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Abstract. PMAC is a simple and parallel block-cipher mode of operation, which
was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with a
(pseudo)random permutation over n-bit strings, PMAC constitutes a provably secure
variable input-length (pseudo)random function. For adversaries making q queries,
each of length at most ` (in n-bit blocks), and of total length σ ≤ q`, the original
paper proves an upper bound on the distinguishing advantage of O(σ2/2n), while
the currently best bound is O(qσ/2n). In this work we show that this bound is tight
by giving an attack with advantage Ω(q2`/2n).
In the PMAC construction one initially XORs a mask to every message block, where
the mask for the ith block is computed as τi := γi · L, where L is a (secret) random
value, and γi is the i-th codeword of the Gray code. Our attack applies more generally
to any sequence of γi’s which contains a large coset of a subgroup of GF (2n).
We then investigate, if the security of PMAC can be further improved by using
τi’s that are k-wise independent, for k > 1 (the original distribution is only 1-wise
independent). We observe that the security of PMAC will not increase in general, even
if the masks are chosen from a 2-wise independent distribution, and then prove that
the security increases to O(q2/2n), if the τi are 4-wise independent. Due to simple
extension attacks, this is the best bound one can hope for, using any distribution
on the masks. Whether 3-wise independence is already sufficient to get this level of
security is left as an open problem.
Keywords: Message Authentication Codes · PMAC · Attack · Masks

1 Introduction
PMAC (for Parallelizable Message Authentication Code) is a block-cipher mode of oper-
ation, introduced by Black and Rogaway at Eurocrypt 2002 [BR02]. The mode, when
instantiated with a block-cipher over {0, 1}n, constitutes a variable input-length pseudo-
random function {0, 1}∗ → {0, 1}n (which is then typically used for message authentica-
tion, hence the name). PMAC is slightly less efficient than, for example, modes based on
CBC MAC, but its main advantage is that unlike CBC-based MACs, it allows to process
the message blocks fully in parallel.

The secret key of PMAC specifies two permutations π, π′ over {0, 1}n, and a function
τ : N → {0, 1}n for determining the masks. On input a message M = m1‖ . . . ‖m`,mi ∈
{0, 1}n, the output is computed as

PMACπ,π′,τ (M) = π′

(⊕̀
i=1

π(mi ⊕ τ(i))
)
. (1)

∗This paper appeared in the IACR Transactions on Symmetric Cryptology(ToSC) 2017, volume 1. This
research was supported by the European Research Council, ERC consolidator grant (682815-TOCNeT).
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In [BR02], the key is just a single key K ∈ K for a block-cipher E : K×{0, 1}n → {0, 1}n,
π, π′ are instantiated both with E(K, .), and the mask function is defined as τ(i) = γi ·L,
where γi is the ith Gray codeword1 and L = E(K, 0). This is a slightly idealized version
of PMAC, we will discuss all the simplifications we make in greater detail in Section 1.3.

1.1 Security of PMAC in the Random Permutation Model
The security of a block-cipher mode of operation is usually analyzed assuming the under-
lying block-cipher under a random secret key realizes a uniformly random permutation. A
bound in this model then implies security when instantiated with a block-cipher, we just
have to add an extra term which bounds the advantage of distinguishing the block-cipher
from a random permutation (i.e., the PRP security of the block-cipher, cf. Eq.(5) in this
paper).

[BR02] proved an upper bound of σ2/2n on the distinguishing advantage against PMAC
for any adversary making a total of q queries, each of length at most ` blocks (of n bits),
and a total of σ ≤ `q blocks. This was later improved to q2`/2n by Minematsu and
Matsushima at FSE’07 [MM07], and then to qσ/2n by Nandi at FSE’10 [Nan10] (note
that qσ can be much less than q2`, if the message lengths vary a lot).

In this work we show that this bound is tight by giving an attack with advantage
Ω(q2`/2n). For this, we show that it is possible to construct q messages M1, . . . ,Mq

(Ma = m
(a)
1 ‖m

(a)
2 ‖ . . . ‖m

(a)
` ), such that for any pair of messages (Ma,Mb),

⊕̀
i=1

π(m(a)
i ⊕ τ(i)) =

⊕̀
i=1

π(m(b)
i ⊕ τ(i)) (2)

for ` − 1 different choices of L (where τ(i) = γi · L). Thus, also the PMAC tags of
Ma,Mb (which additionally permutes the value in Eq. 2) will collide. This directly gives
a distinguishing attack, and even a forgery as now Ma‖X and Mb‖X will collide for any
string X. Moreover, the set of L’s for which two messages collide will be mostly disjoint
for the

(
q
2
)
pairs of messages, so with q messages of length ` we will observe a collision

with probability in the order of q2`/2n.
Recently, Luykx et al. [LPSY16] showed that one can construct a pair of messages

which will collide with probability roughly `/2n, leading to an attack with advantage `/2n
for q = 2 messages. However, their attack does not generalize to q messages. In contrast,
our attack obtains this high collision probability for every of the

(
q
2
)
message pairs.

1.2 k-wise Independent Masks
Several works show that by somewhat changing the construction, one can boost the se-
curity of PMAC [Yas11, Yas12, Zha15] even beyond the q2/2n birthday bound. We inves-
tigate whether one can make the original construction more secure by just changing the
distribution of the masks.

As a warm-up, in Section 4 we prove that if the masks τ1, τ2, . . . are uniform and
independent, then the security indeed increases to O(q2/2n). This is the best we can hope
for under any distribution of masks: One can always query on random messages, and if
a collision is found (which occurs with probability q2/2n), add the same block to both
colliding messages, which will also lead to the same output.

The original distribution of masks in PMAC is only 1-wise independent, so we inves-
tigate if the security increases when using k-wise independent distributions for k > 1.
In Section 6, we show that 2-wise independence in general does not increase security by
constructing a 2-wise independent distribution which, for any set of messages, gives us

1This encoding is chosen to allow for efficient sequential computation of the values γ1 · L, γ2, ·L, . . ..
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exactly the same collision probability as the original distribution. In Section 5 we show
that using any 4-wise independent distribution on masks2 will boost the security to the
optimal O(q2/2n). Whether 3-wise independence is sufficient is left as an open problem.

1.3 Variants of the PMAC Construction

The construction that we analyze is a somewhat simplified version of the actual original
PMAC as proposed in [BR02]. We now discuss the existing differences and the applicability
of our results to other variants.

