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Abstract

Constraint-hiding constrained PRFs (CHCPRFs), initially studied by Boneh, Lewi and Wu [PKC
2017], are constrained PRFs where the constrained key hides the description of the constraint. Envisioned
with powerful applications such as searchable encryption, private-detectable watermarking and symmetric
deniable encryption, the only known candidates of CHCPRF:s are based on indistinguishability obfuscation
or multilinear maps with strong security properties.

In this paper we construct CHCPRFs for all NC! circuits from the Learning with Errors assumption.
The construction draws heavily from the graph-induced multilinear maps by Gentry, Gorbunov and Halevi
[TCC 2015], as well as the existing lattice-based PRFs. In fact, our construction can be viewed as an
instance of the GGH15 approach where security can be reduced to LWE.

We also show how to build from CHCPRFs reusable garbled circuits (RGC), or equivalently private-
key function-hiding functional encryptions with 1-key security. This provides a different approach of
constructing RGC from that of Goldwasser et al. [STOC 2013].
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1 Introduction

Constrained PRFs [BW13, KPTZ13, BGI14] are pseudorandom functions with a special mode that outputs
a constrained key defined by a predicate C'. The constrained key CK¢ preserves the functionality over the
inputs = s.t. C'(z) = 1, while leaving the function values on inputs = s.t. C'(z) = 0 pseudorandom. In the
standard formulation of constrained PRFs, the constrained key is not required to hide the predicate C'. In
fact, many constructions of constrained PRFs do reveal the constraint. A quintessential example is GGM’s
puncturable PRF [GGM&86] where CK explicitly reveals the punctured points.

The notion of constraint-hiding constrained PRF (CHCPRF), proposed by Boneh, Lewi and Wu [BLW17],
makes the additional guarantee that the constraining predicate C' remains hidden, even given the constrained
key. Such an additional property allows the primitive to provide fairly natural constructions of search-
able encryption, watermarking, deniable encryption, and others. However, they only propose candidates of
CHCPREFs based on strong assumptions, like indistinguishability obfuscation (10) [BGI™12] or assumptions
on candidate multilinear maps (multilinear-DDH or subgroup elimination) [BS03].

This work. We further investigate the notion of CHCPREF, propose constructions based on standard crypto-
graphic assumptions, and demonstrate more applications.

We first propose an alternative, simulation-based definition for CHCPRF. While for the cases addressed in our
constructions the new style is (almost) equivalent to the indistinguishability-based one from [BLW17], the
new formulation provides a different viewpoint on the primitive.

Our main result is a construction of CHCPRF for all NC! circuit constraints based on the Learning with Errors
(LWE) assumption [Reg09]:

Theorem 1.1. Assuming the intractability of LWE, there are CHCPRF's with 1-key simulation-based security,
for all constraints recognizable by NC! circuits.

The construction combines the graph-induced multilinear maps by Gentry, Gorbunov and Halevi [GGH15],
their candidate obfuscator, and the lattice-based PRFs of [BPR12, BLMR13, BP14, BV15b]. At the heart of
our technical contribution is identifying a restricted (yet still powerful) variant of the GGH15 maps, whose
security can be reduced to LWE. This involves formulating new “LWE-hard” secret distributions that handle
the permutation matrices underlying Barrington’s construction.

In addition, we construct function-hiding private-key functional encryptions (equivalently, reusable garbled
circuits [GKP™13]) from CHCPRFs. This gives a construction of reusable garbled circuits from LWE that is
very different from that of [GKP*13]:

Theorem 1.2. For a circuit class C, assuming 1-key simulation-based CHCPRFs for constraints in C, and
CPA secure private-key encryption whose decryption circuit is in C, there exist 1-key secure reusable garbled
circuits for C.

1.1 CHCPREFs, functional encryption and obfuscation

We propose a simulation-based definitional approach for CHCPREF, and compare this approach to the indistinguishability-
based approach of Boneh et al [BLW17].



Defining CHCPRFs. A constrained PRF consists of three algorithms: Master secret key generation, con-
strained key generation, and function evaluation. We first note that in order to have hope to hide the constraint,
the function evaluation algorithm should return a random-looking value v even if evaluated on a constrained
input z, as opposed to returning L as in the standard formulation. Furthermore, we require that the value of
the original function on x remains pseudorandom even given the constrained key and the value v.

The definition of CHCPREF is aimed at capturing three requirements: (1) the constrained keys preserve func-
tionality on inputs that do not match the constraint; (2) the function values at constrained points remain
pseudorandom given the constrained key; (3) the constrained key does not reveal any information on the
constraining function.

Boneh et al [BLW17] give a number of indistinguishability-based definitions that vary in strength, depending
on the level of adaptivity of the adversary in choosing the constraints and evaluation points, as well as on the
number of constrained keys that the adversary is allowed to see. We take an alternative approach and give
a simulation-based definition. We also compare the definitions, and show equivalence and derivations in a
number of cases.

Here is a sketch of the non-adaptive single-key variant of our simulation-based definition. The definition
captures all three requirements via a single interaction: We require that, for any polytime adversary, there
exists a polytime simulator such that the adversary can distinguish between the outcomes of the following two
experiments only with negligible probability:

o In the real experiment, the system first generates a master secret key K. The adversary can then query a
constraint circuit C' and many inputs (), ..., (). In return, it obtains CK¢, 2, ..., 2® 1) 4O,
where CK¢ is a key constrained by C, and y(* is the result of evaluating the original, unconstrained
function with key K at point z(?). (This is so regardless of whether z:(*) meets the constraint or not.)

e In the ideal experiment, the simulator samples a master secret key . Once received a constraint query,
the simulator obtains only the description length of C' and creates a simulated constrained key CK?.
Once received input queries (1), ..., (), the simulator also ¢ indicator bits dV), ..., d(¥) where the d¥)
denotes whether () is in the constraint, and generates simulated values y(V°, ..., y®5. If d®) = 0, then
the simulated y("° is uniformly random. The output of the experiment is CK?, P R QI TO LIV O

Secret-key functional encryption from simulation-based CHCPRFs. We sketch our construction of func-
tional encryption from CHCPRFs. Functional encryption [BSW11] allows the evaluator, given a functional
decryption key, to learn the value of the function applied to encrypted data without learning anything else.
With CHCPRFs in hand, it is rather simple to construct a private-key functional encryption scheme that is
both function-private and input-private. Our functional encryption scheme proceeds as follows:

e Key generation: The master key for the scheme is a key K for a CHCPREF, and a key SK for a CPA-
secure symmetric encryption scheme (Enc, Dec).

e Encrypt a message m: CT = (¢, t), where ¢ = Encgk(m), and t = CHCPRF g (¢).

e Functional decryption key: The functional decryption key for a binary function f is a constrained-key
CK for the function f (¢) = f(Decsk(c)). Thatis, f has SK hardwired; it decrypts its input ¢ and
applies f to the plaintext.

e Functional decryption: Given ciphertext CT = (¢, ¢) and the constrained decryption key CK j» output 1
ift = CHCPRFCKf(c), 0 otherwise.



Correctness of decryption follows from the correctness and constrainability of the CHCPRE, and secrecy
follows from the constraint-hiding property.

This construction is conceptually different from the previous construction [GKP™13]. In particular, the size
of ciphertext (for 1-bit output) is the size of a symmetric encryption ciphertext |Sym.CT(m)| plus the security
parameter, independent of the depth of the circuit. (For circuits with 7-bit outputs, an immediate batch mode
achieves ciphertext size |Sym.CT(m)| + 7, less than simply making 7 copies.)

While our scheme is still not compact enough to imply iO through the bootstrapping techniques from func-
tional encryption [AJ15, BV15a, LPST16, BNPW16], it provides another starting point for future attempts.

Two-key CHCPRFs imply obfuscation. It is natural to consider an extension of the CHCPRF definition to
the case where the adversary may obtain multiple constrained keys derived from the same master key. Indeed
in [BLW17] some applications of this extended notion are presented.

