
A Smart Contract for Boardroom Voting with
Maximum Voter Privacy

Patrick McCorry, Siamak F. Shahandashti and Feng Hao

School of Computing Science, Newcastle University UK
(patrick.mccorry, siamak.shahandashti, feng.hao)@ncl.ac.uk

Abstract. We present the first implementation of a decentralised and
self-tallying internet voting protocol with maximum voter privacy using
the Blockchain. The Open Vote Network is suitable for boardroom elec-
tions and is written as a smart contract for Ethereum. Unlike previously
proposed Blockchain e-voting protocols, this is the first implementation
that does not rely on any trusted authority to compute the tally or to
protect the voter’s privacy. Instead, the Open Vote Network is a self-
tallying protocol, and each voter is in control of the privacy of their own
vote such that it can only be breached by a full collusion involving all
other voters. The execution of the protocol is enforced using the consen-
sus mechanism that also secures the Ethereum blockchain. We tested the
implementation on Ethereum’s official test network to demonstrate its
feasibility. Also, we provide a financial and computational breakdown of
its execution cost.

1 Introduction

Ethereum is the second most popular cryptocurrency with a $870m market cap-
italisation as of November 2016. It relies on the same innovation behind Bit-
coin [28]: namely, the Blockchain which is an append-only ledger. The Blockchain
is maintained by a decentralised and open-membership peer-to-peer network.
The purpose of the Blockchain was to remove the centralised role of banks
for maintaining a financial ledger. Today, researchers are trying to re-use the
Blockchain to solve further open problems such as coordinating the Internet of
Things [20], carbon dating [6], and healthcare [10].

In this paper, we focus on decentralised internet voting using the Blockchain.
E-voting protocols that support verifiability normally assume the existence of
a public bulletin board that provides a consistent view to all voters. In prac-
tice, an example of implementing the public bulletin board can be seen in
the yearly elections of the International Association of Cryptologic Research
(IACR) [22]. They use the Helios voting system [1] whose bulletin board is im-
plemented as a single web server. This server is trusted to provide a consistent
view to all voters. Instead of such a trust assumption, we explore the feasibility
of using the Blockchain as a public bulletin board. Furthermore, we consider a
decentralised election setting in which the voters are responsible for coordinating
the communication amongst themselves. Thus, we also examine the suitability

of the Blockchain’s underlying peer-to-peer network as a potential authenticated
broadcast channel.

There already exist proposals to use a Blockchain for e-voting. The Abu
Dhabi Stock Exchange is launching a Blockchain voting service [19] and a re-
cent report [3] by the Scientific Foresight Unit of the European Parliamen-
tary Research Service discusses whether Blockchain-enabled e-voting will be a
transformative or incremental development. In practice, companies such as The
Blockchain Voting Machine [18], FollowMyVote [2] and TIVI [34] propose solu-
tions that use the Blockchain as a ballot box to store the voting data.

These solutions achieve voter privacy with the involvement of a trusted au-
thority. In FollowMyVote, the authority obfuscates the correspondence between
the voter’s real world identity and their voting key. Then, the voter casts their
vote in plaintext. In TIVI, the authority is required to shuffle the encrypted votes
before decrypting and counting the votes. In our work, we show that the voter’s
privacy does not need to rely on a central authority to decouple the voter’s real
world identity from their voting key, and the votes can be counted without the
cooperation of a central authority. Furthermore, these solutions only use the
Blockchain as an append-only and immutable global database to store the vot-
ing data. We propose that the network’s consensus that secures the Blockchain
can also enforce the execution of the voting protocol itself.

To date, both Bitcoin and Ethereum have inherent scalability issues. Bitcoin
only supports a maximum of 7 transactions per second [8] and each transaction
dedicates 80 bytes for storing arbitrary data. On the other hand, Ethereum
explicitly measures computation and storage using a gas metric, and the network
limits the gas that can be consumed by its users. As deployed today, these
Blockchains cannot readily support storing the data or enforcing the voting
protocol’s execution for national scale elections. For this reason, we chose to
perform a feasibility study of a boardroom election over the Blockchain
which involves a small group of voters (i.e. 40 participants) whose identities are
publicly known before the voting begins. For example, a boardroom election may
involve stakeholders voting to appoint a new director.

We chose to implement the boardroom voting protocol as a smart contract on
Ethereum. These smart contracts have an expressive programming language and
the code is stored directly on the Blockchain. Most importantly, all peers in the
underlying peer-to-peer network independently run the contract code to reach
consensus on its output. This means that voters can potentially not perform
all the computation to verify the correct execution of the protocol. Instead, the
voter can trust the consensus computing provided by the Ethereum network to
enforce the correct execution of the protocol. This enforcement turns detection
measures seen in publicly verifiable voting protocols into prevention measures.

Our contributions. We provide the first implementation of a decentralised
and self-tallying internet voting protocol. The Open Vote Network [17] is a board-
room scale voting protocol that is implemented as a smart contract in Ethereum.
The Open Vote Network provides maximum voter privacy as an individual vote
can only be revealed by a full-collusion attack that involves compromising all

2

other voters; all voting data is publicly available; and the protocol allows the
tally to be computed without requiring a tallying authority. Most importantly,
our implementation demonstrates the feasibility of using the Blockchain for de-
centralised and secure e-voting.

2 Background

2.1 Self-Tallying Voting Protocols

Typically, an e-voting protocol that protects the voter’s privacy relies on the role
of a trustworthy authority to decrypt and tally the votes in a verifiable manner.
E-voting protocols in the literature normally distribute this trust among multiple
tallying authorities using threshold cryptography; for example, see Helios [1].
However, voters still need to trust that the tallying authorities do not collude
altogether, as in that case, the voter’s privacy will be trivially breached.