One difference is that [BR02] specifies a padding which allows it to take as inputs
messages whose length is not a multiple of n, moreover, the last block is not permuted.
Additionally, a final mask (which is fixed and independent of `) is XORed to the state
before the outer permutation is applied. Our attacks and security proofs can be easily
adapted to take these things into account, we chose not to do so for the sake of conceptual
and notational simplicity. In particular, for our attack we choose q messages for the
“simplified” PMAC as in Eq. (1) in a way that maximises the probability of seeing a
collision. XORing a fixed value to the state before applying the outer permutation does
not affect this collision probability. To handle the fact that the last block is not permuted
we can simply add an arbitrary dummy message block to every message. Again, this will
not affect the collision probability.

Another difference is that for our security proofs we assume that the value L used for
the masks is sampled uniformly at random, while in the original construction L := π(0).
This distinction does not matter as long as `q � 2n (as then whp. none of the internal
queries made is 0), which is satisfied for our main security result (Lemma 4) using 4-wise
independent masks, as there we must assume ` ≤ 2n/2 anyway. For our “warm-up” proof
(Lemma 3) using independent random masks we don’t have to make such an assumption,
so here it’s not clear if the result still applies with this difference for very large `. This
distinction also doesn’t affect the success probability of our attack, which works for any
distribution on L.

Moreover, in the security proofs we also assume that the inner and outer permutations
π, π′ are independent, while in the original construction π and π′ are the same. If one
aims for security in the order of q2`/2n (or more generally σ`/2n), this can be handled:
informally, as there are q queries to π′ and q` queries to π, we expect them to overlap only
with probability q2`/2n, and as long as they do not overlap, we can treat them as if they
were independent. As we aim for q2/2n security, it is not clear whether assuming that π
and π′ are independent is without loss of generality. Again, for our attack this distinction
does not matter, the collision probability is the same no matter what π′ is.

Let us also mention that there exists a later variant of PMAC due to Rogaway [Rog04]
called PMAC1, which for efficiency reasons deviates slightly from PMAC by using a dif-
ferent sequence for the γi values. It is not clear if our attack can be adapted to this case.
Informally, we require the sequence of γ1, . . . , γ` to contain a large coset of a subgroup
of GF (2n), and it’s not clear if the sequence from [Rog04] contains such a set. Let us
mention that for similar reasons the attack from [LPSY16] does not apply to the [Rog04]
construction either.

Newer variations of PMAC include PMAC+ [Yas11], PMAC with parity [Yas12], and
PMACX [Zha15]. These introduce major modifications to the original constructions, there-
fore we do not discuss them in more detail. Lastly, LightMAC [LPTY16] can be considered
a PMAC-like construction.

2For example computed as τi =
∑3

j=0 Lj · ij for random Lj ∈ GF (2n).
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2 Preliminaries
Basic Definitions. For n ∈ N we define [n] := {1, . . . , n}, and {0, 1}n∗ :=

⋃
z∈N{0, 1}nz

denotes the set of all bitstrings whose length is a multiple of n. In a slight abuse of
notation, we interchangeably view strings from {0, 1}n∗ also as finite sequences of blocks
from {0, 1}n, i.e., for s ∈ {0, 1}nz we also write s = (s1, . . . , sz) for si ∈ {0, 1}n. The
(bit)length of a string w is |w|, and if |w| is a multiple of n, |w|n = |w|/n denotes the
length in n bit blocks. w` := w‖w‖ . . . ‖w denotes the `-fold concatenation of w. We
usually denote sets by calligraphic letters like X . Fb,c (resp. Fb∗,c) denotes the set of
all functions from {0, 1}b to {0, 1}c (resp. from {0, 1}b∗ to {0, 1}c), FN,b is the set of all
functions N → {0, 1}b and Pn the set of all permutations on {0, 1}n. If P is a (finite or
infinite) progression, then by P[`] we denote a tuple containing the first ` elements of P .
A partition of a set S is a collection of non-empty subsets Ai, such that if Ai 6= Aj , then
Ai
⋂
Aj = ∅, and

⋃
Ai = S.

Multisets. We denote with mult(x,X ) the multiplicity of an element x in a multiset X .
X ↓ is the subset of X that contains only the elements of odd multiplicity, i.e.,

X ↓ = {x ∈ X : mult(x,X ) mod 2 = 1} .

Groups and Cosets. For a definition of a commutative group and a discussion of the
notions introduced below, see e.g. [Jor94]. All the groups that we consider in this paper
will be commutative, and we will use additive notation for groups. A subgroup of G is
any subset H that is a group by itself. The order of G, denoted |G| is the number of its
elements. Lagrange’s theorem states that if H is a subgroup of G, then |H| divides |G|.

Let G be a group, and H its subgroup. Take g ∈ G. Then the set g +H := {g + h :
h ∈ H} is called a coset of H in G. Note that trivially any group G is a coset (of G in
G), we call a coset proper if it is not a group. The set of different cosets of H in G forms
a partition of G; and moreover, H itself appears in it as the coset 0 + H, where 0 is the
neutral element of G (and H). The size of a coset is again referred to as its order. Finally,
the order of G is equal to the product of the order of H and the number of different cosets
of H.

Random Variables and Experiments. Random variables and concrete values they can
take are usually denoted by upper-case letters X,Y, . . ., and lower-case letters x, y, . . .
respectively.

If M is a distribution (respectively, a set), then we denote by X
$← M sampling

the random variable X according to M (respectively, choosing it uniformly at random
fromM). By X` we denote ` independent and identically distributed copies of a random
variable X. A joint probability distribution of q random variables (X1, . . . , Xq) is k-wise
independent, if its restriction to any k coordinates is uniform over its domain, e.g., if all
Xi have domain {0, 1}n

∀i1, . . . , ik , 1 ≤ i1 < · · · < ik ≤ q ; ∀x1, . . . , xk ∈ {0, 1}n :

Pr(X1,...,Xq) ((Xi1 , . . . , Xik ) = (x1, . . . , xk)) =
(
2−n

)k
.

