
Estonian Voting Verification Mechanism
Revisited Again

Ivo Kubjas1, Tiit Pikma1, and Jan Willemson2,3

1 Smartmatic-Cybernetica Centre of Excellence for Internet Voting
Ülikooli 2, 51003 Tartu, Estonia
{ivo,tiit}@ivotingcentre.ee

2 Cybernetica AS
Ülikooli 2, 51003 Tartu, Estonia

janwil@cyber.ee
3 Software Technology and Applications Competence Center

Ülikooli 2, 51003 Tartu, Estonia

Abstract. Recently, Muş, Kiraz, Cenk and Sertkaya proposed an im-
provement over the present Estonian Internet voting vote verification
scheme [6, 7]. This paper points to the weaknesses and questionable de-
sign choices of the new scheme. We show that the scheme does not fix the
vote privacy issue it claims to. It also introduces a way for a malicious
voting application to manipulate the vote without being detected by the
verification mechanism, hence breaking the cast-as-intended property. In
addition, the proposal would seriously harm usability of the Estonian
vote verification scheme.

1 Introduction

Estonia is one of the pioneers in Internet voting. First feasibility studies were
conducted already in early 2000s, and the first legally binding country-wide
election event with the option of casting the vote over Internet was conducted in
2005. Up to 2015, this mode of voting has been available on every one of the 8
elections. In 2014 European Parliament and 2015 Parliamentary elections, more
than 30% of all the votes were cast over Internet [9].

During the period 2005–2011, the basic protocol stayed essentially the same,
mimicking double envelope postal voting. The effect of the inner envelope was
achieved by encrypting the vote with server’s public key, and the signed outer
envelope was replaced by using a national eID signing device (ID card, Mobile-ID
or Digi-ID) [1].

In 2011, several potential attacks were observed against this rather simple
scheme. The most significant one of them was developed by a student who im-
plemented proof-of-concept malware that could have either changed or blocked
the vote without the voter noticing it.

To counter such attacks, an individual verification mechanism was developed
for the 2013 elections [5]. The mechanism makes use of an independent mobile
computing device that downloads the vote cryptogram from the storage server

and brute forces it using the encryption random seed, obtained from the voter’s
computer via a QR code. The value of the vote corresponding to the downloaded
cryptogram is then displayed on the device screen, and the voter has to make
the decision about its match to her intent in her head.

The complete voting and verification protocol is shown in Figure 1.

1. Authentication

2. Candidate list L

3. Sigv(Encspub(cv, r))

4. Vote reference vr

5. r, vr 6.
vr

7.
E
nc

s p
u
b
(cv
, r

),
L

(8. c
v)

Fig. 1. Estonian Internet voting and verification protocol

In the figure, cv stands for the voter’s choice, r is the random seed used for
encryption, vr is the vote reference used to identify the vote on the server and
spub is the election system’s public key.

A recent report by Muş et al. [6, 7] discusses the Estonian vote verification
scheme and draws attention to its weak privacy properties. It also proposes
an improvement over the existing system (we will give technical details of the
proposal in Section 2.2). The objective of this paper is to dispute the motivation
of [6] and show vulnerabilities of the proposed improvement.

2 Analysis of the scheme by Muş et al.

2.1 Assumptions and motivation of [6]

Individual vote verification was introduced to Estonian Internet voting scheme
in 2013 to detect potential vote manipulation attacks in the voter’s computer [1,
5]. It was never designed as a privacy measure for a very simple reason.

Since the verification application needs access to the QR code displayed on
the screen of the voter’s computer, verification can only happen in close physical
proximity of the voting action.4 But if this is the case, the verifier can anyway

4 Of course we assume here that the voter’s computer is honest in the sense that it
does not send the QR code anywhere else. But if it would be willing to do so in order
to break the voter’s privacy, it could already send away the vote itself.

observe the vote on the computer screen. For this reason we disagree that the po-
tential privacy leak from the verification application makes vote buying attacks
easier, as claimed in [6].

It is true that a malicious verification application sending the vote out of the
device would be unintended behavior. However, the authors of [6] make several
false assessments analyzing this scenario.

Firstly they claim that “all voter details including the real vote are displayed
by the verification device.” In fact, the vote is the only piece of data actually
displayed. Note that following the protocol [5], the verification device only ob-
tains the vote encrypted with the voting system’s public key. The signature is
being dropped before the cryptogram is sent out for verification from the server,
so the verification device has no idea whose vote it is actually verifying.

Sure, a malicious verification application can make some educated guesses
about the owner of the device by looking at social media accounts, emails, etc.
However, this is something a privacy-concerned voter can counter by using a
truly independent verification application/device. The voter may for example
borrow a mobile device from a friend or a family member.