We observe that this extended notion in fact implies full fledged program obfuscation: To obfuscate a cir-
cuit C, choose a key K for a CHCPRE, and output two constrained keys: The constrained key CK[C'], and
the constrained key CK[I], where I is the circuit that always outputs 1. To evaluate C'(x) check whether

Again, correctness of evaluation follows from the correctness and constrainability of the CHCPRF. The level
of security for the obfuscation depends on the definition of CHCPRF in use. Specifically, the natural extension
of the above simulation-based definition to the two-key setting implies that the above simple obfuscation
method is VBB (which in turn means that the known impossibility results for VBB obfuscation carry over
to this variant of two-key CHCPRF). The indistinguishability-based definition of [BLW17] implies that the
above obfuscation method is IO.

1.2 Overview of our construction

Our construction of CHCPRFs draws heavily from the multilinear maps by Gentry, Gorbunov and Halevi
[GGH15], and the lattice-based PRFs of Banerjee, Peikert and Rosen and others [BPR12, BLMR13, BP14,
BV15b]. We thus start with a brief review of the relevant parts of these works.

Recap GGH15. The GGH15 multilinear encoding is depicted by a DAG that defines the rule of homomor-
phic operations and zero-testing. For our purpose it is sufficient to consider the following special functionality
(which corresponds to a graph of £ nodes and two parallel edges from node 7 to node 7 4 1, see Figure 1.1a):
We would like to encode 2¢ + 1 secrets s?, s%, ey 58, Sé, st over some finite group G, in such a way that an
evaluator who receives the encodings can test, for any given z € {0, 1}/, whether s; = Hle s7*, and at
the same time the encodings hide “everything else” about the secrets. (Indeed, “everything else” might have
different meanings in different contexts.)

To do that, GGH15 take the group G to actually be a ring R, where R denotes the base ring (typical choices
include R = Z"*" or R = Z[z|/(®,(x)), where n is a parameter related to the lattice dimension, and ®,,
is the n'” cyclotomic polynomial), and ¢ is the modulus. The encoder then samples ¢ + 1 hard Ajtai-type
matrices {A1, Ag, ..., Ay, Ay Rcllxm} with trapdoors [Ajt99, AP11, MP12], and associates each matrix
with the corresponding node of the graph. These matrices and their trapdoors are treated as (universal) public
and secret parameters, respectively. We refer to the indices 1...¢ + 1 as levels.

The 2/ secrets are associated with the 2/ edges of the graph in the natural way. Encoding a secret si-’ is done in
two steps: First create an LWE sample for the secret s? under the matrix A; 1, namely Y? = s?A;,; + EL.
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(a) The normal mode (i.e. Vz, C(x) = 1) (b) The bit-fixing constraint x0x (i.e. C(z) = 1 iff x5 = 0)
R®sl I®82 R1®s3 I®s4
(c) The NC! constraint for point z = 10 (i.e. C(z) = 0iff 1 = 1 Azo = 0)

Figure 1.1: Examples of the GGH15-based PRFs

Next, sample a preimage D? of Yé’ under the matrix A;, using the trapdoor of A;. That is, Ain = Y%’ and
Di-’ is sampled from discrete Gaussian distribution of small width. The encoder then lets Db be the encoding
of s?. The encoding T of sr, where s = Hl | 877 for some x € {0, 1}*, is defined as T = F(z), where
F(z) = A4 Hle D;". Finally, the values A, DY, D1, ..., DY, DZ,T are given to the evaluator. To test a
given 2’ € {0, 1}, the evaluator computes F'(z') and checks whether F'(z") —T is a matrix with small entries.

To see why this works out functionality-wise consider the following equation:

=A; HDx‘ = H s Apyr + Z H s;t B H D} (mod q). (1)

=1 \j=1 k=i+1

E,

Indeed, if the secrets s? are set with small norm, then the entire E, term can be viewed as a small error term,
so the dominant factor, Hf 1 87 Ay, will be purely determined by the multiplicative relationship of the
secrets. As for security, observe that the encodlng Db of each secret s amounts to an LWE encodlng of s? s;,and
furthermore the encoding of s, = Hf 1 sZ is also in the form of an LWE instance Ay, 1, Hz_l S5 YA+ E,

(mod ¢). Of course, being in the form of LWE does not amount to a clear security property that is based on

LWE. We discuss this point further below.

The power and danger in the GGH15 approach. The GGH15 encoding embeds the plaintext s into the
secret term of the LWE instance, unlike in other LWE-based systems (e.g. Regev [Reg09] or dual-Regev
[GPVO08]) where the plaintext is associated with the error term or the A matrix. While the graph structure and
trapdoor sampling mechanism enables homomorphic evaluations on the LWE secrets, analyzing the security
becomes tricky. Unlike the traditional case where the LWE secrets s are independent and random, here the
LWE secrets, representing plaintexts, are taken from distributions that are potentially structured or correlated
with each other.

Such dependencies make it hard to prove security of the trapdoor sampling: Recall that the encoding D;
of some secret 5; (possibly obtained from an evaluation over correlated secrets) is the preimage of Y; :=
3;A;41 + E sampled by the trapdoor of A;. For instance, in the extreme case where §; = 0, then the public
encoding D; becomes a “weak trapdoor” of A;, which endangers the secrets encoded on the edges heading
to A; [GGHIS5].

Consequently, to safely use the GGH15 encoding, one has to consider the joint distribution of all the LWE
secrets sf, and demonstrate that the trapdoor sampling algorithm remains secure even with respect to these



secrets. We demonstrate how to do that in a specific setting, by showing that there exists a “simulated” way to
sample the encodings without knowing the secrets or trapdoors, and the resulting sample is indistinguishable
from the real one.

LWE-based PRFs. The example of the “subset product” type encoding may remind the readers of the
lattices-based pseudorandom functions [BPR12, BLMR13, BP14, BV15b]. Indeed, recall the basic construc-
tion of Banerjee et al [BPR12, Section 5.1]. For modulus 2 < p < ¢ chosen such that ¢/p is exponential
in the input length ¢. The secret keys of the PRF are exactly 2¢ LWE secrets 59, s1, ..., 32, s} and a uniform

matrix A over R,. To evaluate, compute F'(x) = U—[Z 57 A-‘ where |v] means multiplying v by p/q
P

=11 P
and rounding to the nearest integer. Rounding plays a crucial role in the security proof, since it allows to add
fresh small noise terms without changing the functionality whp, hence one can inductively obtain fresh LWE

instances on any level.

Although not required for understanding this paper, the existing lattice-based PRFs enjoy several nice prop-
erties, such as supporting low-depth evaluation in TC® C NC!, and being additively key-homomorphic. Our
CHCPRFs inherit these properties. In terms of the constraining ability, the construction from [BV15b] is the
only known constrained PRF for all circuits based on LWE, but it is not constraint-hiding; neither is it secure
given multiple constrained keys.

Our construction for bit-fixing constraints. A bit-fixing constraint is specified by a string ¢ € {0, 1, x}¢,
where 0 and 1 are the matching bits and x denotes the wildcards. The constrain predicate C' outputs 1 if the
input matches c.

The combination of GGHI15 and lattice-based PRFs inspires us to construct CHCPRFs for bit-fixing con-
straints. In fact, after rounding F'(z) in Equation (1), the functionality of | F'(x)] is equivalent to (up to the
rounding error) both the BPR PRF [BPR12, Section 5.1] and a variant of the PRF in [BLMR13, Section 5.1].
If we take the 2¢ LWE secrets 3(1], s%, e 32, s} as master secret key, the encodings A, D(l], D%, - D?, D}
as the evaluation key in the normal mode. An intuitive constraining algorithm is simply replacing the LWE
secret of the constrained bit with an independent random element ¢, and reproduce its encoding D;. As an
example, Figure 1.1a and Figure 1.1b illustrate the normal mode and constrained mode of a bit-fixing PRF.

We show that the key and the outputs from both the normal mode and the constrained mode (both modes use
trapdoor sampling) are indistinguishable from an oblivious sampling procedure without using the trapdoors.
The proof proceeds level-by-level (from level ¢ to level 1). Within each level ¢, there are two steps. The first
step uses the computational hardness of LWE: observe that the LWE samples associated on A, are with
independent secrets, and A ;4 is trapdoor-free in that hybrid distribution by induction, so the LWE samples
are indistinguishable from uniformly random. The second step uses a statistical sampling lemma by Gentry,
Peikert and Vaikuntanathan [GPVO08], which says the preimage of uniform outputs can be sampled without
using the trapdoor of A;. The proof strategy is first illustrated by Brakerski et al. where they construct an
evasive conjunction obfuscator from GGH15 [BVWW16].

