=

(
10 4 9
8 8 0

)
,

which gives us four equations in three variables:

2u1 + 4u2 = 4

2u2 + 4u3 = 2

3u1 + 2u2 = 5

3u2 + 2u3 = 7,

which can be solved to find u1 = 7, u2 = 3 and u3 = 10. Thus, all five data
symbols have been recovered by the two nodes, P2 and P3.

2.2.2 Securing regenerating codes

Securing regenerating codes was first explored in [12]. We introduce the neces-
sary definitions and notation here.

Consider an adversary who has access to (only) the data stored on `1 nodes.
In addition to these `1 nodes, the adversary also has access to the data stored
on, and all data downloaded during the regeneration of, `2 nodes. Suppose `1
and `2 are such that `1 + `2 < t. Call such an adversary an (`1, `2)-adversary.

It is important to establish how many regenerations an adversary can wit-
ness because regenerating codes do not have any security requirements, so each
regeneration may reveal information about the data stored.

In fact, each regeneration of an MBR code is secure. This is because α = dβ,
which means a regenerating node stores all data downloaded during a regener-
ation. Therefore, an eavesdropper does not obtain any extra information by
having access to the data downloaded during a regeneration, as well as the
data stored. Hence, when considering MBR codes, we can assume an (`1, `2)-
adversary is an (`1 + `2, 0)-adversary.

In contrast, MSR codes typically have insecure regenerations. This is be-
cause α < βd, which means each regenerating node downloads more data during
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a regeneration than it ultimately stores, and thus an adversary would learn more
information witnessing a regeneration than they would if they only had access
to the data stored. This extra data learnt could leak information to the adver-
sary about the secret. So, when discussing secure MSR codes, it is important
to define how many regenerations an adversary can witness.

As a side note, a node for which an adversary has access to the data on, but
cannot witness regenerate, could model the adversary gaining only momentary
access. In contrast, a node for which an adversary has access to both the data
on and the data downloaded during a regeneration, could model an adversary
with long term access to the node.

Recall the data to be distributed in a regenerating code was denoted D,
such that D ∈ (Fq)B . Let D(s) denote the data to be securely distributed via

a regenerating code, and let D(s) ∈ (Fq)B
(s)

. Say B(s) is the number of data
symbols that can be (information theoretically) securely distributed. Note that
B(s) ≤ B and, in particular, B −B(s) is the cost of securing the data.

Definition 2.10. A secure (n, t, d)-regenerating code is an (n, t, d)-regenerating
code that distributes B(s) secure data symbols such that an (`1, `2)-adversary,
for `1 + `2 < t, learns no information about the B(s) secure data symbols.

We conclude this introduction to regenerating codes by stating two theorems,
each providing tighter upper bounds on B(s).

In [12] the authors consider a regenerating code where an adversary could
witness the regeneration of every node they had access to, so `1 = 0.

Theorem 2.11. Consider an (n, t, d)-regenerating code with parameters α and
β and a (0, `2)-adversary. The number of data symbols that can be information
theoretically secured is

B(s) ≤
t−1∑
i=`2

min(α, (d− i)β).

In [6], the authors consider the number of data symbols that can be securely
distributed by an MSR code.

Theorem 2.12. Consider an (n, t, d)-MSR code with an (`1, `2)-adversary. The
number of data symbols that can be information theoretically secured is

B(s) ≤ (t− `1 − `2)

(
1− 1

d− t+ 1

)`2

α.

3 A näıve solution and efficiency metrics

In this section, we present a näıve construction for an RTS that meets all the
necessary requirements. We then introduce the metrics used to measure the
efficiency of an RTS; most are metrics discussed in [18], but the measure of
repairability is novel. These metrics will be used going forwards to analyse
other RTS constructions.
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3.1 Näıve solution

Consider Construction 3.1, which presents a näıve construction for a universally
repairable (t, n, d)-RTS.

Construction 3.1. Let s be the secret to be distributed. A (t, n, d)-RTS is
defined by the following three algorithms, Share, Recover and Repair.

• Share: Distribute the secret s via a (t, n)-threshold scheme (for exam-
ple, Shamir’s threshold scheme from Definition 1.2), to give n shares
v1, . . . , vn. Distribute each share vi, for 1 ≤ i ≤ n via a (d, n)-threshold
scheme, resulting in the shares vi,j, for 1 ≤ i, j ≤ n. As their share, player
Pi receives the n+ 1-tuple Vi = (vi, v1,i, v2,i, . . . , vn,i).

• Recover: A set of players pool their shares. The elements vi for 1 ≤ i ≤ n
are input to the recover algorithm of the (t, n)-threshold scheme. If at least
t players input valid shares, s will be recovered.

• Repair: If player Pr needs to repair their share, they request help from
a set A of at least d players, who will each send Pr the element vi,r, for
i such that Pi ∈ A. Player Pr then recovers their share via the recover
algorithm of the (d, n)-threshold scheme.

Intuitively, Construction 3.1 shares a secret s via a (t, n)-threshold scheme
to give player Pi their share of the secret, vi. In order to enable repairability,
each share vi is then shared via a (d, n)-threshold scheme to ensure d players
can act as helping players. The scheme is secure as any t− 1 players are unable
to learn the secret due to the security of the (t, n)-threshold scheme, and each
repair is secure due to the security of each of the (d, n− 1)-threshold schemes.

3.2 Efficiency metrics

We are interested in the efficiency of an RTS and will consider the following
metrics when analysing each scheme. The first metric, information rate, is a
standard definition and was presented alongside the second metric in [18], whilst
the third metric, repairability, is new.

1. Information Rate. The first metric we consider is the information rate of
the scheme, which is defined to be the ratio ρ = log2 |V|/ log2 |S|, where
V is the set of all possible shares and S is the set of all possible secrets.
Intuitively, this measures the amount of information each player is required
to store compared to the size of the secret. The information rate is such
that 0 ≤ ρ ≤ 1. Call an RTS with ρ = 1 ideal.

2. Communication Complexity. As defined in [18], the communication com-
plexity is the sum of the sizes (i.e. the bit lengths) of all messages trans-
mitted during the repair algorithm, divided by the size of the secret. The
communication complexity measures the amount of bandwidth required
for each execution of the repair algorithm. We denote the communication
complexity by γ.
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3. Repairability. We define the repairability of an RTS, denoted by κ, to be
the number of d-subsets (of the n − 1 players) that are able to help a
repairing player Pr repair their share, divided by the number of possible
d-subsets (of the n− 1 players). Note that 0 ≤ κ ≤ 1, where κ = 1 if and
only if the RTS has universal repairability, as in Definition 1.4.

4. Computational complexity. We briefly consider the computational com-
plexity of the share, recover and repair algorithms of the RTS.

We will see that (t, n, d)-RTSs find a compromise between these metrics and
may prioritise one at the cost of the others. In particular, there appears to be
an inverse relation between the information rate and communication complexity
of many schemes we consider.

We now revisit Construction 3.1 and consider how efficient the scheme is
using these metrics.