Remarkably, Kiayias and Yung [24] first introduced a self-tallying voting
protocol for boardroom voting with subsequent proposals by Groth [16] and Hao
et al. [17]. A self-tallying protocol converts tallying into an open procedure that
allows any voter or a third-party observer to perform the tally computation once
all ballots are cast. This removes the role of a tallying authority in an election
as anyone can compute the tally without assistance. These protocols provide
maximum ballot secrecy as a full collusion of the remaining voters is required
to reveal an individual vote and dispute-freeness that allows any third party to
check whether a voter has followed the voting protocol correctly. Unfortunately,
self-tallying protocols have a fairness drawback as the last voter can compute
the tally before anyone else1 which results in both adaptive and abortive issues.

The adaptive issue is that knowledge of the tally can potentially influence
how the last voter casts their vote. Kiayias and Yung [24] and Groth [16] propose
that an election authority can cast the final vote which is excluded from the tally.
However, while this approach is applicable to our implementation discussed later,
it effectively re-introduces an authority that is trusted to co-operate and not
to collude with the last voter. Instead, we implement an optional round that
requires all voters to hash their encrypted vote and store it in the Blockchain
as a commitment. As a result, the final voter can still compute the tally, but is
unable to change their vote.

The abortive issue is that if the final voter is dissatisfied with the tally, they
can abort without casting their vote. This abortion prevents all other voters
and third parties from computing the final tally. Previously, Kiayias and Yung
[24] and Khader et al. [23] proposed to correct the effect of abortive voters by
engaging the rest of the voters in an additional recovery round. However, the
recovery round requires full cooperation of all the remaining voters, and will
fail if any member drops out half-way. We highlight that the Blockchain and

1 It is also possible for voters that have not yet cast their vote to collude and compute
the partial tally of the cast votes. For simplicity, we discuss a single voter in regards
to the fairness issue.

3

smart contracts can enforce a financial incentive for voter participation using a
deposit and refund paradigm [25]. This allows providing a new countermeasure
to address the abortive issue: all voters deposit money into a smart contract to
register for an election and are refunded upon casting their vote. Any voter who
does not vote before the voting deadline simply loses their deposit.

In the next section we present Open Vote Network [17] before discussing
its smart contract implementation on Ethereum. We chose to implement this
protocol instead of others (e.g., [16,24]) because it is the most efficient boardroom
voting protocol in the literature in each of the following aspects: the number of
rounds, the computation load per voter and the bandwidth usage [17]. As we will
detail in Section 3, the efficiency of the voting protocol is critical as even with the
choice of the most efficient boardroom voting protocol, its implementation for a
small-scale election is already nearing the capacity limit of an existing Ethereum
block.

2.2 The Open Vote Network Protocol

The Open Vote Network is a decentralized two-round protocol designed for sup-
porting small-scale boardroom voting. In the first round, all voters register their
intention to vote in the election, and in the second round, all voters cast their
vote. The systems assumes an authenticated broadcast channel is available to all
voters. The self-tallying property allows anyone (including non-voters) to com-
pute the tally after observing messages from the other voters. In this paper, we
only consider an election with two options, e.g., yes/no. Extending to multiple
voting options, and a security proof of the protocol can be found in [17].

A description of the Open Vote Network is as follows. First, all n voters agree
on (G, g) where G denotes a finite cyclic group of prime order q in which the
Decisional Diffie-Hellman (DDH) problem is intractable, and g is a generator in
G. A list of eligible voters (P1, P2, ..., Pn) is established and each eligible voter
Pi selects a random value xi ∈R Zq as their private voting key.

Round 1. Every voter Pi broadcasts their voting key gxi and a (non-
interactive) zero knowledge proof ZKP (xi) to prove knowledge of the exponent
xi on the public bulletin board. ZKP (xi) is implemented as a Schnorr proof [32]
made non-interactive using the Fiat-Shamir heuristic [15].

At the end, all voters check the validity of all zero knowledge proofs before
computing a list of reconstructed keys:

Yi =

i−1∏
j=1

gxj/

n∏
j=i+1

gxj

Implicitly setting Yi = gyi , the above calculation ensures that
∑

i xiyi = 0.
Round 2. Every voter broadcasts gxiyigvi and a (non-interactive) zero knowl-

edge proof to prove that vi is either no or yes (with respect to 0 or 1) vote. This
one-out-of-two zero knowledge proof is implemented using the Cramer, Damg̊ard
and Schoenmakers (CDS) technique [7].

4

All zero knowledge proofs must be verified before computing the tally to
ensure the encrypted votes are well-formed. Once the final vote has been cast,
then anyone (including non-voters) can compute

∏
i g

xiyigvi and calculate g
∑

i vi

since
∏

i g
xiyi = 1 (see [17]). The discrete logarithm of g

∑
i vi is bounded by the

number of voters and is a relatively small value. Hence the tally of yes votes can
be calculated subsequently by exhaustive search.

Note that for the election tally to be computable, all the voters who have
broadcast their voting key in Round 1 must broadcast their encrypted vote in
Round 2. Also note that in Round 2, the last voter to publish their encrypted
vote has the ability to compute the tally before broadcasting their encrypted vote
(by simulating that he would send a no-vote). Depending on the computed tally,
he may change his vote choice. In our implementation, we address this issue by
requiring all voters to commit to their votes before revealing them, which adds
another round of commitment to the protocol.