More generally, letMn be a probability distribution over FN,n. In this case, we callMn

k-wise independent, if any k outputs of f(·) sampled fromMn are independent. Formally,
Mn is k-wise independent, if:

∀i1, . . . , ik , 1 ≤ i1 < · · · < ik ; ∀x1, . . . , xk ∈ {0, 1}n :

Pr
f

$←Mn

((
f(i1), . . . , f(ik)

)
= (x1, . . . , xk)

)
=
(
2−n

)k
.
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Adversaries. In this work an adversary is a probabilistic (polynomial time or computa-
tionally unbounded) algorithm, sometimes with access to an oracle O(·). We use sans-serif
letters for adversaries, e.g., AO(·), and will only consider “distinguishers”, which are ad-
versaries, whose final output is just one bit.

Pseudorandom functions and permutations. We call a function f : K×D → R keyed,
where the first part of the input is referred to as the key (and K being called the keyspace
of f). We often write fk(·) instead of f(k, ·). Given a variable input-length keyed function
f : K × {0, 1}n∗ → {0, 1}n, the PRF-advantage of an adversary A against f is defined as

Advprf
f (A) := Pr[K $← K : AfK(·) = 1]− Pr[R $← Fn∗,n : AR(·) = 1] .

We also define
Advprf

f (q, `, t) := max
A

Advprf
f (A)

where the maximum goes over all adversaries that run in time at most t, and ask at
most q queries, each of length at most ` (in n-bit blocks). If we consider computationally
unbounded adversaries, we drop the last argument, i.e., Advprf

f (q, `) := Advprf
f (q, `,∞).

Pseudorandom permutations (PRPs), and their security notions are defined analo-
gously. Given a keyed permutation (i.e., a block-cipher) E : K × {0, 1}n → {0, 1}n, the
PRP-advantage of an adversary A against E is defined as

Advprp
E (A) := Pr[K $← K : AEK(·) = 1]− Pr[P $← Pn : AP(·) = 1] .

and
Advprp

E (q, t) := max
A

Advprp
E (A)

where the maximum goes over all adversaries that run in time at most t and ask at most
q queries.

Collision security. For a keyed function f : K × {0, 1}n∗ → {0, 1}, we define

Advcol
f (q, `) := max

M1,...,Mq

PrK←K [∃ i 6= j : fK(Mi) = fK(Mj)] ,

where the maximum goes over all q tuples of distinct messages of length at most ` blocks.

3 PMAC and Simplified PMAC
We define the simplified PMAC, sPMAC : Pn ×FN,n × {0, 1}n∗ → {0, 1}n as

sPMAC(π, τ,m1‖ . . . ‖m`) :=
⊕̀
i=1

π(mi ⊕ τ(i)) .

PMAC : Pn × Pn × FN,n × {0, 1}n∗ → {0, 1}n is derived from sPMAC by additionally
encrypting the final output using an independent permutation π′:

PMAC(π, π′, τ,M) = π′(sPMAC(π, τ,M))

To save on notation, we will sometimes write τi instead τ(i), and e.g., PMACπ,π′,τ (M)
instead of PMAC(π, π′, τ,M), or, if π, π′, τ are clear from the context, simply PMAC(M).

The first three (two) arguments of PMAC (sPMAC) are the key; consider distributions
Π,Π′ over Pn, and Tn over FN,n, then PMACΠ,Π′,Tn(.) denotes a keyed function, where
the key is sampled according to (π, π′, τ) ← Π × Π′ × Tn, and then defines the function
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Figure 1: The evaluation of sPMAC(π, τ,m1‖ . . . ‖m`), where τi = τ(i).

PMACπ,π′,τ (.). If Π is instantiated by a block-cipher E : K × {0, 1}n → {0, 1}n, we think
of it as the uniform distribution over the multiset of functions {E(k, ·) : k ∈ K}.

For an input message M = m1‖ . . . ‖m`, it will be convenient to define the following
variables

xi := mi ⊕ τi, ∀i ; X := (x1, . . . , x`) (3)
yi := π(xi), ∀i ; Y := (y1, . . . , y`)

We often consider pairs of messages M = m1‖ . . . ‖ms,M
′ = m′1‖ . . . ‖m′s′ , and so X ∗

denotes the multiset

xi := mi ⊕ τi , x′i := m′i ⊕ τi, ∀i ; X ∗ := (x1, . . . , xs, x
′
1, . . . , x

′
s′) (4)

We start by reducing the PRP-security of PMAC with a block-cipher E to the collision
security of sPMAC with a random permutation. The argument is fairly standard and
allows us to perform the rest of our analysis in the information-theoretic setting.

Lemma 1 (PRF security of PMAC from collision security of sPMAC). For a block-cipher
E : K × {0, 1}n → {0, 1}n, and for any distribution Tn over FN,n, we have

Advprf
PMACE,E,Tn

(q, `, t) ≤ 2 ·Advprp
E (`q, t′) + Advcol

sPMACPn,Tn
(q, `) + q2

2n ,

where t′ ≤ t+O(`q).

Proof. We first replace the block-cipher E with uniformly random permutations, by a
straightforward reduction:

Advprf
PMACE,E,Tn

(q, `, t) ≤ Advprf
PMACPn Pn,Tn

(q, `, t) + 2 ·Advprp
E (`q, t′) . (5)

We can now consider computationally unbounded distinguishers (first step below), and
replace the outer permutation by a uniformly random function, using the PRF/PRP
switching lemma [BR06] in the second step:

Advprf
PMACPn,Pn,Tn

(q, `, t) ≤ Advprf
PMACPn,Pn,Tn

(q, `) ≤ Advprf
PMACPn,Fn,n,Tn

(q, `) + q2

2n (6)

Finally, we claim that distinguishing PMACPn,Fn,n,Tn from a random function is upper
bounded by the collision security of sPMACπ,τ , i.e.,

Advprf
PMACPn,Fn,n,Tn

(q, `) ≤ Advcol
sPMACPn,Tn

(q, `) (7)
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The statement of the Lemma follows from Eq.(5)-Eq.(7). It remains to prove Eq.(7).
As the outer function f ← Fn,n is uniformly random, the output of PMACπ,f,τ (.) ≡
f(sPMACπ,τ (.)) is uniformly random, conditioned on not having any collisions on the
inner function sPMACπ,τ (.). By Theorem 1.(i) from [Mau02], this implies that distin-
guishing PMACπ,f,τ (.) from a random function is at least as hard as provoking a collision
on sPMACπ,τ (.), and further by Theorem 2 from [Mau02], adaptivity does not help in
provoking this condition. This concludes the proof of Eq.(7).