Example 3.1. Consider the share, recover and repair algorithms defining a
(t, n, d)-RTS as in Construction 3.1. Assuming both underlying threshold schemes
are ideal, each player is required to store n shares from the threshold scheme as
their RTS share. Therefore, the information rate of the RTS is ρ = 1/n. An
execution of the repair algorithm requires each of the d players to send one of
their shares from the (d, n− 1)-threshold scheme, so γ = d. Finally, the scheme
has universal repairability, since any d-subset of players can help a repairing
player repair their scheme, hence κ = 1.

We briefly note that the share algorithm of the RTS requires the dealer to
run the share algorithm of the underlying (t, n)-threshold scheme once and the
share algorithm of the (d, n−1)-threshold scheme n times. The repair algorithm
requires Pr to run the recover algorithm of the underlying (d, n − 1)-threshold
scheme once, whilst the recover algorithm requires one run of the recover al-
gorithm for the (t, n)-threshold scheme. The exact complexity depends on the
complexity of the chosen underlying threshold scheme.

4 Existing solutions

In this section, we consider three (t, n, d)-RTSs presented in the literature. The
first two schemes, outlined in Section 4.1.1 and 4.2, were presented in [18]. The
third scheme was presented in [8] and is introduced in Section 4.3.

4.1 The enrolment RTS

We introduce the enrolment RTS, which was originally proposed in [18]. We
then refine this scheme to achieve a lower communication and computational
complexity. Finally, we show that the refined scheme achieves the optimal com-
munication complexity for an ideal RTS.
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4.1.1 Definition of the enrolment RTS

A (t, n, d)-RTS with d = t constructed from the NSG enrolment protocol [11, 10]
is presented in [18]. (In fact, a scheme equivalent to the NSG enrolment protocol
was presented much earlier by Benaloh in [1].) We refer to the (t, n, d)-RTS as
the enrolment RTS.

Assume there exists a (t, n)-threshold scheme defined over Fq, with shares
distributed amongst n players. The share and recover algorithms of the enrol-
ment RTS are identical to the share and recover algorithms in Shamir’s threshold
scheme, as in [16] and defined here in Definition 1.2. The repair algorithm of
the enrolment RTS is as follows.

Suppose player Pr wishes to repair their share. Without loss of generality,
assume the d = t helping players are players P1, . . . , Pt, with r ≥ t. Suppose
the share for Pr is ϕr = f(r), where f(x) ∈ Fq[x] is a random polynomial of
degree at most t− 1 whose constant term is the secret s. The share ϕr can be
expressed as

ϕr =

t∑
i=1

ζiϕi, (13)

where ζi is the public Lagrange coefficients of Pi. In order to repair Pr’s share,
the protocol proceeds as follows.

1. For all 1 ≤ i ≤ t, player Pi computes random values δj,i for 1 ≤ j ≤ t,
such that

ζiϕi =

t∑
j=1

δj,i. (14)

2. For all 1 ≤ i ≤ t, 1 ≤ j ≤ t, player Pi transmits δj,i to Pj using a secure
channel.

3. For all 1 ≤ j ≤ t, player Pj computes

σj =

t∑
i=1

δj,i. (15)

4. For all 1 ≤ j ≤ t, player Pj transmits σj to player Pr using a secure
channel.

5. Player Pr computes their share ϕr using the formula

ϕr =

t∑
j=1

σj . (16)

It is straightforward to verify that player Pr constructs their share correctly;
that is that the value computed using (14), (15) and (16) is the same value as
in (13). This is demonstrated in [18].
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The enrolment protocol is proven to be secure in [18]. The proof highlights
two cases: the first considers a coalition of t−1 players in which the players are
contained in {P1, . . . , Pt} and excludes Pr. The second case considers a coalition
of t− 1 players which includes Pr and t− 2 players from {P1, . . . , Pt}. In either
case, the coalition is unable to learn anything about a tth share and thus learns
no information about the secret.

In the proof, for convenience, they consider a share-exchange matrix, E,
originally defined in [10]. We note this matrix here as it will be used to define
a refined scheme in Section 4.1.3:

E =


δ1,1 δ2,1 . . . δt,1
δ1,2 δ2,2 . . . δt,2
...

...
. . .

...
δ1,t δ2,t . . . δt,t

 . (17)

There are a number of observations to be made about the matrix E. The
(j, i)th entry δj,i of E is the message player Pi sends Pj . From (14), we learn
that the sum of the entries in the ith row of E is equal to ζiϕi. Also, from
(15), the sum of the entries in the jth column is equal to σj . Finally, from (14),
(15) and (16), the sum of all entries in E is equal to ϕr. Intuitively, player Pi

computes and sends all values in row i and receives all the values in column i.

4.1.2 Analysis of the enrolment RTS

We evaluate the efficiency of the enrolment RTS by considering the efficiency
metrics presented in Section 3.2.

Each player is required to store only one share from Shamir’s threshold
scheme. As this is an ideal threshold scheme, the enrolment RTS is ideal, and
so ρ = 1. With respect to the information rate, the enrolment RTS is optimal.

Next, we consider the communication complexity of the scheme. Messages
are only exchanged in Steps 2 and 4. In Step 4, each of the t helping players are
required to send one message to each of the other t−1 helping players, which is a
total of t(t−1) messages. During Step 4, each of the t helping players must send
one message to the repairing player Pr, which is an additional t messages. So,
in total, the repair algorithm requires t(t− 1) + t messages to be sent. As each
message is the size of the share and therefore the size of the secret (as Shamir’s
scheme is ideal), the communication complexity of the scheme is γ = t2.

Inherited from Shamir’s threshold scheme, the enrolment RTS has universal
repairability and thus κ = 1.

Finally, we consider the computation required for the enrolment RTS. The
share and recover algorithms of the enrolment RTS are identical to the share
and recover algorithms of Shamir’s threshold scheme and therefore have the
same complexity. In Step 1, the repair algorithm requires each of the t helping
players to generate t random values and compute t− 1 modular additions over
Fq. In Step 3, each player must again compute t − 1 modular additions, and
Step 5 requires the repairing player to compute t − 1 modular additions. So,
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in total, each helping player must compute 2(t− 1) modular additions and the
repairing player must compute t − 1 additions. This is a total of 2t2 − t − 1
modular additions.

4.1.3 Refining the enrolment RTS: the reduced enrolment RTS

We observe that not all messages in the share-exchange matrix E are necessary
to enable Pr to securely repair their share. The enrolment RTS can be refined to
require fewer messages being sent, and therefore achieve a lower communication
complexity, whilst maintaining the optimal information rate and the security of
the enrolment RTS. In fact, we can reduce the number of messages sent so that
player Pi does not send Pj a message if j > i. We call the resulting scheme
the reduced enrolment RTS. After presenting the refined scheme, the primary
task is to prove it maintains the security of the enrolment RTS. The reduced
enrolment RTS is as follows.

As before, let Pr be the repairing player, and let P1, . . . , Pt be the helping
players. Let ϕr = f(r) be the share belonging to player Pr, where f(x) ∈ Fq[x]
is a random polynomial of degree at most t−1 whose constant term is the secret
s. The share ϕr can be expressed as in (13). The reduced enrolment RTS can
be executed as follows:

1. For all 1 ≤ i ≤ t, player Pi computes random values δj,i for i ≤ j ≤ t,
such that

ζiϕi =

t∑
j=i

δj,i.