The decentralised nature of the Open Vote Network makes it suitable to
implement over a Blockchain. Bitcoin’s blockchain could be used as the public
bulletin board to store the voting data for the Open Vote Network. However,
this requires the voting protocol to be externally enforced by the voters. Instead,
we propose using Ethereum to enforce the voting protocol’s execution. This is
possible as conceptually Ethereum can be seen as a global computer that can
store and execute programs. These programs are written as smart contracts, and
their correct execution is enforced using the same network consensus that secures
the Ethereum blockchain. Furthermore, its underlying peer-to-peer network can
act as an authenticated broadcast channel.

2.3 Ethereum

In this section, we focus on the types of accounts available, the transaction
structure and the Blockchain protocol used in Ethereum.

Ethereum has two account types:

– An externally owned account (user-controlled) is a public-private key
pair controlled by the user. We denote these accounts by A,B,

– A contract account is a smart contract that is controlled by its code. We
denote a smart contract account by λ.

Both account types can store the Ethereum currency ‘ether’. Ethereum does
not perform computation in a contract without user interaction. As such, a con-
tract account must be activated by a user-controlled account before its code can
be executed. Executing code requires the user-controlled account to purchase
‘gas’ using the ether currency and a gas price set by the user determines the
conversion rate of ether to gas. The cost of gas is essentially a transaction fee
to encourage miners to include the code execution in the Blockchain. Most im-
portantly, gas is a metric that standardises the cost of executing code on the
network and each assembly operation (opcode) has a fixed gas cost based on its
expected execution time.

5

Block	
 1	
 Block	
 2	
 Block	
 3	
 Block	
 4	
 Block	
 5	
 Block	
 6	

From	
 To	
 Value	

2	
 *	
 10-­‐8	

Gas	
 Price	

98,000	

Total	
 Gas	

0	
 eth	
 λA	

101	

Nonce	

Contract	
 code	

Data	

Contract	
 Crea*on	
 Transac*on	

From	
 To	
 Value	

2	
 *	
 10-­‐8	

Gas	
 Price	

900,000	

Total	
 Gas	

10	
 eth	
 λB	

31	

Nonce	

FuncGon(param1,	
 param2)	

Data	

Call	
 Contract	
 Transac*on	

Fig. 1. Alice creates a smart contract on the Blockchain and the contract code is sent
in the transaction’s ‘data’ field. The contract is given an address λ. Bob can call a
function of the contract using a second transaction sending gas to the address λ.

An Ethereum Transaction’s structure can be seen in Figure 1. Each field
of the transaction is described below:

– From: A signature from a user-controlled account to authorise the trans-
action.

– To: The receiver of the transaction and can be either a user-controlled or
contract address.

– Data: Contains the contract code to create a new contract or execution
instructions for the contract.

– Gas Price: The conversion rate of purchasing gas using the ether currency.
– Total Gas: The maximum amount of gas that can be consumed by the

transaction.
– Nonce: A counter that is incremented for each new transaction from an

account.

The Ethereum blockchain is considered an orderly transaction-based state
machine. If multiple transactions call the same contract, then the contract’s
final state is determined by the order of transactions that are stored in the
block. Strictly, Ethereum’s blockchain is a variation of the GHOST protocol [33]
which is a tree-based blockchain. This tree has a main branch of blocks that is
represents the ‘Blockchain’ and transactions in these blocks determine the final
state of contracts and account balances. Similar to Bitcoin, the security of the
Blockchain relies upon miners providing a ‘proof of work’ which authorises the
miner to append a new block. This proof of work is a computationally difficult
puzzle, and the miner is rewarded 5 ether if the block is successfully appended.

Blocks are created approximately every twelve seconds in Ethereum which
is significantly faster than Bitcoin’s 10 minutes interval. As a consequence, it

6

is probabilistically more likely that two or more blocks are created by different
miners at the same time. In Bitcoin, only one of the competing blocks can be
accepted into the Blockchain, and the remaining blocks are discarded. However,
in Ethereum, these discarded blocks are appended to the Blockchain as leaf nodes
(‘uncle blocks’). It should be noted that the uncle block still rewards the miner
a proportion of the 5 ether block reward based on when the block is included in
the Blockchain.

Ethereum’s blockchain provides a natural platform for the Open Vote Net-
work. It provides a public bulletin board and an authenticated broadcast channel
which are necessary in decentralised internet voting protocols to support co-
ordination amongst voters. As well, almost all computations in the Open Vote
Network are public computations that can be written as a smart contract. Most
importantly, the entire execution of the voting protocol is enforced by the same
consensus that secures the Blockchain. In the next section, we discuss our imple-
mentation and the feasibility of performing internet voting over the Blockchain.

3 The Open Vote Network over Ethereum

We present an implementation of the Open Vote Network over Ethereum. The
code is publicly available2. Three HTML5/JavaScript pages are developed to
provide a browser interface for all voter interactions. The web browser interacts
with an Ethereum daemon running in the background. The protocol is executed
in five stages, and requires voter interaction in two (and an optional third)
rounds. We give an overview of the implementation in the following.

3.1 Structure of Implementation

There are two smart contracts that are both written in Ethereum’s Solidity lan-
guage. The first contract is called the voting contract. It implements the voting
protocol, controls the election process and verifies the two types of zero knowl-
edge proofs we have in the Open Vote Network. The second contract is called
the cryptography contract. It distributes the code for creating the two types of
zero knowledge proofs3. This provides all voters with the same cryptography
code that can be used locally without interacting with the Ethereum network.
We have also provided three HTML5/JavaScript pages for the users:

– Election administrator (admin.html) administers the election. This in-
cludes establishing the list of eligible voters, setting the election question,
and activating a list of timers to ensure the election progresses in a timely
manner. The latter includes notifying Ethereum to begin registration, to
close registration and begin the election, and to close voting and compute
the tally.

