
Two-Round Multiparty Secure Computation

from Minimal Assumptions∗

Sanjam Garg
University of California, Berkeley

sanjamg@berkeley.edu

Akshayaram Srinivasan
University of California, Berkeley

akshayaram@berkeley.edu

Abstract

We provide new two-round multiparty secure computation (MPC) protocols assuming the
minimal assumption that two-round oblivious transfer (OT) exists. If the assumed two-round
OT protocol is secure against semi-honest adversaries (in the plain model) then so is our two-
round MPC protocol. Similarly, if the assumed two-round OT protocol is secure against mali-
cious adversaries (in the common random/reference string model) then so is our two-round MPC
protocol. Previously, two-round MPC protocols were only known under relatively stronger com-
putational assumptions. Finally, we provide several extensions.

1 Introduction

Can a group of n mutually distrusting parties compute a joint function of their private inputs
without revealing anything more than the output to each other? This is the classical problem of
secure computation in cryptography. Yao [Yao86] and Goldreich, Micali and Wigderson [GMW87]
provided protocols for solving this problem in the two-party (2PC) and the multiparty (MPC)
cases, respectively.

A remarkable aspect of the 2PC protocol based on Yao’s garbled circuit construction is its
simplicity and the fact that it requires only two-rounds of communication. Moreover, this pro-
tocol can be based just on the minimal assumption that two-round 1-out-of-2 oblivious transfer
(OT) exists. Two-round OT can itself be based on a variety of computational assumptions such as
the Decisional Diffie-Hellman Assumption [AIR01, NP01, PVW08], quadratic residuosity assump-
tion [HK12, PVW08] or the learning-with-errors assumption [PVW08].

In contrast, much less is known about the assumptions that two-round MPC can be based on
(constant-round MPC protocols based on any OT protocol are well-known [BMR90]). In particular,
two-round MPC protocols are only known under assumptions such as indistinguishability obfus-
cation [GGHR14, GGH+13] (or, witness encryption [GLS15, GGSW13]), LWE [CM15, MW16,
BP16, PS16], or bilinear maps [GS17, BF01, Jou04]. In summary, there is a significant gap be-
tween assumptions known to be sufficient for two-round MPC and the assumptions that known to
be sufficient for two-round 2PC (or, two-round OT). This brings us to the following main question:

What are the minimal assumptions under which two-round MPC can be constructed?
∗Research supported in part from AFOSR YIP Award, DARPA/ARL SAFEWARE Award W911NF15C0210,

AFOSR Award FA9550-15-1-0274, and research grants by the Okawa Foundation, Visa Inc., and Center for Long-
Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do not reflect the official
policy or position of the funding agencies.

1

1.1 Our Result

In this work, we give two-round MPC protocols assuming only the necessary assumption that
two-round OT exists. In a bit more detail, our main theorem is:

Theorem 1.1 (Main Theorem) Let X ∈ {semi-honest in plain model, malicious in common
random/reference sting model}. Assuming the existence of a two-round X -OT protocol, there exists
a compiler that transforms any polynomial round, X -MPC protocol into a two-round, X -MPC
protocol.

Previously, such compilers [GGHR14, GLS15, GS17] were only known under comparatively stronger
computational assumptions such as indistinguishability obfuscation [BGI+01, GGH+13], witness
encryption [GGSW13], or using bilinear maps [GS17, BF01, Jou04]. Additionally, two-round MPC
protocols assuming the learning-with-errors assumptions were known [MW16, PS16, BP16] in the
CRS model satisfying semi-malicious security.1 We now discuss instantiations of the above compiler
with known protocols (with larger round complexity) that yield two-round MPC protocols in various
settings under minimal assumptions.

Semi-Honest Case. Plugging in the semi-honest secure MPC protocol by Goldreich, Micali, and
Wigderson [GMW87], we get the following result:

Corollary 1.2 Assuming the existence of semi-honest, two-round oblivious transfer in the plain
model, there exists a semi-honest, two-round multiparty computation protocol in the plain model.

Previously, two-round plain model semi-honest MPC protocols were only known assuming indis-
tinguishability obfuscation [BGI+01, GGH+13], or witness encryption [GGSW13] or bilinear maps
[GS17] or from DDH for a constant number of parties [BGI17]. Thus, using two-round plain model
OT [NP01, AIR01, HK12] based on standard number theoretic assumptions such as DDH or QR,
this work yields the first two-round semi-honest MPC protocol for polynomial number of parties in
the plain model under the same assumptions.

Malicious Case. Plugging in the maliciously secure MPC protocol by Kilian [Kil88] or by Ishai,
Prabhakaran and Sahai [IPS08] based on any oblivious transfer, we get the following corollary:

Corollary 1.3 Assuming the existence of UC secure, two-round oblivious transfer against static,
malicious adversaries, there exists a UC secure, two-round multiparty computation protocol against
static, malicious adversaries.

Previously, all known two-round maliciously secure MPC protocols required additional use of non-
interactive zero-knowledge proofs. As a special case, using a DDH based two-round OT protocol
(e.g., [PVW08]), this work yields the first two-round malicious MPC protocol in the common
random string model under the DDH assumption.

Extensions. In addition to the above main results we obtain several extensions and refer the
reader to the main body for details.

1Semi-malicious security is a strengthening of the semi-honest security wherein the adversary is allowed to choose
its random tape arbitrarily. Ashrov et al. [AJL+12] showed that any protocol satisfying semi-malicious security could
be upgraded to one with malicious security additionally using Non-Interactive Zero-Knowledge proofs (NIZKs).

2

2 Technical Overview

Towards demonstrating the intuition behind our result, in this section, we show how to squish the
round complexity of a very simple “toy” protocol to two. Additionally, we sketch how these ideas
extend to the general setting and also work in the malicious case. We postpone the details to later
sections.

Background: “Garbled Circuits that talk.” The starting point of this work is a recent
work of Garg and Srinivasan [GS17] that obtains constructions of two-round MPC from bilinear
maps. Building on [GGHR14, GLS15], the key idea behind [GS17] is a new method for enabling
“garbled circuits to talk,” which the authors call “garbled protocols.” It is natural to imagine how
“garbled circuits that can talk” might be useful for squishing the round complexity of any protocol.
By employing this technique, a party can avoid multiple rounds of interaction just by sending a
garbled circuit that interacts with the other parties on its behalf. At a technical level, a garbled
circuit can “speak” by just outputting a value. However, the idea of enabling garbled circuits to
“listen” without incurring any additional interaction poses new challenges. A bit more precisely,
“listen” means that a garbled circuit can take as input a bit obtained via a joint computation on
its secret state and the secret states of two or more other parties.

In [GS17], this idea was implemented by constructing a special purpose [GOVW12, CDG+17,
DG17] witness encryption [GGSW13, BH15] using specific algebraic properties of non-interactive
zero-knowledge (NIZK) proofs by Gorth, Ostrovsky and Sahai [GOS06]. The key contribution of
this work is a realization of the intuition of “garbled circuits that talk” using any two-round OT
protocols rather than a specific NIZK proof system. In particular, we avoid using any specialized
algebraic properties of the underlying primitives. At the heart of our construction is the following
novel use of two-round OT protocols: in our MPC protocol multiple instances of the underlying
two-round OT protocol are executed and the secret receiver’s random coins used in some of these
executed OT instances are revealed to the other parties. As we explain later, this is done carefully
so that the security of the MPC protocol is not jeopardized.

A “toy” protocol for successive ANDs. Stripping away technical details, we highlight our
core new idea in the context of a “toy” example, where a garbled circuit will need to listen to one
bit. Later, we briefly sketch how this core idea can be used to squish the round complexity of
any arbitrary round MPC protocol to two. Recall that, in one round, each party sends a message
depending on its secret state and the messages received in prior rounds.

Consider three parties P1, P2 and P3 with inputs α, β, and γ (which are single bits), respectively.
Can we realize a protocol such that the parties learn f(α, β, γ) = (α, α ∧ β, α ∧ β ∧ γ) and nothing
more? Can we realize a two-round protocol for the same task? Here is a very simple three-round
information theoretic protocol Φ (in the semi-honest setting) for this task: In the first round, P1

sends its input α to P2 and P3. In the second round, P2 computes δ = α∧β and sends it to P1 and
P3. Finally, in the third round, P3 computes γ ∧ δ and sends it to P1 and P2.

Compiling Φ into a two-round protocol. The key challenge that we face is that the third
party’s message depends on the second party’s message, and the second party’s message depends on
the first party’s message. We will now describe our approach to overcome this three-way dependence
using two-round oblivious transfer and thus squish this protocol Φ into a two-round protocol.

3

We assume the following notation for a two-round OT protocol. In the first round, the receiver
with choice bit β generates c = OT1(β;ω) using ω as the randomness and passes c to the sender.
Then in the second round, the sender responds with its OT response d = OT2(c, s0, s1) where s0

and s1 are its input strings. Finally, using the OT response d and its randomness ω, the receiver
recovers sβ. In our protocol below, we will use a circuit C[γ] that has a bit γ hardwired in it and
that on input a bit δ outputs γ ∧ δ. At a high level in our protocol, we will have P2 and P3 send
extra messages in the first and the second rounds, respectively, so that the third round can be
avoided. Here is our protocol:

• Round 1: P1 sends α to P2 and P3. P2 prepares c0 = OT1(0 ∧ β;ω0) and c1 = OT1(1 ∧ β;ω1)
and sends (c0, c1) to P2 and P3.

• Round 2: P2 sends (α ∧ β, ωα) to P1 and P3. P3 garbles C[γ] obtaining C̃ and input labels lab0

and lab1. It computes d = OT2(cα, lab0, lab1) and sends (C̃, d) to P1 and P2.

• Output Evaluation: Every party recovers labδ where δ = α ∧ β from d using ωα. Next, it
evaluates the garbled circuit C̃ using labδ which outputs γ ∧ δ as desired.

Intuitively, in the protocol above P2 sends two first OT messages c0 and c1 that are prepared
assuming α is 0 and assuming α is 1, respectively. Note that P3 does not know α at the beginning
of the first round, but P3 does know it at the end of the first round. Thus, P3 just uses cα
while discarding c1−α in preparing its messages for the second round. This achieves the three-way
dependency while only using two-rounds. Furthermore, P2’s second round message reveals the
randomness ωα enabling all parties (and not just P2 and P3) to obtain the label labδ which can
then be used for evaluation of C̃. In summary, via this mechanism, the garbled circuit C̃ was able
to “listen” to the bit δ that P3 did not know when generating the garbled circuit.

The above description highlights our ideas for squishing round complexity of an incredibly simple
toy protocol where only one bit was being “listened to.” Moreover, the garbled circuit “speaks” or
outputs γ ∧ δ, which is obtained by all parties. In the above “toy” example, P3’s garbled circuit
computes a gate that takes only one bit as input. To compute a gate with two bit inputs, P2 will
need to send four first OT messages in the first round instead of two.

Squishing arbitrary protocols. Our approach to enable garbled circuits to “listen to” a larger
number of bits with complex dependencies is as follows. We show that any MPC protocol Φ between
parties P1, · · ·Pn can be transformed into one satisfying the following format. First, the parties
execute a pre-processing step; namely, each party Pi computes some randomized function of its
input xi obtaining public value zi which is shared with everyone else and private value vi. zi is
roughly an encryption of xi using randomness from vi as a one-time pad. vi also contains random
bits that will be used as one-time pad to encrypt bits sent later by Pi. Second, each party sets its
local state sti = (z1‖ . . . ‖zn)⊕ vi. That places us at the beginning of the protocol execution phase.
In our transformed protocol Φ can be written as a sequence of T actions. For each t ∈ [T] the tth

action φt = (i, f, g, h) involves party Pi computing one NAND gate; it sets sti,h = NAND(sti,f , sti,g)
and sends vi,h⊕ sti,h to all the other parties. Our transformed protocol is such that for any bit sti,h,
the bit vi,h is unique and acts as the one-time pad to hide it from the other parties. (Some of the
bits in vi are set to 0. These bits do not need to be hidden from other parties.) To complete this
action, each party Pj for j 6= i sets stj,h to be the received bit. After all the actions are completed,
each party Pj outputs a function of its local state stj . In this transformed MPC protocol, in any
round only one bit is sent based on just one gate (i.e., the gate obtained as vi,h⊕NAND(sti,f , sti,g)

4

with inputs sti,f and sti,g, where vi,h is hardwired inside it) computation on two bits. Thus, we can
use the above “toy” protocol to achieve this effect.