Second, the authors of [6] argue that verification privacy leaks may be ag-
gregated to obtain the partial results of the election before it has concluded. We
feel that this scenario is too far-fetched. First, only about 4% of the Internet vot-
ers actually verify their votes [3]. Also, nothing is known about the preference
biases the verifiers may have, so the partial results obtained would be rather
low-quality. There are much easier, better-quality and completely legal methods
of obtaining the result (like polls). Hence this part of the motivation is not very
convincing.

Third, getting the user to accept a malicious verification application from
the app store is not as trivial as the report [6] assumes. For example Google
Play store displays various reliability information about the application like the
number it has been installed and the average mark given by the users. When
the voter sees several competing applications, a smaller number of installations
should already give the first hint that this is not the officially recommended
verification app.

At the time of this writing (December 2016), the official application “Val-
imised”5 is the only one under that or similar name, with more than 10,000
installations and an average score of about 3.6 points out of 5. If the attacker
wants to roll out his own version, he would need to beat those numbers first.
Occurrence of an alternative verification app is completely acceptable per se,
but it will be widely visible. App stores can and are being constantly monitored,
and any independent verification apps would undergo an investigation. In case
malicious behavior is detected, the malicious applications can be requested to
be removed from the app store.

5 “Valimised” means “Elections” in Estonian.

2.2 Description of the scheme

The scheme proposed in [6] extends the Estonian vote verification protocol by
adding another parameter q to the scheme. The role of q is to serve as a random,
voter-picked verification code that will be encrypted using the hash of the vote
cryptogram h = H(Encspub

(cv, r)) as a symmetric key (see Figure 2).

1. Authentication

2. Candidate list L = {c1, . . . , cm}

3. Sigv(Encspub(cv, r)), q

4. Vote reference vr

5. r, vr 6.
vr

7.
Sy
m
E
nc

h
(q

),
L(8. q

1 , . . . , q
m)

Fig. 2. Proposed update to the Estonian protocol

The verification mechanism will also be altered accordingly. In the original
Estonian verification scheme, the verification application goes through the candi-
date list and tries to re-create vote cryptogram, using the random seed obtained
from the voting application via a QR code. In the modification proposed by [6],
the candidate list is also traversed in a similar manner, but the hashes of all the
vote cryptogram candidates are used as symmetric keys to try to decrypt q.

The trick is that even an incorrect symmetric decryption key leads to some
sort of a decrypted value qi, so that the task of the verifier becomes recognizing
the correct one in the list of decrypted values q1, q2, . . . , qm (where m is the
number of election candidates) displayed to her.

More formally, let us have the candidate list L = {c1, c2, . . . , cm}. The ver-
ification application computes hi = H(Encspub

(ci, r)) for i = 1, 2, . . . ,m and
displays the list {q1, q2, . . . , qm} where

qi = SymDechi
(SymEnch(q)) (i = 1, 2, . . . ,m) . (1)

The voter accepts verification if q = qi, where ci was the candidate of her choice.

2.3 Analysis of the scheme – privacy and usability

Even though clever conceptually, the scheme of Muş et al. fails in usability, and
this will unfortunately lead to considerable weakening of the protocol.

First and foremost, humans are notoriously poor random number genera-
tors [10]. This is also acknowledged by the authors of the scheme, so they propose
not to require the user to generate the entire value of q, but only 32 rightmost
bits denoted as qright. The remaining bits qleft would be generated by the voting
application, so that q = qleft ‖ qright. In the authors’ vision, the 32 bits could
be asked from the voter in the form of 4 characters, and these characters would
later also be displayed on the screen of the verification device.

Such an approach would assume that every possible byte has a corresponding
keyboard character. However, this is clearly not true. Capital and lower-case
letters, numbers and more common punctuation marks altogether give about
70–75 symbols, which amounts to slightly over 6 bits of entropy. Hence, four-
letter human entered codes can in practice have no more than 25 bits worth of
randomness.

Achieving this theoretical maximum assumes that humans would select every
character for every position equally likely and independently. This is clearly not
the case, and a relatively small set of strings like “1234”, “aaaa” or “qwer” may
be expected to occur much more frequently than others. This observation gives
the first simple attack against the proposed scheme – the attacker can observe
the output of the verification application and look for some of these frequent
codes.

Even if the voter takes care and selects a rather random-looking 4-character
pattern, the attacker still has a remarkable edge. Namely, when the 32-bit parts
of the decrypted values are converted into characters, some of these characters
may fall out of the ∼75 character set. In fact, several of the 256 possible byte
values do not have a printable character assigned to them at all. Spotting such
a code, the adversary can disregard that one immediately.

To give a rough quantification of the attacker’s success probability, assume
that the set C of characters used by the voter to input a code consists of 75
elements. When in the equation (1) we have h 6= hi, the resulting values qi
(and their 4-byte code parts qi,right) are essentially random (assuming the un-
derlying symmetric encryption-decryption primitive behaves as a pseudorandom
permutation).