2 https://(web address hidden for submission)
3 We have included the code to create and verify the two types of zero knowledge

proofs in the cryptography contract. The code is independent of the Open Vote
Network and can be used by other smart contracts.

7

SETUP	
 SIGNUP	
 COMMIT	
 (Op/onal)	
 VOTE	
 TALLY	

Elec%on	

administrator	

updates	
 list	
 of	

eligible	
 voters	

Voters	

register	
 their	

vo%ng	
 key	
 gx	

Voters	
 publish	

H(gxygv)	

Voters	
 cast	

gxygv	

Ethereum	

computes	
 the	

tally	

Elec%on	
 progress	
 in	
 the	
 Open	
 Vote	
 Network	

Round	
 1:	
 	

Voter	
 registra%on	

Round	
 2:	

Voter	
 casts	
 vote	

Fig. 2. There are five stages to the election.

– Voter (vote.html) can register for an election, and once registered must
cast their vote.

– Observer (livefeed.html) can watch the election’s progress consisting of
the election administrator starting and closing each stage and voters regis-
tering and casting votes. The running tally is not computable.

We assume that voters and the election administrator have their own Ethereum
accounts. The Web3 framework is provided by the Ethereum Foundation to facil-
tiate communication between a user’s web browser and their Ethereum client.
The user can unlock their Ethereum account (decrypt their Ethereum’s private
key using a password) and authorise transactions directly from the web browser.
There is no need for the user to interact with an Ethereum wallet, and the
Ethereum client can run in the background as a daemon.

3.2 Election stages

Figure 2 presents the five stages of the election in our implementation. The
smart contract has a designated owner that represents the election administrator.
This administrator is responsible for authenticating the voters with their user-
controlled account and updating the list of eligible voters. A list of timers is
enforced by the smart contract to ensure that the election progresses in a timely
manner. The contract only allows eligible voters to register for an election, and
registered voters to cast a vote. Furthermore, the contract can require each voter
to deposit ether upon registration, and automatically refund the ether when their
vote is accepted into the Blockchain. Each stage of the election is described in
more detail below:

SETUP. The election administrator authenticates each voter with their
user-controlled account and updates the voting contract to include a whitelist of
accounts as eligible voters. He defines a list of timers to ensure that the election
progresses in a timely manner:

– tfinishRegistration: all voters must register their voting key gxi before this
time.

– tbeginElection: the election administrator must notify Ethereum to begin the
election by this time.

8

– tfinishCommit: all voters must commit to their vote H(gxiyigvi) before this
time. This is only used if the optional COMMIT stage is enabled.

– tfinishV ote: all voters must cast their vote gxiyigvi before this time.
– π: a minimum length of time in which the commitment and voting stages

must remain active to give voters sufficient time to vote.

The administrator also sets the registration deposit d, the voting question,
and if the optional COMMIT stage should be enabled. Finally, the administrator
notifies Ethereum to transition from the SETUP to the SIGNUP stage.

SIGNUP. All eligible voters can choose to register for the vote after review-
ing the voting question and other parameters set by the election administrator.
To register, the voter computes their voting key gxi and ZKP (xi). Both the
key and proof are sent to Ethereum alongside a deposit of d ether. Ethereum
does not accept any registrations after tfinishRegistration. The election adminis-
trator is responsible for notifying Ethereum to transition from the SIGNUP to
either the optional COMMIT or the VOTE stage. All voter’s reconstructed keys
gy0 , gy1 , ..., gyn are computed by Ethereum during the transition.

COMMIT(Optional). All voters publish a hash of their vote H(gxiyigvi) to
the Ethereum blockchain. The contract automatically transitions to the VOTE
stage once the final commitment is accepted into the Blockchain.

VOTE. All voters publish their (encrypted) vote gxiyigvi and a one-out-of-
two zero knowledge proof to prove that vi is either zero or one. The deposit d
is refunded to the voter when their vote is accepted by Ethereum. The election
administrator notifies Ethereum to compute the tally once the final vote is cast.

TALLY. The election administrator notifies Ethereum to compute the tally.
Ethereum computes the product of all votes

∏
i g

xiyigvi = g
∑

i vi and brute
forces the discrete logarithm of the result to find the number of yes votes.

As mentioned before, Open Vote Network requires all the registered voters to
cast a vote to enable tally calculation. The deposit d in our implementation pro-
vides a financial incentive for registered voters to vote. This deposit is returned
to the voter if they follow through with the voting protocol and do not drop out.
The list of timestamps defined by the election administrator determines if the
voter’s deposit d is forfeited or refunded. There are three refund scenarios if a
deadline is missed:

– Registered voters can claim their refund if the election does not begin by
tbeginElection.

– Registered voters who have committed can claim their refund if not all reg-
istered voters commit to their vote by tfinishCommit.

– Registered voters can claim their refund if not all registered voters cast their
vote by tfinishV ote.

4 Design Choices

In this section, we discuss the design choices we made when developing the imple-
mentation. In particular, we elaborate on some attack vectors that are addressed

9

in our smart contract and clarify the trust assumptions that are required for our
implementation to be secure.