A self-cancellation for a message M (denoted seCan(M)) occurs, if for its corre-
sponding X , we have X ↓ = ∅. A cross-cancellation for two messages M,M ′ (denoted
crCan(M,M ′)) occurs, if for their corresponding X ∗↓, we have X ∗↓ = ∅. A PMAC-collision
for two messages M,M ′ (denoted pCol(M,M ′)) occurs, if PMAC(M) = PMAC(M ′).
We define sPMAC-collision (spCol(M,M ′)) analogously. Note that crCan(M,M ′) implies
spCol(M,M ′), and spCol(M,M ′) implies pCol(M,M ′).

For a given n, `, and a distribution Tn, we define the following quantity with the xi’s
as defined in Eq.(3):

θ(`, n, Tn) = max
M 6=M ′

|M|n,|M′|n≤`

Pr
τ

$←Tn

[{
x1, x2, . . . , x|M |n , x

′
1, x
′
2, . . . , x

′
|M ′|n

}↓
= ∅
]
. (8)

The quantity θ(`, n, Tn) bounds the maximum probability over all pairs of distinct mes-
sages M,M ′ of maximum length ` that their reduced set X ∗↓ is empty, and hence a
cross-cancellation occurs. This probability is taken over the sampling of the mask accord-
ing to the distribution Tn.

The following lemma states that a cross-cancellation is indeed the dominant reason for
an sPMAC-collision to occur.

Lemma 2. For any n, Tn, and ` ≤ 2n−2

Advcol
sPMACPn,Tn

(q, `) ≤ θ(`, n, Tn) · q2 + q2

2n−1 .

Proof. By taking a union bound over all q messages, we can upper bound the probability
of a collision amongst the q messages by the probability of any pair colliding as:

Advcol
sPMACPn,Tn

(q, `) ≤ Advcol
sPMACPn,Tn

(2, `) ·
(
q

2

)
≤ Advcol

sPMACPn,Tn
(2, `) · q2 .

We upper bound Advcol
sPMACPn,Tn

(2, `) by showing that for any M 6= M ′, |M |n, |M ′|n ≤ `,
we have:

Pr(π,τ)←Pn×Tn
[sPMACπ,τ (M) = sPMACπ,τ (M ′)]
= Pr(π,τ)←Pn×Tn

[sPMACπ,τ (M) = sPMACπ,τ (M ′) ∧ crCan(M,M ′)] (9)
+ Pr(π,τ)←Pn×Tn

[sPMACπ,τ (M) = sPMACπ,τ (M ′) ∧ crCan(M,M ′)] (10)

≤ θ(`, n, Tn) + 1
2n − 2`

≤ θ(`, n, Tn) + 1
2n−1 (11)

Note that this proves the statement of the Lemma. In eq. (11), we have used ` ≤ 2n−2. The
term (9) can be upper bounded as (using that for any events E0, E1,Pr[E0∧E1] ≤ Pr[E0])

(9) ≤ Pr(π,τ)←Pn×Tn
[crCan(M,M ′)] ≤ θ(`, n, Tn) ,

where the 2nd step follows by definition.
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It remains to upper bound the term (10) by 1/(2n − 2`). We first upper bound (10)
by fixing τ to the “worst case”, and condition on crCan (using Pr[E0 ∧ E1] ≤ Pr[E0|E1])

(10) ≤ max
τ

Prπ←Pn
[sPMACπ,τ (M) = sPMACπ,τ (M ′) | crCan(M,M ′)]

As crCan(M,M ′), the set X ∗↓ = {a1, . . . , as} is non-empty and s ≤ 2`. A necessary
(albeit not sufficient) condition to have a collision is that

⊕s
i=1 π(ai) = 0. We claim that

Prπ←Pn

[
s⊕
i=1

π(ai) = 0
]

= Prπ←Pn

[
s−1⊕
i=1

π(ai) = π(as)
]
≤ 1

2n − s+ 1

The first equality follows as A ⊕ B = 0, if and only if A = B. To see the second step,
assume the output of the random π is defined in a lazy way (sampling a random image
without repetition for every fresh input), starting with inputs a1, . . . , as−1. Once these
have been defined, we know that π(as) will be uniform over a set of size 2n − s + 1, but
at most one value, namely π(as) =

⊕s−1
i=1 π(ai), will satisfy the required condition.

4 Independent Random Masks
In this section, as a warm-up, we look at the setting where the masks are chosen indepen-
dently and uniformly at random.

Lemma 3. For any n, ` ∈ N
θ(n, `,FN,n) ≤ 2

2n .

Before we prove the lemma, we note that this upper bound is tight: consider the
messages M = 0n‖0n and M ′ = 1n‖1n, then for any choice of τ1, we’ll have X ∗↓ =
{τ1, τ2, 1n ⊕ τ1, 1n ⊕ τ2} = ∅, if either τ2 = τ1, or τ2 = τ1 ⊕ 1n. As the τi are uniform,
Pr[(τ1 = τ2) ∨ τ1 = τ2 ⊕ 1n] = 2/2n.

Proof. Recall that θ(n, `,FN,n) is the probability, maximized over all M 6= M ′ of length
|M |n, |M ′|n ≤ `, that X ∗↓ = ∅. Let M = m1‖ . . . ‖ms, M

′ = m′1‖ . . . ‖m′s′ denote the
messages maximising this probability.

If s = s′, i.e., the messages are of same length, then let i be the smallest index where
mi 6= m′i (this i exists as M 6= M ′). Assume τ ← FN,n is sampled on all inputs, except i.
Consider the multiset Zi = X ∗ − (xi, x′i). Now, we claim X ∗↓ will be empty, if and only
if two conditions are satisfied. Firstly, Z↓i must contain exactly two elements, let’s call
them {a, b}. If this is not the case, then X ∗↓ will not be empty with probability 1.3

If it has exactly two elements {a, b}, then secondly, τ(i) must be chosen such that
{mi ⊕ τ(i),m′i ⊕ τ(i)} = {xi, x′i} = {a, b}. There are at most two possible values for τ(i),
which satisfy this condition (two, not just one, as the sets are not ordered). As τ(i) is
uniform, the probability it hits one of those two values is 2/2n.