2. For all 1 ≤ i ≤ t, i < j ≤ t, player Pi transmits δj,i to Pj using a secure
channel.

3. For all 1 ≤ j ≤ t, player Pj computes

σj =

t∑
i=j

δj,i.

4. For all 1 ≤ j ≤ t, player Pj transmits σj to player Pr using a secure
channel.

5. Player Pr computes their share ϕr using the formula

ϕr =

t∑
j=1

σj .

Verifying that player Pr computes their share correctly is similar to the
verification for the enrolment RTS, as in [18].

We show the reduced enrolment RTS is secure in Theorem 4.1. The proof is
similar to the proof of the security of the enrolment RTS in [18].
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Theorem 4.1. The reduced enrolment RTS is information theoretically secure
against a coalition A of strictly fewer than t players.

Proof. Assume all players act honestly during the protocol.
First, we note that computing the secret, given t− 1 shares, is equivalent to

computing any additional share. This is easy to see, because any t shares allow
the secret to be computed, and any t− 1 shares along with the secret allow any
other share to be computed (this is a well-known property of Shamir’s threshold
scheme). As in the proof of the security of the enrolment RTS, there are two
cases to consider:

Case 1: The coalition A consists of a subset of t−1 players in {P1, . . . , Pt}.

Case 2: The coalition A consists of Pr along with a subset of t− 2 players
in {P1, . . . , Pt}.

We consider the share-exchange matrix of the reduced enrolment RTS. The
matrix here is different to the share-exchange matrix of the enrolment RTS in
(17), as player Pi does not send player Pj a message if j > i. We can adapt E
and enter a ‘0’ into the matrix to denote no message being sent. This means
values dj,i = 0, if j > i. This gives us the following message-exchange matrix:

E′ =


δ1,1 0 0 . . . 0
δ1,2 δ2,2 0 . . . 0

. . . . . . . . .
. . . . . .

δ1,t δ2,t δ3,t . . . δt,t

 . (18)

As before, the sum of the entries in the ith row of E′ is equal to ζiϕi, the
sum of the entries of the jth column is equal to σj , and the sum of all the entries
in E′ is equal to ϕr.

Consider Case 1, where A consists of a subset of t−1 players in {P1, . . . , Pt}.
Assume player Pi is excluded from the coalition. Now, the coalition possess all
entries in E′ except for δi,i. The value δi,i is completely random, and knowing
this value is equivalent to knowing ζiϕi, σi or the secret. In fact, in order for any
information to be learnt, we can use the properties of E′ to deduce the following
equations that would need to be solved in order to learn anything about δi,i.

δi,i − ζiϕi = w

δi,i − σi = x

ζiϕi − ϕr = y

σi − ϕr = z,
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where

w =

i−1∑
k=1

δk,i x =

t∑
k=i+1

δi,k

y =

t∑
k=1, k 6=i

ζkϕk, z =

t∑
k=1, k 6=i

σk

are all values known to the coalition.
This leads to the following system of equations:

1 0 −1 0
1 −1 0 0
0 0 1 −1
0 1 0 −1




δi,i
σi
ζiϕi

ϕr

 =


w
x
y
z

 .

However, the columns of the matrix on the left are linearly dependent, and
thus it is possible to choose any arbitrary value for δi,i, which will then determine
both σi and ζiϕi, and then ϕr. Therefore, in Case 1, the coalition learns no
information about the individual shares ζiϕi or ϕr, and therefore learns no
information about the secret being distributed.

Now, consider Case 2, where A consists of Pr and a subset of t−2 players in
{P1, . . . , Pt}. Assume players Pi and Pj are omitted from the coalition, where
i < j. In this case, the coalition knows all entries in E′ except δi,i, δi,j and
δj,j . Note that player Pi does not send a message to Pj ; this is known by the
coalition and so they know that δj,i = 0. For the coalition, learning δi,i, δi,j and
δj,j is equivalent to learning ζiϕi or ζjϕj .

As Pr ∈ A the values σi, σj and ϕr are known. This knowledge allows the
coalition to compute δj,j , as

t∑
k=j

δj,k = σj

⇒ δj,j = σj −
t∑

k=j+1

δj,k.

Now, the coalition are left to try to compute δi,i and δi,j . Note that the sum
of the these two values are known, but neither value is individually known. The
following equations can be formed

δi,i − ζiϕi = w′

δi,j − ζjϕj = x′

δi,i + δi,j = σi − y′

ζiϕi + ζjϕj = ϕr − z,
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where

w′ =

i−1∑
k=1

δk,i x′ =

j−1∑
k=1, k 6=j

δk,j

y′ =

t∑
k=i+1, k 6=j

δi,k, z′ =

t∑
k=i, k 6=i,j

ζkϕk

are all known. This leads to the following system of equations, where all values
in the right-hand side vector are known:

1 0 −1 0
0 1 0 −1
1 1 0 0
0 0 1 1




δi,i
δi,j
ζiϕi

ζjϕj

 =


w′

x′

σi − y′
ϕr − z′

 .

As before, the columns in the matrix on the left are linearly dependent, and
thus it is possible to choose an arbitrary value for one of δi,i or δi,j , which will
determine the other (as the sum of δi,i or δi,j is known), which will then, in
turn, determine values for ζiϕi and ζjϕj . Similarly, we could choose arbitrary
values for ζiϕi and ζjϕj which would determine δi,i and δi,j .

In either Case 1 or 2, the coalition A of t − 1 players would be unable to
learn any information about any additional share, and thus would learn no
information about the secret.

The reduced enrolment RTS maintains the information rate of the enrolment
RTS, ρ = 1, yet manages to achieve a lower communication complexity, γ =
t(t + 1)/2. The reduced enrolment RTS is also universally repairable, so, as
with the enrolment RTS, κ = 1. Finally, the reduced enrolment RTS has the
same share and recover algorithms as the enrolment RTS, and thus has the same
computational complexity for these algorithms. However, due to the reduced
number of random messages generated by the helping players and the reduced
number of messages sent, the repair algorithm is more efficient. Player Pi, for
1 ≤ i ≤ t must generate i random values, rather than t, and must compute i−1
modular additions, rather than t − 1. As in the enrolment RTS, Pr must still
compute t − 1 additions. Therefore, the reduced enrolment protocol requires
a total of t(t + 1)/2 modular additions, rather than the 2t2 − t − 1 additions
required in the enrolment RTS.

From the analysis, we can observe that the reduced enrolment RTS maintains
or improves on all the efficiency metrics and is thus a more efficient RTS than
the enrolment RTS presented in [18] and here in Section 4.1.1.

4.1.4 Optimal communication complexity of the reduced enrolment
RTS

As we have reduced the communication complexity of the enrolment RTS, it is
a natural question to ask whether it could be reduced any further. We show
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here that the communication complexity for not only the enrolment RTS, but
for any scheme securely computing the sum of shares, is in fact lower bounded
by γ = t(t+ 1)/2. Thus, in this respect, the reduced enrolment RTS is optimal.

The reduced enrolment RTS is in the setting in which t players wish for an
external player to (privately) compute the sum of their t shares. Any set of at
most t− 1 of the t+ 1 players (including the external player Pr) must learn no
information about either one of the player’s values, or the sum of the shares. In
other words, the coalition must be prevented from learning all the inputs to the
sum and the output.