To squish the round complexity of this transformed protocol, in the first round, we will have
each party follow the pre-processing step from above along with a bunch of carefully crafted first
OT messages as in our “toy” protocol. In the second round, parties will send a garbled circuit
that is expected to “speak” and “listen” to the garbled circuits of the other parties. So when
φ1 = (i, f, g, h) is executed, we have that the garbled circuit sent by party Pi speaks and all the
others listen. Each of these listening garbled circuits uses our “toy” protocol idea from above. After
completion of the first action, all the garbled circuits will have read the transcript of communication
(which is just the one bit communicated in the first action φ1). Next, the parties need to execute
action φ2 = (i, f, g, h) and this is done like the first action, and the process continues. This
completes the main idea of our construction. Building on this idea, we obtain a compiler that
assuming semi-honest two-round OT transforms any semi-honest MPC protocol into a two-round
semi-honest MPC protocol. Furthermore, if the assumed semi-honest two-round OT protocol is in
the plain model then so will be the resulting MPC protocol.

Compilation in the Malicious Case. The protocol ideas described above only achieve semi-
honest security and additional use of non-interactive zero-knowledge (NIZK) proofs [BFM88, FLS90]
is required to upgrade security to malicious [AJL+12, MW16]. This has been the case for all known
two-round MPC protocol constructions. In a bit more detail, by using NIZKs parties can (without
increasing the round complexity) prove in zero-knowledge that they are following protocol specifi-
cations. The use of NIZKs might seem essential to such protocols. However, we show that this can
be avoided. Our main idea is as follows: instead of proving that the garbled circuits are honestly
generated, we require that the garbled circuits prove to each other that the messages they send are
honestly generated. Since our garbled circuits can “speak” and “listen” over several rounds without
increasing the round complexity of the squished protocol, therefore we can instead use interactive
zero-knowledge proof system and avoid NIZKs. Building on this idea we obtain two-round MPC
protocols secure against malicious adversaries. We elaborate on this new idea and other issues
involved in subsequent sections.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote the security pa-
rameter. A function µ(·) : N→ R+ is said to be negligible if for any polynomial poly(·) there exists
λ0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified

negligible function and poly(·) to denote an unspecified polynomial function.
For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the

content of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite
set S, we denote x ← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time algorithm.

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao86] (see Applebaum et al. [AIK04,
AIK05], Lindell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and further

5

discussion). A garbling scheme for circuits is a tuple of PPT algorithms (Garble,Eval). Garble is
the circuit garbling procedure and Eval is the corresponding evaluation procedure. More formally:

• (C̃, {lblw,b}w∈inp(C),b∈{0,1})← Garble
(
1λ, C

)
: Garble takes as input a security parameter 1λ, a

circuit C, and outputs a garbled circuit C̃ along with labels lblw,b where w ∈ inp(C) (inp(C)
is the set of input wires of C) and b ∈ {0, 1}. Each label lblw,b is assumed to be in {0, 1}λ.

• y ← Eval
(

C̃, {lblw,xw}w∈inp(C)

)
: Given a garbled circuit C̃ and a sequence of input labels

{lblw,xw}w∈inp(C) (referred to as the garbled input), Eval outputs a string y.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}|inp(C)| we
have that:

Pr
[
C(x) = Eval

(
C̃, {lblw,xw}w∈inp(C)

)]
= 1

where (C̃, {lblw,b}w∈inp(C),b∈{0,1})← Garble
(
1λ, C

)
.

Security. For security, we require that there exists a PPT simulator Sim such that for any circuit
C and input x ∈ {0, 1}|inp(C)|, we have that(

C̃, {lblw,xw}w∈inp(C)

)
c
≈ Sim

(
1|C|, 1|x|, C(x)

)
where (C̃, {lblw,b}w∈inp(C),b∈{0,1}) ← Garble

(
1λ, C

)
and

c
≈ denotes that the two distributions are

computationally indistinguishable.

3.2 Universal Composability Framework

We work in the the Universal Composition (UC) framework [Can01] to formalize and analyze the
security of our protocols. (Our protocols can also be analyzed in the stand-alone setting, using the
composability framework of [Can00a, Gol04], or in other UC-like frameworks, like that of [PW00].)
We provide a brief overview of the framework in Appendix A and refer the reader to [Can00b] for
details.

3.3 Oblivious Transfer

In this paper, we consider a 1-out-of-2 oblivious transfer protocol (OT), similar to [CCM98, NP01,
AIR01, DHRS04, HK12] where one party, the sender, has input composed of two strings (s0, s1)
and the input of the second party, the receiver, is a bit β. The receiver should learn sβ and nothing
regarding s1−β while the sender should gain no information about β.

Security of the oblivious transfer (OT) functionality can be described easily by an ideal func-
tionality FOT as is done in [CLOS02]. However, in our constructions the receiver needs to reveal
the randomness (or a part of the randomness) it uses in an instance of two-round OT to other
parties. Therefore, defining security as an ideal functionality raises issues require care and issues
similar to one involved in defining ideal public-key encryption functionality [Can05, Page 96] arrise.
Thus, in our context, it is much easier to directly work with a two-round OT protocol. We define
the syntax and the security guarantees of a two-round OT protocol below.

6

Semi-Honest Two-Round Oblivious Transfer. A two-round semi-honest OT protocol 〈S,R〉
is defined by three probabilistic algorithms (OT1,OT2,OT3) as follows. The receiver runs the
algorithm OT1 which takes the security parameter 1λ, and the receiver’s input β ∈ {0, 1} as input
and outputs ots1 and ω.2 The receiver then sends ots1 to the sender, who obtains ots2 by evaluating
OT2(ots1, (s0, s1)), where s0, s1 ∈ {0, 1}λ are the sender’s input messages. The sender then sends
ots2 to the receiver who obtains sβ by evaluating OT3(ots2, (β, ω)).

- Correctness. For every choice bit β ∈ {0, 1} of the receiver and input messages s0 and
s1 of the sender we require that, if (ots1, ω) ← OT1(1λ, β), ots2 ← OT2(ots1, (s0, s1)), then
OT3(ots2, (β, ω)) = sβ with overwhelming probability.

- Receiver’s security. We require that{
ots1 : (ots1, ω)← OT1(1λ, 0)

}
c
≈
{

ots1 : (ots1, ω)← OT1(1λ, 1)
}
.

- Sender’s security. We require that for any choice of β ∈ {0, 1}, overwhelming choices of ω′

and any strings K0,K1, L0, L1 ∈ {0, 1}λ with Kβ = Lβ, we have that{
β, ω′,OT2(1λ, ots1,K0,K1)

}
c
≈
{
β, ω′,OT2(1λ, ots1, L0, L1)

}
where (ots1, ω) := OT1(1λ, β;ω′).

Constructions of semi-honest two-round OT are known in the plain model under assumptions
such as DDH [AIR01, NP01] and quadratic residuosity [HK12].

Maliciously Secure Two-Round Oblivious Transfer. We consider the stronger notion of
oblivious transfer in the common random/reference string model. In terms of syntax, we supple-
ment the syntax of semi-honest oblivious transfer with an algorithm KOT that takes the security
parameter 1λ as input and outputs the common random/reference string σ. Also, the three al-
gorithms OT1,OT2 and OT3 additionally take σ as input. Correctness and receiver’s security
properties in the malicious case are the same as the semi-honest case. However, we strengthen the
sender’s security as described below.

- Correctness. For every choice bit β ∈ {0, 1} of the receiver and input messages s0 and s1 of
the sender we require that, if σ ← KOT(1λ), (ots1, ω)← OT1(σ, β), ots2 ← OT2(σ, ots1, (s0, s1)),
then OT3(σ, ots2, (β, ω)) = sβ with overwhelming probability.

- Receiver’s security. We require that{
(σ, ots1) : σ ← KOT(1λ), (ots1, ω)← OT1(σ, 0)

}
c
≈
{

(σ, ots1) : σ ← KOT(1λ), (ots1, ω)← OT1(σ, 1)
}
.

- Sender’s security. We require the existence of PPT algorithm Ext = (Ext1,Ext2) such that
for any choice of K0,K1 ∈ {0, 1}λ and PPT adversary A we have that∣∣∣Pr[INDREAL

A (1λ,K0,K1) = 1]− Pr[INDIDEAL
A (1λ,K0,K1) = 1]

∣∣∣ ≤ 1

2
+ negl(λ).

2We note that ω in the output of OT1 need not contain all the random coins used by OT1. This fact will be useful
in the stronger equivocal security notion of oblivious transfer.

7

Experiment INDREAL
A (1λ,K0,K1):

σ ← KOT(1λ)
ots1 ← A(σ)

ots2 ← OT1(σ, ots1, (K0,K1))
Output A(ots2)

Experiment INDIDEAL
A (1λ,K0,K1):

(σ, τ)← Ext1(1λ)
ots1 ← A(σ)
β := Ext2(τ, ots1)
L0 := Kβ and L1 := Kβ

ots2 ← OT2(σ, ots1, (L0, L1))
Output A(ots2)

Constructions of maliciously secure two-round OT are known in the common random string model
under assumptions such as DDH, quadratic residuosity, and LWE [PVW08].

Equivocal Receiver’s Security. We also consider a strengthened notion of malicious receiver’s
security where we require the existence of a PPT simulator SimEq such that the for any β ∈ {0, 1}:{

(σ, (ots1, ωβ)) : (σ, ots1, ω0, ω1)← SimEq(1
λ)
}

c
≈
{

(σ,OT1(σ, β)) : σ ← KOT(1λ)
}
.

Using standard techniques in the literature (e.g., [CLOS02]) it is possible to add equivocal
receiver’s security to any OT protocol. We sketch a construction in Appendix B for the sake of
completeness.

4 Conforming Protocols

Our protocol compilers work for protocols satisfying certain syntactic structure. We refer to proto-
cols satisfying this syntax as conforming protocols. In this subsection, we describe this notion and
prove that any MPC protocol can be transformed into a conforming protocol while preserving its
correctness and security properties.

4.1 Specifications for a Conforming Protocol

Consider an n party deterministic3 MPC protocol Φ between parties P1, . . . , Pn with inputs x1, . . . , xn,
respectively. For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi. A conforming pro-
tocol Φ is defined by functions pre, post, and computations steps or what we call actions φ1, · · ·φT .
The protocol Φ proceeds in three stages: the pre-processing stage, the computation stage and the
output stage.

• Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi)← pre(1λ, i, xi)

where pre is a randomized algorithm. The algorithm pre takes as input the index i of the
party, its input xi and outputs zi ∈ {0, 1}`/n and vi ∈ {0, 1}` (where ` is a parameter of the
protocol). Finally, Pi retains vi as the secret information and broadcasts zi to every other
party. We require that vi,k = 0 for all k ∈ [`]\ {(i− 1)`/n+ 1, . . . , i`/n}.

3Randomized protocols can be handled by including the randomness used by a party as part of its input.

8

• Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn)⊕ vi.

Next, for each t ∈ {1 · · ·T} parties proceed as follows:

1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [`].

2. Party Pi computes one NAND gate as

sti,h = NAND(sti,f , sti,g)

and broadcasts sti,h ⊕ vi,h to every other party.

