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Abstract. In 2005 I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux introduced E-Multiplication, a
quantum-resistant group-theoretic one-way function which can be used as a basis for many different cryp-
tographic applications. For example, Anshel and Goldfeld recently introduced AEHash, a cryptographic
hash function constructed from E-Multiplication and later defined an instance thereof called Hickory
Hash.

This paper introduces a new public key method based on E-Multiplication, called WalnutDSA. WalnutDSA
provides efficient verification, allowing low-power and constrained devices to more quickly and inexpen-
sively validate digital signatures (e.g. a certificate or authentication). This paper introduces the construc-
tion of the digital signature algorithm, analyzes the security of the scheme, and discusses the practical
results from an implementation.
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1 Introduction

Digital signatures provide a means for one party to create a document that can be sent through
a second party and verified for integrity by a third party. This method ensures that the first
party created the document and that it was not modified by the second party. Historically,
digital signatures have been constructed using various number-theoretic public-key methods

like RSA, DSA, and ECDSA.

Digital signatures based on hard problems in group theory are relatively new. In 2002, Ko,
Choi, Cho, and Lee [22] proposed a digital signature based on a variation of the conjugacy
problem in non-commutative groups. In 2009, Wang and Hu [31] introduced a digital signature
with security based upon the hardness of the root problem in braid groups. See also [20]. The
attacks introduced in [11], [12], [14], and [19] suggest that these schemes may not be practical
over braid groups in low resource environments.

Previous Work

E-Multiplication [4] is a group-theoretic, one-way function first introduced by I. Anshel, M. An-
shel, D. Goldfeld, and S. Lemieux in 2005 [4]. E-Multiplication uses a combination of braids,
matrices, and finite fields to translate the non-abelian, infinite group into a computable system.
It has proven to be a general-purpose, quantum-resistant one-way function; its use is broader
than the key-agreement construction. For example, using E-Multiplication as the basic build-
ing block, Anshel, Atkins, Goldfeld, and Gunnells recently introduced a cryptographic hash
function, AEHash [3].



Implementations of E-Multiplication in various instances have shown that runtime is ex-
tremely rapid, with constructions using E-Multiplication outperforming competing methods,
especially in small constrained devices.

Our Contribution

This paper introduces a new quantum-resistant digital signature algorithm, WalnutDSA™,
Its security is based on E-Multiplication and a new hard problem in braid groups (see the
cloaked conjugacy search problem in §8). WalnutDSA appears immune to all the types of
attacks related to the conjugacy search problem given in [11], [12], [14], and [19], as well as
the recent attacks on the original 2005 key agreement construction noted in [5], [21], and [26].

The underlying hard problems on which the security of the digital signature rests are
reversing E-Multiplication and solving a novel equation over the braid group.

E-Multiplication is rapidly executable, even in the smallest of environments, and as a
result, WalnutDSA provides very fast signature verification. We have implemented and shown
WalnutDSA’s performance in various environments, and it outperformed ECDSA by orders of
magnitude in all cases we tried.

This paper proceeds as follows: First, it reviews the colored Burau representation of the
Braid Group and E-Multiplication; Second, it introduces the concept of a cloaking element
and shows the connection between braid groups, cloaking elements, and WalnutDSA; Third,
it shows WalnutDSA key generation; Fourth, it presents a practical implementation via a
message encoder algorithm as well as the signature generation and Verification processes;
Fifth, it discusses and analyzes the security implications associated with WalnutDSA; and
Sixth, it tests WalnutDSA’s size and performance characteristics.

2 Colored Burau Representation of the Braid Group

For, N > 2, let By denote the N-strand braid group with Artin generators {by,bs,...,bn_1},
subject to the following relations:

bibiJrlbi = bi+1bibi+17 (Z =1,..., N — 2)> (1)
bibj =bibi,  (li —j[ = 2). (2)

Thus any 8 € By can be expressed as a product of the form

B= by bl - iy (3)

1)

where 7; € {1,..., N — 1}, and ¢; € {£1}.

Each braid § € By determines a permutation in Sy (group of permutations of N letters)
as follows: For 1 < i < N — 1, let 0; € Sy be the i*" simple transposition, which maps
i—i+1, i+1—14, and leaves {1,...,i—1,i+2,..., N} fixed. Then o; is associated to the
Artin generator b;. Further, if 8 € By is written as in (3), we take 8 to be associated to the
permutation og = 0y, - - - 0;,. A braid is called pure if its underlying permutation is trivial.

Let F, denote the finite field of ¢ elements, and for variables t1,%s,...,tn, let

Flti,trh . tn, t)



denote the ring of Laurent polynomials in ¢1, s, ...,t5 with coefficients in F,. Next, we intro-
duce the colored Burau representation

ey - By — GL(N, F, [t ... ,tN,t]_VlD X Sy

First, we define the colored Burau matrix (denoted C'B) of each Artin generator as follows.

—1; 1
1
For 2 <i < N — 1, the matrix C'B(b;) is defined by
1
CBb)=| t -t 1 |, (5)
1

where the indicated variables appear in row ¢, and if ¢« = 1 the leftmost ¢; is omitted.
We similarly define CB(b; ') by modifying (5) slightly:

where again the indicated variables appear in row ¢, and if © = 1 the leftmost 1 is omitted.