All known private protocols, including the reduced enrolment RTS, are obliv-
ious protocols. That is, the decision whether player Pi sends a message to Pj

in round h is determined by i, j and h, and does not depend on the input and
random coins. By assuming a private protocol, we are able to prove the lower
bound on the communication complexity whilst making fewer assumptions on
the protocol, such as the number of rounds required and the exact number of
messages each player either sends or receives.

We prove a lower bound on the number of messages required by any oblivious
protocol allowing a t+ 1th player to compute the sum of t player’s values, such
that the protocol is t-private, meaning any subset of at most t − 1 players is
unable to learn all inputs and the output.

Note that the proof of Theorem 4.2 proves the same result as in [4]. However,
the proof in [4] considers a setting where the sum of the shares is computed by
a player who also contributes an input and all players learn the output. Their
proof does not immediately apply to our slightly different setting, where an
external player with no input is must compute the sum and the output is known
only to this external player. As well as achieving slightly different goals, the
protocol presented here is executed in two rounds, rather than t rounds (as is
achieved in [4]).

Theorem 4.2. The lower bound on the number of messages required to be sent
by any oblivious protocol that allows a t + 1th player to compute the sum of t
player’s values, such that the protocol is t-private, is(

t+ 1

2

)
=
t(t+ 1)

2
.

Proof. Consider a graph with t + 1 vertices. Let each vertex vi, for 1 ≤ i ≤ t,
correspond to a share ζiϕi, and let the t+ 1th vertex correspond to the sum of
the shares. Let the (undirected) edges of the graph correspond to inputs and
outputs to the vertices. That is, an edge between vertices i and j means that
either player Pi sends player Pj a value, or player Pj sends Pi a value, or both
players send values. We claim that knowledge of all inputs and outputs to a
vertex will uniquely define the share relating to this vertex. For the t+1th vertex
computing the sum of the inputs, this is obvious. For the other t vertices, we
observe that each of these vertices must communicate their share to the t+ 1th

player, and by learning all inputs and outputs to the vertex, the share must be
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calculable, otherwise the t+ 1th player will not be able to use it as an input to
the sum.

We will show that, in order to be secure, the graph must be complete. That
is, there must be a total of

(
t+1
2

)
= t(t+ 1)/2 edges.

For the graph to be complete, there must be t edges connected to every
vertex, meaning the degree of any vertex v in the graph is t. We show that, if
there exists a vertex with degree less than t, a coalition of t− 1 vertices will be
able to learn more information than they should.

To show this, consider a vertex of the graph, vx which has a degree of less
than t. Specifically, let vx have degree t − 1. This means there exists no edge
between vx and one other node, which we denote as vy. We do not need to
specify whether either vx or vy are players with shares, or the player computing
the sum; it does not matter. Now, consider a coalition of t−1 vertices A, which
consists of all vertices excluding vx and vy. As there is no edge between vx
and vy, all edges connected to these two vertices are also connected to vertices
in A. Therefore A knows all inputs and outputs to both vx and vy and can
thus determine the two vertices vx and vy (corresponding to either the shares
or the sum). As A already knew the t− 1 vertices included in the coalition, the
additional information of vx and vy gives A knowledge of all t shares and the
sum of all the shares.

Hence, if there exists a node with degree less than t, the scheme is insecure.
Therefore, each node must have degree equal to at least t, meaning the minimum
number of edges in the graph, and therefore the minimum number of messages
sent during the protocol, is

(
t+1
2

)
= t(t+ 1)/2, as required.

We have previously defined the reduced enrolment RTS which has a total
of
(
t+1
2

)
messages sent throughout. Thus, the reduced enrolment RTS is one

construction that meets the lower bound for the communication complexity,
and is thus optimal in this respect.

4.2 Combinatorial repairability

Also in [18], Stinson and Wei propose a way to construct (t, n, d)-RTSs based
on combinatorial designs. These schemes achieve a reasonably high (but not
optimal) information rate, and a low communication complexity. However, these
schemes only achieve restricted repairability, as in Definition 1.4.

We first present the construction of these schemes, then provide an exam-
ple. We then analyse their efficiency; in particular, we apply our new metric
measuring the repairability to these schemes.

4.2.1 Definition of scheme

The share algorithm is as follows. Suppose there exists an (m, d, λ)-BIBD with
b blocks, as in Definition 2.2, which is also a repairable (t, `1, `2)-distribution
design, as in Definiton 2.5. Now, use an (`1, `2,m)-ramp scheme defined over Fq

(for q ≥ m+ 1) and call the shares output by the ramp scheme sub-shares. Let
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2m/d ≤ n ≤ b, where the lower bound originates from the minimal size of the
basic repairing set in (2.7) and b is the number of blocks in the BIBD. In [18],
they construct a (t, n, d)-RTS with restricted repairability by allocating sub-
shares from the ramp scheme to n players, as defined in the distribution design.
Each block in the the design represents a player, and each point represents a sub-
share. The recover algorithm requires t players to pool their shares and recover
the shared secret via the recover algorithm of the (`1, `2,m)-ramp scheme. For
the repair algorithm, a repairing player Pr must be sent d sub-shares from d
players who each store one of Pr’s sub-shares.

We will refer to schemes constructed in this manner as combinatorial RTSs.
We illustrate this construction via an example.

Example 4.1. The share algorithm of a (2, 12, 3)-RTS is as follows. Con-
sider the (9, 3, 1)-BIBD, which is a repairable (2, 3, 5)-distribution design, used
throughout the examples in Section 2.1. This design consists of 12 blocks; note
that n = 12 and so n has been chosen to be maximal. Also consider a (3, 5, 9)-
ramp scheme over Fq and, for convenience, label the nine shares output from
the ramp scheme 1, 2, . . . , 9. Using the (2, 3, 5)-repairable distribution design and
the (3, 5, 9)-ramp scheme, construct a (2, 12, 3)-RTS with restricted repairability
by allocating sub-shares from the ramp scheme to the 12 players defined by the
design, as follows:

P1 ← {1, 2, 3} P2 ← {4, 5, 6} P3 ← {7, 8, 9} P4 ← {1, 4, 7}
P5 ← {2, 5, 8} P6 ← {3, 6, 9} P7 ← {1, 5, 9} P8 ← {2, 6, 7}
P9 ← {3, 4, 8} P10 ← {1, 6, 8} P11 ← {2, 4, 9} P12 ← {3, 5, 7}

To recover the secret, any two players can pool their shares, which will consist of
at least five distinct sub-shares from the (3, 5, 9)-ramp scheme, and recover the
distributed secret via the recover algorithm of the ramp scheme. Say player P5

needs to repair their share. They can have assistance from players P1, P2 and
P3, who would each send the sub-shares 2, 5 and 8, respectively.

In their paper, Stinson and Wei propose a number of combinatorial RTSs
relying on a range of designs. They give some specific parameters for the un-
derlying designs and the resulting RTS.

Note that these RTS schemes are secure due to the underlying properties on
the (`1, `2,m)-ramp scheme and the (t, `1, `2)-distribution design: a coalition of
t players will learn at most `1 sub-shares output by the ramp scheme and will
therefore learn no information about the secret.