Now let us consider the case where s 6= s′ (without loss of generality, s > s′). We can’t
use the above argument here as an index i with mi 6= m′i will not exist if M is a prefix
of M ′. In this case we assume τ(i) is given to us on all inputs except s + 1. Following a
similar argument as with Z↓i above, there will be at most one value for τ(s+ 1) that will
cause X ∗↓ to be empty, which upper bounds the probability of X ∗↓ = ∅ to 1/2n.

Lemma 3, in combination with Lemmas 1 and 2, directly give us the following state-
ment.

3Intuitively, we need {a, b} and {xi, x
′
i} to cancel each other out for X ∗↓ = ∅. If Z↓i had more, or less

than precisely two elements, this would not be possible.
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Theorem 1 (PMAC security with uniform masks). For any q, t, n, `, where ` ≤ 2n−2,
and block-cipher E with block-size n, we have

Advprf
PMACE,E,FN,n

(q, `, t) ≤ 5q2

2n + 2 ·Advprp
E (`q, t′) ,

where t′ ≤ t+O(`q).

5 4-wise Independent Masks
In this section we investigate the security of PMAC if the mask distribution Tn is 4-wise
independent. By the following lemma this assumption is sufficient to prove a bound of
order q2/2n (i.e., independent of the message length `) on the PRF-security of PMAC
assuming an exponential upper bound on `.

Lemma 4. For any n, ` ∈ N, where ` ≤ 2n/2, and any 4-wise independent distribution
Tn, we have

θ(`, n, Tn) ≤ 4
2n . (12)

Proof. Let M = m1‖ . . . ‖ms,M
′ = m′1‖ . . . ‖m′s′ ; s, s′ ≤ ` be messages maximizing the

probability in the definition of θ(`, n, Tn) (cf. Eq.(8)) for the 4-wise independent mask
distribution Tn.

We start with the case where s = s′. Let I = {i : mi 6= m′i} be the indices of message
blocks where the two messages differ, and X ∗I ⊆ X ∗ = {x1, . . . , xs, x

′
1, . . . , x

′
s} the multiset

containing only xi, x′i for i ∈ I. Note that X ∗↓ = X ∗↓I , since mi = m′i implies xi = x′i
and for any multiset S and any x such that mult(S, x) ≥ 2, we have S↓ = (S \ {x, x})↓.
In order to bound the probability that X ∗↓ = ∅, it suffices to bound the probability that
X ∗↓I = ∅, let us denote this event with Ecol.

If Ecol holds, then we can find a complete matching (i.e., a subgraph where every
vertex has degree exactly 1) in a graph, whose vertices are the elements of X ∗I and two
vertices are connected by an edge, if and only if they have the same value. Note that
if Ecol holds, then every value appears with even multiplicity, so this graph consists of
cliques of even size.

We will define a set of events {Eα,β : (α, β) ∈ (I × {0, 1})2} and prove that if |I| ≥ 4
(we will discuss the cases where |I| < 4, and s 6= s′ at the end), then:

i. For any α, β, Pr[Eα,β ] ≤ 2−2n.

ii. Ecol implies that for some α, β the event Eα,β holds.

The above two points then imply Pr[Ecol] ≤
∑
α,β Pr[Eα,β ] ≤ 22|I|2/22n ≤ 4`2/22n, which

is upper bounded by 4/2n if ` ≤ 2n/2, as claimed in the statement of the lemma.
It will be convenient to define the index of a message as α = (αi, αb) ∈ I × {0, 1},

where mα = mαi
if αb = 0 and mα = m′αi

if αb = 1 (similarly for xα), so the part αi
identifies the block number, and the bit αb indicates whether we consider M or M ′.

Let I = {i1, i2, . . .} and γ = (γi, γb) = (i1, 0), now the event Eα,β is defined as follows.
Let

δ = (δi, δb) = (min{I \ {γi, αi, βi}}, 0) .

Note that above min{I \ {γi, αi, βi} is non-empty, as |I| ≥ 4. If γi = αi, or α = β, the
event Eα,β is defined to never hold, so from now on we assume this is not the case. Then
Eα,β is defined as

Eα,β ⇐⇒ (xγ = xα) ∧ (xδ = xβ) .
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We first prove that

Prτ←Tn
[Eα,β ] = Prτ←Tn

[(xγ = xα) ∧ (xδ = xβ)]
= Prτ←Tn

[xγ = xα]Prτ←Tn
[xδ = xβ |xγ = xα]

= 2−n · 2−n .

To see the last step above, note that

Prτ←Tn [xγ = xα] = Prτ←Tn [mγ ⊕ τγi = mα ⊕ ταi ] = 2−n

holds as τγi
, ταi

, coming from a 4-wise independent distribution, are uniformly random
and independent (recall we assume αi 6= γi). To show

Prτ←Tn
[xδ = xβ |xγ = xα] = Prτ←Tn

[mδ⊕τδi
= mβ⊕τβi

|mγ⊕τγi
= mα⊕ταi

] = 2−n (13)

we note that, as the τi are 4-wise independent, and δi 6∈ {αi, βi, γi}, the τδi
is uniformly

random even given all the other masks ταi
, τβi

, τγi
. This concludes the proof of the

condition (i), establishing that Pr[Eα,β ] ≤ 2−2n.
It remains to show condition (ii), claiming that Ecol implies that for some α, β the

event Eα,β holds. For this we simply note that if Ecol holds, then xγ (with γ as defined
above) must collide with at least some value xα, and then the value xδ (with δ as defined
above) must collide with some xβ , thus Eα,β holds.

We have so far assumed that |I| ≥ 4 and s = s′. If |I| < 4 (but we still assume s = s′),
then there are at most 2(|I| − 1) = 4 possible values xγ can collide with, this probability
is easily upper bonded by 4/2n (2-wise independence of the τi is sufficient here). As xγ
colliding with another value xα (where αi ∈ I) is a necessary condition for Ecol to hold,
the same upper bound holds of Ecol.

We now shortly describe how to adapt the proof if the messages have different lengths,
say s > s′. Let I again denote the set of indices i ∈ {1, . . . , s′}, such that mi 6= m′i.

If 2|I| + (s′ − s) ≤ 6 then we use basically the same argument as for the |I| < 4
case above; To have the event Ecol the value xγ (where γ = (min{I}, 0), or if |I| = 0,
γ = (s′ + 1, 0)) must collide with some xα, and as there are at most 4 possibilities for
α, this probability is at most 4/2n. If 2|I| + (s′ − s) > 6 then we have at least 4 indices
(namely I and s′ + 1, . . . , s) which correspond to x’s that must collide, and for this one
can use a slight generalisation of the argument for |I| ≥ 4 from above.