Individual and public verifiability. We assume that the voter’s machine,
including their web browser, is not compromised. The voter has an incentive to
ensure their machine is secure. If the machine or web browser is compromised,
the voter’s ether is likely to be stolen. The voter can check that their vote
has been recorded as cast and cast as intended by inspecting the Blockchain
and decrypting their vote using the key xi. Also, the voter, or any observer for
that matter, can independently compute the tally to verify that the cast votes
have been tallied as recorded. Unfortunately, this public verifiability does not
provide any coercion resistance as the voting is conducted in a “unsupervised”
environment. The voter may vote under the direct duress of a coercer who stands
over their shoulder. The voter can also reveal x to prove how their vote was
cast to others. As such, in a similar fashion to Helios [1], we note that our
implementation is only suitable for low-coercion elections.

Voter authentication. Smart contracts can call other smart contracts. As a
result, there exist two methods to identify the caller. The first is tx.origin that
identifies the user-controlled account that authorised the transaction, and not
the immediate caller. The second is msg.sender that identifies the immediate
caller which can be a contract or a user-controlled address. Initially, a developer
might use tx.origin as it appears the approppriate choice to identify the voter.
Unfortunately, this approach allows a malicious smart contract to impersonate
the voter and register for an election.

To illustrate, a voter is given the interface to a smart contract called Bet-
tingGame. This lets the voter place a bet using BettingGame.placeBid(). Un-
knowingly to the voter, if this function is called, then BettingGame will call
TheOpenVoteNetwork.register() and register a voting key on behalf of the
voter. To overcome this issue, we recommend using msg.sender as it identifies
the immediate caller whose address should be in the list of eligible voters.

Defending against replay attacks. All voting keys gxi and their zero
knowledge proofs ZKP (xi) are publicly sent to the Ethereum blockchain. A
potential attack is that another eligible voter can attempt to register the same
voting keys by replaying gxi and ZKP (xi). This would also let them later copy
the targeted voter’s vote. We highlight that the commitment (i.e., input argu-
ments to the hash function) in the zero knowledge proof includes msg.sender

and Ethereum will not accept the zero knowledge proof ZKP (xi) if msg.sender
does not match the account that is calling the contract. As such, it is not possible
to replay another voter’s key gxi without their co-operation. This also applies
to the one-out-of-two zero knowledge proofs.

Blocking re-entrancy. A hacker recently exploited a re-entrancy vulnera-
bility in theDAO to steal over 3.6 million ether. Luu et al highlight [26] that 186
distinct smart contracts stored on the Blockchain (including theDAO) are also
potentially vulnerable. This attack relies on the contract sending ether to the
user before deducting their balance. The attacker can recursively call the con-
tract in such a way that the sending of ether is repeated, but the balance is only

10

deducted once. To prevent this attack, we follow the advice of Reitwiessner [30]
to first deduct the voter’s balance before attempting to send the ether.

The role of timers. The election administrator sets a list of timers to allow
Ethereum to enforce that the election progresses in a timely manner. A minimum
time interval π (unit in seconds) is set during the SETUP stage to ensure each
stage remains active for at least a time interval of length π. In particular, the
rules tfinishCommit − tbeginElection > π and tfinishV ote − tfinishCommit > π are
enforced to provide sufficient time for voters to commit to and cast their vote.
Also, it provides a window for the voter’s transaction to be accepted into the
Blockchain. This is necessary to prevent a cartel of miners (< 51%) attempting
to censor some transactions. Voters need to check that π is not a small value such
as π = 1. In this case, the voting stage can finish one second after the election
begins. As a result, all voters are likely to lose their deposits. Of course, both
the COMMIT and VOTE stage can finish early if all voters have participated.

The block’s timestamp is used to enforce the above timers. Ethereum has a
tight bound on the timestamp which must conform to the following two rules.
First, a new block’s timestamp must be greater than the previous block. Second,
the block’s timestamp must be less than the user’s local clock. Furthermore, the
miner’s ability to drift a block’s timestamp by 900 seconds (15 minutes) as
reported in [26] is no longer possible [11].

Ethereum miners. The tip of the Blockchain is uncertain and the state
of a contract at the time of signing a transaction is not guaranteed to remain
the same. Furthermore, miners control the order of transactions in a block, and
can control the order of a contract’s execution if there are two or more trans-
actions calling the same contract. Although the order of voting keys or cast-
ing a vote does not matter, the order of transactions is important if a timer
is about to expire. For example, if the voter attempts to register around the
time that tfinishRegistration expires, then the miner can prevent the registration
in two ways. First, the miner can choose a block timestamp that expires the
tfinishRegistration timer. Second, if the miner has the voter’s registration trans-
action and the election administrator’s begin election transaction, he can order
the transactions in the block such that the smart contract begins the election be-
fore allowing the voter to register for the election. Unfortunately, in both cases,
the voter’s registration will fail.

It is important that voters authorise their transactions in good time before
the stage is destined to end. We must assume that the majority of miners are not
attempting to disrupt the election. A smaller cartel of miners (< 51%) can po-
tentially delay transactions being accepted into the Blockchain using techniques
such as selfish mining [14] [31] or feather forking [29]. This ability of miners to
delay a transaction is a fundamental problem for any contract.

The election administrator. An election administrator is required to add
voters to the list of eligible voters, set the election’s parameters and to begin the
registration stage. Unfortunately, smart contracts cannot execute code without
the notification of an external user-controlled account. As such, a user is still
required to notify the smart contract to begin the election and compute the

11

tally. Deciding who is responsible for notifying Ethereum is an implementation
trade-off and we have assumed it is the election administrator’s role. If neces-
sary, the contract can be modified to allow any registered voter to perform the
notification. However, in that case it is possible that two or more voters attempt
to notify Ethereum at the same time and broadcast transactions to the network.
If this happens, only one transaction can begin the election or compute the tally.
All unsuccessful transactions will still be stored in the Blockchain and all the
broadcasting users will still be charged transaction fees.