Recall that each b; has an associated permutation o;. We may then associate to each
braid generator b; (respectively, inverse generator b;') a colored Burau/permutation pair
(CB(b;),0;) (resp., (CB(b;'),0;)). We now wish to define a multiplication of such colored
Burau pairs. To accomplish this, we require the following observation. Given a Laurent poly-
nomial f(¢,...,ty)in N variables, a permutation in 0 € Sy can act (on the left) by permuting
the indices of the variables. We denote this action by f + 7 f:

Tf(tiste, .. tn) = f(to) to), - - ta(v))-

We extend this action to matrices over the ring of Laurent polynomials in the ¢; by acting
on each entry in the matrix, and denote the action by M +— M. The general definition
for multiplying two colored Burau pairs is now defined as follows: given bii, b;t, the colored
Burau/permutation pair associated with the product b;-IE . b;-t is

(CBWE), ) - (CB(b), a;) = (CBOE) - (“CBWY), 01+ 0;).
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We extend this definition to the braid group inductively: given any braid
B =0bb2 .. b

11 12 1)

as in (3), we can define a colored Burau pair (CB(f3),05) by
(CB(f),08) =
(CB(b;;) - " CB(by;) - 172 CB(bg)) -+ "7 OB(by), 04,0, -+ - 0i,).
The colored Burau representation is then defined by

Hep(B) = (CB(B),0s).

One checks that IIop satisfies the braid relations and hence defines a representation of By.

3 E-Multiplication

E-Multiplication was first introduced in [4] as a one-way function used as a building block to
create multiple cryptographic constructions. We recall its definition here.
A set of T-values is defined to be a collection of non-zero field elements:

{m,70,..., 78} CFy.

Given a set of T-values, we can evaluate any Laurent polynomial f(¢1,t,...,tx) to obtain an
element of F:

f(tl,tg, e ;tN) \l/t—values = f(Tl,TQ, e ,TN).

We extend this notation to matrices over Laurent polynomials in the obvious way.
With all these components in place, we can now define E-Multiplication. By definition,
E-Multiplication is an operation that takes as input two ordered pairs,

(M, 00),  (CB(5),05),

where § € By and 03 € Sy as before, and where M € GL(N,F,), and o9 € Sy. We denote
E-Multiplication with a star: x. The result of E-Multiplication, denoted

(M',0") = (M, 00) x (CB(8),05),

will be another ordered pair (M',¢’) € GL(N,F,) x S.
We define E-Multiplication inductively. When the braid § = b;: is a single generator or its
inverse, we put

(M, 00) + (CB(bE), 0,+) = (M - (CB(bE)) Livalues: 0o o—b_i)
In the general case, when (8 = b5 b;? - - - bj*, we put

(M7 00) * (CB<6)705) = (M’ 00) * (OB(b;l)7O-bzl) * (CB(bg)?O-bQ) koo k (CB(b::)vo-bzk)a (6)

where we interpret the right of (6) by associating left-to-right. One can check that this is
independent of the expression of 5 in the Artin generators.

Convention: Let € By with associated permutation oz, € Sy. Let m € GL(N,F,) and
o € S,. For ease of notation, we let (m, o) * 8 := (m,0) x (CB(B),03).

4



4 Cloaking Elements

The security of WalnutDSA is based on the existence of certain braid words which we term
cloaking elements. They are defined as follows.

Definition 4.1 (cloaking element) Let m € GL(N,F,) and o € Sy. An element v in the
pure braid subgroup of By is termed a cloaking element of (m, o) if

(m,o)*v=(m,o).

The cloaking element is defined by the property that it essentially disappears when performing
E-Multiplication.

It is not immediately obvious how to construct cloaking elements of braid words. The
following proposition addresses this issue.

Proposition 4.2 Fiz integers N > 2, and 1 < a <b < N. Let m € GL(N,F,). Let 03 € Sy
have the property that it fizes a,b. Then a cloaking element v of (m, o) is given by v = wbiw™?
where b; is any Artin generator (1 < i < N) and w € By has associated permutation which
move i — a, i+ 1 — b.

Since cloaking elements of an ordered pair (m,o) € GL(N,F,) x Sy act as stabilizing
elements of (m, o), when viewing E-Multiplication as a right action, the following proposition
is immediate:

Proposition 4.3 The set of braids that cloak a specific ordered pair (m,o) form a subgroup
Of BN.

5 Key Generation

WalnutDSA allows a signer with a fixed private-/public-key pair to create a digital signature
associated with a given message that can be validated by anyone who knows the public-key of
the signer and the verification protocol. We now describe the algorithms for private-/public-key
generation.

Public Information:

e An integer N > 8 and associated braid group By.

e A rewriting algorithm R: By — By such as [7] or [9].

e A finite field IF, of ¢ > 32 elements.

e Two integers 1 < a < b < N.

o T-values = {7y, 7,...,7,}, where each 7; is an invertible element in F,, and 7, = 7, = 1.

e An integer L that determines the minimal length of certain random braid words (L is
derived from the desired security level).



Signer’s Private Key:
The Signer’s Private Key is a braid of the form:
e Priv(S) = w; - w(a,b) - ws.

Here wy, ws are random products of at least L generators of the pure braid subgroup of By,
and where w(a,b) € By is a random braid whose associated permutation fixes a, b.

The pure braid subgroup of By is generated [17] by the set of (N — 1)(N — 2)/2 braids
given by:

9ij = bj—1bja iy - b7 - bl - 07500, l<i<j<N. (7)

To create the private key of the signer, one first chooses wy,ws as random products of L
of the generators given in (7). One can compute L from the desired security level (in bits)
by computing L = [(SecurityLevel)/(2log,((N — 1)(N — 2)))]. For example, suppose 128-bit
security is desired, and the braid group is Bs. Then L = [128/(21log,(7-6))] = 12. Next one
constructs w(a, b) as described earlier, and the private key of the signer is computed to be
wy - w(a,b) - ws.