Again, combining Lemma 4 with Lemmas 1 and 2 give us the following statement.

Theorem 2 (PMAC security with 4-wise independent masks). For any q, t, n and ` ≤
2n/2, any block-cipher E with block-size n, and any 4-wise independent distribution Tn
over FN,n, we have

Advprf
PMACE,E,Tn

(q, `, t) ≤ 7q2

2n + 2 ·Advprp
E (`q, t′) ,

where t′ ≤ t+O(`q).

6 2-wise Independent Masks
In Section 5, we showed that the security of PMAC with 4-wise independent masks is
q2/2n. On the other hand, in Section 7 we will show that when using the original dis-
tribution on masks from [BR02], which is only 1-wise independent, the security is just
`q2/2n. This leaves open the question, whether we can get q2/2n security already using
any 2-wise or 3-wise independent distribution on masks. Below, we show that using a 2-
wise independent distribution will in general not improve security: We slightly change the
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original distribution to make it 2-wise independent, and observe that this does not change
the collision probability of sPMAC, and thus also attacker’s distinguishing advantage of
PMAC in the ideal permutation model, at all. Whether 3-wise independence is sufficient
is left as an open problem.

Recall that in [BR02] the masks are computed by means of a function chosen at random
from the following family

{i→ a · pi | a ∈ GF (2n)} ,

where pi is the i-th Gray codeword. For the following argument P = (p1, p2 . . . , p2n) can
be any progression without repetitions. Let Tn denote this distribution, and note that it
is 1-wise, but not 2-wise, independent. Let T+

n denote the uniform distribution over

{i→ a · pi ⊕ b | a, b ∈ GF (2n)} ,

which is 2-wise independent.
By the following lemma, the collision security of sPMAC is exactly the same for Tn

and T+
n , thus also the security of PMAC implied by Lemma 1 will be the same for both

distributions.

Lemma 5. Let Tn and T+
n be distributions as defined above. Then, we have

Advcol
sPMACPn,Tn

(q, `) = Advcol
sPMACPn,T+n

(q, `) .

Proof. Consider any messagesM,M ′ and X ∗ = (x1, . . . , x|M |n , x
′
1, . . . , x

′
|M ′|n) where xi =

mi ⊕ a · pi ⊕ b, x′i = m′i ⊕ a · pi ⊕ b for random a, b, i.e., according to mask distribution
T+
n . To prove the lemma, it is sufficient to observe that if X ∗↓ = ∅, then we will still have
X ∗↓ = ∅, even if we replace b with any other element of the field, in particular, we can
assume b = 0, in which case we get mask distribution Tn.

7 1-wise Independent Masks: PMAC with a Gray Code
In this section we analyse the PRF-security of PMAC with a one-wise independent mask
distribution.

The Gray Code. The original PMAC construction uses a mask distribution based on a
Gray code, which is an example of a one-wise independent distribution. A Gray code is
an ordering γ` = γ`0γ

`
1 . . . γ

`
2`−1 of {0, 1}`, for any ` ≥ 1, such that successive points differ

in precisely one bit. The canonical Gray code from [BR02] is defined as follows:

γ1 = (γ1
0 , γ

1
1) := (0, 1)

γ2 = (γ2
0 , γ

2
1 , γ

2
2 , γ

2
3) := (00, 01, 11, 10)

...
γ`+1 = (0γ`0, 0γ`1, · · · , 0γ`2`−2, 0γ

`
2`−1, 1γ

`
2`−1, 1γ

`
2`−2, · · · , 1γ

`
1, 1γ`0)

In PMAC the sequence τ1, τ2, . . . of masks is defined as τi := γni · L for a pseudorandom
L = EK(0). Let us stress that the first mask is τ1, so the first codeword γn0 = 0n is
omitted. This fact makes our attack somewhat more complicated, as the lack of the
zero element in the progression γn1 , γn2 , . . . will force us to argue over cosets of subgroups,
instead of subgroups directly.



12 The Exact Security of PMAC

The [LPSY16] Attack. [LPSY16] show an attack on PMAC using two messages of
length ` (for ` being any power of 2) with advantage roughly `/2n. This attack ex-
ploits the fact that the first 2w codewords of the canonical Gray code form a subgroup
of the additive group of the finite field GF (2n). Hence, this two-query attack improves
linearly with the increasing message length `.

However, it is unclear whether this length-dependent attack can be generalized to a
larger number of queries q. This is because the two attack queries are derived from the
Gray code codewords being used, and are fully determined by them. Therefore, having
more available message queries does not increase the success probability of the attack.
Moreover, the set of L values that cause the two messages to collide on PMAC output is
also predetermined by these codewords. Hence, there is a simple countermeasure against
the attack: the user could simply avoid these “weak” keys.

7.1 Our Attack on PMAC
In this section we present an attack which scales with q, achieving success probability
roughly `q2/2n against PMAC. Moreover, this attack is randomized, so no “weak” keys
exist, therefore a countermeasure against the [LPSY16] attack as mentioned above no
longer applies.

Our attack can be mounted against PMAC using a similar class of 1-wise independent
mask distributions as the attack in [LPSY16]. Namely, we assume that the masks are
derived as τi := pi · R for some progression P = (p1, . . . , p2n), where every pi ∈ {0, 1}n,
and a value R $← {0, 1}n, which we model as sampled uniformly at random.4 We assume
that all elements of P are distinct (any Gray code satisfies this property by definition).
Our attack differs from the one in [LPSY16] in the message construction, and the type
of collisions that it is aiming for. While in [LPSY16] the authors construct a pair of
messages M,M ′, such that seCan(M) and seCan(M ′) occur with probability `/2n (over
the choice of R), we choose q messages M1, . . . ,Mq, such that for every pair Mi,Mj of
them, crCan(Mi,Mj) occurs with probability `/2n.

7.1.1 Description

We will use the following notation: given messages (i.e., attack queries) M1, . . . ,Mq of
length ` each, we denote the i-th block of the a-th message by m(a)

i . We also analogously
define x(a)

i := m
(a)
i ⊕ pi ·R.

The adversary A := AO(·)
`,q,n we present is parametrized by variables `, q, n (maximal

length of messages, number of messages, size of message blocks), and expects to interact
with an oracle O(·) that is either PMAC, or a random function. Its pseudocode is given
as Algorithm 1.