3. Every party Pj for j 6= i updates stj,h to the bit value received from Pi.

We require that for all t, t′ ∈ [T] such that t 6= t′, we have that if φt = (·, ·, ·, h) and
φt′ = (·, ·, ·, h′) then h 6= h′. Also, we denote Ai ⊂ [T] to be the set of rounds in with party
Pi sends a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

• Output phase: For each i ∈ [n], party Pi outputs post(sti).

4.2 Transformation for Making a Protocol Conforming

We show that any MPC protocol can made conforming by making only some syntactic changes.
Our transformed protocols retains the correctness or security properties of the original protocol.

Lemma 4.1 Any MPC protocol Π can be written as a conforming protocol Φ while inheriting the
correctness and the security of the original protocol.

Proof Let Π be any given MPC protocol. Without loss of generality we assume that in each
round of Π, one party broadcasts one bit that is obtained by computing a circuit on its initial state
and the messages it has received so far from other parties. Note that this restriction can be easily
enforced by increasing the round complexity of the protocol to the communication complexity of
the protocol. Let the round complexity (and also communication complexity) of Π be p. In every
round r ∈ [p] of Π, a single bit is sent by one of the parties by computing a circuit. Let the circuit
computed in round r be Cr. Without loss of generality we assume that (i) these exists q such that
for each r ∈ [p], we have that q = |Cr|, (ii) each Cr is composed of just NAND gates with fan-in
two, and (iii) each party sends an equal number of bits in the execution of Π. All three of these
conditions can be met by adding dummy gates and dummy round of interaction.

We are now ready to describe our transformed conforming protocol Φ. The protocol Φ will have
T = pq rounds. We let ` = mn+ pq and `′ = pq/n and depending on ` the compiled protocol Φ is
as follows.

• pre(i, xi): Sample ri ← {0, 1}m and si ← ({0, 1}q−1‖0)p/n. (Observe that si is a pq/n bit
random string such that its qth, 2qth · · · locations are set to 0.) Output zi := xi ⊕ ri‖0`

′
and

vi := 0`/n‖ . . . ‖ri‖si‖ . . . ‖0`/n.

9

• We are now ready to describe the actions φ1, · · ·φT . For each r ∈ [p], round r in Π party is
expanded into q actions in Φ — namely, actions {φj}j where j ∈ {(r− 1)q+ 1 · · · rq}. Let Pi
be the party that computes the circuit Cr and broadcast the output bit broadcast in round r
of Π. We now describe the φj for j ∈ {(r − 1)q + 1 · · · rq}. For each j, we set φj = (i, f, g, h)
where f and g are the locations in sti that the jth gate of Cr is computed on (recall that
initially sti is set to zi ⊕ vi). Moreover, we set h to be the first location in sti among the
locations (i−1)`/n+m+1 to i`/n that has previously not been assigned to an action. (Note
that this is `′ locations which is exactly equal to the number of bits computed and broadcast
by Pi.)

Recall from before than on the execution of φj , party Pi sets sti,h := NAND(sti,f , sti,g) and
broadcasts sti,h ⊕ vi,h to all parties.

• post(i, sti): Gather the local state of Pi and the messages sent by the other parties in Π from
sti and output the output of Π.

Now we need to argue that Φ preserves the correctness and security properties of Π. Observe
that Φ is essentially the same as the protocol Π except that in Φ some additional bits are sent.
Specifically, in addition to the messages that were sent in Π, in Φ parties send zi in the preprocessing
step and q − 1 additional bits per every bit sent in Π. Note that these additional bits sent are not
used in the computation of Φ. Thus these bits do not affect the functionality of Π if dropped. This
ensures that Φ inherits the correctness properties of Π. Next note that each of these bits is masked
by a uniform independent bit. This ensures that Φ achieves the same security properties as the
underlying properties of Π.

Finally, note that by construction for all t, t′ ∈ [T] such that t 6= t′, we have that if φt = (·, ·, ·, h)
and φt′ = (·, ·, ·, h′) then h 6= h′ as required.

5 Two-round MPC: Semi-Honest Case

In this section, we give our construction of two-round multiparty computation protocol in the semi-
honest case with security against static corruptions based on any two-round semi-honest oblivious
transfer protocol in the plain model. This is achieved by designing a compiler that takes any
conforming arbitrary (polynomial) round MPC protocol Φ and squishes it to two rounds.

5.1 Our Compiler

We give our construction of two-round MPC in Figure 1 and the circuit that needs to be garbled
(repeatedly) is shown in Figure 2. We start by providing intuition behind this construction.

5.1.1 Overview

In the first round of our compiled protocol, each party runs the preprocessing phase of the protocol
Φ and obtains zi and vi and broadcasts zi to every other party. In the second round, each party
sends a set of garbled circuits that “non-interactively” implement the entire computation phase of
the protocol Φ. In other words, any party with the set of garbled circuits sent by every other party,
can use them to compute the entire transcript of the computation phase of the protocol Φ. This

10

allows each party to obtain the output of the protocol Φ. In the following paragraphs, we give more
details on how this is achieved.

To understand the main idea, let us concentrate on a particular round (let us say the tth round)
of the computation phase of the conforming protocol Φ and see how this step is implemented using
garbled circuits. Recall that before starting the computation phase, each party locally computes
sti := (z1‖ . . . ‖zn)⊕ vi using the first round messages sent by the other parties. This local state is
updated (recall that only one bit location is updated) at the end of each round based on the bit
that is sent in that round. We start with some notations.

Notations. Let us say that the party Pi∗ is the designated party in round t. Let stti be the
updated local state of party Pi at the beginning of the tth round of the computation phase. In the
tth round, the designated party Pi∗ computes γ := NAND(stti∗,f , stti∗,g), writes this bit to position h

of stti∗ and broadcasts γ ⊕ vi∗,h to every other party. Every other party Pi (where i 6= i∗) updates
its local state by writing the received bit at position h in its state stti.

Implementing the Computation Phase. The tth round of the computation phase is imple-
mented by the tth garbled circuit in each of these sequences. In a bit more details, the garbled
circuit of party Pi takes as input stti which is the state of the party Pi at the beginning of the
t-th round and outputs or, aids the process of outputting the labels corresponding to the updated
local state at the end of the tth round. These labels are then used to evaluate the garbled circuit
corresponding to the (t+ 1)th round of the computation phase and this process continues. Finally,
at the end each party can just compute output function on the final local state to obtain its output.
Next, we describe how the tth garbled circuits in each of the n sequences can be used to complete
the tth action of the computation phase.

The tth garbled circuit of party Pi∗ is executed first and is the most natural one as in this round
party Pi∗ is the one that sends a bit to the other parties. Starting with the easy part, this garbled
circuit takes as input stti∗ , updates the local state by writing the bit γ in the position h of stti∗ and
outputs the labels corresponding to its updated state. However, the main challenge is that this
garbled circuit needs to communicate the bit γ⊕ vi∗,h to other garbled circuits of the other parties.
Specifically, those garbled circuits also need to output the correct labels corresponding to the their
updated local state. Note that only the hth bit of each of their local state needs to be updated.
This was achieved in [GS17] by using specific properties of Groth, Ostrovsky and Sahai proofs and
in this work, we only rely on oblivious transfer. This is our key new idea and we provide the details
next.

Relying on Oblivious Transfer. In addition to broadcasting the encoded input zi in the first
round, the party Pi sends a set of 4 OT messages (acting as the receiver) for every round in
the computation phase where Pi is the designated party. Thus, if the number of rounds in the
computation phase where Pi is the designated party is ai, then the party Pi sends 4ai receiver OT
messages. Specifically, in our running example from above Pi∗ will generate 4 first OT messages
to help in tth round of Φ. In particular, for each value of α, β ∈ {0, 1}, Pi∗ generates the first OT
message with vi∗,h⊕NAND(vi∗,f ⊕α, vi∗,g⊕β) as its choice bit. Every other party Pi for i 6= i∗ acts
as the sender and prepares four OT responses corresponding to each of the four OT messages using
labels corresponding to the h-th input wire (say (labeli,t+1

h,0 , labeli,t+1
h,1)) of its next (i.e., (t + 1)th)

garbled circuit. However, these values aren’t sent to anyone yet! Because sending them all to

11

Pi∗ would lead to complete loss of security. Specifically, for every choice of vi∗,f , vi∗,g, vi∗,h there
exists different choices of α, β such that vi∗,h ⊕ NAND(vi∗,f ⊕ α, vi∗,g ⊕ β) is 0 and 1, respectively.
Thus, if all these OT responses were reveled to Pi∗ then Pi∗ would learn both the input labels
labeli,t+1

h,0 , labeli,t+1
h,1 potentially breaking the security of garbled circuits. Our key idea here is that

party Pi hardcodes these OT responses in its tth garbled circuit and only one of them is revealed
to Pi∗ . We now elaborate this.

The t-th garbled circuit of party Pi (where i 6= i∗) outputs the set of labels corresponding to the
state bits {stti,k}k∈[`]\{h} (as these bits do not change at the end of the t-th round) and additionally

outputs the sender OT response for α = stti,f and β = stti,g with the messages being set to the labels

corresponding to h-th bit of stti. It follows from the invariant of the protocol, that the choice bit
in this OT1 message is indeed γ ⊕ vi∗,h which is exactly the bit Pi∗ wants to communicate to the
other parties. However, this leaves us with another problem. The OT responses only allow Pi∗ to
learn the labels of the next garbled circuits and it is unclear how a party j 6= i∗ obtains the labels
of the garbled circuits generated by Pi.

Enabling all Parties to Compute. The party Pi∗ ’s t
th garbled circuit, in addition to outputting

the labels corresponding to the updated state of Pi∗ , outputs the randomness it used to prepare
the first OT message for which all Pi for i 6= i∗ output OT responses; namely, α = stti∗,f ⊕vi∗,f , β =

stti∗,g ⊕ vi∗,g. It again follows from the invariant of the protocol Φ that this allows every party Pj

with j 6= i∗ to evaluate the recover labeli,t+1
h,γ⊕vi∗,h which is indeed the label corresponding to the

correct updated state. Thus, using the randomness output by the garbled circuit of Pi∗ all other
parties can recover the label labeli,t+1

h,γ⊕vi∗,h .

We stress that this process of revealing the randomness of the OT leads to complete loss of
security for the particular instance OT. Nevertheless, since the randomness of only one of the four
OT messages of Pi∗ is reveled, overall security is ensured. In particular, our construction ensures
that the learned choice bit is γ ⊕ vi∗,h which is in fact the message that is broadcasted in the
underlying protocol Φ. Thus, it follows from the security of the protocol Φ that learning this
message does not cause any vulnerabilities.

Theorem 5.1 Let Φ be a polynomial round, n-party semi-honest MPC protocol computing a func-
tion f : ({0, 1}m)n → {0, 1}∗, (Garble,Eval) be a garbling scheme for circuits, and (OT1,OT2,OT3)
be a semi-honest two-round OT protocol. The protocol described in Figure 1 is a two-round, n-party
semi-honest MPC protocol computing f against static corruptions.

This theorem is proved in the rest of this section.

5.2 Correctness

In order to prove correctness, it is sufficient to show that the label computed in Step 2.(d).(ii) of the
evaluation procedure corresponds to the bit NAND(sti∗,f , sti∗,g)⊕ vi∗,h. Notice that by the assump-
tion on the structure of vi∗ (recall that vi∗ is such that vi∗,k = 0 for all k ∈ [`]\ {(i∗ − 1)`/n+ 1, . . . , i∗`/n})
we deduce that for every i 6= i∗, sti,f = sti∗,f ⊕ vi∗,f and sti,g = sti∗,g ⊕ vi∗,g. Thus, the label ob-
tained by OT2 corresponds to the bit NAND(vi∗,f ⊕ sti∗,f ⊕ vi∗,f︸ ︷︷ ︸

α

, vi∗,g ⊕ sti∗,g ⊕ vi∗,g︸ ︷︷ ︸
β

) ⊕ vi∗,h =

NAND(sti∗,f , sti∗,g)⊕ vi∗,h and correctness follows.