Signer’s Public Key:

The Signer’s Public Key is a matrix and permutation generated from the Private Key via
E-Multiplication:

o Pub(S) = (Idy, Id, ) » Priv(s),
where Idy is the N x NN identity matrix and Idg  is the identity permutation in Sn.

6 Message Encoder Algorithm

In order to generate a secure signature and prevent certain types of merging attacks, one must
carefully convert the message to be signed into a braid word. The following encoding method
handles messages of fixed length which are digests of a cryptographic hash function applied
to a message of arbitrary length.

One requirement of any encoding algorithm is that distinct messages should be encoded as
distinct braid words. Another important requirement is that £(M)E(M’) should be different
from E(MM'’): the result of encoding the concatenation of two messages should not be the
concatenation of the encodings of the individual messages.

To satisfy these requirements, we shall realize the message as an element of a free subgroup
of By. A free subgroup is where a reduced element (a word where the subwords z - 27!, and
=1z do not appear) is never the identity. In the case of the braid group, there are subsets of
pure braids that generate free subgroups. For WalnutDSA it is necessary for the permutation
of the encoded message to be trivial, i.e., the encoded message must be a pure braid. In order
to ensure that no two messages will be encoded in the same way, we require the message
be encoded as nontrivial, reduced elements in a free subgroup of the pure braid group. This
requirement ensures that unique messages will result in unique encodings.
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The encoding algorithm we present is based on the following classical observation: the
collection of pure braids given by

T1 = g(N-1),N = b?v_l (8)
Ty = gN-2).N = bn—1-DYy_o - by

T3 = gn-3),N = bn_1bn_2 - by s by oby

Ty = gN-a),N = Dn-1bN_2bn_3 - b3y - by sbnt by

TN_1 =GN =bn_1by g by b3 by bt b,

generate a free subgroup By [6]. Since any subset of the above free generators will itself freely
generate a subgroup we can leverage the pure braids above and create an encoding mechanism
that maps an input message to a unique braid word.

Message Encoder Algorithm: We assume that the message M is a hash digest of 4¢ bits.
Choose and fix a subset of four generators

{glﬂ,Nhng,Nvng,Nvg/M,N} C {gl,Nag2,N7 79(N—1),N}-

Each 4-bit block of M then determines a unique power of one of these specifies generators
g,i,w n with 1 <4 < 4; the two lowest bits determine the generator gx, v to use, and the two
high bits determine the power 1 < i < 4 to raise the generator to. The output E(M) of the
message encoder is then the freely reduced product of these ¢ generators.

An astute reader will note that on its own this encoding method fails our second require-
ment above. In other words, in this encoding method we have E(M)E(M’) = E(MM') for
all messages M, M.

However, this is not a problem since the input to the encoder is the digest of a message.
Indeed, for a good cryptographic hash function H, we know that H(M)H(M') will never
equal H(MM'). We also know it is unlikely to find two classes of hash functions H1, H2
such that the output size of H1 is half the output size of H2, and then to further find three
messages M, M’ and M” such that H1(M) H1(M’) results in the same output! as H2(M"),
and also get a signer to sign both messages M and M’ using H1. We also note that including
a hash algorithm identifier in the message after it is hashed would prevent this attack.

7 Signature Generation and Verification
To sign a message M the Signer performs the following steps:

! For a weak hash H1 and a strong hash H2, which has twice the output size of H1, an attacker would need to find
two messages M and M’ that are preimages to the halves of H2 of the desired forgery and then get the signer to
use H1 and sign both M and M’. E.g. the attacker would need to take his or her desired forged message, hash it
using SHA2-256, find two preimages with MD5, get the signer to sign those MD5 preimages, and only then can he
or she compose a message that would verify with SHA2-256.
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Digital Signature Generation:

1. Choose an integer 1 < i < n.
2. Generate the cloaking elements v and v; as defined in §4.
3. Generate the encoded message E(M).
4. Compute Sig = R(PriV(S)_l -0+ B(M) - Priv(S) - v1), which is a rewritten braid.
5. The final signature for the message M is the ordered pair (M, Sig).
As addressed earlier, the cloaking elements v,v; € B, contain a random product of at least

2L pure braid generators, and disappear when the signature is E-Multiplied by the public key,
Pub(S). Also note that the signature Sig could be sent separately from the message M.

Signature Verification: The signature (M, Sig) is verified as follows:

1. Generate the encoded message E(M).
2. Define Pub(E(M)) by

Pub(E(M)) = (Idy,Id, ) * E(M).

where Idy is the N x NN identity matrix and Idg is the identity permutation in Sy.
3. Evaluate the E-Multiplication (Mpussig, 0 pubsig) = Pub(S) * Sig.

4. Verify the equality
MatrixPart (Pub(S) » Sig) = MatrixPart (Pub(E(M))) - MatrixPart (Pub(S)),

where the matrix multiplication on the right is performed over the finite field. The signature is
valid if this equality holds. If the results are not equal then the signature validation has failed.

8 Security Discussion

The security of WalnutDSA is based on the following two highly non-linear problems which
we believe are computationally infeasible for sufficiently large key sizes.

Problem (1) (Reversing E-Multiplication is hard) Consider the braid group By and
symmetric group Sy with N > 8. Let I, be a finite field of q elements with ¢ > 32, and fix a
set of non-zero T-values {1, To,...,tn} in F,. Let § € By and set (m,o0) € (GL(N,F,), Sn)
where (m, o) = (Idy, Idg, ) * 5. It is infeasible to determine B from (m,o) if the expression for
the rewritten form of 5 has length at least 2000 Artin generators.