The adversary A first identifies the largest possible subset S ⊆ P[`] = (p1, . . . , p`) that
is an additive subgroup of GF (2n); or more generally, a coset of any group H in G, where
both H and G are additive subgroups of GF (2n) and do not need to be subsets of P[`].
We denote the order of S by `S and the indices of S within P[`] by IS . Additionally, we
choose an arbitrary fixed element e in S. If S is a group, then for notational convenience
we choose e := 0, but this is of no significance to the attack, or its proof. Then, we denote
by I ′S the indices of S \ {e} within P[`].

Having identified S, the adversary samples q message blocks m̂(1), . . . , m̂(q) $← {0, 1}n
one by one, using a form of rejection sampling. Namely, it maintains a set

Ua−1 =
{
m̂(b) ⊕ m̂(c)

e⊕ pi
: b, c ∈ [a− 1], b 6= c, i ∈ I ′S

}
,

4Note that this is not completely true for the value L described above, but we can afford this imprecision
when modelling an attack, as it obviously does not significantly affect its performance.
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Algorithm 1: Attacker AO(·)
`,q,n against PMAC, where P = (p1, . . . , p2n−1)

1 IS := indices in P[`] of a coset S ⊆ P[`] of a subgroup H in an additive
group G ⊆ GF (2n)

2 `S := |S|
3 fix arbitrary e ∈ S (if S is a group, set e := 0)
4 I ′S := indices in P[`] of S \ {e}
5 U0 := ∅
6 for a := 1 . . . q do
7 repeat
8 m̂(a) $← {0, 1}n

9 until
∣∣∣{ m̂(a)⊕m̂(b)

e⊕pi
: b ∈ [a− 1], i ∈ I ′S

}
∩ Ua−1

∣∣∣ ≤ 2(a−1)3(`S−1)2

2n

10 Ua := Ua−1 ∪
{
m̂(a)⊕m̂(b)

e⊕pi
: b ∈ [a− 1], i ∈ I ′S

}
11 Ma := ∅
12 for i := 1 . . . ` do
13 for a := 1 . . . q do
14 if i ∈ IS then
15 Ma := Ma||m̂(a)

16 else
17 Ma := Ma||0n

18 for i := 1 . . . q do
19 Tagi := O(Mi)
20 for i := 1 . . . (q − 1) do
21 for j := (i+ 1) . . . q do
22 if Tagi = Tagj then
23 return 1

24 return 0

where a is the index of m̂(a) currently sampled (intuitively, all u ∈ Ua−1 have the property
that if R = u, then crCan(Mb,Mc) for some b 6= c ≤ [a − 1] occurs). A random value
sampled for m̂(a) is then accepted, only if the intersection{

m̂(a) ⊕ m̂(b)

e⊕ pi
: b ∈ [a− 1], i ∈ I ′S

}
∩ Ua−1

is not too large (more precisely, if it is not larger than roughly twice its expected value).
From the blocks m̂(1), . . . , m̂(q), A constructs a set of queries by repeating the same

block ` times:

M1 = (m̂(1))` = m̂(1)||m̂(1)|| . . . ||m̂(1)

M2 = (m̂(2))` = m̂(2)||m̂(2)|| . . . ||m̂(2)

. . .

Mq = (m̂(q))` = m̂(q)||m̂(q)|| . . . ||m̂(q)

and then replaces all the blocks of these newly created messages that correspond to indices
not in IS by an all-zero block (in fact, any block with fixed value would do).
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From this point on, the attack is simple: A submits the messages constructed above
as the attack queries; if there is a collision among the outputs of the oracle it outputs 1,
otherwise it outputs 0.

7.1.2 Analysis

We first look at the running time of A. The only nontrivial part of it that is worth
consideration is the loop on lines 7–9, which might potentially never terminate. However,
note that the expected size of the set

E
m̂(a) $←{0,1}n

[∣∣∣∣{m̂(a) ⊕ m̂(b)

e⊕ pi
: b ∈ [a− 1], i ∈ I ′S

}
∩ Ua−1

∣∣∣∣] ≤ (a− 1)3(`S − 1)2

2n ,

since each of the (a− 1)(`S − 1) elements of the set intersected with Ua−1 is individually
uniform over {0, 1}n, and we are assessing the probability that it hits the set Ua−1, where
|Ua−1| ≤ (a−1)2(`S−1). Hence, the probability that a single iteration of the loop fails to
satisfy the condition on line 9 is at most 1/2 by Markov’s inequality. Since every sampling
on line 8 is independent, the probability (for a fixed a) that the loop is executed more
than k times is upper bounded by 2−k.

Now we move on to analyze the advantage achieved by our attack.

Theorem 3. Let P = (p1, . . . , p2n) ∈ GF (2n) be a progression as defined above, and let
Tn be the mask distribution defined as τi = pi · R for a random R

$← {0, 1}n. Let Π,Π′
be any distributions over Pn and assume that `q2 ≤ 2n−1. The adversary A`,q,n given in
Algorithm 1 achieves

Advprf
PMACΠ,Π′,Tn

(A`,q,n) ≥ (`S − 1)(q − 1)2

2n+2 − q2

2n ,

where `S is the order of the largest coset S of some subgroup H in an additive subgroup
G of GF (2n), such that the coset S is fully contained in P[`] = (p1, . . . , p`).

Note that as a special case, we can have S = G and hence `S may be the order of the
largest additive group contained in P[`].

Proof. We start by investigating the probability of crCan(Ma,Mb) for two distinct indices
a, b ∈ {1, . . . , q}.

Lemma 6. Let a, b be any two distinct indices from {1, . . . , q}. Then, we have

Pr [crCan(Ma,Mb)] ≥
`S − 1

2n .

Proof. (of Lemma 6) To slightly simplify the notation, we first prove the theorem for the
case where S is a group and then describe the straightforward extensions needed to handle
the case where S is a proper coset.

Let us hence assume that S is a group and therefore e = 0. We will denote by z the
index of e in P[`], i.e., pz = e = 0. For i ∈ I ′S , let ri denote the value

ri := m̂(a) ⊕ m̂(b)

pi
, (14)

where the division occurs in GF (2n) (recall that i ∈ I ′S , and hence pi 6= 0). We observe
that if R is sampled to equal ri, we obtain

m̂(a) ⊕ m̂(b) = R · pi = R · (pz ⊕ pi) , (15)
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and hence

m̂(a) ⊕ pz ·R = m̂(b) ⊕ pi ·R , (16)

which is equivalent to x(a)
z = x

(b)
i .