12

Let Φ be an n-party conforming semi-honest MPC protocol, (Garble,Eval) be a garbling scheme for
circuits and (OT1,OT2,OT3) be a semi-honest two-round oblivious transfer protocol.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(1λ, i, xi).

2. For each t such that φt = (i, f, g, h) (Ai is the set of such values of t), for each α, β ∈ {0, 1}

ots1,t,α,β ← OT1(1λ, vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

3. Send
(
zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zi−1‖zi‖zi+1‖ . . . ‖zn)⊕ vi.

2. Set lab
i,T+1

:= {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈ {0, 1} labi,T+1
k,b := 0λ.

3. for each t from T down to 1,

(a) Parse φt as (i∗, f, g, h).

(b) If i = i∗ then compute (where P is described in Figure 2)(
P̃i,t, lab

i,t)← Garble(1λ,P[i, φt, vi, {ωt,α,β}α,β ,⊥, lab
i,t+1

]).

(c) If i 6= i∗ then for every α, β ∈ {0, 1}, set otsi2,t,α,β ← OT2(ots1,t,α,β , labi,t+1
h,0 , labi,t+1

h,1)
and compute(

P̃i,t, lab
i,t)← Garble(1λ,P[i, φt, vi,⊥, {otsi2,t,α,β}α,β , lab

i,t+1
]).

4. Send
(
{P̃i,t}t∈[T],{labi,1k,sti,k}k∈[`]

)
to every other party.

Evaluation: To compute the output of the protocol, each party Pi does the following:

1. For each j ∈ [n], let l̃ab
j,1

:= {labj,1k }k∈[`] be the labels received from party Pj at the end of
round 2.

2. for each t from 1 to T do:

(a) Parse φt as (i∗, f, g, h).

(b) Compute ((α, β, γ), ω, l̃ab
i∗,t+1

) := Eval(P̃i
∗,t, l̃ab

i∗,t
).

(c) Set sti,h := γ ⊕ vi,h.

(d) for each j 6= i∗ do:

i. Compute (ots2, {labj,t+1
k }k∈[`]\{h}) := Eval(P̃j,t, l̃ab

j,t
).

ii. Recover labj,t+1
h := OT3(ots2, ω).

iii. Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[`].

3. Compute the output as post(i, sti).

Figure 1: Two-round Semi-Honest MPC.

13

P

Input. sti.
Hardcoded. The index i of the party, the action φt = (i∗, f, g, h), the secret value vi, the strings
{ωt,α,β}α,β , {ots2,t,α,β}α,β and a set of labels lab = {labk,0, labk,1}k∈[`].

1. if i = i∗ then:

(a) Compute sti,h := NAND(sti,f , sti,g), α := sti,f ⊕ vi,f , β := sti,g ⊕ vi,g and γ := sti,h ⊕ vi,h.

(b) Output ((α, β, γ), ωt,α,β , {labk,sti,k}k∈[`]).

2. else:

(a) Output (ots2,t,sti,f ,sti,g , {labk,sti,k}k∈[`]\{h}).

Figure 2: The program P.

Via the same argument as above it is useful to keep in mind that for every i, j ∈ [n] and k ∈ [`],
we have that sti,k ⊕ vi,k = stj,k ⊕ vj,k. Let us denote this shared value by st∗. Also, we denote the
transcript of the interaction in the computation phase by Z ∈ {0, 1}t.

5.3 Simulator

Let A be a semi-honest adversary corrupting a subset of parties and let H ⊆ [n] be the set of
honest/uncorrupted parties. Since we assume that the adversary is static, this set is fixed before
the execution of the protocol. Below we provide the simulator.

Description of the Simulator. We give the description of the ideal world adversary S that
simulates the view of the real world adversary A. S will internally use the semi-honest simulator
SimΦ for Φ and the simulator SimG for garbling scheme for circuits. Recall that A is static and
hence the set of honest parties H is known before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Initialization: S uses the inputs of the corrupted parties {xi}i 6∈H and output y of the
functionality f to generate a simulated view of the adversary.4 More formally, for each
i ∈ [n] \ H S sends (input, sid, {P1 · · ·Pn}, Pi, xi) to the ideal functionality implementing
f and obtains the output y. Next, it executes SimΦ(1λ, {xi}i 6∈H , y) to obtain {zi}i∈H , the

4For simplicity of exposition, we only consider the case where every party gets the same output. The proof in the
more general case where parties get different outputs follows analogously.

14

random tapes for the corrupted parties, the transcript of the computation phase denoted by
Z ∈ {0, 1}t where Zt is the bit sent in the tth round of the computation phase of Φ, and the
value st∗ (which for each i ∈ [n] and k ∈ [`] is equal to sti,k ⊕ vi,k). S starts the real-world
adversary A with the inputs {zi}i∈H and random tape generated by SimΦ.

• Round-1 messages from S to A: Next S generates the OT messages on behalf of
honest parties as follows. For each i ∈ H, t ∈ Ai, α, β ∈ {0, 1}, generate ots1,t,α,β ←
OT1(1λ,Zt;ωt,α,β). For each i ∈ H, S sends (zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) to the adversary
A on behalf of the honest party Pi.

• Round-1 messages from A to S: Corresponding to every i ∈ [n] \H, S receives from the
adversary A the value (zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) on behalf of the corrupted party Pi.

• Round-2 messages from S to A: For each i ∈ H, the simulator S generates the second
round message on behalf of party Pi as follows:

1. For each k ∈ [`] set labi,T+1
k := 0λ.

2. for each t from T down to 1,

(a) Parse φt as (i∗, f, g, h).

(b) Set α∗ := st∗f , β∗ := st∗g, and γ∗ := st∗h.

(c) If i = i∗ then compute(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k }k∈[`]

))
.

(d) If i 6= i∗ then set otsi2,t,α∗,β∗ ← OT2(ots1,t,α∗,β∗ , labi,t+1
h , labi,t+1

h) and compute

(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k }k∈[`]\{h}

))
.

3. Send
(
{P̃i,t}t∈[T],{labi,1k }k∈[`]

)
to every other party.

• Round-2 messages from A to S: For every i ∈ [n]\H, S obtains the second round message
from A on behalf of the malicious parties. Subsequent to obtaining these messages, for each
i ∈ H, S sends (generateOutput, sid, {P1 · · ·Pn}, Pi) to the ideal functionality.

5.4 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting with a real world
adversary A or an ideal world adversary S. We prove this via an hybrid argument with T + 1
hybrids.

• HReal: This hybrid is the same as the real world execution. Note that this hybrid is the same
as hybrid Ht below with t = 0.

• Ht (where t ∈ {0, . . . T}): Hybrid Ht (for t ∈ {1 · · ·T}) is the same as hybrid Ht−1 except we
change the distribution of the OT messages (both from the first and the second round of the
protocol) and the garbled circuits (from the second round) that play a role in the execution of

15

the tth round of the protocol Φ; namely, the action φt = (i∗, f, g, h). We describe the changes
more formally below.

We start by executing the protocol Φ on the inputs and the random coins of the honest and
the corrupted parties. This yields a transcript Z ∈ {0, 1}T of the computation phase. Since
the adversary is assumed to be semi-honest the execution of the protocol Φ with A will be
consistent with Z. Let st∗ be the local state of the end of execution of Faithful. Finally, let
α∗ := st∗f , β∗ := st∗g and γ∗ := st∗h. In hybrid Ht we make the following changes with respect
to hybrid Ht−1:

– If i∗ 6∈ H then skip these changes. S makes two changes in how it generates messages
on behalf of Pi∗ . First, for all α, β ∈ {0, 1}, S generates ots1,t,α,β as OT1(1λ,Zt;ωt,α,β)
(note that only one of these four values is subsequently used) rather than OT1(1λ, vi,h⊕
NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β). Second, it generates the garbled circuit(

P̃i
∗,t, {labi

∗,t
k }k∈[`]

)
← SimG

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi
∗,t+1
k,sti,k

}k∈[`]

))
,

where {labi
∗,t+1
k,sti,k

}k∈[`] are the honestly generates input labels for the garbled circuit

P̃i
∗,t+1.

– S makes the following two changes in how it generates messages for other honest par-
ties Pi (i.e., i ∈ H \ {i∗}). S does not generate four otsi2,t,α,β values but just one of

them; namely, S generates otsi2,t,α∗,β∗ as OT2(ots1,t,α∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

) rather than

OT2(ots1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1). Second it generates the garbled circuit

(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[`]\{h}

))
,

where {labi,t+1
k,sti,k

}k∈[`] are the honestly generated input labels for the garbled circuit P̃i,t+1.

Indistinguishability between Ht−1 and Ht is proved in Lemma 5.2.

• HT+1: In this hybrid we just change how the transcript Z, {zi}i∈H , random coins of malicious
parties and value st∗ are generated. Instead of generating these using honest party inputs we
generate these values by executing the simulator SimΦ on input {xi}i∈[n]\H and the output y
obtained from the ideal functionality.

The indistinguishability between hybrids HT and HT+1 follows directly from the semi-honest
security of the protocol Φ. Finally note that HT+1 is same as the ideal execution (i.e., the
simulator described in the previous subsection).

Lemma 5.2 Assuming semi-honest security of the two-round OT protocol and the security of the
garbling scheme, for all t ∈ {1 . . . T} hybrids Ht−1 and Ht are computationally indistinguishable.

Proof Using the same notation as before, let φt = (i∗, f, g, h), sti∗ be the state of Pi∗ at the end
of round t, and α∗ := sti∗,f⊕vi∗,f , β∗ := sti∗,g⊕vi∗,g and γ∗ := sti∗,h⊕vi∗,h. The indistinguishability
between hybrids Ht−1 and Ht follows by a sequence of three sub-hybrids Ht,1, Ht,2, and Ht,3.

16

• Ht,1: Hybrid Ht,1 is same as hybrid Ht−1 except that S now generates the garbled circuits P̃i,t

for each i ∈ H in a simulated manner (rather than generating them honestly). Specifically,
instead of generating each garbled circuit and input labels

(
P̃i,t, {labi,tk }k∈[`]

)
honestly, they

are generated via the simulator by hard coding the output of the circuit itself. In a bit more
details, parse φt as (i∗, f, g, h).

– If i = i∗ then(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[`]

))
,

where {labi,t+1
k,sti,k

}k∈[`] are the honestly generates input labels for the garbled circuit P̃i,t+1.

– If i 6= i∗ then(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[`]\{h}

))
,

where {labi,t+1
k,sti,k

}k∈[`] are the honestly generated input labels for the garbled circuit P̃i,t+1.

The indistinguishability between hybrids Ht,1 and Ht−1 follows by |H| invocations of security
of the garbling scheme. This reduction in given in Appendix C.

• Ht,2: Skip this hybrid, if i∗ 6∈ H. This hybrid is same as Ht,1 except that we change how
S generates the Round-1 message on behalf of Pi∗ . Specifically, the simulator S generates
ots1,t,α,β as is done in the Ht. In a bit more detail,

for all α, β ∈ {0, 1}, S generates ots1,t,α,β as OT1(1λ,Zt;ωt,α,β) rather than OT1(1λ, vi,h ⊕
NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

Indistinguishability between hybrids Ht,1 and Ht,2 follows directly by a sequence of 3 sub-
hybrids each one relying on the receiver’s security of underlying semi-honest oblivious transfer
protocol. Observe here that the security reduction crucially relies on the fact that P̃i,t only
contains ωt,α∗,β∗ (i.e., does not have ωt,α,β for α 6= α∗ or β 6= β∗). This is sketched in
Appendix C.