We note that this construction and analysis imply that a variant of the PRF from [BLMR13] also satisfies
1-key bit-fixing constraint hiding. Although the PRF from [BLMR13] does not involve the trapdoor sampling
procedure and is much simpler as a bit-fixing CHCPRF, understanding the GGH15-based version is beneficial
for understanding the CHCPRF for NC! coming next.

Embedding a general constraint in the PRF keys. We move on towards embedding a general constraint
in the key. Consider in particular the task of puncturing the key at a single point without revealing the point,



which is essential to the applications like watermarking and deniable encryption mentioned in [BLW17].
Indeed, even that simple function seems to require some new idea.

To preserve the graph structure while handling general constraints, Barrington’s Theorem [Bar86] comes
into the picture. Recall that Barrington’s Theorem converts any depth-d Boolean circuits into an oblivious
branching program of length z < 4 composed of permutation matrices {Bg}be{o,l},ie[z] of dimension w (by
default w = 5). Evaluation is done via multiplying the matrices selected by input bits, with the final output
IV*" or a w-cycle P recognizing 1 or 0 respectively.

To embed permutation matrices in the construction, we set the secret term for the normal mode as Si-’ =
b
Ex 0

1

TVxw @ sﬁ-’ = (where ® is the tensor product operator); in the constrained mode as Sé’ =

0 sg’
Bf;’ ® 8?. This provides the functionality of constraining all NC! circuits. See Figure 1.1c for an example of
2-bit point constraint z1x5 € {0, 1}2, where x; controls the 1% and 3" branches, x2 controls the 2% and 4"

branches, Q and R represent different w-cycles.

We then analyze whether the permutation matrix structures are hidden in the constrained key, and whether
the constrained outputs are pseudorandom. The first observation is that the tensor product of a permutation
matrix B and any hard LWE secret distribution s forms a hard LWE distribution, i.e. A, (B®s) - A+ E
is indistinguishable from uniformly random. This means both the secret and the permutation matrices are
hidden in the constrained key.

Still, the rounded constrained output [(P ® Hle 57 - AZ+J is a fixed permutation of the original value.

so the adversary can left-multiply P! to obtain the original output. To randomize the constrained outputs,
we adapt the “bookend” idea from the GGH15 candidate obfuscator. That is, we multiply the output on the
left by a small random vector J &€ RIxw, By a careful reduction to standard LWE, one can show that A,
JA +E,J (P ®1g) A + E is indistinguishable from uniformly random.

With these two additional hard LWE distributions in the toolbox, we can base NC! CHCPRF on LWE via the
same two-step proof strategy (i.e. LWE+GPV in each level) used in the bit-fixing construction.

1.3 More on related work

More background on multilinear maps and the implication of this work. The notion of cryptographic
multilinear maps was introduced by Boneh and Silverberg [BS03]. Currently there are three main candi-
dates [GGH13, CLT13, GGH15], with a number of variants. However, what security properties hold for the
candidates remains unclear. In particular, none of the candidates is known to satisfy the multilinear DDH
or subgroup elimination assumptions that are sufficient for the CHCPRFs by Boneh et al [BLW17] (see
[GGH13, CHL™ 15, HJ16, CLLT16] for the attacks on these assumptions).

Note that even our result does not imply that GGH15 satisfies the traditional assumptions like multilinear
DDH, but at least it demonstrates a safe setting. To what extent can the safe setting be generalized remains
an open problem. Indeed, a central task in the study of the existing candidate multilinear maps is to identify
settings where they can be used based on standard cryptographic assumptions [Hall5].

Relations to the GGH15 candidate program obfuscator. Our construction for NC! constraints is strongly
reminiscent of the candidate obfuscator from GGH15 [GGHI15, Section 5.2]. In particular, the “secrets” in
the CHCPREF corresponds to the “multiplicative bundling scalars” from the GGH15 obfuscator. Under the
restriction of releasing only 1 branch (either the functional branch or the dummy branch), our result implies



that the “scalars” and permutation matrices can be hidden (without using additional safeguards such as the
Kilian-type randomization and padded randomness on the diagonal).

In contrast, the recent cryptanalysis of the GGH15 obfuscator [CGH17] shows that when releasing both the
functional key and the dummy key, one can extract the bundling scalars even if the obfuscator is equipped
with all the safeguards.

It might be instructive to see where our reduction to LWE fail if one attempts to apply our proof technique to
the two-key setting. The point is that in this case, the adversary obtains LWE samples Y, Y’ with correlated
secrets; Therefore it is not clear how to simulate the Gaussian samples of D conditioned on AD =Y or of
D’ conditioned on A’D’ = Y’, without knowing the trapdoors of A and A’.

1.4 Concurrent work

In an independent work, Boneh, Kim and Montgomery [BKM17] build CHCPRF from LWE, for the special
case of input puncturing constraints. Their construction is very different from ours. In particular, their starting
point is the (non-hiding) constrained PRF by Brakerski and Vaikuntanathan [BV15b].

While they analyze their construction with respect to the indistinguishability-based definition, they also con-
sider a simulation-based definition that is significantly stronger than the one here. They show that it is impos-
sible to realize that definition for general functions. To do so, they use the same construction of functional
encryption from CHCPRFs as the one in this paper.

2 Preliminaries

Notations and terminology. Let R, Z, N be the set of real numbers, integers and positive integers. The
notation R is often used to denote some base ring. The concrete choices of R are Z**" (the integer matrices)
and Z[z]/ (2" +1) (where n is a power of 2). We denote /(g R) by R;. The rounding operation [a], : Zg —
Zy is defined as multiplying a by p/q and rounding the result to the nearest integer.

Forn € N, [n] := {1,...,n}. A vector in R" is represented in column form, and written as a bold lower-case
letter, e.g. v. For a vector v, the i*"* component of v will be denoted by v;. A matrix is written as a bold
capital letter, e.g. A. The i** column vector of A is denoted a.

The length of a vector is the £,-norm ||v||, = (3" v)1/P. The length of a matrix is the norm of its longest
column: [|Al|, = max; ||a;||,. By default we use ¢>-norm unless explicitly mentioned. When a vector or
matrix is called “small” (or “short”), we refer to its norm (resp. length). The thresholds of “small” will be
precisely parameterized in the article and are not necessary negligible functions.

In cryptography, the security parameter (denoted as ) is a variable that is used to parameterize the compu-
tational complexity of the cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time over A.

Many experiments and probability statements in this paper contain randomized algorithms (such as adver-
saries) within them. The probability of success of an experiment is always taken over the random coins used
by the relevant randomized algorithms; therefore, we do not mention these coins explicitly. We use ~; and
~. as the abbreviation for statistically close and computationally indistinguishable.



2.1 Matrix branching programs

Definition 2.1 (Matrix branching programs). A width-w, length-z matrix branching program over (-bit inputs
consists of an index-to-input map, a sequence of pairs of matrices Bg’, and a non-identity matrix P represent-
ing 0: BP = {v: [2] — [£],{B! € {0, 1}"*"“} ;e pefo1}: P € {0,132 \ {I}}. The program computes
the function fgp : {0,1} — {0, 1}, defined as

1 if [l B =1
fer(@) =40 if Hig[z} B?(i) =P
1 elsewhere

A set of branching programs {BP} is called oblivious if all the programs in the set have the same index-to-
input map ¢.

Theorem 2.2 (Barrington’s theorem [Bar86]). For d € N, and for any set of depth-d fan-in-2 Boolean circuits
{C}, there is an oblivious set of width-5 length-4% branching programs {BPY} with a index-to-input map L,
where each BP is composed of permutation matrices {B? € {0, 1}5X5}i€[z}7b€{071}, a 5-cycle P, and 1.