If we consider § varying over By, the entries of C'B(f) are Laurent polynomials in N
variables of arbitrarily high degree. Thus computing C'B(f) for long braids § becomes very
inefficient, even though the colored Burau matrices themselves are very simple. An attempt
to reverse E-Multiplication by evaluating products of CB matrices and then trying to solve
the multivariable equations that would emerge would rapidly become unmanageable. It is, in
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fact, the rapid growth of these Laurent polynomial entries combined with the permutation of
their variables that leads us to the conjecture that E-Multiplication is hard to reverse.

Further strong support for the hardness of reversing E-Multiplication can be found in
[25] which studies the security of Zémor’s [33] hash function h : {0,1}* — SLy(F,), with
the property that h(uv) = h(u)h(v), where h(0),h(1) are fixed matrices in SLy(F,) and uv
denotes concatenation of the bits u and v. For example a bit string {0,1,1,0,1} will hash
to h(0)h(1)h(1)h(0)R(1). Zémor’s hash function has not been broken since its inception in
1991. In [25] it is shown that feasible cryptanalysis for bit strings of length 256 can only be
applied for very special instances of h. Now E-Multiplication, though much more complex, is
structurally similar to a Zémor type scheme involving a large finite number of fixed matrices
in SLy(F,) instead of just two matrices h(0), h(1). This serves as an additional basis for the
assertion that E-Multiplication is a one way function.

Problem (2) (Cloaked Conjugacy Search Problem (CCSP)) Consider the braid group
By and symmetric group Sy with N > 8. Let Y,v,v; € By be unknowns where v cloaks
(Idy, Ids, ) and vy cloaks (Idy, Idsy) %Y. Assume A € By and R(Y'v AY vy) are known.
Then it is infeasible to determine Y if the expression for the rewritten form of Y has length
at least 2000 Artin generators.

Note that if the cloaking elements v,v; are trivial then CCSP reduces to the ordinary
conjugacy search problem (CSP). If an attacker can determine the cloaking elements v, vy
then it is easy to see that CCSP again reduces to CSP and fast methods for solving for Y were
obtained in [12] provided the super summit set of the conjugate Y was not too large.

It does not seem possible to mount a length attack of the type proposed in [26] to solve
CCSP. First of all, as pointed out in [16], the length attack only works effectively for short
conjugates. Secondly, the placement of the unknown cloaking element v, v; in the braid word
Y ~1v AY v, completely thwarts any type of length attack.

Note that definitionally a rewriting method will obscure the cloaked conjugate, making it
impossible to read off Y1 from the rewritten result. However Y, like any braid, is not uniquely
determined; there are infinite forms that any equivalent braid can take. Rewriting uses this to
its advantage because Y and Y ! can effectively be rewritten into different forms with different
pieces get mixed together and making separation intractable.

In fact, at present there does not seem to be any tractable method to solve CCSP in sub
exponential time.

Attacks on the underlying math

The recent attack of Ben-Zvi-Blackburn-Tsaban [5] based on ideas in [21] does not seem to
apply to WalnutDSA because the signature is a braid and the public key is coming from E-
Multiplication of the identity element with a braid that has very little algebraic structure. As
a result it does not seem possible to apply a linear algebraic attack as in [5] to solve the hard
problems (1) and (2) above, or to forge a signature. See also [2], which provides methods to
defeat the attack in [5], and [13] which shows how to defeat the attack in [21].
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The more recent attack of Blackburn—-Robshaw [8] seems completely irrelevant to WalnutDSA.
Their paper does not even break the original algebraic eraser key agreement protocol. See [1]
which provides a simple way to defeat the attack by simply adding a hash or MAC chal-
lenge/response to the authentication protocol. What Blackburn and Robshaw have found is
an invalid public key attack similar to the invalid elliptic curve attacks on ECC.

Attacks on WalnutDSA

We now discuss various possible attacks on WalnutDSA following the terminology in [29] and
why we perceive them to be ineffective due to their direct connection with the hard problems
CCSP and reversing E-Multiplication.

e Total Break — Obtaining the private key of the signer

The most straightforward attack is to reverse E-Multiplication and obtain the private
key of the signer from the signer’s public key.

The signer public key is, by definition, Pub(S) = (IdN,IdSN) * Priv(S). If the
attacker can reverse E-Multiplication and obtain another braid group element S’
such that Pub(S) = (IdN,IdSN) * Priv(5’), then the attacker can use S’ to easily
forge signatures.

To date, no attacks have been found that can reverse E-Multiplication that are better
than exponential.

The attacker may also try to solve for Priv(S) using the signature, i.e., solving
the equation below in the braid group.

Sig = R(Priv(S) ™' - v - BE(M) - Priv(S) - vy). (9)
This is precisely the presumed hard problem CCSP.

e Universal forgery or (weak) existential forgery

Constructing an efficient algorithm that is able to sign any message with significant
probability of success is called universal forgery. Providing a single message/signature
pair is called existential forgery.

The attacker may try to forge a signature of the form Y 'AY with Y, A € By
where the permutation of Y is the same as the permutation of the public key and A
is a pure braid. The verification equation then takes the form

Pub(S) x Y 'AY = Pub(E(M)) x Priv(9)
which implies
(Pub(S) * Y1)+ A = (Pub(E(/\/l)) X Priv(S)) LY L

Now, the permutation associated to the braid Pub(S) « Y~! is trivial so that E-
Multiplication of Pub(S)xY ! and A reduces to ordinary matrix multiplication of the
matrix entries. The attacker may choose various Y and then try to solve for A € By
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since the attacker knows both Pub(S) « Y~! and <Pub(E(./\/l)) * Priv(S)) *x Y1

which implies that the matrix component of (Idy,Idg, ) * A is given by the ratio
of the matrix components of these known elements. But this reduces to the hard
problem of trying to reverse E-Multiplication for every choice of Y.

e Non-repudiation

Non-repudiation is defined to be the property of a digital signature scheme which
asserts that the signer of a message cannot later claim not to have signed the message.
This is tantamount to saying that it should be infeasible to produce two distinct
messages with the same signature.