This means that the probability that one single character of an incorrect
qi,right falls outside of the set C is 256−75

256 ≈ 0.707. The probability that at least
one of the four characters falls outside of this set is

1−
(

1− 256− 75

256

)4

≈ 0.993

which is very-very high. The attacker will have an excellent chance of spotting
the correct code, since with very high probability there are only very few candi-
dates qi,right that have all the characters belonging to the set C. This observation
completely breaks the privacy claims of [6].

Another usability problem is the need to display the list of all candidate
values of qright on the screen of the verification device. The list has the same
number of elements as there are candidates in a given district. In case of Estonian

elections, this number varies between tens and hundreds, with the most extreme
cases reaching over 400. It is unrealistic to expect the voter to scroll through
this amount of unintuitive values on a small screen.

Even worse – when the user really scrolls through the list until her candidate
of choice has been found, we obtain a side channel attack. A malicious verifi-
cation device may observe the moment when the user stops scrolling, making
an educated guess that the correct candidate number must have then been dis-
played on the screen. This attack does not lead to full disclosure, but may still
reveal the voter’s party preference when the candidates of one party are listed
sequentially (as they are in the Estonian case).

2.4 Vote manipulation attack

The core motivation of introducing an individual verifiability mechanism is to
detect vote manipulation attacks by a malicious voting application. In this Sec-
tion we show that with the updates proposed by Muş et al., vote manipulation
attacks actually become very easy to implement.

Consider an attack model where the attacker wants to increase the number of
votes for a particular candidate cj by manipulating the voting application or its
operational environment. The key to circumventing detection by the verification
mechanism is to observe that the voting application has a lot of freedom when
choosing two random values – r for randomizing the encryption and qleft for
padding the voter-input code. By choosing these values specifically (even the
freedom of choosing r is sufficient), a malicious voting application can make the
vote it submitted for cj to verify as a vote for almost any other candidate ci.

To implement the attack, the attacker needs a pre-computation phase. During
this phase, the attacker fixes his preferred choice cj and the encryption random-
ness r? ∈ R, and computes h = H(Encspub

(cj , r
?)). The attacker can also set

his own q arbitrarily, say, q = 00 . . . 0.
For every possible pair of voter choice ci ∈ L and qright ∈ {0, 1, . . . , 232 − 1},

the attacker tries to find a suitable encryption randomness ri,qright that would
give the last 32 bits of q′ being equal to qright, where

h′ = H(Encspub
(ci, ri,qright)) and q′ = SymDech′(SymEnch(00 . . . 0)) . (2)

If the attacker succeeds in finding such a ri,qright , then later during the voting
phase he casts his vote to the server as Encspub

(cj , r
?), but sends ri,qright to the

verification application. This random seed will cause the voter picked qright to
occur next to the voter’s choice ci. The leftmost non–voter chosen bits of q′

would not match, but they are not important, since they are not shown to the
voter anyway.

The pre-computed values of encryption randomness for all candidates can be
tabulated as in Table 1.

Note that only the last column of this table needs to be stored. Hence the
size of required storage is 232 log2 |R|m, where log2 |R| is the number of bits
required for representing elements in the randomness space R. In practice, the

Table 1. Pre-computation dictionary

qright choice ci ri,qright
0 c1 r1,0
...

...
...

232 − 1 c1 r1,232−1

0 c2 r2,0
...

...
...

232 − 1 c2 r2,232−1

...
...

...
0 cm rm,0

...
...

...
232 − 1 cm rm,232−1

length of the random value is not more than 2048 bits. This means that the size
of the database is 1024m GB. By restricting the randomness space (for example,
by fixing some bits of the random value), we can decrease the table size.

Another option of limiting the storage requirement is referring to the obser-
vations described in Section 2.3. Human users will not be able to make use of
the whole 232 element code space, but at most 225. This will bring the storage
requirement down 27 times to only 8m GB. If the attacker is willing to settle
only with the most common codes, the table will become really small.

Even without reducing the table size, storing it is feasible as hard drives of
several TB are readily available. A malicious voting application only needs one
online query per vote to this database, hence the attacker can for example set
the query service up in a cloud environment.

There are several possible strategies for filling Table 1. We suggest start-
ing from the choice and randomness columns (selecting the randomness truly
randomly) and computing the corresponding qright values. In the latter case the
computation complexity of the pre-computation phase is 232m times one asym-
metric encryption, one hash function application and one symmetric decryption
(see equations (2)). This amount of computation is feasible even for an ordinary
office PC.

This strategy is not guaranteed to 100% succeed, since we may hit the same
value of qright for different inputs ri,qright . To estimate the success probability,
consider generating the table for a fixed election candidate ci. Let us generate
N = 232 random values and use them to compute the corresponding values qright
using the equations (2).