2.2 Lattices

An n-dimensional lattice A is a discrete additive subgroup of R™. Given n linearly independent basis vectors
n

B = {by,...,b, € R"}, the lattice generated by B is A(B) = A(by,...,b,) = {>_ z; - b;,z; € Z}. We
i=1

have the quotient group R™/A of cosets c + A = {c +v,v € A}, c € R". Let B denote the Gram-Schmidt
orthogonalization of B.

Gaussian on lattices. For any o > 0, define the Gaussian function on R™ centered at ¢ with parameter o'

Vx € Rn, pU,C(X) — 677THx—cH2/g-2

For any ¢ € R", o > 0, and n-dimensional lattice A, define the discrete Gaussian distribution over A as:

VX €A, Dpjeo(x) = Pre(X)

Po.c(N)

Lemma 2.3 ((PR06, MRO7]). Let B be a basis of an m-dimensional lattice A, and let ¢ > ||B| - w(logn),
then Pry. p, ,[[[x]| > 0 -y/mVx = 0] < negl(n).

Gentry, Peikert and Vaikuntanathan [GPVO08] show how to sample statistically close to discrete Gaussian
distribution in polynomial time for sufficiently large o (the algorithm is first proposed by Klein [Kle00]). The
sampler is upgraded in [BLP™ 13] so that the output is distributed exactly as a discrete Gaussian.

Lemma 2.4 ([GPVOS,NBLP“‘ 13]). There is a p.p.t. algorithm that, given a basis B of an n-dimensional lattice
A(B), c e R", 0 > ||B|| - \/In(2n + 4) /7, outputs a sample from Dy ¢ o.

We then present the trapdoor sampling algorithm and the corollary of GPV lemma in the general ring R.



Lemma 2.5 ([Ajt99, AP11, MP12]). There is a p.p.t. algorithm TrapSam(R, 1", 1™, q) that, given the base
ring R, modulus q > 2, lattice dimension n, and width parameter m (under the condition that m = Q(log q)
if R="27"*", m = Q(nlogq) if R = Z[z]/(z" + 1)), outputs A < U(R;*™) with a trapdoor .

Lemma 2.6 ((GPVO08]). There is a p.p.t. algorithm PreimgSam(A, 7,y, o) that with all but negligible prob-
ability over (A, 7) < TrapSam(R, 1, 1™ q), for sufficiently large o = Q(y/nlog q), the following distribu-
tions are statistically close:

{A,x,y 1y < U(Ry),x < PreimgSam(A, 7,y,0)} =s {A, X,y : X < 75,y = Ax}
where ~, represents Dy if R = 7™, represents Dpm , if R = Z[z]/(z™ + 1).

When the image is a matrix Y = [y1]|...||y¢], we abuse the notation for the preimage sampling algorithm, use
D « PreimgSam(A, 7, Y, o) to represent the concatenation of £ samples from d; < PreimgSam(A, 7,y;, )i

2.3 General learning with errors problems

The learning with errors (LWE) problem, formalized by Regev [Reg(09], states that solving noisy linear equa-
tions, in certain rings and for certain error distributions, is as hard as solving some worst-case lattice problems.
The two typical forms used in cryptographic applications are (standard) LWE and RingLWE. The latter is in-
troduced by Lyubashevsky, Peikert and Regev [LPR13a].

We formulate them as the General learning with errors problems similar to those of [BGV12], with more
flexibility in the secret distribution and the base ring.

Definition 2.7 (General learning with errors problem). The (decisional) general learning with errors problem
(GLWE) is parameterized by the base ring R, dimension parameters k, £, m for samples, dimension parameter
n for lattices, modulus q, the secret distribution 1 over R**t and the error distribution X over RO™ The
GLWER k,¢,m,n,q,n,x Problem is to distinguish the following two distributions: (1) LWE samples s < 1, A <
U(Réxm), E < xX**™ output (A, sA+E) € (Rf;xm X R'gxm); (2) uniform distributions U(Rgxm X ngxm).

We define GLWER . 7.1m,n,q,n,-hardness for secret distributions. The subscripts are dropped if they are clear
from the context.

Definition 2.8. A secret distribution 1) is called GLIWER j, 1 1m.n.q,n,x-hard if no p.p.t. adversary distinguishes
the two distributions in the GLWER j; ¢ m n.q.nx Problem with 1/2 plus non-negligible probability.

Here are the connections of decisional LWE/RingL.WE to the worst-case lattice problems, in the language of
GLWE-hardness. For the LWE problem we present the version where the secret is a square matrix.

Lemma 2.9 (LWE [Reg09, Pei09, BLP"13]). Let n be an integer, R = Z™<™. q be an integer modu-
Ius, 0 < o < q such that c > 2+/n. If there exists an efficient (possibly quantum) algorithm that breaks
GLWE R1,1m,n,q,U(Ry), DEX™ then there exists an efficient (possibly quantum) algorithm for approximating

SIVP and GapSVP in the {5 norm, in the worst case, to within O(nq /o) factors.
Lemma 2.10 (RingLWE [LPR13a, DD12, LS15]). Let n be a power of 2, R = Z[x]/(x™ + 1). Let q be a

prime integer s.t. g =1 (mod n). 0 < o < ¢, 0 > w(y/log(n)), o’ > n3/4m* 0. If there exists an efficient
(possibly quantum) algorithm that breaks GLWER 1 1 1 n.q,U(R,),D;, ,,» then there exists an polynomial time

quantum algorithm for solving SVP for ideal-lattices over R, in the worst case, to within O~(\/ﬁq /o) factors.



For proper choices of parameters, error distributions of small norm can be used as hard secret distribution
(usually called Hermit-normal-form LWE).

Lemma 2.11 (HNF-LWE [ACPS09, BLP™13]). For R, m,n, q, o chosen as was in Lemma 2.9, GLWE 4

’ nxXn pnxn
54,1 7”,(]7D DZU

Z,o

is as hard as GLWER,l,l,m,n,q,U(Rq),Dgf;n form! < m — (16n + 4loglog q).

Lemma 2.12 (HNF-RingLWE [LPR13b]). For R, m,n, q, 0, c’ chosen as in Lemma 2.10, GLWER1,1,m-1,n,0.D5 o1, Dsy o
is as hard as GLWER,LLm,n,q,U(Rq),DR -

Pseudorandom functions based on GLWE. We adapt theorems from the PRF construction of Boneh,
Lewi, Montgomery, and Raghunathan [BLMR13, Theorems 4.3, 5.1]. The result was originally stated for
LWE. We observe that it holds for general rings under proper choices of parameters.

Lemma 2.13 (Adapted from [BLMRI13]). Let ¢ € N be the bit-length of the input. m,n,q,p € N, 0, B € R
st. 0 <o <q B>aoym,q/p> B n=U(R,), v is adistribution over R™*™ parameterized by 7, X»
is a distribution over R parameterized by o. || ||, || xo| < ov/m.

Consider the function f : {0,1}* — Réxm, fulz) = {U Hle Df1-| , where U U(Réxm) is the private
P

parameter, {D? « Yo }be{0,1},ic|q is the public parameter.

If there is an efficient algorithm that given input A < U(Réxm), outputs (U € Réxm,D € R™™)
that are statistically close to (U (Réxm) X Vo) and UD = A; then f is a PRF assuming the hardness of
G LWER71717m7n7q7777XU'

Proof sketch: The proof consists of two parts, both extended from [BLMR13, Theorems 4.3, 5.1]. The first
part defines a variant of the GLWE problem called Non-uniform GLWE (hereafter NuGLWE). [BLMR13, The-
orems 4.3] proves that for the integral matrix ring, NuLWE is implied by standard LWE. Below we describe
the adaption of the first part (from [BLMR13, Theorem 4.3]) to the general rings. The second part which
proves that f is a PRF assuming NuGLWE follows the immediate extension from [BLMR13, Theorem 5.1].