• Ht,3: Skip this hybrid if there does not exist i 6= i∗ such that i ∈ H. In this hybrid,
we change how S generates the otsi2,t,α,β on behalf of every honest party Pi such that i ∈
H \ {i∗} for all choices of α, β ∈ {0, 1}. More specifically, S only generates one of these four
values; namely, otsi2,t,α∗,β∗ which is now generated as OT2(ots1,t,α∗,β∗ , labi,t+1

h,Zt
, labi,t+1

h,Zt
) instead

of OT2(ots1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1).

Indistinguishability between hybrids Ht,2 and Ht,3 follows directly from the sender’s security
of underlying semi-honest oblivious transfer protocol. Finally, observe that Ht,3 is the same
as hybrid Ht.

5.5 Extensions

The protocol presented above is very general and can be extended in different ways to obtain several
other additional properties. We list some of the simple extensions below.

17

Multi-Round OT. We note that plugging in any multi-round (say, r-round) OT scheme with
semi-honest security we obtain an r-round MPC for semi-honest adversaries. More specifically, this
can be achieved as follows. We run the first r− 2 rounds of the protocol as a pre-processing phase
with the receiver’s choice bits set as in the protocol and the sender’s message being randomly chosen
labels. We then run the first round of our MPC protocol with the (r − 1)th round of OT from the
receiver and run the second round using the last round message from the sender hardwired inside
the garbled circuits. The proof of security follows identically to proof given above for a two-round
OT. A direct corollary of this construction is a construction of three round MPC for semi-honest
adversaries from enhanced trapdoor permutations.

Two-Round MPC for RAM programs. In the previous section, we described how protocol
compilation can be done for the case of conforming MPC protocols for circuits. Specifically, the
protocol communication depends on the lengths of the secret state of the parties. We note that
we can extend this framework for securely evaluating RAM programs [OS97, GKK+12, LO13,
GHL+14, GLOS15, GLO15, GGMP16, HY16] in two-rounds. In this setting, each party has a huge
database as its private input and the parties wishes to compute a RAM program on their private
databases. We consider the persistent memory setting [LO13, GHL+14] where several programs
are evaluated on the same databases. We allow an (expensive) pre-processing phase where the
parties communicate to get a shared garbled database and the programs must be evaluated with
communication and computation costs that grow with the running time of the programs. In our
construction of two-round MPC for RAM programs, the pre-processing phase involves the parties
executing a two-round MPC to obtain garbled databases of all the parties using a garbled RAM
scheme (say, [GLOS15]) along with the shared secret state. Next, when a program needs to be
executed, then the parties execute our two-round MPC to obtain a garbled program. Finally, the
obtained garbled program can be executed with the garbled database to obtain the output.

Reducing the Communication Complexity. Finally, we note that in our two-round protocol
each party can reduce the communication complexity [Gen09, BGI16, CDG+17] of either one of
its two messages (with size dependent just on the security parameter) using Laconic Oblivious
Transfer (OT) [CDG+17]. Roughly, laconic OT allows one party to commit to a large message by a
short hash string (depending just on the security parameter) such that the knowledge of the laconic
hash suffices for generating a garbled circuit that can be executed on the large committed string
as input. Next, we give simple transformations using which the first party in any two-round MPC
protocol can make either its first message or its second message short, respectively. The general
case can also be handled in a similar manner.

We start by providing a transformation by which the first party can make its first message
short. The idea is that in the transformed protocol the first party now only sends a laconic hash
of the first message of the underlying protocol, which is disclosed in the second round message
of the transformed protocol. The first round of messages of all other parties in the transformed
protocol remains unchanged. However, their second round messages are now obtained by sending
garbled circuits that generate the second round message of the original protocol using the first
round message of the first party as input. This can be done using laconic OT.

Using a similar transformation the first party can make its second message short. Specifically,
in this case, the first party appends its first round message with a garbled circuit that generated
its second round message given as input the laconic OT hash for the first round messages of all

18

the other parties. Now in the second round, the first party only needs to disclose the labels for
the garbled circuit corresponding to laconic OT hash of the first round messages of all the other
parties. The messages of all the other parties remain unchanged.

6 Two-round MPC: Malicious Case

In this section, we give our construction of two-round multiparty computation protocol in the
malicious case with security against static corruptions based on any two-round malicious oblivious
transfer protocol (with equivocal receiver security which as argued earlier can be added with need
for any additional assumptions) This is achieved by designing a compiler that takes any conforming
arbitrary (polynomial) round MPC protocol Φ and squishes it to two rounds.

6.1 Our Compiler

We give our construction of two-round MPC in Figure 3 and the circuit that needs to be garbled
(repeatedly) is shown in Figure 2 (same as the semi-honest case). We start by providing intuition
behind this construction. Our compiler is essentially the same as the semi-honest case. In addition
to the minor syntactic changes, the main difference is that we compile malicious secure conforming
protocols instead of semi-honest ones.

Another technical issue arises because the adversary may wait to receiver first round messages
that S sends on the behalf of honest parties before the corrupted parties send out their first round
messages. Recall that by sending the receiver OT messages in the first round, every party “commits”
to all its future messages that it will send in the computation phase of the protocol. Thus, the ideal
world simulator S must somehow commit to the messages generated on behalf of the honest party
before extracting the adversary’s effective input. To get around this issue, we use the equivocability
property of the OT using which the simulator can equivocate its first round messages after learning
the malicious adversary’s effective input.

Theorem 6.1 Let Φ be a polynomial round, n-party malicious MPC protocol computing a function
f : ({0, 1}m)n → {0, 1}∗, (Garble,Eval) be a garbling scheme for circuits, and (KOT,OT1,OT2,OT3)
be a maliciously secure (with equivocal receiver security) two-round OT protocol. The protocol
described in Figure 3 is a two-round, n-party malicious MPC protocol computing f against static
corruptions.

We prove the security of our compiler in the rest of the section. The proof of correctness is the
same as for the case of semi-honest security (see Section 5.2).

As in the semi-honest case it is useful to keep in mind that for every i, j ∈ [n] and k ∈ [`], we
have that sti,k ⊕ vi,k = stj,k ⊕ vj,k. Let us denote this shared value by st∗. Also, we denote the
transcript of the interaction in the computation phase by Z ∈ {0, 1}t.

6.2 Simulator

Let A be a malicious adversary corrupting a subset of parties and let H ⊆ [n] be the set of
honest/uncorrupted parties. Since we assume that the adversary is static, this set is fixed before
the execution of the protocol. Below we provide the notion of faithful execution and then describe
our simulator.

19

Let Φ be an n-party conforming malicious MPC protocol, (Garble,Eval) be a garbling scheme for circuits
and (KOT,OT1,OT2,OT3) be a malicious (with equivocal receiver security) two-round oblivious transfer
protocol.

Common Random/Reference String: For each t ∈ T, α, β ∈ {0, 1} sample σt,α,β ← KOT(1λ) and
output {σt,α,β}t∈[T],α,β∈{0,1} as the common random/reference string.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(1λ, i, xi).

2. For each t such that φt = (i, f, g, h) (Ai is the set of such values of t), for each α, β ∈ {0, 1}

ots1,t,α,β ← OT1(σt,α,β , vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

3. Send
(
zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zi−1‖zi‖zi+1‖ . . . ‖zn)⊕ vi.

2. Set lab
i,T+1

:= {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈ {0, 1} labi,T+1
k,b := 0λ.

3. for each t from T down to 1,

(a) Parse φt as (i∗, f, g, h).

(b) If i = i∗ then compute (where P is described in Figure 2)(
P̃i,t, lab

i,t)← Garble(1λ,P[i, φt, vi, {ωt,α,β}α,β ,⊥, lab
i,t+1

]).

(c) If i 6= i∗ then for every α, β ∈ {0, 1}, set otsi2,t,α,β ←
OT2(σt,α,β , ots1,t,α,β , labi,t+1

h,0 , labi,t+1
h,1) and compute(

P̃i,t, lab
i,t)← Garble(1λ,P[i, φt, vi,⊥, {otsi2,t,α,β}α,β , lab

i,t+1
]).

4. Send
(
{P̃i,t}t∈[T],{labi,1k,sti,k}k∈[`]

)
to every other party.

Evaluation: To compute the output of the protocol, each party Pi does the following:

1. For each j ∈ [n], let l̃ab
j,1

:= {labj,1k }k∈[`] be the labels received from party Pj at the end of
round 2.

2. for each t from 1 to T do:

(a) Parse φt as (i∗, f, g, h).

(b) Compute ((α, β, γ), ω, l̃ab
i∗,t+1

) := Eval(P̃i
∗,t, l̃ab

i∗,t
).

(c) Set sti,h := γ ⊕ vi,h.

(d) for each j 6= i∗ do:

i. Compute (ots2, {labj,t+1
k }k∈[`]\{h}) := Eval(P̃j,t, l̃ab

j,t
).

ii. Recover labj,t+1
h := OT3(σt,α,β , ots2, ω).

iii. Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[`].

3. Compute the output as post(i, sti).

Figure 3: Two-round Malicious MPC.
20

Faithful Execution. In the first round of our compiled protocol, A provides zi for every i ∈ [n]\H
and ots1,t,α,β for every t ∈ ∪i∈[n]\h and α, β ∈ {0, 1}. These values act as “binding” commitments
to all of the adversary’s future choices. All these committed choices can be extracted using the
extractor Ext2. Let bt,α,β be the value extracted from ots1,t,α,β. Intuitively speaking, a faithful
execution is an execution that is consistent with these extracted values.

More formally, we define an interactive procedure Faithful(i, {zi}i∈[n], {bt,α,β}t∈Ai,α,β) that on
input i ∈ [n], {zi}i∈[n], {bt,α,β}t∈Ai,α,β∈{0,1} produces protocol Φ message on behalf of party Pi
(acting consistently/faithfully with the extracted values) as follows:

1. Set st∗ := z1‖ . . . ‖zn.

2. For t ∈ {1 · · ·T}

(a) Parse φt = (i∗, f, g, h).

(b) If i 6= i∗ then it waits for a bit from Pi∗ and sets st∗h to be the received bit once it is
received.

(c) Set st∗ := bt,st∗f ,st∗g and output it to all the other parties.

We will later argue that any deviation from the faithful execution by the adversary A on behalf
of the corrupted parties (during the second round of our compiled protocol) will be be detected.
Additionally, we prove that such deviations do not hurt the security of the honest parties.

Description of the Simulator. We give the description of the ideal world adversary S that
simulates the view of the real world adversary A. S will internally use the malicious simulator
SimΦ for Φ , the extractor Ext = (Ext1,Ext2) implied by the sender security of two-round OT, the
simulator SimEq implied by the equivocal receiver’s security and the simulator SimG for garbling
scheme for circuits. Recall that A is static and hence the set of honest parties H is known before
the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Generation of the common random/reference string: S generates the common ran-
dom/reference string as follows:

1. For each i ∈ H, t ∈ Ai, α, β ∈ {0, 1} set (σt,α,β, (ots1,t,α,β , ω
0
t,α,β, ω

1
t,α,β)) ← SimEq(1

λ)
(using equivocal simulator).

2. For each i ∈ [n] \H,α, β ∈ {0, 1} and t ∈ Ai generate (σt,α,β, τt,α,β) ← Ext1(1λ) (using
the extractor of the OT protocol).

3. Output the common random/reference string as {σt,α,β}t,α,β.

21

• Initialization: S executes the simulator (against malicious adversary’s) SimΦ(1λ) to obtain
{zi}i∈H . Moreover, S starts the real-world adversary A. We next describe how S provides
its messages to SimΦ and A.

• Round-1 messages from S to A: For each i ∈ H, S sends (zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) to
the adversary A on behalf of the honest party Pi.

• Round-1 messages from A to S: Corresponding to every i ∈ [n] \H, S receives from the
adversary A the value (zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) on behalf of the corrupted party Pi. Next,
for each i ∈ [n] \H, t ∈ Ai, α, β ∈ {0, 1} extract bt,α,β := Ext2(τt,α,β, ots1,t,α,β).