We now present an argument to show that it is infeasible for the signer of a
message (who is in possession of the public/private WalnutDSA key) to produce
two distinct messages with the same signature. The signer must produce messages
M, M’ and cloaking elements v, v, vy, v] such that

v+ E(M)-Priv(S)-v; = v - E(M') - Priv(S) - v]. (10)

By proposition 4.3 the elements v, v’ and vy, v] lie in two respective subgroups of By,
while the elements E(M), E(M’) lie in a free subgroup of the pure braid group and
appear never to be cloaking elements. In the simpler case when v; = v} this implies
there is no solution to equation (10). More generally it seems infeasible to solve (10)
for the key sizes suggested in this paper.

e Strong existential forgery

Strong existential forgery is the situation when an attacker is able to forge a second
signature of a given message that is different from a previously obtained signature of
the same message.

WalnutDSA as presented above is a priori subject to strong existential forgery.
The signature of a message M is of the form

Sig = R(Priv(S)_l v+ B(M) - Priv(S) - vy). (11)

Clearly an attacker could augment the above signature by multiplying it (on the
right) by an additional cloaking element, thus obtaining a second signature of the
same message. This does not undermine WalnutDSA security if we require a forgery
to be a message that was never signed previously because of the non-repudiation
property discussed previously.

e Using brute-force to solve for the various secret elements.

We now discuss the security level of the individual secret components which are used to
create the digital signature of a message M. For accuracy we give the following definition of
security level:
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Definition 8.1 (Security Level): A secret is said to have security level 2% over a finite field
IF if the best known attack for obtaining the secret involves running an algorithm that requires
at least 2% elementary operations (addition, subtraction, multiplication, division) in the finite
field .

Brute force security level of the cloaking elements, v, v;: The pure braid subgroup of
By is generated by the set of (N — 1)(N — 2)/2 braids given by
gij = bjmabjz by 07 bbb 1<i<j <N (12)

The braid elements v, v; are defined to be conjugates of b? by lifts of permutations that
move ¢ — a, i + 1 — b times a random word in the pure braid subgroup of length at least L.
The number of words of length L in the above generators (7) of the pure braid subgroup is

given by B
(2 V- 1>2(N — 2)) — (N=1)(N=2))"

Hence, a lower bound for the security level of the pair v, v; of the cloaking elements, is given
by

(N = 1)(N —2))*,

assuming an attacker does a brute force search of the set of all possible pairs of such cloaking
elements.

Remarks: To date there is no known method to efficiently enumerate all distinct braid
elements of length L in the generators g;; given in (7). Consequently, to perform the above
attack, an attacker must execute a brute force search of all possible words in the generators as
described above. It is possible to speed up the running time of the brute force search for the
cloaking elements by use of a Pollard ‘lambda or rho’ -style algorithm based on the birthday
paradox. Since these methods are very well known we do not give them here.

Brute force security level of Priv(S): Recall that the signer private key is of the form
wy - w(a, b) - we where wy, we are words of length at least L in the generators of the pure braid
subgroup of By. Assuming an attacker does an ordinary brute force search of all possible
private keys, it follows that the security level is at least the number of all possible pairs wy, ws,
which is

(N —1)(NV —2))*,

as above. Because the braid-words from (7) cannot be enumerated efficiently, the only way to
determine Priv(S) is by a brute-force search.

Search space of the Public Key Pub(S): Recall that the signer public key is computed
by Pub(S) = (Idy, IdSN) * Priv(S). When this is evaluated over By, F, it results in an N x N
matrix with ¢ possible elements in each entry. The last row, however, is all zeros (except for
the final element)., which implies there are

N(N—-1)+1 N2-N+1

q =4q
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possible public keys available. The only known way to determine Priv(S) from Pub(S) is a
brute-force search.

Quantum Resistance

We now quickly explore the quantum resistance of WalnutDSA. As shown in §8, the security
of WalnutDSA is based on the hard problems of reversing E-Multiplication and solving the
cloaked conjugacy search problem (CCSP). The math behind these hard problems is intimately
tied to the infinite non-abelian braid group that is not directly connected to any finite abelian
group. We will show that this lends strong credibility for the choice of WalnutDSA as a viable
post-quantum digital signature protocol.

The Hidden Subgroup Problem on a group G asks to find an unknown subgroup H using
calls to a known function on G which is constant on the cosets of G/H and takes different values
on distinct cosets. Shor’s [28] quantum attack breaking RSA and other public key protocols
such as ECC are essentially equivalent to the fact that there is a successful quantum attack
on the Hidden Subgroup Problem for finite cyclic and other finite abelian groups (see [23]).
Since the braid group does not contain any non-trivial finite subgroups at all, there does not
seem to be any viable way to connect to connect CCSP with HSP.

Given an element

B =b b2 - b € By, (13)

where i; € {1,..., N—1}, and ¢; € {£1}, we can define a function f: By — GL(N,F,) where
f(5) is given by the E-Multiplication (1, 1) * (5, 05) and op is the permutation associated to 3.
Now E-Multiplication is a highly non-linear operation. As the length k of the word [ increases,
the complexity of the Laurent polynomials occurring in the E-Multiplication defining f (/)
increases exponentially. It does not seem to be possible that the function f exhibits any type
of simple periodicity, so it is very unlikely that inverting f can be achieved with a polynomial
quantum algorithm.