Removing the COMMIT stage. The COMMIT stage prevents the final
voter computing the tally and using this information to decide how to vote. It
is possible to remove this stage if we require the election administrator (or a
separate external party) to perform some extra tasks. In this case, the adminis-
trator is the first voter to register a voting key gx and deposit of d ether before
voter registration begins. Next, he is required to merely reveal his secret x once
all voters have cast their vote. Revealing x allows Ethereum to calculate a fi-
nal dummy vote and compute the tally. The administrator is now trusted not
to collude with the last voter. This approach removes the COMMIT phase but
requires extra an trust assumption.

Do voters need to use Ethereum? Today, all voters need to download
the full Ethereum blockchain to confirm the voting protocol is being executed
correctly. In the future, voters will be able to use the Light Ethereum Subprotocol
(LES) [12] which is similar to Bitcoin’s simplified payment verification (SPV)
protocol. In LES, voters will only verify the voting protocol’s state and not be
required to store the full Blockchain.

Most importantly, it is possible for the voter to participate in the voting
protocol without the full Blockchain. In this case, the voter merely broadcasts
their transactions and trusts the consensus mechanism of the Ethereum network
to enforce the correct execution of the protocol. This would enable voters who
have devices with limited resources to vote in our implementation. We have
provided livefeed.html to allow voters to visit an external website and confirm
their registration or vote has been recorded in the Blockchain.

5 Experiment on Ethereum’s Test Network

Our implementation was deployed on Ethereum’s official test network that mim-
ics the production network. We sent 126 transactions to simulate forty voters
participating in the protocol. Each transaction’s computational and financial
cost is outlined in Table 1. Each transaction by the election administrator (de-
noted by the prefix ‘A:’ in the table) is broadcast only once, and each transaction
by a voter (denoted by the prefix ‘V:’ in the table) is broadcast once per voter,
i.e., a total of 40 times. Also, we have rounded the cost in US Dollars (denoted
by $) to two decimal places.

We had to split the Open Vote Network into two contracts as the code was
too large to store in an Ethereum block which has a capacity of approximately
4.7 million gas. The voting contract VoteCon (80% of block capacity, and $0.83

12

Entity: Transaction Cost in Gas Cost in $
A: VoteCon 3, 779, 963 0.83
A: CryptoCon 2, 435, 848 0.54
A: Eligible 2, 153, 461 0.47
A: Begin Signup 234, 984 0.05
V: Register 763, 118 0.17
A: Begin Election 3, 085, 449 0.68
V: Commit 70, 112 0.02
V: Vote 2, 490, 412 0.55
A: Tally 746, 485 0.16

Administrator Total 12, 436, 190 2.74
Voter Total 3, 323, 642 0.73

Election Total 145, 381, 858 31.98

Table 1. A breakdown of the costs for 40 participants using the Open Vote Network.
We have approximated the cost in USD ($) using the conversion rate of 1 ether = $11
and the gas price of 0.00000002 ether which are the real world costs in November 2016.
Also, we have identified the cost for the election administrator ‘A’ and the voter ‘V’.

transaction fee) contains the protocol logic. The cryptography contract Cryp-
toCon (52% of block capacity, and $0.54 transaction fee) contains the code to
create and verify the two types of zero knowledge proofs we have in the protocol.

CryptoCon can be reused by other contracts requiring similar zero knowledge
proofs. It is important to note that the code for computing the zero knowledge
proofs is run locally on the voter’s machine, and no transactions are sent to the
network. CryptoCon’s purpose is to ensure that all voters have access to the
same cryptography code.

As the figures show, voter registrations and vote casting cost around 16% and
53% of block capacity, respectively. This suggests that the current block sizes in
Ethereum support at most six voter registration per block and at most one vote
casting per block. Recall that blocks are currently generated in Ethereum at a
rate of one block per 12 seconds.

Overall, running the election with 40 voters costs the election administrator
$2.74. The total election cost including the cost for the administrator and the
voters is $31.98 which breaks down to a reasonable cost of $0.73 per voter.

To see how the cost for the election administrator and the voter vary with
different number of voters we have carried out experiments with 5, 10, 15, . . . ,
60 voters. Figure 3 highlights the distribution of cost for the election adminis-
trator and the voter based on the number of voters participating in the election.
This shows that the election administrator’s cost increases linearly based on the
number of voters, and the voter’s cost remains constant.

All testing was performed on the test network due to an ongoing DoS attack,
starting from 22 September 2016, on Ethereum’s production network [5]. Miners
set the block’s gas limit to 1,500,000 gas to reduce the impact on the network
and a hard fork [4] was deployed on 18 October 2016 to prevent the attack. How-

13

0.00

0.50

1.00

1.50

2.00

2.50

5 10 15 20 25 30 35 40 45 50 55 60

C
o

st
 (

$
)

Number of voters

Election administrator

Voter

Fig. 3. The average cost for the election administrator and the voter based on the
number of voters participating in the election.

ever, a second DoS attack began on 19 October 2016. Ethereum developers have
recommended a temporary gas limit of 2,000,000 until the next scheduled hard
fork. As such, the Open Vote Network cannot run on the production network at
this time.

5.1 Timing Analysis

Table 2 outlines the timing analysis measurements for tasks in the Open Vote
Network. All measurements were performed on a MacBook Pro running OS X
10.10.5 equipped with 4 cores, 2.3GHz Intel Core i7 and 16 GB DDR3 RAM.
All time measurements are rounded up to the next whole millisecond. We use
the Web3 framework to facilitate communication between the web browser and
the Ethereum daemon. All tasks are executed using .call() that allows us to
measure the code’s computation time on the local daemon.