The probability of one specific qright not being hit in one attempt is N−1
N .

Consequently, the probability of not hitting it in N attempts is(
N − 1

N

)N

≈ 1

e
.

Hence, the expected probability of hitting one specific value at least once is
1− 1

e ≈ 0.63.
By linearity of expectation, we may conclude that using 232m computation

rounds, about 63% of the whole table will be filled.
This percentage can be increased allowing more time for computations. For

example, if we would make twice as many experiments, we would get the expected
success probability

1−
(
N − 1

N

)2N

≈ 1− 1

e2
≈ 0.86 .

Allowing four times more computation time would give us already more than
98% of the values for qright filled.

Hence we obtain a vote manipulation attack by a malicious voting application
with very high success rate, essentially invalidating Theorem 2 of [6].

Note that in order to implement this attack, it is not necessary to manipulate
the actual voting application. It is sufficient for the attacker to be able to only
change the values of the vote, random seed and q. He can achieve this e.g. by
manipulating suitable bytes in voter computer’s memory, similar to the vote
invalidation attack from 2015 Estonian Parliamentary elections [4]. The random
value transferred from the voting application to the verification application can
be manipulated by overlaying the QR code that carries it on the voter computer’s
screen similar to the Student’s Attack of 2011 [1].

3 Conclusions and further work

Even though vote privacy was not the primary design goal of the Estonian vote
verification application, it would of course be nice to have extra privacy pro-
tection capabilities. Unfortunately, the proposal made in [6] does not satisfy
elementary usability requirements and is even at the voter’s best effort still com-
pletely vulnerable by just looking at the characters used by the code candidates.

Also, we have demonstrated a vote manipulation attack that can be imple-
mented with reasonable amount of pre-computation by an attacker who manages
to compromise the voting application or voter’s computer. As a result, the ver-
ification application does not fulfill its purpose of ensuring correct operation of
the voting application.

Of course there is still a lot to do to improve the Estonian vote verification
scheme. Better privacy protection would be desirable, but a much more urgent
open problem is guaranteeing independence of the voting and verification plat-
forms [8]. This problem may find its solution when hardware isolation capabilities
of mobile platforms improve, but the level of this improvement remains to be
seen in near future.

The upcoming new Estonian Internet voting protocol will introduce better
digital ballot box integrity measures [2]. One crucial part of these measures
is also augmenting the vote verification app with the capability to check the

correctness of vote registration with the new Registration Authority. This part
of the verification process remains the subject for future development as well.

References

1. Heiberg, S., Laud, P., Willemson, J.: The application of i-voting for Estonian par-
liamentary elections of 2011. In: International Conference on E-Voting and Identity.
LNCS, vol. 7187, pp. 208–223. Springer (2011)

2. Heiberg, S., Martens, T., Vinkel, P., Willemson, J.: Improving the verifiability of
the Estonian Internet Voting scheme. In: The International Conference on Elec-
tronic Voting E-Vote-ID 2016. pp. 213–229. TUT Press (2016)

3. Heiberg, S., Parsovs, A., Willemson, J.: Log Analysis of Estonian Internet Voting
2013–2014. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.) E-Voting and Iden-
tity: 5th International Conference, VoteID 2015, Bern, Switzerland, September 2-4,
2015, Proceedings. LNCS, vol. 9269, pp. 19–34. Springer International Publishing
(2015)

4. Heiberg, S., Parsovs, A., Willemson, J.: Log Analysis of Estonian Internet Voting
2013–2015. Cryptology ePrint Archive, Report 2015/1211 (2015), http://eprint.
iacr.org/2015/1211

5. Heiberg, S., Willemson, J.: Verifiable Internet Voting in Estonia. In: Electronic
Voting: Verifying the Vote (EVOTE), 2014 6th International Conference on. pp.
1–8. IEEE (2014)

6. Muş, K., Kiraz, M.S., Cenk, M., Sertkaya, I.: Estonian Voting Verication Mech-
anism Revisited. Cryptology ePrint Archive, Report 2016/1125 (2016), http:

//eprint.iacr.org/2016/1125

7. Muş, K., Kiraz, M.S., Cenk, M., Sertkaya, I.: Estonian Voting Verication
Mechanism Revisited. arXiv:1612.00668v1 (2016), https://arxiv.org/abs/1612.
00668v1

8. Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine, M.,
Halderman, J.A.: Security analysis of the Estonian internet voting system. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. pp. 703–715. ACM (2014)

9. Vinkel, P., Krimmer, R.: The How and Why to Internet Voting: An Attempt to
Explain E-Stonia. In: The International Conference on Electronic Voting E-Vote-
ID 2016. pp. 239–253. TUT Press (2016)

10. Wagenaar, W.A.: Generation of random sequences by human subjects: A critical
survey of literature. Psychological Bulletin 77(1), 65 (1972)