Finally we consider Grover’s quantum search algorithm [15] which can find an element
in an unordered N element set in time (’)(\/N ) Grover’s quantum search algorithm can be
used to find the private key in a cryptosystem with a square root speed-up in running time.
Basically, this cuts the security in half and can be defeated by doubling the key size. This
is where E-Multiplication shines. When doubling the key size one only doubles the amount
of work as opposed to RSA, ECC, etc. where the amount of work is quadrupled. Note that
almost all of the running time of signature verification in WalnutDSA is taken by repeated
E-Multiplications.

9 Size and Performance Characteristics

To test WalnutDSA we wrote key and signature generation and validation software in C (and
on one platform implemented part of the verification engine in assembly). We ran the signature
generation on a Thinkpad T540p laptop running Fedora Linux to generate 100 keypairs, and
for each key generated 50 random 256-bit messages and the resulting signatures. For the
signature rewriting we used a combination of the Birman—-Ko-Lee (BKL) [7] and Dehornoy [9]
algorithms to obscure the braids and shorten them to reasonable lengths.
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For our testing we settled on the parameters:

o V=28
e g=32
e [L=18

which yields a private key security level of at least 2?8 against brute force attacks,? with a
public keyspace of 225 possible public keys.

The public keys are always a fixed size. They need to include the T-Values, Matrix, and
Permutation which requires

Nlog,(q) + (N(N — 1) + 1) log,(q) + N log,(N) = 40 + 285 + 24 = 359 bits.

Private keys and signatures, however, are variable length. The 100 private keys varied in
length from 58 generators to 114 generators, with a mean of 85.8 and a standard deviation of
9.6.

Using those 100 keys we generated 5000 signatures using input (hash output) messages of
256 bits. Of these 5000 signatures, their lengths varied from 604 to 1612 generators, with a
mean of 1072.9 and a standard deviation of 138.1. These signatures also require 4 bits per
generator, which results in signatures of length of 2416 to 6448 bits (with an average of 4291.6
bits).

Signature Validation

Where WalnutDSA shines is in signature validation, because E-Multiplication is rapidly com-
putable even in the tiniest of environments. To prove its viability we implemented the WalnutDSA
signature verification routines on several platforms: a Silicon Industries 8051 8-bit microcon-
troller, a Texas Instruments (TI) MSP430F5172 16-bit microcontroller, an ARM Cortex M3
(NXP LPC1768), and as a hardware accelerator for an Altera Cyclone V and a Microsemi
Smartfusion 2). The implementation on the MSP430 and ARM is fully in C but has not been
optimized in any way; on the 8051 we implemented the underlying E-Multiplication engine in
assembly:.

To provide a common testing platform we chose a single message with an average-length
signature of 1074 generators, which encodes into 537 bytes. Then we built our code on the
various platforms and measured the time to validate the signature.

On the MSP430 we built with TI's GCC compiler version 4.9.1 (20140707) using the -O3
compiler option. The compiled code took up only 3244 bytes of ROM and required only 236
bytes of RAM to process the signature. The signature verification required 370944 cycles.
At a clock speed of 8MHz this equates to 46ms. Compare this to ECC Curve25519, which
requires two seconds to compute an ECDSA validation (extrapolated from a one second ECDH
calculation in [10]), a 43x speed improvement. WalnutDSA does not require a 32-bit hardware
multiplier.

2 Technically we only need L = 12 for a 2'?® security level; using I = 18 results in a theoretical security level of 2194,
but since the majority of the signature length is the encoded message, we increased L by 50% for safe measure.
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On the ARM Cortex M3 we compiled WalnutDSA using GCC version 4.9.3 (20150303)
also using the -O3 level of optimization. The code compiled down to only 2952 bytes of ROM
and ran in 272 bytes of RAM. The signature verification executed in 275563 cycles, which
at 48MHz tool only 5.7ms. Compare this result to ECC, where [32] showed a full assembly
language implementation that required 7168 bytes of ROM and 540 bytes of RAM, but still
required 233ms to perform a point multiplication (recall that ECDSA verification requires
two). ARM itself produced a report [30] where they measured an ECDSA verification on the
same platform (and LPC1768) in 458ms. With these results WalnutDSA in C is more than 40x
faster than the assembly implementation (and requires less than half the ROM and RAM),
and 80x faster than ARM’s speed reports.

On the 8051 we used the Keil V9.54 compiler to build WalnutDSA, with the small memory
module and optimization set to OPTIMIZE(11,SPEED). We specifically chose to use assembly
due to the poor mapping of the E-Multiplication C implementation to the 8051 platform. The
code compiled into 3370 bytes of ROM. The 8051 platform we chose is unique in the way it
handles RAM. Specifically it includes a “relocatable” section. When we ran WalnutDSA it
required a total of 312 bytes of RAM (split into 251 bytes of “xdata,” 3 bytes of “data,” and
58 bytes of “relocatable data.”) Verifying the signature required 864101 cycles; running at 24.5
MHz this equates to 35.3ms.

Finally, we implemented WalnutDSA as a hardware coprocessor to tie into a CPU core
running on a Field Programmable Gate Array (FPGA). The devices we tested run the fabric
at a speed of 50 MHz, and devices can vary significantly in size and capabilities. In our case
we included not just the raw processing time but also the time required to transfer the data
(public keys, message, and signature) from the processor into the fabric. Specifically, we need
to pass 161 words into the fabric; the time required varied and was dependent on the actual
platform.