4.2.2 Analysis of combinatorial RTSs

A theorem in [18] states the information rate and communication complex-
ity of combinatorial RTSs. Assume there exists an (m, d, λ)-BIBD, which is
a repairable (t, `1, `2)-distribution design with b blocks that contains a basic
repairing set of size y, and suppose that q ≥ m + 1. Let y ≤ n ≤ b. Then
there exists a (t, n, d)-RTS with restricted repairability that has information
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rate ρ = (`2 − `1)/d, and communication complexity γ = d/(`2 − `1), where
every share is in (Fq)d.

Before calculating the repairability of the scheme, we note one disadvan-
tage of the combinatorial RTSs that arises from the necessary condition in the
aforementioned theorem: a (t, d, n)-RTS can only be constructed if there exists
an (m, d, λ)-BIBD which is also a repairable (t, `1, `2)-distribution design on m
points with n blocks of size d. This is not true for all possible parameters t, d
and n, and so this construction may not be able to build an RTS with the
desired parameters.

So, we are left to calculate the repairability κ of the combinatorial RTSs and
analyse the computational complexity.

Combinatorial RTSs only have restricted repairability, so not all d-subsets of
players will have the information required to help a repairing player reconstruct
their share. The probability that a randomly chosen set of d players can help a
repairing player repair their share is described in Theorem 4.3.

Theorem 4.3. A randomly chosen subset of d players in a (t, n, d)-RTS, con-
structed using an underlying (m, d, 1)-BIBD with n = b players, has probability

κ =
(τ − 1)d(

n−1
d

)
of successfully repairing the share of a player Pr, where τ is the replication
number of the BIBD, as defined in Theorem 2.3.

Proof. Assume an (m, d, λ)-BIBD which is also a repairable (t, `1, `2)-distribution
design on m points with n blocks of size d. Say player Pr wishes to repair their
share, which consists of d sub-shares. There are a potential n − 1 players that
could play the role of helping nodes and assist Pr in reconstructing their share.
As d of these players are required to repair Pr’s share, there are a total of

(
n−1
d

)
d-subsets that could collaborate to help Pr. Now, we have to calculate how many
of the

(
n−1
d

)
d-subsets have the information required to repair Pr’s share. Be-

cause of the properties of the underlying (m, d, λ)-BIBD, each sub-share occurs
in exactly τ blocks, where τ is the replication number of the BIBD, calculated
here as τ = (m− 1)/(t− 1). Therefore, excluding Pr’s share, each sub-share is
contained in τ − 1 of the n− 1 players’ shares. Now, as each pair of sub-shares
occurs in one player’s share, each of the d helping players must send Pr exactly
one sub-share. There are τ − 1 players who could contribute to recovering Pr’s
first sub-share, then a distinct group of τ − 1 players who could contribute to
recovering Pr’s second sub-share, and so on, until the dth sub-share. Therefore,
there are (τ − 1)d d-subsets that collectively hold the information required to
help Pr recover their share. Therefore, κ is given by dividing the number of
d-subsets that could successfully act as helping players, (τ − 1)d, by the total
number of possible d-subsets,

(
n−1
d

)
, as required.

We illustrate this proof by continuing Example 4.1.
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Example 4.2. Consider the (2, 12, 3)-RTS in Example 4.1, constructed from an
underlying (9, 3, 1)-BIBD. The replication number of the BIBD is τ = 4. Each
player has d = 3 sub-shares and each sub-share is stored by τ − 1 = 3 players,
excluding the repairing player. So, there are three players that can send the
repairing player the first sub-share, three other players that can send the second
sub-share and three other players that can send the final sub-share. This means
there are 33 = 27 sets of three players, out of the possible

(
n−1
d

)
=
(
11
3

)
= 165

3-subsets, that have the information required to repair Pr’s share. So

κ =
(r − 1)d(

n−1
d

) =
27

165
= 0.163636.

So, any randomly chosen set of d = 3 players will have a 16.3636% chance of
having the information required to help the repairing player. To further illustrate
this, assume P5 is the repairing player. There are 27 sets of players that can help
repair P5’s share, including {P1, P2, P3}, {P7, P8, P9} and {P2, P10, P11}. There
are now 165 − 27 = 138 sets of three players that do not have the information
required to help repair P5’s share, including {P4, P6, P7}, who do not collectively
know sub-shares 5 and 8, and {P1, P8, P12}, who do not know sub-share 8.

We make one final comment on the reparability of the combinatorial RTSs.
In [18], it is not necessary to have the number of players in the scheme n to
be equal to the number of blocks b. Instead, they bound n to be y ≤ n ≤ b,
where y is the size of the basic repairing set and b is the number of blocks in
the design. If n < b, the repairability of the scheme will vary depending on the
number of players, and which players, are in the RTS.

Example 4.3. Consider a (2, 6, 3)-RTS constructed from the basic repairing set
in Example 2.4. Assume Pr wishes to repair their share. There are a possible(
5
3

)
= 10 subsets of the remaining five players that could act as helping players.

Of these 10 subsets, only one set has the information required to repair Pr’s
share. Therefore, κ = 0.1. So, a randomly chosen set of three players will have
a 10% probability of being able to recover the repairing player’s share.

From now on, when computing the reparability of a combinatorial RTS, we
assume the number of players is maximal, so n = b. In Section 6.2, Table 2 shows
the reparability (as well as the information rate and communication complexity)
of each of the (t, n, d)-RTSs proposed in [18].

We complete the analysis of the combinatorial RTSs by commenting on the
complexity of each of the RTS algorithms. Once a (t, `1, `2)-distribution design
has been chosen, the RTS share algorithm requires one execution of the share
algorithm of the ramp scheme. Similarly, the RTS recover algorithm requires
one execution of the recover algorithm of the ramp scheme. The RTS repair
algorithm requires no computation: helping players must send sub-shares to the
repairing player, but no players are required to conduct any computation. In
this respect, the repair algorithm is optimal.

24



4.3 GLF scheme

In [15], the authors (Guang, Lu and Fu) present an information theoretically
secure (t, n, d)-RTS which utilises MBR codes and linearised polynomials. In-
tuitively, they distribute a secret via a (t, t)-threshold scheme using a random,
linearised polynomial with the constant term equal to the secret, then the shares
are treated as the message symbols in a (t, n, d)-MBR code. Their scheme works
for all parameters n, t and d.

The GLF construction achieves an information rate of ρ = 1/dβ and a
communication complexity of γ = dβ, where β is as defined by the MBR code.
The GLF RTS is universally repairable and so κ = 1.

The share algorithm of the GLF RTS requires the generation of a linearised
polynomial and the evaluation of t points on this polynomial; this is followed by
the computation of the necessary MBR code, where the shares are treated as
message symbols. The GLF recover algorithm requires recovery of the message
symbols via the MBR code, then recovering the linearised polynomial from the
message symbols. The repair algorithm is identical to the regeneration of a node
in the underlying MBR code.

We will see how, when considering secure regeneration codes in Section 5,
MBR codes can be used to achieve schemes with a better information rate and
communication complexity than is achieved by the GLF RTS.