The NuGLWE problem asks to distinguish samples (D, KD +E) € (R™™ x R"™) from (y x U(RL*™)),
where D« ~ is possibly non-uniform, K «+ U(R}*™), E < x*". To reduce NuGLWE to GLWE with
samples (A,Y) € (RY™ x RL*™) where A is uniform, let the GLWE attacker sample (U € R*™ D €
R™ M) g (U(RL™) x ) s.t. UD = A, send (D, Y) to the NuGLWE distinguisher. If (A, Y) is a GLWE
sample where Y = sA + E, then take K := sU, and observe that (D,Y) is from the correct distribution of
NuGLWE. If (A,Y) is from uniform, (D,Y) is from (y x U(Réxm)). O

The proof from [BLMR13, Theorem 4.3] shows the reduction above for LWE under proper parameter settings.
To base it on RingLWE for R = Z[z|/(z™ + 1), parameters can be set as m > 2nlogq, 0 = w(v/nloggq),

1xm

Yo = DRmp-’ Xo = DR,O"

3 GLWE-hard distributions: extension package

We prove GLWE-hardness for the following “structural” secret distributions. They are used in the analysis of
Construction 5.7.

Lemma 3.1. Fix a permutation matrix B € {0, 1}**". If a secret distribution n over R is GLWER 1 1 ,,2
hard, then the secret distribution B ® 1 is GLWE guwxw 1 1 m n,q,Ban,ywxw-hard.

m,n,q,n,x"

10



Proof. For a permutation matrix B € {0, 1
from

X suppose there is a p.p.t. distinguisher between samples

(B,A,(B®s)A +E), where A <— U(R;™"™), s < n,E « x"*"™
and samples from the uniform distribution (B, U (Ry™*™), U (R;**™)), then we build an attacker for GLWER 1 1 12

The attacker is given an GLWER 1 1 1215, .,y IDStaNCE

e

(A, Y) = (A1]]...||Aw, Y1||-.|[ Vo), Where A;,Y; € RPU™, i € [w].

It then rearranges the blocks as (U, V) € R¥X%W™m x R¥Xwm where the i’ (blocked) row of U is A;, the
it" (blocked) row of V is Y;. The attacker then sends (B, U, (B ® 1g) V) to the distinguisher. Observe that
(B, U, (B ® 1) V) is from the B ®1 secret distribution if (A’, Y") is from the 7 secret distribution, or from
the uniform distribution if (A’,Y’) is from the uniform distribution. Hence the attacker wins with the same
probability as the distinguisher. O

Lemma 3.2. Let w € [2,00) N Z. Fix a permutation matrix C € {0,1}"*" that represents a w-cycle.

If a secret distribution 1 over R is GLWER 1.1 wm,n,q,n,x-hard, then the secret distribution (nlxw, X x

(C ® 1R)) iS GLWERQ’w’m’n’%(nlwanlm,X(C®1R))7X—hard.
Proof. LetH = [hl, ho, ..., hw] where {hz — n}ie[w]- Let
H = {(Aiji,j = hlA] + Ei,j)|Aj — U(Réxm), h; < n,Ei,j —X,%,J € [w]}

be the rearranging of w independent GLWE samples from GLWER 1.1 wm,n,q¢,n,- H 1s indistinguishable from
the uniform distribution U := {(A;,Y;;)|A; < U(R;™), Y, < U(R}*™),i,j € [w]} due to standard
GLWE.

We show that if there is an attacker D’ that distinguishes
(AALHA+E H(C®1g) A +E),
where E, E/ < x'*™ from
U(RY™™ x Ry™ x Ry™™),
then there is a distinguisher D for (a subset of) H and U.

To do so, we simulate the (n'*%, n'*% x (C ® 1)) samples from H or U by setting A € RY*™ where
the j'" row of Ais A, Y := 2 jefw] Yig and Zoi= 3 icr 0 Ye(h), - Where ((j) : [w] — [w] outputs the
row number of the I-entry in the j** column of C. Note that being a w-cycle indicates that the 1-entries
in C disjoint with the 1-entries in I'"**. Observe that the sample (A,Y,Z) is from the secret distribution
(nt*w nt*w x (C ® 1g)) if transformed from 7, or from the uniform distribution if transformed from /.
Hence the distinguisher D’ wins with the same probability as the attacker D. O

4 Constraint-hiding constrained PRFs

This section provides the definitions of constraint-hiding constrained PRFs. We first recall the indistinguishability-
based definition from [BLW17], then give our simulation-based definition, and discuss the relations among
these two definitions and program obfuscation.

11



4.1 The indistinguishability-based definition

We first recall the indistinguishability-based definition for CHCPRF from [BLW17].

Definition 4.1 (Indistinguishability-based CHCPRF [BLW 17]). Consider a family of functions F = {Fx} xeN
where Fy = {Fy : Dx — Rx}xen, along with a triple of efficient functions (Gen, Constrain, Eval). For a
constraint family C = {Cy : Dy — {0,1}}xen; the key generation algorithm Gen(1*) generates the mas-
ter secret key MSK, the constraining algorithm Constrain(1*, MSK, C) takes the master secret key MSK, a
constraint C, outputs the constrained key CK; the evaluation algorithm Eval(k, x) takes a key k, an input x,
outputs Fy.(x).

We say that F is an indistinguishability-based CHCPREF for C if it satisfies the following properties:

Functionality preservation over unconstrained inputs. For input x € D) s.t. C(x) = 1, Pr[Eval(MSK, z) =
Eval(CK,z)] > 1 — negl()\), where the probability is taken over the randomness in algorithms Gen and
Constrain.

Pseudorandomness for constrained inputs. Consider the following experiment between a challenger and
an adversary. The adversary can ask 3 types of oracle queries: constrained key oracle, evaluation oracle,
and challenge oracle. For b € {0, 1}, the challenger responds to each oracle query in the following manner:

e Constrained key oracle. Given a circuit C € C, the challenger outputs a constrained key CK <
Constrain(1*, MSK, O).

e Evaluation oracle. Given an input x € D), the challenger outputs y < Eval(MSK, x).

e Challenge oracle. Given an input x. € D), the challenger outputs y < Eval(MSK,z.) if b = 1;
outputs y < U(Ry) if b = 0.

The queries from the adversary satisfy the conditions that C(x.) = 0, and x. is not sent among evaluation
queries. At the end of the experiment, the adversary chooses b’ and wins if b’ = b. The scheme satisfies the
pseudorandomness property if the winning probability of any p.p.t. adversary is bounded by 1/2 + negl(\).

Indistinguishability-based constraint-hiding. Consider the following experiment between a challenger
and an adversary. The adversary can ask 2 types of oracle queries: constrained key oracle or evaluation
oracle. For b € {0,1}, the challenger responds to each oracle query in the following manner:

e Constrained key oracle. Given a pair of circuits Cy, C1 € C, the challenger outputs a constrained key

for Cy: CK <— Constrain(1*, MSK, Cy).
e Evaluation oracle. Given an input x € D), the challenger outputs y < Eval(MSK, x).
For a circuit C € C, denote S(C) := {x € Dy : C(x) = 1}. Suppose the adversary asks h pairs of
circuit constraints {C’ég), C’fg)}ge[h}, the queries are admissible if (1) Vi # j € [h], S(C’éz)) N S(C’éj)) =
S(C’fi)) N S(ij)); (2) for all input evaluation queries x, for all g € [h], O(g) (x) = Cfg) ().

At the end of the experiment, the adversary chooses b’ and wins if b = b. The scheme satisfies the constraint-
hiding property if the winning probability of any p.p.t. adversary is bounded by 1/2 + negl(\).

12



4.2 The simulation-based definition

Next we give the simulation-based definition. We first present a definition that is central to the discussions
and constructions in the paper, then mention its variants.

Definition 4.2 (Simulation-based CHCPRF). Consider a family of functions F = {Fy}reN With the same
syntax as in Definition 4.1. We say that F is simulation-based CHCPREF for family C of circuits if for any
polytime stateful algorithm Adv, there is a polytime stateful algorithm Sim such that:

{Experiment REALpg, (1) }xen ~c {Experiment IDEALpg, sim (1) }ren

The ideal and real experiments are defined as follows for adversaries Adv and Sim. Both algorithms are
stateful.