The majority of the execution time was, indeed, the data transfer time. In total we per-
formed a signature validation in under 2500 cycles (depending on the platform). This implies,
at 50 Mhz, an execution time of under 50us!

Compare this to an ECDSA implementation, such as that in [18]. They implemented
ECDSA on a Xilinx Virtex 4 platform and computed a point multiplication would take 304us
at 171.247MHz. When you normalize to a 50Mhz fabric speed this equates to 1041us for a point
multiplication. Considering ECDSA verification requires two we can estimate a verification at
approximates 2.08ms, yielding a 41x improvement of WalnutDSA over ECDSA.

10 Conclusion

This paper introduced WalnutDSA, a quantum-resistant Group Theoretic public-key signa-
ture scheme based on the E-Multiplication one-way function. Key generation is accomplished
by producing random T-values and a random braid of a specific form, and then using E-
Multiplication to compute the public key. Signature generation involves creating the cloaking
elements, building the signature braid, and then running one of the many known braid rewrit-
ing algorithms to obscure the form and hide the private key.
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At a 128-bit security level the public key is 359 bits and the private key length ranges
from 232 to 456 bits long. The signatures, after using BKL and Dehornoy braid rewriting
techniques, range from 2416 to 6448 bits in length.

In addition, WalnutDSA signature verification proves to be extremely fast. It is two E-
Multiplications, a matrix multiplication, and then a matrix compare. An initial, non-optimized
implementation on a 16-bit MSP430 verifies a 4296-bit length (128-bit strength) signature 43-
times faster than an ECC Curve25519 signature verification. Similar speed improvement is
seen on an 8051, ARM Cortex M, and within FPGA environments.
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A  Performance Matrix

Table 1. Raw WalnutDSA Performance Data

Platform Clock WalnutDSA ECDSA Improvement
ROM|RAM|Cycles|Time (ms)|ROM|/RAM|Cycles|Time (ms)/over ECDSA
MSP430 8 3244 | 236 |370944 46 ? ? ? 2000 43x
ARM Cortex M3| 48 | 2952 | 272 |275563 5.7 7168 | 540 ? 233 40x
8051 24.5 | 3370 | 312 [864101 35.3 ? ? ? ? ?
FPGA 50 2500 0.05 ? ? ? 2.08 41x

Note that a ’?” in Table 1 implies that this data was not made available.
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B Example Data

The following sections detail an example of an actual WalnutDSA transaction. This is all based
on N =28, q=2%=32 and L = 18. We construct the finite field F3; as Fo[x]/(f), where f is
the irreducible polynomial z° + 2% + 1 (cf. [27]). Elements of F3, are then represented as 5-bit
numbers: the finite field element asz? + azx® + -+ + ap mod f is converted to the bitstring
asag - - - ap (note that the coefficients of high degree monomials become the high-order bits in
the bitstring).

For ease of encoding here we represent each Artin generator as a positive or negative
integer. For example b; is represented as 1, and b, ' is represented as —4.

Private/Public Key Pair

The private data:

e a=4

e b=5

oPriv(S):—43—61—4—31—4—52—1—2—2—3—155—144543—4—7—36
5-7421-7T-5126 4-1-2-5-14-36-351-5-24-6-7-1-13-7
-4 -32-5625-164234-323-4565-42-16-7-6

The public data:

e T-values: 28 24 1 9 26 1 18 18
e Pub(S):
— Matrix:

1530 7 18132015 31
10191319 6 171121
10141619 6 171121
173121281523 2 16
916101312 7 3120
9 1610 13 21 30 31 20
0024230 824
0000O0O0O0T1

— Permutation: 2 4 3816 7 5

Example Message

For the following signature and verfication examples we chose the following random 256-bit
string:

2d 18 06 35 27 39 19 91 16 7b 12 81 85 de be 56

7b 3d dO 1b 01 e2 af 03 ed ce 2d ef 04 8e 06 cc

We then treat this as the output of a 256-bit hash.
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Example Signature and Verification

For this example chose z1,x3, x5, 27 as the specific generators ¢'. In this case the example

message encodes into the following freely reduced braid E(M):

76555433333333333211111111-2-3-4555-677¢654

3333-45-677777765433333333333333333333333
3-45565-67777TT7TT7TT7TT7TT7T765433-455432111111-23321

11111-233333333333-45556555665-6777777655555
555543333-45655-677T7TT7TT7T77777776543333333333
3333333211-23-4-5-67777776543211-23-45550555

5555556565656 -677TT7TT7TT7TT7TT7T76543211-2-3-4-5-677655055

555554333333333211111111-2-3-455555555554

33333333-45565656556566-6777T7T7T7T77T65432111111111

111-2-3-455555556543211-2-3-45556543211111111

11111111-2-3-4-5-6-7

After generating cloaking elements we formed the raw signature (Priv(S) ™ v E(M)Priv(S)v,):

67-61-24-5-6-54-3-23-4-3-2-4-61-5-25-

347-31176 -4

256-1-563-63-415214-6-2-157-1-2-47-5-6374-3-4-5-4-4
1-5-613221-254-134-16-342-34543-1-23-4-5-67©6 -5

4321-7-5-6765-4-567-6542-1-1-2-765432-1-1-2-3-4

-5-6-7-4-4-5-56-7T-765-4-4-5-63-2-2-35-4-4-5-2-254-3-3

-4 -57654-3-3-4-5-6-76-5-5-654-3-3-4-57-6-6-7-7-7-4

-4 -7T-7122774477766-75433-4-56565-6765433-4-5-6-7

5433-4-5622544-5322-36544-5-677554476543211-=-2
-3-4-6-67211-2-4-56-7-654-56-6-76567-1-2-3-45-6-765