5 Solutions using regenerating codes

Secure regenerating codes, defined in Definition 2.10, can be directly used to
construct (t, n, d)-RTSs. However, the work discussing secure regenerating codes
has not been presented in the framework of threshold schemes and RTSs. In this
section, we briefly explore the application of secure regenerating codes to RTSs
and discuss relevant parameters. Following this, we present several constructions
for secure regenerating codes.

5.1 Applying regenerating codes to RTSs

Now, we translate the language used in regenerating codes into that used by
repairable threshold schemes. Each node is equivalent to a player, and the data
stored by the node is the player’s share. A regenerating node is equivalent to
a repairing player. The strongest adversary considered in an RTS is equivalent
to an (`1, `2)-adversary against a secure regenerating code, where `1 = 0 and
`2 = t − 1. So, if we wish to build a (t, n, d)-RTS, we can trivially use an
information theoretically secure (n, t, d)-regenerating code.

In general, the information rate of a (t, n, d)-RTS based on a regenerating
code is

ρ =
B(s)

α
,
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and the communication complexity is

γ =
dβ

B(s)
.

As all regenerating codes have universal repairability, all (t, n, d)-RTSs based on
MBR codes have κ = 1.

Note that, because α = dβ for all MBR codes, the communication complexity
and information rate of these schemes are reciprocals, as was noted in [18] when
discussing the combinatorial RTSs.

Prior to considering constructions of secure regenerating codes, we consider
implications of the bounds given in Theorems 2.11 and 2.12 when considered in
the setting of RTSs.

5.1.1 Using MBR codes as RTSs

The first corollary considers the information rate of an RTS based on an MBR
code.

Corollary 5.1. A (t, n, d)-RTS based on a secure (n, t, d)-MBR code with a
(0, t− 1)-adversary cannot be ideal.

Proof. The information rate of the RTS is calculated as ρ = B(s)/α. The scheme
is ideal if ρ = 1, which is true if and only if B(s) = α. Now, substitute the MBR
condition from (3) and (4) into the bound given in Theorem 2.11. This gives
the maximum number of messages symbols that can be securely distributed by
an MBR code (as in [15]) to be

B(s) =

(
td−

(
t

2

))
β −

(
`2d−

(
`2
2

))
β. (19)

By substituting in `2 = t− 1, we learn that B(s) = β(d− t+ 1). So, B(s) = α if
and only if β(d−t+1) = α. But in all MBR codes, α = dβ, and so d−t+1 = d.
This is only true if t = 1. However, in the definition of threshold schemes, given
in Definition 1.1, t is defined to be such that t ≥ 2 as, if t = 1, any individual
player could recover the secret. Therefore, a (t, n, d)-RTS constructed from a
secure (n, t, d)-MBR code cannot be ideal.

5.1.2 Using MSR codes as RTSs

The following two corollaries consider the limitations of RTSs based on MSR
codes.

Corollary 5.2. A (t, n, d)-RTS based on an (n, t, d)-MSR code cannot securely
distribute any messages if d = t.

Proof. Consider the bound given in Theorem 2.12. By setting d = t, we can see
immediately that B(s) ≤ 0.
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Corollary 5.3. A (t, n, d)-RTS based on an (n, t, d)-MSR code with a (0, t−1)-
adversary cannot be ideal. In fact, if `1 + `2 = t− 1, the RTS can only be ideal
against a (t− 1, 0)-adversary.

Proof. Assume we have an optimal (in terms of B(s)), secure (n, t, d)-MSR code.
The information rate of the (t, n, d)-RTS based on this MSR code is

ρ =
B(s)

α

= (t− `1 − `2)

(
1− 1

d− t+ 1

)`2

. (20)

As we have assumed `1 + `2 = t− 1, we can substitute this into (20), so

ρ =

(
1− 1

d− t+ 1

)`2

. (21)

For the (t, n, d)-RTS to be ideal, ρ must equal 1. This is true if and only if
`2 = 0, as required.

In fact, (21) illustrates how the information rate of a (t, n, d)-RTS based on
an MSR code with an (`1, `2)- adversary, such that `1 + `2 = t − 1, decreases
as `2 increases. This is because, as previously explained, the repair algorithm
for MSR codes leaks information as α < βd. Because of this, MSR codes may
not be the best way to construct RTSs as they achieve a small information rate
when considering a maximal adversary with `1 = 0 and `2 = t− 1.

Now, we consider secure regenerating codes as RTSs and analyse results.

5.2 Constructions of secure regenerating codes for RTSs

We consider three constructions for secure regenerating codes. The first of the
three, [15], is a secure MBR code and can be constructed for all parameters
t, n, d such that t ≤ d < n. The next two constructions we consider, from [14]
and [15], are secure MSR constructions and are for specified values of d.

5.2.1 SRK’s secure MBR construction [15]

In [15], the authors (Shah, Rashmi and Kumar) present an information theoreti-
cally secure (n, t, d)-MBR code based on a matrix product construction for MBR
codes, presented in [13] and used in Example 2.5. Without loss of generality,
they construct codes for the case where β = 1, and codes for any higher value
of β can be obtained by a simple concatenation of the code with β = 1 (this
technique is called striping and is detailed in [13]). We call this construction
the SRK-MBR construction.

The SRK-MBR construction achieves a secure code by replacing a carefully
chosen set of B−B(s) message symbols with symbols which are chosen uniformly
and independently at random from Fq. If these random values are treated as
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message symbols, the secure regenerating code is identical to the standard regen-
erating code, and so distribution, recovery and repair are as in the regeneration
code defined in [13]. They prove the secure construction is information theoret-
ically secure. The SRK-MBR scheme achieves the maximum bound for B(s), as
in Theorem 2.11, with β = 1.

Consider this secure (n, t, d)-regenerating code as a (t, n, d)-RTS, and con-
sider a (0, t−1)-adversary. As the repair algorithm of an MBR code is inherently
secure, a (0, t− 1)-adversary is equivalent to a (t− 1, 0)-adversary. We can sub-
stitute `2 = 0 and β = 1 into (19) to calculate

B(s) =

(
td−

(
t

2

))
−
(

(t− 1)d−
(
t− 1

2

))
= d− t+ 1.

Now, as each player stores α elements in Fq, where α = dβ is as in (4), and
as β = 1, the information rate and communication complexity metrics can be
computed as follows:

ρ =
d− t+ 1

d
,

γ =
d

d− t+ 1
.

As regenerating codes have universal repairability, κ = 1 for all secure re-
generating codes treated as an RTS.

We present a brief example of this secure construction, which is a continua-
tion from Example 2.5.

Example 5.1. Consider the code in Example 2.5. The number of symbols that
can be securely distributed via this (5, 2, 3)-MBR code is B(s) = 2. Replace
u1, u2 and u4 with random elements in the field, and let u3 and u4 be the secure
message symbols to be distributed. This is then a secure (5, 2, 3)-RTS against a
(1, 0)-adversary and has information rate ρ = 2/3, communication complexity
γ = 3/2 and repairability κ = 1.

Finally, we briefly comment on the complexity of the scheme. All three
algorithms, share, repair and recover, require all players to compute linear com-
putations.