Experiment REALpy, (1) Experiment IDEALpq, sim (1Y)
MSK « Gen(1%), Sim « 1%
Repeat : Repeat :

Adv — (z,dz); y = Eval(MSK, x) Adv — (z,dy); y = Sim(z, dy)

Adv + gy ifd; =0theny =U(R);Adv <y
Adv — C; Adv — C;

if dy # C(x) for some x then Output L if d, # C(x) for some x then Output L
else Adv < Constrain(MSK, C) else Adv + Sim(1/€1)
Repeat : Repeat :

Adv — z; y = Eval(MSK, z) Adv — z; y = Sim(z, C(x))

Adv vy ifC(xz) =0theny = U(R);Adv <y
Adv — b; Output b Adv — b; Output b

That is, in the experiments the adversary can ask a single constraint query and polynomially many input
queries, in any order. For input queries x made before the circuit query, Adv is expected to provide a bit b,
indicating whether C(x) = 1. In the real experiment Adv obtains the unconstrained function value at x. In
the ideal experiment Sim learns the indicator bit d,; if d, = 1 then Adv gets a value generated by Sim, and
if dy = 0 then Adv obtains a random value from the range R of the function. Once Adv makes the constraint
query C' € Cy, both experiments verify the consistency of the indicator bits d, for all the inputs x queried
by Adv so far. If any inconsistency is found then the experiment halts. Next, in the real experiment Adv
obtains the constrained key generated by the constraining algorithm, in the ideal experiment Adv obtains a
key generated by Sim, whereas Sim is given only the size of C. The handling of input queries made by Adv
after the circuit query is similar to the ones before, with the exception that the indicator bit d,, is no longer
needed and Sim obtains the value of C(x) instead. The output of the experiment is the final output bit of Adv.

Remark 4.3. One may also consider a stronger definition than Definition 4.2 where the adversary is not
required to provide the indicator bits d, in the queries prior to prodiving the constraint. However we note
that this stronger definition is unachievable if the number of input queries before the constraint query is
unbounded, due to an “incompressibility” argument similar to the one from [AGVW13].

Remark 4.4. The simulation-based definition can also be generalized to the setting where the adversary
queries multiple constrained keys. That is, once received each constrained key query, the simulator has to
simulate a constrained key, given only the size of the constraining circuit. We further discuss this strong
variant shortly.
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4.3 Relations among the definitions

We discuss the relation among the definitions of CHCPRF and program obfuscation.

Multiple-key CHCPRFs implies obfuscation. We show that the simulation-based CHCPREF for 2 keys im-
plies virtual black-box obfuscation (VBB), which is impossible to obtain for general functionalities [Had0O,
BGI"12]. For the indistinguishability-based definition proposed in [BLW17], achieving 2-key security im-
plies indistinguishability obfuscation [BGI*12].

Recall the definitions for VBB obfuscation (we present the strongest variant in [BGI™12]) and indistinguisha-
bility obfuscation.

Definition 4.5 (Obfuscation [Had00, BGI" 12]). A probabilistic algorithm O is an obfuscator for a class of
circuit C if the following conditions hold:

e (Preservation of the function) For all inputs x, Pr[C(z) = O(C(x))] > 1 — negl(\).
e (Polynomially slowdown) There is a polynomial p s.t. |O(C)| < p(|C).

o (Strong virtual black-box obfuscation) For any p.p.t. adversary Adv, there is a p.p.t. simulator Sim s.t.
for all C, {Adv(1*,0(C))} ~, {Sim®(1*,|C])}.

e (Indistinguishability obfuscation) For functionally equivalent circuits Cy, C1, O(Cy) ~. O(C1).

Construction 4.6 (Obfuscator from 2-key CHCPRFs). Given a CHCPRF, we construct an obfuscator for C
by create a constrained key CK[C|, and a constrained key CK[I| where I is the circuit that always outputs 1.
To evaluate C(x), output 1 if CHCPRFck(c(z) = CHCPRFckf)(z), 0 otherwise.

Theorem 4.7. If 2-key simulation-secure CHCPRF exists for circuit class C, then strong VBB obfuscation
exists for circuit class C.

Proof. The simulator for the VBB obfuscator (does not have to make oracle queries to C') runs the simulator
for CHCPREF, produce simulated constraint keys for CK®[C], CK®[I], which are indistinguishable from the
real constrained keys CK[C], CK[I] that are used to construct the obfuscator. O

Corollary 4.8 ([Had00, BGI™12]). There are circuit classes for which 2-key simulation-secure CHCPRF
does not exist.

Theorem 4.9. If 2-key indistinguishability-based CHCPRF exists for circuit class C, then indistinguishability
obfuscation exists for circuit class C.

Proof. For a circuit C, the obfuscator outputs CK[C], CK[I]. For functionally equivalent circuits Cyy and C1,
S(Co)NS(I) = S(C1)NS(I). By indistinguishability constraint-hiding, (CK[Cj], CK[I]) =, (CK[C1], CK[I]).
O

Simulation and indistinguishability-based definitions for CHCPRF. Next we discuss the relation of the
simulation and indistinguishability-based definitions for CHCPREF, under 1-key security. The two definitions
are equivalent in the 1-key setting, for the corresponding order of queries and adaptivity. Below we state
the theorems for the non-adaptive version of the definitions, then discuss their generalizations to the adaptive
setting.

We first show that the simulation based definition implies the indistinguishability based definition.
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Theorem 4.10. [f a CHCPRF satisfies the non-adaptive simulation-based definition, then it satisfies the non-
adaptive indistinguishability-based definition.

Proof. Correctness follows directly from the simulation-based definition. For constraint-hiding, we prove
by a hybrid argument, that the constrained key for either Cjy or C'; is indistinguishable from an intermediate
simulated constrained key. Formally, for CHCPRF F, suppose there is an distinguisher D that violates Def-
inition 4.1, we build a distinguisher D’ between the real and simulated distributions in Definition 4.2. For
circuits Cp, Cy and input queries {z(*)} kel that are admissible for Definition 4.1, for b € {0, 1}, D’ obtains
the constrained keys and outputs either from the real Ry, := (CK[Cy], {z(®), y(®)} ke[t)) or the simulated dis-
tribution S := (CK[C®], {x(k),y(k)s}ke[t]), send it to D. Given that D is able to distinguish R from R
with non-negligible advantage, D is also able to distinguish (at least) one of R from S with non-negligible
advantage, b € {0, 1}.

Pseudorandomness of the constrained outputs can be shown via a similar hybrid argument. O

The implication holds for the adaptive setting. In particular, the standard simulation definition from Defi-
nition 4.2 implies Definition 4.1 where the predicates on the input queries are committed; for the stronger
simulation definition discussed in Remark 4.3, it implies the fully adaptive variant of Definition 4.1.

In the 1-key setting, the indistinguishability definition implies the simulation based definition.

Theorem 4.11. If a CHCPRF satisfies 1-key non-adaptive indistinguishability-based definition, it satisfies the
1-key non-adaptive simulation-based definition.

Proof. For a CHCPRF F that satisfies Definition 4.1 for one constrained key query, we construct a simulator
as per Definition 4.2. The simulator picks an all-1 circuit C® = I such that I(x) = 1,Vx € D,, and
use the indistinguishability-secure constraining algorithm to derive a constrained key CK® for C'S. Once
the simulator obtains the inputs and the indicators {z*), d(k)}ke[t], if d®) = 1, outputs Eval(CK®, z(¥); if
d®) = 0, outputs 3y + U(R)).

We first prove constraint-hiding. Suppose there is an adversary A’ that distinguishes the simulated distribution
from the real distribution, we build an adversary A that breaks the indistinguishability definition for 7. A
sends constrained circuit queries Cyp = C and C = I, obtains CK[C}]. Then A sends input queries. For
z®) st C(z®) = I(z®) = 1, the output is Eval(CK[Cy], z*)); for z®) st. C(z®) # I(z®), it is an
inadmissible query so A samples an uniform random output on its own. Then A forwards CK[C}], inputs and
outputs to A’. The choice of A’ for the real or the simulated distribution corresponds to b = 0 or 1, hence the
advantage of A is equivalent to A’.