The cryptography smart contract is responsible for creating the zero knowl-
edge proofs for the voter. The time required to create the proofs is 81 ms for the
Schnorr proof and 461 ms for the one-out-of-two zero knowledge proof. These
actions are always executed using .call() as this contract should never receive
transactions.

The voting smart contract is responsible for enforcing the election process.
Registering a vote involves verifying the Schnorr zero knowledge proof and in
total requires 142 ms. To begin the election requires computing the reconstructed
public keys which takes 277 ms in total for forty voters. Casting a vote involves
verifying the one-out-of-two zero knowledge proof which requires 573 ms. Tally-
ing involves summing all cast votes and brute-forcing the discrete logarithm of
the result and on average takes around 132 ms.

We decided to distribute the cryptography code using the Ethereum blockchain
to allow all voters to use the same code. Running the code on the voter’s local
daemon is significantly slower than using a seperate library such as OpenSSL. For
example, creating a Schnorr signature using OpenSSL on a comparable machine
requires 0.69 ms [27]. This slowness is mostly due to the lack of native support
for elliptic curve math in Ethereum smart contracts. The Ethereum Foundation

14

Action Avg. Time (ms)

Create ZKP(x) 81
Register voting key 142
Begin election 277
Create 1-out-of-2 ZKP 461
Cast vote 573
Tally 132

Table 2. A time analysis for actions that run on the Ethereum daemon.

has plans to include native support and we expect this to significantly improve
our reported times.

6 Discussion on Technical Difficulties

In this section, we discuss the difficulties faced while implementing the Open
Vote Network on Ethereum.

Lack of support for cryptography. Ethereum supports up to 256-bit un-
signed integers. For this reason, we chose to implement the protocol over an
elliptic curve instead of a finite field. However, Solidity does not currently sup-
port Elliptic Curve cryptography, and we had to include an external library to
perform the computation. Including the library led to our voting contract becom-
ing too large to store on the Blockchain. As previously discussed, we separated
the program into two smart contracts: one voting contract and one cryptogra-
phy contract. The cryptographic computations are expensive and this results in
a block only being able to support six voter registrations, or a single vote.

Call stack issues. The call stack of a program has a hard-coded limit of 1024
stack frames. This limits the amount of local memory available, and the number
of function calls allowed. These limitations led to difficulty while implementing
the 1-out-of-2 ZKP as the temporary variables typically required exceeded the
hard-coded limit of 16 local variables [21]. We had to use variables extremely
sparingly to ensure that the 1-out-of-2 ZKP could be implemented.

Lack of debugging tools. The Mix IDE that provides a solidity source code
debugger has been discountined [13] and could not be used for our work. Remix
is the replacement for the Mix IDE and it provides a debugger for contracts at
the assembly level, but this is too low for debugging Solidity contracts. Instead,
we had to create Events that log data along with the contract to help with
debugging which is incorporated into the contract before deployment.

Mitigate loss of voting key. The voting key is kept secret by the voter
and needs to be stored on their local machine. This is important to ensure that
if the voter’s web browser crashes or is closed, then the voting key is not lost.
We provide a standalone Java program votingcodes.jar to generate the voting
key and store it in votingcodes.txt. The voter is required to upload this file
to their web browser.

15

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

5 10 15 20 25 30 35 40 45 50 55 60

G
as

Number of voters

Gas Limit

Compute Reconstructed Keys

Set Voters as Eligible

Compute Tally

Begin Registration

Fig. 4. The gas cost for the election administrator based on the number of voters
participating in the election.

Maximum number of voters. Figure 4 demonstrates the results of our
experiment and highlights the breakdown of the election administrator’s gas
consumption. Except for opening registration, the gas cost for each task increases
linearly with the number of voters. The gas limit for a block was set at 4.7
million gas by the miners before the recent DoS attacks. This means that the
smart contract reaches the computation and storage limit if it is computing the
voter’s reconstructed keys for around sixty registered voters. This limit exists as
all keys are computed in a single transaction and the gas used must be less than
the block’s gas limit. To avoid reaching this block limit, we currently recommend
a safe upper limit of around 50 voters. However, the contract can be modified to
perform the processing in batches and allow multiple transactions to complete
the task.

7 Conclusion

In this paper, we have presented a smart contract implementation for the Open
Vote Network that runs on Ethereum. Our implementation was tested on the
official Ethereum test network with forty simulated voters. We have shown that
our implementation can be readily used with minimal setup for elections at a
cost of $0.73 per voter. The cost can be considered reasonable as this voting
protocol provides maximum voter privacy and is publicly verifiable. This is the
first implementation of a decentralised internet voting protocol running on a
Blockchain. It uses the Ethereum blockchain not just as a public bulletin board,
but more importantly, as a platform for consensus computing that enforces the
correct execution of the voting protocol.

In future work, we will investigate the feasibility of running a national-scale
election over the Blockchain. Based on the knowledge gained from this paper, we
believe that if such a perspective is ever considered possible, its implementation
will almost certainly require a dedicated Blockchain. For example, this can be
an Ethereum-like blockchain that only stores the e-voting smart contract. This
new blockchain can have a larger block size to store more transactions on-chain
and may be maintained in a centralised manner similar to RSCoin [9].

16

8 Acknowledgements

The second and third authors are supported by the European Research Council
(ERC) Starting Grant (No. 306994). We would like to thank Nick Johnson for
taking the time to answer questions about Ethereum, Solidity and the test-
framework Dapple. We thank Maryam Mehrnezhad and Ehsan Toreini for their
support in this work during the Economist Case Study Challenge, Malte Möser
for his comments on an early draft of the paper, and the anonymous reviewers
for their constructive feedback.