4-321-3-4-5-43-276555433333333333211111111-2
-3-4555-6776543333-45-67777776543333333333
33333333333333-456555-6777T7777T777765433-45514
32111111-2332111111-233333333333-4555555%5
67 77777655555555543333-45566-67777777777TT7

765433333333333333333211-23-4-5-6777777¢654

3211-23-4555555555555555-677777T7T7T76543211
-2-3-4-5-6776555556565554333333333211111111
-3-455556555555433333333-4556656555-6777T7777T7

-2

656432111111111111-2-3-45555555543211-2-3-45

556564321111111111111111-2-3-4-5-6-7-43-61-4-31

-4-52-1-2-2-3-155-144543-4-7-365-7T421-7-5126-4-1
-2-56-14-36-351-5-24-6-7-1-13-7-4-32-525-164234-3
23-4565-42-16-7-645-6-76-545-6-76512-3-4-5-6-5-4
-322-345-43-2-276-5-5-6-72-1-1-2654-3-3-4-5-67©625

43-2-2-3-4-5-6-765432-1-1-2-3-4-5-6-7-7-3-3-6-632-1

-1-2-3543-2-2-3-4-5-4-46-5-5-676-5-5-6-7-7-7-6543-2
-2-3-4-56-6765432-1-1-2-3-4-5-6-75432-1-1-2-3-4-52

2543211-2-3-4-5765543211-2-3-4-5-6-7654322-3-4-5

6777655 -6-7655-64454322-3-4-53211-2-3663377F€6
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543211-2-3-4-56-67654322-3-4-5-6-765433-4-5-621

1-27655-6-722-34-5-43-2-23456543-2-1-5-676-5-45

-6 76 -5 -4

And after running the raw signature through both the BKL Normal Form and then De-

hornoy we resulted in the following 1170-generator braid:

4-76 5-57-6-51-2-2-3-4-2-212-3-3777-651-261-2-2-3
-4-2-212-3-41-2-3-3-4-511234412345-6-7-74-53-42

-31-2-2-3-4-51234115-6-64-53-42-3-3-3-4-5-61-2-3-3
-4-51-2-3-4-5123456-75-64-53-42-31-2-2-3-4-5-61-2

-31-23123456-75-64-53-42-31

-21-2-3-4-56-6123456

-7345-64-563-42-31-2-2-2-3-3-4-5612341325-6-64-53
-4 -52-3-4-41-2-2-2-3-4-56-6123-4-5-5-465-6-7123124

-6-63-4-42-31-2-2-3-4-56-612334-5613-42-325143-4-5
-52-3-4-41-2-2-3-3-21-2-3-4-56-2-212-3-47-6-5-61-2-2

12-31-2-212-31-2-2-3-4-5123456-7T345-6234-5123--4
52-3-4-5-6-711-2-212-3-4-56-671-2-3-41-2-3-411223
34-51123-42-31-2-2-3112123-42-31-2-2-31235465

-6234-53-42-31-2-2-3-41-2-3-4-5-47-6-5-7-6112-31-2
-2431235465-64-53-42-31-2-2-3-4-5761-2-3111111

1111-21111111-2333123-42-31-2-2-3-311-2-31111

1233333333333333333333333322211111111112

3322323-412-341-21111-2-21111-2111111111112

12-341-2-34111111-21111-2-311111111-2311123

333-422222222222-311111111111111111-2-2123

3333321123444444444444444433333332233344
4444441233333333341222222223333333333344

44444412312111111112333333334-56222222222
2211111111223111123123-45-6-6-6-7r12-3111111

1111111111-3-2143234-5123-43-43-5-4-432145 -6

3274-53-4-42-31-2-2-31223654-5-6-723-4-5-612-3-4

-5-6-6-711-2-3-4-5-6-213243554-5-53-42-31

-216543

2-37654-5-6-5-6-71-23-4-5-6-634-53-455-7-7612-3-3

221214-3232154-53-42-3-3-41-23465-61234-523-4

12-31-276-7T5-67-67-6-743-2112-31-2-2-35-4-46-5-3

-4 76-75-21-32-4-5-5-6-4-53-42-31-2-7-6-7-65-743-2
4 -7-6-654367-456-73-214-3215-43-5-42-3-31-2-213

2-3-654-3-4-52-31

-2-243-21-2-3-41-2-31564-3-21-2

11-3-457-6-7-2-34-56-61-23-214-3-2-4-3-5-4-6515-76
-4 -3-26754-53-4657-6-7345-6-2144-321576-75-434

267523-671-434-231234-6-54-656

To validate this signature one first needs to compute the E-Multiplication (Idy, Idg, ) *

E(M) which results in the following matrix:
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317 7 4 426271
29 3 21515181024
2928291515181024
14 7 725242216 6
7 1 12726121830
7 1 12727131830
295 5 6 623 8 30
000O0O0OO0O0T1

Then one multiplies that by the matrix part of Pub(S) which results in the following matrix:

151717 3 5 272318
1015141824 1312 28
10 6 7 1824131228
1729112126 16 24 27
8 142131282017 25
8 142131 5 131725
147 524 5172121
0000O0OO0O0T1

Finally, one computes the E-Multiplication Pub(S) = Sig, which results in the following
matrix:

151717 3 5 272318
101514182413 12 28
10 6 7 1824131228
1729112126 16 24 27
8 142131282017 25
8 142131 5 131725
147 5245172121
0000O0O0O0T1

which is obviously equal to the previous matrix by inspection.
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