Next we prove pseudorandomness on the constrained inputs. For input = such that C(z) = 0, suppose there is
an adversary A’ that distinguishes the simulated output (which is uniformly random) from the real output, we
build an adversary A that breaks the indistinguishability-based pseudorandomness property on the challenge
input for F. The reduction is the same as one above except that the adversary A forwards the challenge output
as the reply of one of the real or simulated output. The choice of A’ for the real or the simulated distribution
corresponds to b = 0 or 1, hence the advantage of A is equivalent to A’. O

The theorem extends to the setting where the input queries can be made after the constraint query.
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5 The constructions

In Sections 5.1 and 5.2 we present the bit-fixing and NC' CHCPRFs. The proofs of both constructions
directly apply to the adaptive setting of Definition 4.2, i.e. the constrained circuit and input queries can be
chosen adaptively, as long as the simulator learns the indicator of each input.

5.1 Bit-fixing CHCPRFs

Definition 5.1 (Bit-fixing constraint [BW13]). A bit-fixing constraint is specified by a string ¢ € {0,1, %},
where 0 and 1 are the fixing bits and % denotes the wildcards. C(x) = 1 if the input matches c, namely
((acl = Cl) \Y (Cl = *)) N A ((a}g = Cg) V (Cg = *))

We start with a brief overview of the construction and then give the details. For a PRF with ¢-bit input,
the key-generation algorithm samples 2/ secrets from GLWE-hard distributions with small Euclidean norm
{si? < M}pefo,1},ic[g- Places them in a chain of length £ and width 2, and uses the GGH15 methodology to
encode the chain. The evaluation key consists of the resulting A matrix and the D matrices {Dg}be{o,l},z‘em-
The evaluation algorithm selects the path according to the input, computes the product of D matrices along
the path Hle D, then multiplies A; on the left. The unrounded version of the output A Hle DI is
close to Hle 7" Agy1, where “close” hides the cumulated error terms. Finally, the resulting subset product
is rounded by p where 2 < p < ¢, ¢/p > B with B being the maximum error bound. Rounding is required
for correctness and security.

Construction 5.2 (Bit-fixing CHCPRFs). We construct a function family F = {f : {0,1}f — Rzl,xm}
equipped with algorithms (Gen, Constrain, Eval) and a set of vectors C = {c € {0,1,x}'}:

o Gen(1?) takes the security parameter )\, samples parameters q,p, o, m, Ay < URY), {(As,7i) <
TrapSam(R, 1™, 1™, q)}ie[g]. Then, sample 2{ independent small secrets from GLWE-hard distributions
{sb « N}be{0,1},icle- Next, encode the secrets as follows: first compute {Y? = sPA; 1 + E2E! «
X" il pefo,1}, then sample {DY < PreimgSam(Ay, 74, Y7, 0) Yie[e) bef0,1)

Set MSK := ({Ay}iep e1) {7i Fiepgs {52 D et veqo,11)-

e Constrain(MSK, c) takes MSK and the bit-matching vector c, for i € [}, if ¢; # * (i.e. specified as 0
or 1), replaces the original sil_c”‘ by a fresh tg_ci < n, then updates the encodings on these secrets:
Y] =t A+ E/[ % B[ % < ™, samples D, % < PreimgSam(A;,7;, Y, o).

Set CK := (A1, {D?}icie be0,1})-

e Eval(k,z) takes the key k = (A1, {Dg}z‘e[é],be{o,l}) and the input x, outputs LAl Hle Dﬂ .
P

Remark 5.3. We occasionally call i € {1,2,...,£} “levels”, from low to high.

Setting of parameters. Parameters shall be set to ensure both correctness (i.e. the preservation of function-
ality over unconstrained inputs) and security. Note that the approximation factors of the underlying worst-case
(general or ideal) lattices problems are inherently exponential in /.

Specifically, for R = Z"™*™, setn = x = Dgz" v = D%ﬁt’;. The parameters are set to satisfy m > 2log ¢
due to Lemma 2.5; ¢/p > (o - m)* due to Lemma 2.3 for the correctness of rounding; 0 < o < ¢, 0 =
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2y/nlogq, ng/o < 2M7° due to Lemmas 2.6,2.09,2.11, and 2.13. An example setting of parameters: p = 2,
€e=1/2,q=(32(n?logn)’, A = n = (logq)>.

For R = Z[z]/(2™ + 1), n being a power of 2, set n = x = Dp,, 7 = D}%ﬁ%. The parameters are set
to satisfy m > 2 - nlogq due to Lemma 2.5; ¢/p > (o - n3/4m®/*)* due to Lemma 2.3 for the correctness
of rounding; 0 < 0 < ¢, 0 = 2y/nlogq, nq/o < 2M7° due to Lemmas 2.6, 2.10, 2.12, and 2.13. An

example setting of parameters against the state-of-art ideal SVP algorithms [BS16, CDPR16, CDW17]: p = 2,
e = 0.5001, ¢ = (70¢n®logn), A = n = (log q)*'.

Theorem 5.4. Assuming GLWER 1,1,m,n,q,n,x» Construction 5.2 is a simulation-secure bit-fixing CHCPRF.

Functionality preservation on the unconstrained inputs. The constraining algorithm does not change any
secrets on the unconstrained paths. So the functionality is perfectly preserved.

Security proof overview. The aim is to capture two properties: (1) pseudorandomness on the constrained
inputs (2) the constrained key is indistinguishable from an obliviously sampled one.

We construct a simulator as follows: the simulator samples a key composed of A matrices from uniform
distribution and D matrices from discrete-Gaussian distribution of small width. For the input-output pairs
queried by the adversary, if the functionality is preserved on that point, then the simulator, knowing the input
x, simply outputs the honest evaluation on the simulated key. If the input is constrained, it means at some level
i, the secret ¢;" in the constrained key is sampled independently from the original secret key s;*. Therefore
the LWE instance s;' A, 1 + E;", in the expression of the constrained output, provides an fresh random mask
U. The reduction moves from level £+ 1 to level 1. Atlevel 1, by the result of [BLMR13], the rounded output
on z is pseudorandom if C'(z) = 0.

Note that the evaluation algorithm only needs A; but not the rest of the A matrices. However, in the analysis
we assume all the A matrices are public.

Proof. The simulator samples all the {A;} ;<[ ¢41] matrices from random and {D?}be{o,l},ie[é} from ~, out-
puts the constrained key (A1, {D?}ie[é],be{o,l})- To respond the input queries, the simulator picks {y(*)} kel
according to {d(k)} kefy)s 1f d®) =1 (i.e. the functionality is preserved on the constraint key at z(¥)), then

k
outputs y*) = {Al Hle DZEE >"‘ (the honest evaluation on the simulated key); otherwise y(*) « U (Rlloxm).
p
The proof consists of two parts. The first part (Lemma 5.5) shows that the real distribution is indistinguishable
from a semi-simulated one, where all the D matrices on the constrained key are sampled obliviously without
knowing the constraint and the trapdoors of A matrices, and all the outputs are derived from the simulated
constrained key. The second part (Lemma 5.6) argues that the outputs are pseudorandom if they are in the
constrained area.

In the first part, we define intermediate hybrid distributions {H, },¢[o,¢]- He corresponds to the real constrained
key and outputs, Hp corresponds to the simulated constrained key and the semi-simulated outputs. The inter-
mediate simulator in H,, knows the partial constraint from level 1 to v, and the level w(*) ¢ {v, ..., ¢} where
the input (¥ starts to deviate from the constraint vector.

Descriptions of H,, v € [0, ¢]: The simulator in H,,

1. Samples {(A;, ;) < TrapSam(R, 1", 1™, q)} je[,) With trapdoors, {A ;s <= U(R") }jrcfv41,041] from
uniform;
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2. Samples the GLWE secrets {s? — n}be{o,l},ie[v] below level v; then, with part of the constraint vector
cpy] in hand, for i € [v], if ¢; # %, samples tz-lfc" —n;

3. Forb € {0,1},i € [v], if t? is sampled in the previous step, samples Y? := t?A; .1 + E 2’; otherwise,
Ys = S?Ai_u + Eg,

4. Samples {D? < PreimgSam(A;, 7;, Y7, ) }be{0,1},iclv] @s the constrained-key below level v. Samples
the rest of the D matrices obliviously {D? <« Y oe{0,1} icfv+1,4-

5. To simulate the outputs, the simulator maintains a list 2/ of U matrices (to be specified) initiated empty.

For k € [t], if the constraint is known to deviate in the path of :z[( ) from level w®) € [v+1,7], then

+1,4]
(k) (k) 2(F)

2k
compute y*) as {H;}:l sfi U lot1w) H —w D; i w — here U”l+1.wl is indexed by xfﬁl W if it
p

(k)
is not in the list &/, sample U*lv+1.w] < U (Ry"), include it in U; otherwise, reuse the one in /. If z (k)

=11

(k) k)
has not deviated above level v, then 3(¥) = {HU s7 Ayt H] vi1D; i -‘ .
P

Lemma 5.5. H, ~. H,_1, forv e {¢,...,1}.