Moreover, we claim that if R = ri, we obtain a complete cross-cancellation forMa and
Mb. To observe this, first note that the equation (16) also trivially implies x(a)

i = x
(b)
z .

Additionally, recall that we work in a field of characteristic 2, and hence the set {0 = pz, pi}
is a subgroup of S. Consequently, it induces a partition of S into `S/2 cosets of the form
{pj , pj ⊕ pi}, for j ∈ IS . For a fixed j, let k ∈ IS be an index, such that pk = pi ⊕ pj
(there is a unique such index, since S is a group). For each coset {pj , pk}, we then obtain
equalities x(a)

j = x
(b)
k and x(a)

k = x
(b)
j , since (15) also implies

m̂(a) ⊕ m̂(b) = R · pi = R · (pj ⊕ pi ⊕ pj) = R · (pj ⊕ pk) .

This is true for any j ∈ IS (hence, for all the `S/2 cosets), implying a cross-cancellation.
Finally, note that for any i 6= j, we have ri 6= rj . This follows from equation (14),

and the fact that S is a group. Hence, whenever R is sampled to take any of the `S − 1
distinct values {ri : i ∈ I ′S}, the event crCan(Ma,Mb) occurs, which concludes the proof
for the case where S is a group.

Now assume that the set S is a proper coset of some subgroup H in a group G ⊆
GF (2n). Observe that S = e⊕H, hence we can rewrite any element p ∈ S as p = e⊕ h
for some h ∈ H and vice versa, h = e ⊕ p. For the sake of argument, imagine that the
values pi ∈ S (note S ⊆ P[`] = (p1, . . . , p`)) on all positions in IS would be replaced by
hi := pi ⊕ g ∈ H instead; i.e., we would replace S by H in P[`] (recall that |S| = |H|).
Then the previous analysis (for S being a subgroup) would apply, since H is a group.
Now, if a cross-cancellation occurs in this modified setting with S replaced by H in P[`],
then it also occurs before the replacement, as we have

m̂(a) ⊕ pi ·R = m̂(b) ⊕ pj ·R⇔ m̂(a) ⊕ (pi ⊕ e) ·R = m̂(b) ⊕ (pj ⊕ e) ·R
⇔ m̂(a) ⊕ hi ·R = m̂(b) ⊕ hj ·R .

Hence, all the cancellations occur as before, even if we replace H by S in P[`], and the
rest of the analysis remains the same.

The above lemma shows that for each Ma,Mb there are at least `S − 1 “good” values
R can take that would cause a cross-cancellation for Ma and Mb. Interestingly, this holds
even if Ma and Mb are constructed from arbitrary distinct fixed values m̂(a) and m̂(b).

Let us refer to these potential values of R as (a, b)-good, and let Ra,b denote the set
of all (a, b)-good values, formally

Ra,b = {r ∈ {0, 1}n : (R = r)⇒ crCan(Ma,Mb)} .

Let R =
⋃
a 6=b∈[q]Ra,b denote the set of all good values.

We now need to show that when we look at all
(
q
2
)
pairs of A’s queries, most of these

good values for R will not overlap, giving us |R| = Ω(`Sq2) in total. To this end, we
leverage the rejection sampling that A used to choose the building blocks m̂(a).

Lemma 7. Assuming `Sq2 ≤ 2n−1, we have

|R| ≥ (`S − 1)(q − 1)2

4 .
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Proof. (of Lemma 7) For a ∈ [q], let Va denote the set of fresh values that are added to
the set Ua−1 in the a-th iteration of step 10 of the algorithm AO(·)

`,q,n to form the set Ua,
formally Va := Ua \ Ua−1. By the definition of Ua on line 10, and the fact that we only
count fresh values, we have

Va =
{
m̂(a) ⊕ m̂(b)

e⊕ pi
: b ∈ [a− 1], i ∈ I ′S

}
\ Ua−1 .

The size of the set above before subtracting Ua−1 is (a− 1)(`S − 1), and by the choice of
m̂(a) on lines 7–9, we know that the subtraction removes at most 2(a− 1)3(`S − 1)2/2n
elements. Hence, we have

|Va| ≥ (a− 1)(`S − 1)− 2(a− 1)3(`S − 1)2

2n

≥ (a− 1)(`S − 1)
(

1− 2(a− 1)2(`S − 1)
2n

)
≥ (a− 1)(`S − 1)

2 ,

where the last inequality follows, since a2`S ≤ q2`S ≤ 2n−1. Clearly, Uq =
⋃q
a=1 Va, and

by construction the sets Va are disjoint. Hence, we obtain

|Uq| =
q∑
a=1
|Va| ≥

q∑
a=1

(a− 1)(`S − 1)
2 ≥ (`S − 1)(q − 1)2

4 .

Finally, by observations in the proof of Lemma 6, we have Uq ⊆ R. Therefore, we can
also conclude that |R| ≥ (`S−1)(q−1)2

4 .

To conclude the proof of Theorem 3, note that when O = PMAC, and if the randomly
sampled R takes any value from R, A observes a tag collision and outputs 1. According
to Lemma 7, this happens with probability at least (`S − 1)(q − 1)2/2n+2. On the other
hand, if O is a random function, A observes such a collision (and hence outputs 1) with
probability at most q2/2n.

Consider the Gray code used in the original PMAC construction. This code does not
include the zero element, hence the progression P = (p1, . . . , p2n−1) in this case does not
contain any additive groups. However, it does contain some proper cosets. To see this,
let Gi denote the additive subgroup of GF (2n) of size 2i containing elements of the form
0n−iw for w ∈ {0, 1}i. Then for any ` ≥ 2k − 1 we get that P[`] contains the only proper
coset of Gk−1 in Gk, which is of size 2k−1. This gives us the following corollary.

Corollary 1. Consider the setting from Theorem 3, and let Tn be the mask distribution
defined as τi = γni · R for a random R

$← {0, 1}n, and γni being the i-th codeword in the
canonical Gray code. Then, we have

Advprf
PMACΠ,Π′,Tn

(A`,q,n) = Ω(`q2/2n) .
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