• Completing the execution with the SimΦ: For each i ∈ [n] \H, S sends zi to SimΦ on
behalf of the corrupted party Pi. This starts the computation phase of Φ with the simulator
SimΦ. S provides computation phase messages to SimΦ by following a faithful execution.
More formally, for every corrupted party Pi where i ∈ [n]\H, S generates messages on behalf
of Pi for SimΦ using the procedure Faithful(i, {zi}i∈[n], {bt,α,β}t∈Ai,α,β). At some point during
the execution, SimΦ will return the extracted inputs {xi}i∈[n]\H of the corrupted parties. For
each i ∈ [n]\H, S sends (input, sid, {P1 · · ·Pn}, Pi, xi) to the ideal functionality implementing
f and obtains the output y which is provided to SimΦ. Finally, at some point the faithful
execution completes.

Let Z ∈ {0, 1}t where Zt is the bit sent in the tth round of the computation phase of Φ be
output of this execution. And let st∗ be the state value at the end of execution of one of the
corrupted parties (this value is the same for all the parties). Also, set for each t ∈ ∪i∈HAi
and α, β ∈ {0, 1} set ωt,α,β := ωZt

t,α,β.

• Round-2 messages from S to A: For each i ∈ H, the simulator S generates the second
round message on behalf of party Pi as follows:

1. For each k ∈ [`] set labi,T+1
k := 0λ.

2. for each t from T down to 1,

(a) Parse φt as (i∗, f, g, h).

(b) Set α∗ := st∗f , β∗ := st∗g, and γ∗ := st∗h.

(c) If i = i∗ then compute(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k }k∈[`]

))
.

(d) If i 6= i∗ then set otsi2,t,α∗,β∗ ← OT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1
h , labi,t+1

h) and com-
pute (

P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k }k∈[`]\{h}

))
.

3. Send
(
{P̃i,t}t∈[T],{labi,1k }k∈[`]

)
to every other party.

• Round-2 messages from A to S: For every i ∈ [n] \ H, S obtains the second round
message from A on behalf of the malicious parties. Subsequent to obtaining these messages,
S executes the garbled circuits provided by A on behalf of the corrupted parties to see the
execution of garbled circuits proceeds consistently with the expected faithful execution. If
the computation succeeds then for each i ∈ H, S sends (generateOutput, sid, {P1 · · ·Pn}, Pi)
to the ideal functionality.

22

6.3 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting with a real world
adversary A or an ideal world adversary S. We prove this via an hybrid argument with T + 2
hybrids.

• HReal: This hybrid is the same as the real world execution.

• H0: In this hybrid we start by changing the distribution of the common random string.
Specifically, the common random string is generated as is done in the simulation. More
formally, S generates the common random/reference string as follows:

1. For each i ∈ H, t ∈ Ai, α, β ∈ {0, 1} set (σt,α,β, (ots1,t,α,β , ω
0
t,α,β, ω

1
t,α,β)) ← SimEq(1

λ)
(using equivocal simulator).

For all t ∈ ∪i∈HAi and α, β ∈ {0, 1} set ωt,α,β := ω
vi,h⊕NAND(vi,f⊕α,vi,g⊕β)
t,α,β where vi is the

secret value of party Pi generated in the pre-processing phase of Φ.

2. For each i ∈ [n] \H,α, β ∈ {0, 1} and t ∈ Ai generate (σt,α,β, τt,α,β) ← Ext1(1λ) (using
the extractor of the OT protocol).

Corresponding to every i ∈ [n]\H, A sends (zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1}) on behalf of the
corrupted party Pi as its first round message. For each i ∈ [n] \H, t ∈ Ai, α, β ∈ {0, 1}
in this hybrid we extract bt,α,β := Ext(τt,α,β, ots1,t,α,β).

Note that this hybrid is the same as hybrid Ht below with t = 0.

The indistinguishability between hybridsHReal andH0 follow from a reduction to the sender’s
security and the equivocal receiver’s security of the two-round OT protocol.

• Ht (where t ∈ {0, . . . T}): Hybrid Ht (for t ∈ {1 · · ·T}) is the same as hybrid Ht−1 except we
change the distribution of the OT messages (both from the first and the second round of the
protocol) and the garbled circuits (from the second round) that play a role in the execution of
the tth round of the protocol Φ; namely, the action φt = (i∗, f, g, h). We describe the changes
more formally below.

For each i ∈ [n] \H, in this hybrid S (in his head) completes an execution of Φ using honest
party inputs and randomness. In this execution, the messages on behalf of corrupted parties
are generated via faithful execution. Specifically, S sends {zi}i∈[n]\H to the honest parties on
behalf of the corrupted party Pi in this mental execution of Φ. This starts the computation
phase of Φ. In this computation phase, S generates honest party messages using the inputs
and random coins of the honest parties and generates the messages of the each malicious
party Pi by executing Faithful

(
i, {zi}i∈[n]\H , {bt,α,β}t∈Ai,α,β

)
. Let st∗ be the local state of the

end of execution of Faithful. Finally, let α∗ := st∗f , β∗ := st∗g and γ∗ := st∗h. In hybrid Ht we
make the following changes with respect to hybrid Ht−1:

– If i∗ 6∈ H then skip these changes. S makes two changes in how it generates mes-
sages on behalf of Pi∗ . First, for all α, β ∈ {0, 1}, S sets ωt,α,β as ωZt

t,α,β rather than

ω
vi,h⊕NAND(vi,f⊕α,vi,g⊕β)
t,α,β (note that these two values are the same when using the honest

party’s input and randomness). Second, it generates the garbled circuit(
P̃i
∗,t, {labi

∗,t
k }k∈[`]

)
← SimG

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi
∗,t+1
k,sti,k

}k∈[`]

))
,

23

where {labi
∗,t+1
k,sti,k

}k∈[`] are the honestly generates input labels for the garbled circuit

P̃i
∗,t+1.

– S makes the following two changes in how it generates messages for other honest parties
Pi (i.e., i ∈ H \ {i∗}). S does not generate four otsi2,t,α,β values but just one of them;

namely, S generates otsi2,t,α∗,β∗ as OT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

) rather than

OT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1). Second it generates the garbled circuit(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[`]\{h}

))
,

where {labi,t+1
k,sti,k

}k∈[`] are the honestly generated input labels for the garbled circuit P̃i,t+1.

Indistinguishability between Ht−1 and Ht is proved in Lemma 5.2.

• HT+1: In this hybrid we just change how the transcript Z, {zi}i∈H , random coins of malicious
parties and value st∗ are generated. Instead of generating these using honest party inputs
in execution with a faithful execution of Φ, we generate it via the simulator SimΦ (of the
maliciously secure protocol Φ). In other words, we execute the simulator SimΦ where messages
on behalf of each corrupted party Pi are generated using Faithful(i, {zi}i∈[n]\H , {bt,α,β}t∈Ai,α,β).
(Note that SimΦ might rewind Faithful. This can be achieved since Faithful is just a polynomial
time interactive procedure that can also be rewound.)

The indistinguishability between hybrids HT and HT+1 follows directly from the malicious
security of the protocol Φ. Finally note that HT+1 is same as the ideal execution (i.e., the
simulator described in the previous subsection).

Lemma 6.2 Assuming malicious security of the two-round OT protocol and the security of the
garbling scheme, for all t ∈ {1 . . . T} hybrids Ht−1 and Ht are computationally indistinguishable.

Proof Using the same notation as before, let φt = (i∗, f, g, h), sti∗ be the state of Pi∗ at the end
of round t, and α∗ := sti∗,f⊕vi∗,f , β∗ := sti∗,g⊕vi∗,g and γ∗ := sti∗,h⊕vi∗,h. The indistinguishability
between hybrids Ht−1 and Ht follows by a sequence of three sub-hybrids Ht,1, Ht,2, and Ht,3.

• Ht,1: Hybrid Ht,1 is same as hybrid Ht−1 except that S now generates the garbled circuits P̃i,t

for each i ∈ H in a simulated manner (rather than generating them honestly). Specifically,
instead of generating each garbled circuit and input labels

(
P̃i,t, {labi,tk }k∈[`]

)
honestly, they

are generated via the simulator by hard coding the output of the circuit itself. In a bit more
details, parse φt as (i∗, f, g, h).

– If i = i∗ then(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[`]

))
,

where {labi,t+1
k,sti,k

}k∈[`] are the honestly generates input labels for the garbled circuit P̃i,t+1.

– If i 6= i∗ then(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ,
(

otsi2,t,α∗,β∗ , {labi,t+1
k,sti,k

}k∈[`]\{h}

))
,

where {labi,t+1
k,sti,k

}k∈[`] are the honestly generated input labels for the garbled circuit P̃i,t+1.

24

The indistinguishability between hybrids Ht,1 and Ht−1 follows by |H| invocations of security
of the garbling scheme. The reduction is analogous to the semi-honest case.

• Ht,2: Skip this hybrid, if i∗ 6∈ H. This hybrid is same as Ht,1 except that we change how
S generates the Round-1 message on behalf of Pi∗ . Specifically, the simulator S generates
ots1,t,α,β as is done in the Ht. In a bit more detail,

for all α, β ∈ {0, 1}, S generates ots1,t,α,β as OT1(σt,α,β,Zt;ωt,α,β) rather than OT1(σt, α, β, vi,h⊕
NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

Indistinguishability between hybrids Ht,1 and Ht,2 follows directly by a sequence of 3 sub-
hybrids each one relying on the receiver’s security of underlying semi-honest oblivious transfer
protocol. Observe here that the security reduction crucially relies on the fact that P̃i,t only
contains ωt,α∗,β∗ (i.e., does not have ωt,α,β for α 6= α∗ or β 6= β∗). This reduction is exactly
similar to the semi-honest case.

• Ht,3: Skip this hybrid if there does not exist i 6= i∗ such that i ∈ H. In this hybrid, we
change how S generates the otsi2,t,α,β on behalf of every honest party Pi such that i ∈ H \{i∗}
for all choices of α, β ∈ {0, 1}. More specifically, S only generates one of these four values;
namely, otsi2,t,α∗,β∗ which is now generated as OT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1

h,Zt
, labi,t+1

h,Zt
) instead

of OT2(σt,α∗,β∗ , ots1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1).

Indistinguishability between hybrids Ht,2 and Ht,3 follows directly from the sender’s security
of underlying malicious oblivious transfer protocol. Finally, observe that Ht,3 is the same as
hybrid Ht.

6.4 Extensions

As in the semi-honest case, we discuss several extensions to the construction of two-round mali-
ciously secure MPC.

Fairness. Assuming honest majority we obtain fairness in three rounds using techniques from
[GLS15]. Specifically, we can change the function description to output a n/2-out-of-n secret
sharing of the output. In the last round, the parties exchange their shares to reconstruct the
output. Note that since the corrupted parties is in minority, it cannot learn the output of the
function even if it obtains the second round messages from all the parties. Note that Gordon et al.
[GLS15] showed that three rounds are necessary to achieve fairness. Thus this is optimal.

Semi-malicious security in Plain Model. We note that a simple modification of our construc-
tion in Figure 3 can be made semi-maliciously secure in the plain model. The modification is to use
a two-round OT secure against semi-malicious receiver and semi-honest sender (e.g.,[NP01]) and
achieve equivocability by sending two OT1 messages in the first round having the same receiver’s
choice bit. Note that this is trivially equivocal since a simulator can use different choice bits in the
OT1 message. On the other hand, since a semi-malicious party is required to follow the protocol,
it will always use the same choice bit in both the OT1 messages.

25

References

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
FOCS, pages 166–175, Rome, Italy, October 17–19, 2004. IEEE Computer Society
Press.