5.2.2 Rawat’s MSR construction [14]

In [14], Rawat proposes an information theoretically secure (n, t, d)-MSR code
for d = n − 1. The secure code is based on a construction for general MSR
codes proposed in [19] which is valid for all parameters n, t and d. Rawat’s MSR
construction can be treated as a (t, n, n− 1)-RTS with a (0, t− 1)-adversary.

Rawat’s construction is optimal with respect to B(s), as given in Theo-
rem 2.12. Thus, by substituting in d = n − 1, the information rate of the
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scheme can be calculated as

ρ =
B(s)

α
=

(
1− 1

n− t

)t−1

.

To calculate the communication complexity, it is useful to calculate dβ using
the value for β and B = αt, given in the MSR trade-off condition. This gives
that

dβ =
dB

t(d− t+ 1)
=
αt(n− 1)

t(n− t)
=
α(n− 1)

(n− t)
,

where α is defined to be α = (n− t)n−1 in the scheme. Then,

dβ =
(n− t)n−1(n− 1)

n− t
= (n− t)n−2(n− 1).

Then the communication complexity of the scheme is

γ =
dβ

B(s)
=

(n− t)n−2(n− 1)(
1− 1

n−t

)t−1
(n− t)n−1

=
(n− 1)(

1− 1
n−t

)t−1
(n− t)

.

As before, κ = 1. Also, as with other schemes based on regenerating codes,
all three algorithms, share, repair and recover, require computations of linear
combinations.

5.2.3 SRK’s secure MSR construction [15]

In [15], the authors present a secure (t, n, d)-RTS based on MSR codes, for
d = 2t − 2. We call this the SRK-MSR construction. SRK-MSR is similar
to SRK-MBR and is also based on the constructions given in [13], which are
suitable for when d = 2t−2 (they say the schemes can be extended so d > 2k−2
via shortening), and thus the SRK-MBR is also for parameters d = 2t − 2. As
in SRK-MBR, SRK-MSR consists of replacing a carefully selected subset of the
message symbols with random values.

The SRK-MSR scheme is able to distribute B(s) = (t − `1 − `2)(α − `2β)
messages securely. The authors claim their scheme is optimal when `2 = 0, but
say it is unknown whether it is optimal when `2 > 0. We answer here that the
MSR scheme is optimal if `2 = 0 or 1, but is not optimal for `2 > 1.

Corollary 5.4. The (t, n, d)-RTS constructed from the SRK-MSR construction
presented in [15] is optimal with respect to the number of messages that can be
securely distributed, B(s), if `2 ≤ 1. If `2 > 1, the construction is not optimal
with respect to B(s).

Proof. Denote the number of message symbols the SRK-MSR construction in [15]
can securely distribute as

B
(s)
SRK = (t− `1 − `2)(α− `2β).
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We can substitute in the values for β = B/t(d− t+ 1) and B = αt, given at the
MSR trade-off condition in (5) and (6), to get

B
(s)
SRK = (t− `1 − `2)

(
α− `2αt

t(d− t+ 1)

)
= (t− `1 − `2)α

(
1− `2

(d− t+ 1)

)
.

Then we can compare this to the bound B(s) for all MSR codes given in Theo-
rem 2.12. If we divide both values by α(t− `1 − `2), we can see that

B
(s)
SRK

α(t− `1 − `2)
= 1− `2

d− t+ 1

≤
(

1− 1

d− t+ 1

)`2

=
B(s)

α(t− `1 − `2)
,

with an equality when `2 equals either zero or one, but strictly greater than
when `2 > 1, as required.

Consider the SRK-MSR construction as a (t, n, 2t−2)-RTS with a (0, t−1)-
adversary. We can substitute β = 1 and d = 2t − 2 into the MSR condition
to give that B = α(α + 1) and α = t − 1, so d = 2α. Now, we can calculate,
B(s) = α− (t−1) = (t−1)− (t−1) = 0. Therefore the SRK-MSR construction
cannot be used to securely distribute any symbols when a (0, t − 1)-adversary
is considered.

6 Comparison of techniques

In this section, we compare the RTS constructions introduced throughout. We
begin by comparing MBR and MSR based schemes. Then, we compare schemes
that prioritise communication complexity above information rate, followed by
schemes prioritising information rate.

6.1 Comparing MBR and MSR codes

Here, we highlight some similarities and differences between (t, n, d)-RTSs that
are constructions of secure MBR and MSR codes.

Firstly, all (t, n, d)-RTSs based on either MBR or MSR codes have universal
repairability, so κ = 1, always.

However, there are a number of major differences. MBR codes prioritise
bandwidth and thus the (t, n, d)-RTSs based on them achieve a lower communi-
cation complexity than schemes based on MSR codes. In contrast, MSR codes
prioritise storage and thus the (t, n, d)-RTSs based on MSR codes generally
achieve higher information rates. However, secure MSR codes cannot be ideal
RTSs unless `2 = 0, meaning the adversary witnesses no regenerations, which
may be unrealistic in the RTS setting.
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Importantly, the repair algorithm for RTSs based on MBR codes is secure:
the adversary is able to witness any number of regenerations and no information
will be learnt. However, crucially, the repair algorithm for RTSs based on MSR
codes is insecure: with each distinct regeneration, the adversary learns more
information. Thus, the number of regenerations the adversary can witness af-
fects the number of message symbols that can be securely distributed; the more
regenerations witnessed, the fewer message symbols can be secured. In settings
where `2 = t− 1, which is what is considered here for an RTS, MSR codes may
not be very useful.

Finally, secure MBR based (t, n, d)-RTSs exist for all valid parameters n, t
and d. In the current literature, there does not appear to be any secure construc-
tion based on MSR codes for all valid parameters, and a secure construction for
d = t is impossible.

Thus, between MBR based and MSR based RTSs, MBR based schemes
appear to be the most applicable to RTSs, mainly because of the secure repair
algorithm. In particular, the secure MBR construction presented in [15] appears
to be the most applicable construction from the field of regenerating codes. This
is because it achieves the upper bound for the value of B(s) and is therefore
optimal and the repair algorithm is secure, meaning the adversary can witness
multiple repairs.

Table 1 compares the information rate and communication complexity for
all universally repairable schemes considered for an example set of parame-
ters. Due to the restrictions of the repairing degree d for the secure MSR
constructions, the table considers the metrics for a (4, 6, 6)-RTS using the SRK-
MBR [15], Rawat [14], SRK-MSR [15] and GLF [8] constructions. The metrics
for a (4, 7, 4)-RTS from the enrolment and reduced enrolment RTSs are also
included. It is possible to see from Table 1 that, out of all RTSs based on regen-
erating codes, the SRK-MBR construction achieves the best information rate
and the best communication complexity for the given parameters.