References

1. B. Adida. Helios: Web-based open-audit voting. In USENIX Security Symposium,
volume 17, pages 335–348, 2008.

2. P. Aradhya. Distributed Ledger Visible To All? Ready for Blockchain? Huffington
Post, Apr. 2016.

3. P. Boucher. What if blockchain technology revolutionised voting? Scientific
Foresight Unit (STOA), European Parliamentary Research Service, Sept. 2016.
http://www.europarl.europa.eu/RegData/etudes/ATAG/2016/581918/EPRS
ATA(2016)581918 EN.pdf.

4. V. Buterin. Long-term gas cost changes for io-heavy operations
to mitigate transaction spam attacks. Ethereum Blog, Oct. 2016.
https://github.com/ethereum/EIPs/issues/150, Accessed on 01/11/2016.

5. V. Buterin. Transaction spam attack: Next Steps. Ethereum Blog, Sept. 2016.
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/.

6. J. Clark and A. Essex. CommitCoin: Carbon Dating Commitments with Bitcoin.
In Financial Cryptography and Data Security, pages 390–398. Springer, 2012.

7. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Annual International Cryptology
Conference, pages 174–187. Springer, 1994.

8. K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Sax-
ena, E. Shi, and E. Gün. On scaling decentralized blockchains. In Proc. 3rd Work-
shop on Bitcoin and Blockchain Research, 2016.

9. G. Danezis and S. Meiklejohn. Centrally banked cryptocurrencies. In 23nd Annual
Network and Distributed System Security Symposium, NDSS 2016, 2016.

10. A. Ekblaw, A. Azaria, J. D. Halamka, and A. Lippman. A case study for
blockchain in healthcare:medrec prototype for electronic health records and med-
ical research data. 2016. http://dci.mit.edu/assets/papers/eckblaw.pdf, Accessed
on 26/10/2016.

11. eth. How do Ethereum mining nodes maintain a time consistent with the network?
Ethereum Wiki, June 2016. https://github.com/ethereum/wiki/wiki/Light-client-
protocol, Accessed on 6/2/2017.

12. Ethereum. Light client protocol. Ethereum Wiki, May 2016.
https://github.com/ethereum/wiki/wiki/Light-client-protocol.

13. Ethereum. The mix ethereum dapp development tool. GitHub, 2016.
https://github.com/ethereum/mix, Accessed on 10/10/2016.

14. I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In International Conference on Financial Cryptography and Data Security, pages
436–454. Springer, 2014.

17

15. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, Crypto’86, volume 263 of LNCS,
pages 186–194. Springer, 1987.

16. J. Groth. Efficient maximal privacy in boardroom voting and anonymous broad-
cast. In International Conference on Financial Cryptography, pages 90–104.
Springer, 2004.

17. F. Hao, P. Y. Ryan, and P. Zielinski. Anonymous voting by two-round public
discussion. IET Information Security, 4(2):62–67, 2010.

18. A. Hertig. The First Bitcoin Voting Machine Is On Its Way. Motherboard Vice,
Nov. 2015. http://motherboard.vice.com/read/the-first-bitcoin-voting-machine-is-
on-its-way.

19. S. Higgins. Abu Dhabi Stock Exchange Launches Blockchain Voting . CoinDesk,
Oct. 2016. http://www.coindesk.com/abu-dhabi-exchange-blockchain-voting/.

20. S. Higgins. IBM Invests $200 Million in Blockchain-Powered IoT. CoinDesk, Oct.
2016. http://www.coindesk.com/ibm-blockchain-iot-office/.

21. R. Horrocks. Error while compiling: Stack too deep. Ethereum Stack Exchange,
June 2015. http://ethereum.stackexchange.com/a/6065.

22. International Association for Cryptologic Research. About the helios system. Oct.
2016. http://www.iacr.org/elections/eVoting/about-helios.html.

23. D. Khader, B. Smyth, P. Y. Ryan, and F. Hao. A fair and robust voting system
by broadcast. In 5th International Conference on Electronic Voting, volume 205,
pages 285–299. Gesellschaft für Informatik, 2012.

24. A. Kiayias and M. Yung. Self-tallying elections and perfect ballot secrecy. In
International Workshop on Public Key Cryptography, pages 141–158. Springer,
2002.

25. R. Kumaresan and I. Bentov. How to use bitcoin to incentivize correct compu-
tations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 30–41. ACM, 2014.

26. L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts
smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 254–269. ACM, 2016.

27. P. McCorry, S. F. Shahandashti, D. Clarke, and F. Hao. Authenticated key ex-
change over bitcoin. In Security Standardisation Research, pages 3–20. Springer,
2015.

28. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. November 2008.
https://bitcoin.org/bitcoin.pdf, Accessed on 2015-01-01.

29. A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and
cryptocurrency technologies. Princeton University Press, 2016.

30. C. Reitwiessner. Smart contract security. June 2016.
https://blog.ethereum.org/2016/06/10/smart-contract-security/.

31. A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies
in bitcoin. In Financial Cryptography and Data Security. Springer, 2016.

32. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161–174, 1991.

33. Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin.
In International Conference on Financial Cryptography and Data Security, pages
507–527. Springer, 2015.

34. B. Wire. Now You Can Vote Online with a Selfie. Business Wire,
Oct. 2016. http://www.businesswire.com/news/home/20161017005354/en/Vote-
Online-Selfie.

18