[AIK05] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. In 20th Annual IEEE Conference on
Computational Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA, pages
260–274, 2005.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 119–135, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In David Pointcheval and Thomas Johans-
son, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501, Cambridge,
UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure compu-
tation without authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 361–377, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Heidelberg, Germany.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229, Santa
Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In 20th ACM STOC, pages 103–112, Chicago, IL,
USA, May 2–4, 1988. ACM Press.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for se-
cure computation under DDH. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539, Santa Barbara, CA,
USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Opti-
mizing rounds, communication, and computation. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
163–193, Paris, France, May 8–12, 2017. Springer, Heidelberg, Germany.

26

[BH15] Mihir Bellare and Viet Tung Hoang. Adaptive witness encryption and asymmetric
password-based cryptography. In Jonathan Katz, editor, PKC 2015, volume 9020 of
LNCS, pages 308–331, Gaithersburg, MD, USA, March 30 – April 1, 2015. Springer,
Heidelberg, Germany.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–
796, Raleigh, NC, USA, October 16–18, 2012. ACM Press.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503–513, Baltimore, MD,
USA, May 14–16, 1990. ACM Press.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE with
short ciphertexts. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 190–213, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany.

[Can00a] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[Can00b] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.
org/2000/067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145, Las Vegas, NV, USA, October 14–17, 2001.
IEEE Computer Society Press.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June
2004, Pacific Grove, CA, USA, page 219, 2004.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols, 2005. Version of December 2005. Available at http://eccc.uni-trier.

de/eccc-reports/2001/TR01-016.

[CCM98] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a
memory-bounded receiver. In 39th FOCS, pages 493–502, Palo Alto, CA, USA, Novem-
ber 8–11, 1998. IEEE Computer Society Press.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 33–65,
Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany.

27

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503, Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In 51st FOCS, pages 541–550, Las
Vegas, NV, USA, October 23–26, 2010. IEEE Computer Society Press.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In Rosario Gennaro and Matthew J. B. Robshaw, edi-
tors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 630–656, Santa Barbara,
CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281, Santa Barbara, CA,
USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 537–569, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[DHRS04] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round
oblivious transfer in the bounded storage model. In Moni Naor, editor, TCC 2004,
volume 2951 of LNCS, pages 446–472, Cambridge, MA, USA, February 19–21, 2004.
Springer, Heidelberg, Germany.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st FOCS, pages
308–317, St. Louis, Missouri, October 22–24, 1990. IEEE Computer Society Press.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178, Bethesda, MD, USA, May 31 –
June 2, 2009. ACM Press.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE
Computer Society Press.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 74–94, San Diego, CA, USA, February 24–26, 2014.
Springer, Heidelberg, Germany.

[GGMP16] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure multiparty
RAM computation in constant rounds. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 491–520, Beijing, China, Octo-
ber 31 – November 3, 2016. Springer, Heidelberg, Germany.

28

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 467–476, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 405–422, Copenhagen, Denmark,
May 11–15, 2014. Springer, Heidelberg, Germany.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
CCS 12, pages 513–524, Raleigh, NC, USA, October 16–18, 2012. ACM Press.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In Venkatesan
Guruswami, editor, 56th FOCS, pages 210–229, Berkeley, CA, USA, October 17–20,
2015. IEEE Computer Society Press.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
ACM STOC, pages 449–458, Portland, OR, USA, June 14–17, 2015. ACM Press.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness
and guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82, Santa Barbara,
CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 339–358, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg,
Germany.

[GOVW12] Sanjam Garg, Rafail Ostrovsky, Ivan Visconti, and Akshay Wadia. Resettable statisti-
cal zero knowledge. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
494–511, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Heidelberg, Germany.

29

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC
from bilinear maps. In 58th FOCS, pages 588–599. IEEE Computer Society Press,
2017.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. Journal of Cryptology, 25(1):158–193, January 2012.

[HY16] Carmit Hazay and Avishay Yanai. Constant-round maliciously secure two-party com-
putation in the RAM model. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part I, volume 9985 of LNCS, pages 521–553, Beijing, China, October 31 – November 3,
2016. Springer, Heidelberg, Germany.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg,
Germany.

[Jou04] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptol-
ogy, 17(4):263–276, September 2004.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
719–734, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju,
editor, 12th SODA, pages 448–457, Washington, DC, USA, January 7–9, 2001. ACM-
SIAM.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract).
In 29th ACM STOC, pages 294–303, El Paso, TX, USA, May 4–6, 1997. ACM Press.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 217–
238, Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer,
Heidelberg, Germany.

30

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of
secure reactive systems. In S. Jajodia and P. Samarati, editors, ACM CCS 00, pages
245–254, Athens, Greece, November 1–4, 2000. ACM Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

A Our Model

Below we briefly review UC security. For full details see [Can01]. A large part of this introduction
has been taken verbatim from [CLP10]. A reader familiar with the notion of UC security can safely
skip this section.

A.1 The basic model of execution

Following [GMR88, Gol01], a protocol is represented as an interactive Turing machine (ITM), which
represents the program to be run within each participant. Specifically, an ITM has three tapes that
can be written to by other ITMs: the input and subroutine output tapes model the inputs from and
the outputs to other programs running within the same “entity” (say, the same physical computer),
and the incoming communication tapes and outgoing communication tapes model messages received
from and to be sent to the network. It also has an identity tape that cannot be written to by the
ITM itself. The identity tape contains the program of the ITM (in some standard encoding) plus
additional identifying information specified below. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifer that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITM
belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance.
Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent some
administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most nc, where n is the overall number of bits
written on the input tape of M in this run. (In fact, in order to guarantee that the overall protocol
execution process is bounded by a polynomial, we define n as the total number of bits written to
the input tape of M , minus the overall number of bits written by M to input tapes of other ITMs.;
see [Can01].)

A.2 Security of protocols

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in an adversarial environment is formalized. Next,

31

an “ideal process” for carrying out the task at hand is formalized. In the ideal process the parties
do not communicate with each other. Instead they have access to an “ideal functionality,” which is
essentially an incorruptible “trusted party” that is programmed to capture the desired functionality
of the task at hand. A protocol is said to securely realize an ideal functionality if the process of
running the protocol amounts to “emulating” the ideal process for that ideal functionality. Below
we overview the model of protocol execution (called the real-life model), the ideal process, and the
notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversary A that controls the communication among the parties, and an
environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter n ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by the
environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on
the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [Can04, BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

In this work, we consider the setting of static corruptions. In the static corruption setting, the
set of corrupted parties is determined at the start of the protocol execution and does not change
during the execution.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . . as
described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random variable
describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the

32

ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for
functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is
null.)) In addition, F can interact with the adversary according to its code. Whenever F outputs
a value to a party, the party immediately copies this value to its own output tape. We call the
parties in the ideal protocol dummy parties. Let Π(F) denote the ideal protocol for functionality
F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running Π,
or it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition A.1 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction for
UC security we have EXECF ,S,Z ≈ EXECπ,A,Z .

Definition A.2 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes
F if Π UC-emulates the ideal process Π(F).

A.3 Hybrid protocols

Hybrid protocols are protocols where, in addition to communicating as usual as in the standard
model of execution, the parties also have access to (multiple copies of) an ideal functionality. Hybrid
protocols represent protocols that use idealizations of underlying primitives, or alternatively make
trust assumptions on the underlying network. They are also instrumental in stating the universal
composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid protocol with access to
an ideal functionality F), the parties may give inputs to and receive outputs from an unbounded
number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the input tape
of that copy. Similarly, each copy of F writes the output values to the subroutine output tape of
the corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

The copies of F are differentiated using their sub-session IDs (see UC with joint state [CR03]).
All inputs to each copy and all outputs from each copy carry the corresponding sub-session ID.
The model does not specify how the sub-session IDs are generated, nor does it specify how parties
“agree” on the sub-session ID of a certain protocol copy that is to be run by them. These tasks
are left to the protocol. This convention seems to simplify formulating ideal functionalities, and
designing protocols that securely realize them, by freeing the functionality from the need to choose

33

the sub-session IDs and guarantee their uniqueness. In addition, it seems to reflect common practice
of protocol design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

The universal composition operation. We define the universal composition operation and
state the universal composition theorem. Let ρ be an F-hybrid protocol, and let Π be a protocol
that securely realizes F . The composed protocol ρΠ is constructed by modifying the code of each
ITM in ρ so that the first message sent to each copy of F is replaced with an invocation of a new
copy of Π with fresh random input, with the same SID (different invocations of F are given different
sub-session IDs), and with the contents of that message as input. Each subsequent message to that
copy of F is replaced with an activation of the corresponding copy of Π, with the contents of that
message given to Π as new input. Each output value generated by a copy of Π is treated as a
message received from the corresponding copy of F . The copy of Π will start sending and receiving
messages as specified in its code. Notice that if Π is a G-hybrid protocol (i.e., ρ uses ideal evaluation
calls to some functionality G) then so is ρΠ.

The universal composition theorem. Let F be an ideal functionality. In its general form,
the composition theorem basically says that if Π is a protocol that UC-realizes F then, for any F-
hybrid protocol ρ, we have that an execution of the composed protocol ρΠ “emulates” an execution
of protocol ρ. That is, for any adversary A there exists a simulator S such that no environment
machine Z can tell with non-negligible probability whether it is interacting with A and protocol ρΠ

or with S and protocol ρ, in a UC interaction. As a corollary, we get that if protocol ρ UC-realizes
F , then so does protocol ρΠ. 5

Theorem A.3 (Universal Composition [Can01].) Let F be an ideal functionality. Let ρ be a
F-hybrid protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some functionality
G, then so does ρΠ.

A.4 The Common Reference/Random String Functionality

In the common reference string (CRS) model [CF01, CLOS02], all parties in the system obtain
from a trusted party a reference string, which is sampled according to a pre-specified distribution
D. The reference string is referred to as the CRS. In the UC framework, this is modeled by an
ideal functionality FDCRS that samples a string ρ from a pre-specified distribution D and sets ρ as
the CRS. FDCRS is described in Figure 4.

When the distribution D in FDCRS is sent to be the uniform distribution (on a string of appro-
priate length) then we obtain the common random string functionality denoted as FCRS .

5The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system.

34

Functionality FD
CRS

FD
CRS runs with parties P1, . . . Pn and is parameterized by a sampling algorithm D.

1. Upon activation with session id sid proceed as follows. Sample ρ = D(r), where r denotes
uniform random coins, and send (crs, sid, ρ) to the adversary.

2. On receiving (crs, sid) from some party send (crs, sid, ρ) to that party.

Figure 4: The Common Reference String Functionality.

A.5 General Functionality

We consider the general-UC functionality F , which securely evaluates any polynomial-time (pos-
sibly randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The functionality Ff is parameterized
with a function f and is described in Figure 5. In this paper we will only be concerned with the
static corruption model.

Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running with parties P =
{P1, . . . Pn} (of which some may be corrupted) and an adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid,P, Pi, xi) to the
functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn)← f(x1, . . . , xn). For every Pi
that is corrupted send adversary S the message (output, sid,P, Pi, yi).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality outputs
(output, sid,P, Pi, yi) to Pi. (And ignores the message if inputs from all parties in P
have not been received.)

Figure 5: General Functionality.

B Equivocal Receiver’s Security in Oblivious Transfer

Using standard techniques for the literature (e.g. [CLOS02]) it is possible to add equivocal receiver’s
security to any OT protocol. We sketch a construction in below for the sake of completeness.

Lemma B.1 Assuming two-round maliciously secure OT protocol, there exists a two-round mali-
ciously secure OT protocol with equivocal receiver’s security.

Proof Given a two-round maliciously secure OT protocol (K ′OT,OT′1,OT′2,OT′3) we give a two-
round maliciously secure OT protocol (KOT,OT1,OT2,OT3) that additionally achieves the equiv-

35

ocal receiver’s security. We also use a pseudorandom generator g : {0, 1}λ → {0, 1}3λ. Our
construction is as follows:

• KOT(1λ): Output σ := (σ′, r) where σ′ ← K ′OT(1λ) and r ← {0, 1}3λ.