(t, n, d)-RTS Construction ρ γ κ

(4, 7, 6)−RTS SRK-MBR [15] 1/2 2 1

Rawat [14] 8/27 27/4 1

SRK-MSR [15] Not possible

GLF [8] 1/6 6 1

(4, 7, 4)−RTS
Enrolment [18] 1 16 1

Reduced Enrolment 1 10 1

Table 1: Comparing metrics for universally repairable RTS constructions.
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Combinatorial Schemes
[18]

MBR Schemes
[15]

(t, n, d)-
RTS

(m, d, 1)-
BIBDs

n ρ γ κ ρ γ κ

(2, n, 3) (9, 3, 1) 6 ≤ n ≤ 12 2/3 3/2 0.1636 2/3 3/2 1
(2, n, 3) (15, 3, 1) 10 ≤ n ≤ 35 2/3 3/2 0.0361 2/3 3/2 1
(2, n, 3) (21, 3, 1) 14 ≤ n ≤ 70 2/3 3/2 0.0139 2/3 3/2 1
(2, n, 4) (16, 4, 1) 8 ≤ n ≤ 20 3/4 4/3 0.0060 3/4 4/3 1
(2, n, 4) (28, 4, 1) 14 ≤ n ≤ 63 3/4 4/3 0.0073 3/4 4/3 1
(2, n, 4) (40, 4, 1) 20 ≤ n ≤ 130 3/4 4/3 0.0019 3/4 4/3 1
(2, n, 5) (25, 5, 1) 10 ≤ n ≤ 30 4/5 5/4 0.0263 4/5 5/4 1
(3, n, 5) (25, 5, 1) 10 ≤ n ≤ 30 2/5 5/2 0.0263 3/5 5/3 1
(2, n, 5) (65, 5, 1) 26 ≤ n ≤ 208 4/5 5/4 0.0003 4/5 5/4 1
(3, n, 5) (65, 5, 1) 26 ≤ n ≤ 208 2/5 5/2 0.0003 3/5 5/3 1
(2, n, 8) (64, 8, 1) 16 ≤ n ≤ 72 7/8 8/7 0.0016 7/8 8/7 1
(3, n, 8) (64, 8, 1) 16 ≤ n ≤ 72 5/8 8/5 0.0016 3/4 4/3 1
(4, n, 8) (64, 8, 1) 16 ≤ n ≤ 72 1/4 4 0.0016 5/8 8/5 1
(2, n, 4) (13, 4, 1) 9 ≤ n ≤ 13 3/4 4/3 0.0136 3/4 4/3 1
(3, n, 4) (13, 4, 1) 9 ≤ n ≤ 13 1/2 2 0.0136 1/2 2 1
(2, n, 5) (21, 5, 1) 12 ≤ n ≤ 21 4/5 5/4 0.0660 4/5 5/4 1
(3, n, 5) (21, 5, 1) 12 ≤ n ≤ 21 3/5 5/3 0.0660 3/5 5/3 1
(4, n, 5) (21, 5, 1) 12 ≤ n ≤ 21 1/5 5 0.0660 2/5 5/2 1
(2, n, 6) (31, 6, 1) 15 ≤ n ≤ 31 5/6 6/5 0.0263 5/6 6/5 1
(3, n, 6) (31, 6, 1) 15 ≤ n ≤ 31 2/3 3/2 0.0263 2/3 3/2 1
(4, n, 6) (31, 6, 1) 15 ≤ n ≤ 31 1/3 3 0.0263 1/2 2 1

Table 2: Comparison of (t, n, d)−RTSs based on (m, d, 1)−BIBDs, as in [18],
and secure MBR codes, as in [15].

6.2 Comparison of techniques prioritising communication
complexity

Both secure MBR schemes and combinatorial RTSs prioritise communication
complexity over information rate. Here, we compare the SRK-MBR construc-
tion with the combinatorial RTSs given in [18].

Table 2 shows how the combinatorial RTSs in [18] compare to those based
on secure MBR codes in [15] for certain parameters. The comparison shows the
information rate ρ, communication complexity γ and repairability κ (assuming
n is maximal for the combinatorial schemes), with highlighted rows showing
the RTSs with different ρ and γ. The chosen parameters relate to proposed
combinatorial RTSs in [18]; note that MBR schemes exist for all valid parameters
of n, t and d, but the combinatorial RTSs rely on the existence of an underlying
design with relevant parameters.

From Table 2, we can see the schemes achieve equal information rate and
communication complexities in most cases. In some cases, which have been

32



highlighted, the SRK-MBR scheme achieves a better information rate and a
better communication complexity than the combinatorial RTSs. In no case do
the combinatorial RTSs achieve better results than the SRK-MBR construction.
In fact, when the concept of restricted repairability was introduced in [18], it was
suggested that compromising repairability may enable more efficient schemes.
However, this appears to not be the case, at least so far.

As well as achieving similar or better values for ρ and γ in all defined pa-
rameters for t and d in [18], the SRK-MBR construction has two advantages
over the combinatorial RTSs:

1. The MBR schemes in [15] achieve universal, rather than restricted, re-
pairability.

2. The combinatorial RTSs in [18] depend on the existence of certain com-
binatorial constructions. This is in contrast to MBR schemes, which can
be constructed for all valid parameters n, t and d.

However, one advantage of the combinatorial RTSs in [18] is the computa-
tional complexity of repairing a share. In schemes based on either MBR or MSR
codes, every repair requires helping nodes and the repairing node to execute lin-
ear computations. The combinatorial RTSs, in contrast to this, just require
the helping nodes to send the repairing node a sub-share, with no computation
being required for any of the players.

In conclusion, if communication complexity if a priority and if the player’s are
able to compute linear combinations, RTSs based on MBR codes, such as those
in in [15] are likely to be preferable. If communication complexity is a priority
but players are unable to run computations, the combinatorial schemes in [18]
compromise repairability and, occasionally, information rate and bandwidth, in
order to achieve a repair algorithm that requires no computations from any of
the players involved.

6.3 Comparison of techniques prioritising information rate

Both schemes based on MSR codes and the enrolment (and reduced enrolment)
RTS prioritise information rate and offer universal repairability.

However, because of the insecure repair protocol, secure MSR codes are un-
able to achieve an information rate as good as the reduced enrolment RTS.
Therefore, if information rate is a priority, the reduced enrolment scheme ap-
pears to be the best candidate. However, despite the improvements made to
the enrolment RTS, resulting in the reduced enrolment RTS, the communication
complexity remains much higher than any of the other schemes.

7 Conclusion

In this paper, we have explored RTSs. We introduced a new metric for analysis,
which we used when exploring existing RTS constructions. The three construc-
tions we considered include the enrolment scheme from [18], which we refined
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to reduce the communication complexity, the combinatorial schemes from [18],
which we used our new metric to analyse in more detail, and the GLF scheme
in [15], which we later showed to be inefficient.

After exploring existing schemes, we studied applying the field of secure re-
generating codes to RTSs. We discussed the two main types of regenerating
codes, MBR and MSR codes, which result in RTSs prioritising either com-
munication complexity or information rate, respectively. We discussed some
immediate results of using these codes as RTSs, then explored constructions of
both MBR and MSR codes and considered the resulting RTSs.

Finally, we compared the range of RTS constructions and discussed the re-
sults found. We concluded that, due to the insecure repair algorithm of MSR
codes, MSR codes may not provide the best RTS schemes. We also concluded
that the best candidate solution for an RTS prioritising communication com-
plexity is an optimal MBR. In particular, the SRK-MBR construction [15] is one
such scheme and manages to achieve information rates at least as good as the
combinatorial schemes in [18], whilst maintaining universal repairability. The
best candidate solution for an RTS prioritising information rate appears to be
our refined version of the enrolment scheme, originally presented as an RTS in
[18] and refined here in Section 4.1.3.
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