• OT1(σ = (σ′, r), β):

1. Sample x← {0, 1}λ. If β = 0 then set y := g(x) and y := r ⊕ g(x) otherwise.

2. For each i ∈ [λ], prepare (ots0
1,i, ω

0
i)← OT′1(σ′, xi).

3. For each i ∈ [λ], prepare (ots1
1,i, ω

1
i)← OT′1(σ′, xi).

4. Output ots1 := (y, {ots0
1,i, ots1

1,i}i∈[λ]) and ω :=
(
β, {ω0

i }i∈[λ]

)
if β = 0 and ω :=(

β,
{
ω1
i

}
i∈[λ]

)
otherwise.

• OT2(σ = (σ′, r), ots1 = (y, {ots0
1,i, ots1

1,i}i∈[λ]), (s0, s1)): Let Cy,s be a circuit with y ∈ {0, 1}3λ

and s hardwired in it which on input x ∈ {0, 1}λ outputs s if y = g(x) and ⊥ otherwise. OT2

proceeds as follows:

1. Obtain (C̃0, {lab0
i,b}i∈[λ],b∈{0,1})← Garble(1λ, Cy,s0).

2. Obtain (C̃1, {lab1
i,b}i∈[λ],b∈{0,1})← Garble(1λ, Cr⊕y,s1).

3. For each i ∈ [λ], obtain ots0
2,i ← OT′2(σ′, ots0

1,i, (lab0
i,0, lab0

i,1)).

4. For each i ∈ [λ], obtain ots1
2,i ← OT′2(σ′, ots1

1,i, (lab1
i,0, lab1

i,1)).

5. Output ots2 := (C̃0, C̃1, {ots0
2,i, ots1

2,i}i∈[λ]).

• OT3

(
σ = (σ′, r), ots2 = (C̃0, C̃1, {ots0

2,i, ots1
2,i}i∈[λ]), ω =

(
β,
{
ωβi

}
i∈[λ]

))
: Compute

1. For each i ∈ [λ], recover labi := OT′3(σ′, otsβ2,i, ω
β
i).

2. Output Eval(C̃β, {labi}i∈[λ]).

The correctness of the above described OT protocol follows directly from the correctness of
the underlying cryptographic primitives. We now prove sender security and equivocal receiver’s
security.

Sender’s Security. The sender’s security of (KOT,OT1,OT2,OT3) follows from the sender’s
security of (K ′OT,OT′1,OT′2,OT′3) and the simulation security of the garbling scheme. We start
by describing the construction of Ext = (Ext1,Ext2) using the extractor Ext′ = (Ext′1,Ext,′2) for
(K ′OT,OT′1,OT′2,OT′3).

• Ext1(1λ) executes (σ′, τ)← Ext′1(1λ) and r ← {0, 1}3λ and outputs σ := (σ′, r) and τ .

• Ext2

(
τ, ots1 =

(
y,
{

ots0
1,i, ots1

1,i

}
i∈[λ]

))
proceeds as follows: For each i ∈ [n], obtain x0,i :=

Ext′2(τ, ots1,i). If g(x0) = y then output 0 and 1 otherwise.

36

Now we argue that using this extractor Ext = (Ext1,Ext2), for any PPT adversary A, the distribu-
tions INDREAL

A (1λ,K0,K1) and INDIDEAL
A (1λ,K0,K1) are computationally indistinguishable. We

argue this via the following sequence of hybrids.

• H0: This hybrid is the same as INDREAL
A (1λ,K0,K1).

• H1: In this hybrid we change how the σ′ in σ = (σ′, r) is generated. Specifically, we use the
extractor Ext′1 above to generate it. Additionally, we use Ext′2 to recover a value of x0 and x1

that the receiver provides in {ots0
1,i}i∈[λ] and {ots1

1,i}i∈[λ], respectively.

Indistinguishability between H0 and H1 can be reduced directly to the sender’s security of
the underlying OT protocol. Additionally, by a counting argument we make the claim that
for any x0, x1 over the random choices of y we have that Pr[g(x0) = y ∧ g(x1) = r ⊕ y] is
negligible. Thus, we set β = 0 if g(x0) = y and 1 otherwise. This is the same as the value
extracted by Ext2 above.

• H2: In this hybrid we change how the values ots1−β
2,i are generated for each i ∈ [λ]. More

specifically, for each i ∈ [λ], we generate ots1−β
2,i ← OT2

(
σ′, ots1−β

1,i , (lab1−β
i,x1−β,i

, lab1−β
i,x1−β,i

)
)

.

Indistinguishability between H1 and H2 can be reduced to the receiver’s security of the
underlying OT protocol.

• H3: In this hybrid we change the garbled C̃1−β to the simulate circuit generated via SimG

with the output ⊥ hardwired (i.e. it is generated as SimG(1λ,⊥)).

Indistinguishability between H2 and H3 reduces to the security of the garbling scheme.

Equivocal Receiver’s Security. We start by providing the PPT simulator SimEq(1
λ) which

proceeds as follows:

1. Generate σ′ ← K ′OT(1λ) and r := g(x0)⊕ g(x1) where x0, x1 ← {0, 1}λ. Set σ := (σ′, r).

2. Sample x← {0, 1}λ. Set y := g(x0).

3. For each i ∈ [λ], prepare (ots0
1,i, ω

0
i)← OT′1(σ′, x0,i).

4. For each i ∈ [λ], prepare (ots1
1,i, ω

1
i)← OT′1(σ′, x1,i).

5. Output
(
σ := (σ′, r), ots1 := (y, {ots0

1,i, ots1
1,i}i∈[λ]), ω0 :=

(
β, {ω0

i }i∈[λ]

)
, ω1 :=

(
β,
{
ω1
i

}
i∈[λ]

))
.

We are left to argue that for each β, the distribution (σ, ots1, ωβ) is indistinguishable for the
distribution of the honestly generated values. We sketch the argument for the case where β = 0.
The argument for the case where β = 1 is analogous.

• H0: This hybrid corresponds to the real distribution. Namely, we set σ = (σ′, r)← KOT(1λ)
and (ots1 = (y, {ots0

1,i, ots1
1,i}i∈[λ]), ωβ)← OT1(σ, β).

• H1: In this hybrid, we change how r in generated. More specifically, we set r as g(x)⊕ g(x′)
where x, x′ ← {0, 1}λ and use the same x in the generation of ots1.

Indistinguishability between hybrids H0 and H1 follows directly from the security of the
pseudorandom generator.

37

• H2: In this hybrid we change how ots1
1,i values are generated. Specifically, for each i ∈ [λ], we

set (ots1
1,i, ω

1
i) ← OT′1(σ′, x′i) instead of (ots1

1,i, ω
1
i) ← OT′1(σ′, xi). Note that H2 is the same

as the distribution generated by SimEq for β = 0 case.

Indistinguishability between hybrids H1 and H2 follows from the receiver’s security of the
underlying OT protocol.

This completes the argument.

C Completing the Proof of Lemma 5.2

Claim C.1 Assuming the security of garbling scheme for circuits, Ht−1 ≈c Ht,1.

Proof Let A be an adversary corrupting the set of parties [n] \H that can distinguish between
Ht and Ht,1 with non-negligible probability. We construct an adversary B breaking the security of
garbling scheme.
B chooses an uniform random tape for every j 6∈ H and interacts with the adversary A. B

computes the first round message zi, {ots1,t,α,β}t∈Ai,α,β∈{0,1} for every i ∈ H as in Ht−1. B runs in
its “head” a faithful execution of the protocol Φ using both honest and corrupted parties inputs.
This yields the protocol transcript Z and the shared local state st∗. For every i ∈ H, it generates
the second round message as follows:

1. Set lab
i,T+1

:= {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈ {0, 1} labi,T+1
k,b := 0λ.

2. for each w from T down to t+ 1,

(a) Parse φw as (i∗, f, g, h).

(b) If i = i∗ then compute (where P is described in Figure 2)(
P̃i,w, lab

i,w)← Garble(1λ,P[i, φw, vi, {ωw,α,β}α,β,⊥, lab
i,w+1

]).

(c) If i 6= i∗ then for every α, β ∈ {0, 1}, set otsi2,w,α,β ← OT2(ots1,w,α,β, labi,w+1
h,0 , labi,w+1

h,1)
and compute(

P̃i,w, lab
i,w)← Garble(1λ,P[i, φw, vi,⊥, {otsi2,w,α,β}α,β, lab

i,w+1
]).

3. For every i ∈ H, let stti be the secret local state of party Pi before the beginning of the tth

round of the computation phase. Interact with the garbled circuits challenger and give stti
as the challenge input and P[i, φt, vi, {ωt,α,β}α,β,⊥, lab

i,t+1
] as the challenge circuit if i = i∗

and P[i, φt, vi,⊥, {otsi2,t,α,β}α,β, lab
i,t+1

] as the challenge circuit if i 6= i∗ where otsi2,t,α,β ←
OT2(ots1,t,α,β, labi,t+1

h,0 , labi,t+1
h,1). Obtain P̃i,t and {labi,tk }k∈[`].

4. for each w from t− 1 down to 1:

(a) Parse φw as (i∗, f, g, h).

(b) Set α∗ := st∗f , β∗ = st∗g and γ∗ := st∗h.

38

(c) If i = i∗, compute(
P̃i
∗,t, {labi

∗,w
k }k∈[`]

)
← SimG

(
1λ,
(

(α∗, β∗, γ∗), ωw,α∗,β∗ , {labi
∗,w+1
k }k∈[`]

))
(d) Else, compute otsi2,w,α∗,β∗ as OT2(ots1,t,α∗,β∗ , labi,w+1

h , labi,w+1
h) and generate

(
P̃i,w, {labi,wk }k∈[`]

)
← SimG

(
1λ,
(

otsi2,w,α∗,β∗ , {labi,w+1
k }k∈[`]\{h}

))
5. Send

(
{P̃i,w}w∈[T],{labi,1k }k∈[`]

)
to every other party.

Notice that if the garbling P̃i,t is generated using the honest procedure then the messages sent
to A are distributed identically to Ht−1. Else, they are distributed identically to Ht,1. Thus, B
breaks the security of garbling scheme for circuits which is a contradiction.

Claim C.2 Assuming the receiver security of oblivious transfer, we have Ht,1 ≈c Ht,2.

Proof Let A be an adversary corrupting the set of parties [n] \H that can distinguish between
Ht,1 and Ht,2 with non-negligible probability. We construct an adversary B breaking the receiver
security of oblivious transfer.
B chooses an uniform random tape for every j 6∈ H and interacts with the adversary A. For

every i ∈ H, B generates zi and ots1,w,α,β for every w ∈ ∪i∈HAi \ {t} as in Ht,1. B runs in
its “head” a faithful execution of the protocol Φ using both honest and corrupted parties inputs.
This yields the protocol transcript Z and the shared local state st∗. Set α∗ := st∗f , β∗ = st∗g and
γ∗ := st∗h. Let φt = (i∗, f, g, h). For (α, β) 6= (α∗, β∗), interact with the OT challenger and send
Zt, vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β) as the challenge bits. Obtain ots1,t,α,β as the challenge first OT
message. Sample ωt,α∗,β∗ uniformly at random and compute ots1,t,α∗,β∗ as OT1(1λ,Zt;ωt,α∗,β∗). For
each i ∈ H, send zi, {ots1, w, α, β}w∈Ai,α,β∈{0,1} on behalf of the honest party. Generate the second
round message as in Ht,1.

Notice that if challenge bit is Zt then the distribution of messages to A is identical to Ht,2.
Else, it is identical to Ht,1. Thus, B breaks the receiver security of oblivious transfer.

39