Proof. The difference of H, and H,_1 lies in the sampling of DY, D! and the outputs {y(*)}. We first analyze
the difference of the outputs between H,, and H,_ by classifying the input queries into 3 cases:

(k) )
1. For input z(¥) that matches the partial constraint vector Cy,¢]> Observe that {Hf 11 sx A, H j=v D J -‘ =
P

o1 a® k) (k) z (M v m(’“> z{?

- [3 X X ~ K] ~
[[i=r st (s50 Ay + EJ° )Hg vi1 D ~s |z 8" Ao Hg vt1 D » Where ~
p p

k) (k) 2 (F) . .. .
is due to the small norm of [['~) s;* EZv IT¢ o1 Dj " Hence the output is statistically close in

H,—1 and H,.

. . . . (k)
2. For the input 2(%) that is preserving above level v but deviated at level v, the fresh LWE secret tivk

(k) (k) (k)
sampled in the constrained key is independent from the original key s7* . So s¥* A,4+; + EZv and

(k)
tvv Av+1 +E? »" are treated as independent LWE instances w.r.t. A, .

ORI

. For z(¥) that has deviated above level v, the output can be written as y(*) = {Hle s, Uttt Hg_w(k) D, e

(k) 2k (k)
h_[;:ll s;' (s2 A i o1, +E) H w®) D -‘ , where U”lv+1.4] is uniform by induction.
P

To summarize, there are less than 3(|U/| + 1) matrices that are GLWE samples in H,, while uniform in H,_;.
The GLWE samples involves 3 independent secrets: sV, sl and t1=¢ if ¢, # *. t17% is only masked by
Ayt {Sg}be{o,l} are masked by A, (in the constrained key and the outputs of cases (1) and (2)) and the
uniform matrices in the list / (the outputs of case (3)); all the samples are associated with independently

sampled noises.

If there is an attacker A’ that distinguishes H,, and H,,_; with non-negligible probability {, we can build an
attacker A who distinguishes (a subset among the 3(|i/| + 1)) GLWE samples

{[Apir, UL UZ UM [0 ) t=a)T  [A 4, UL, U2, UM + EY,

v v
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3x(U]+1)

where E < x ™ from

U|+1)m 3X(|U|+1)m
{U(R((IH ) quX(II m)

To do so, once A obtains the samples, it places the samples under mask A,,; in the constrained key
and the outputs of cases (1) and (2); places the samples under masks U?, ..., UMl in the outputs of cases
(3). Then samples {A;} e[, With trapdoors, GLWE secrets {sb « N}befo,1},icf]- Then samples (D! «
PreimgSam(A;, 7, Yf, ) }be{0,1},ic[v] @ the constrained-key below level v. Samples the rest of the D ma-
trices obliviously {D? «+ Y }be{0,1} iclv+1,4-

With these matrices the attacker A is able to simulate the outputs, send the outputs and constrained key to
A’. If the samples are from GLWE, then it corresponds to H,; if the samples are uniform, then the matrices
{Dg}be{[)’l} sampled via {D? < PreimgSam(A,, 7,, Y?, o) }vefo,1} are statistically close to the obliviously
sampled ones due to Lemma 2.6, so it is statistically close to H,_1. Hence A breaks GLWE with probability
more than ¢/(3(¢ + 1)), which contradicts to Lemma 2.11.

]
Lemma 5.6. If C(z®)) = 0, then the output y*) in Hy is pseudorandom.

(k)

(k)
. k T 0 Z; (k)
Proof. A constrained output 3*) can be expressed as {U (1wl | |j:w(k) D/’ -‘ , where the secret U[l,w(k>]
P

is uniform; the public D matrices are sampled from discrete-Gaussian distribution . By Lemma 2.13 y*) is
pseudorandom. 0

The proof completes by combining Lemma 5.5 and Lemma 5.6. O

5.2 Constraint-hiding for NC' circuits

Next we present the CHCPRF for NC! circuit constraints. For circuits of depth d, use Barrington’s The-
orem [Bar86] to convert them into a set of oblivious branching program {BP} with the same index-to-
input map ¢ : [z] — [{], the same w-cycle P that represents the 0 output (by default w = 5). Let
{B € {0, L%} l2],e0,1} be the permutation matrices in each BP.

The master secret key for the CHCPRF consists of 2z secrets from GLWE-hard distributions 1 over R with
small Euclidean norm {si? < N}vefo,1},icl]» together with a vector J € RY™ % To generate an evaluation key,
in the normal setting, let S? := I¥*% © s? € {0,1}**% ®x R; in the constrained setting for a constraint
recognized by BP, let S? := B @ s € {0, 1}**¥ ®@p R. For both settings, places {Sﬁ’}be{o,u,ie[z] in a chain
of length z and width 2, places J on the left end of the chain, and uses the GGH15 methodology to encode
the chain. The encoding of J is merged into A; and denote the resultant matrix as A ;. The evaluation key
consists of A ; and the D matrices {D?}be{o,l},ie[z]-

To evaluate on x, output LAJ I, Dfdﬂ . To elaborate the functionality, for x s.t. C'(z) = 1, LA{] I, D?“)—‘ N
P P

Ty(4 Ty(4 Ty(4
(I @ I, 5" ) A | sforast C@) = 0, |A/TTL, DI |~ [IP @ TTL, ) Avia |
P 2 P
As a reminder, the permutation matrix P that represent the w-cycle is not a secret to the construction, so the
use of the left-bookend J is essential for security.

Note that our construction inherently reveals the length of the branching program which determines the upper
bound of the depth of the constraint circuit.
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Construction 5.7 (CHCPRFs for NC! circuits). We construct a function family F = {f : {0,1}¢ — Rpxwmy
equipped with 3 algorithms (Gen, Constrain, Eval), associated with a set of oblivious branching programs
{BP} of length z obtained by applying Lemma 2.2 on all the NC! circuits.

e Gen(1%) samples parameters q,p, o, m, z (the length of branching programs), {(A;, 7;) <+ TrapSam(R¥>*¥ 1", 1™ q)
A1 U(RY*Y™). Samples 2z independent small secrets from GLWE-hard distributions {st «
n}bE{O,l},ie[z}’ sets the secret matrices to be Sf =" R s?. Next, encode the secrets as follows: first
compute {Y? = SbA; 1 +Eb E! + XY™ Yielz) pef0,1} then, sample {D? + PreimgSam(A;, 7i, Y?, ) Yielz] befo,1

Additionally, sample a small secret J < 1n'*" as the left-bookend. Compute A j :== JA| + E; where
EJ — Xlxwm.

Set MSK := ({ A }iep1,z41)> {Ti Yiel), A, {st, Dg}ie[z],be{o,l})-

e Constrain(MSK, BP) takes MSK, and a matrix branching program BP = {B? ¢ R }icl2) pe{0,1}-
Fori € [z], b € {0,1}, compute Y? = (BY® s?) A;p1 + EY E? « yo<vm samples D! «+
PreimgSam(A;, 7, Y?, o).

Set the constrained key CK := (A, {D?}ie[z],be{o,l})-

o Eval(k, x) takes the input  and the key k = (A 7, {D?}ic() pef0,1}), outputs {AJ I, D?(i)-‘ .
P

Setting of parameters. Settings of the distributions and their dimensions: For R = Z"*", setn = x =
D%;”, v = D%f}}ﬁz. For R = Z[z]/(2"™ + 1), n being a power of 2, set ) = x = Do, ¥ = D}%ﬁ%’z.

The restriction on the parameters are analogous to the settings in the bit-fixing construction.

Theorem 5.8. Assuming GLWER 1 1 420, Construction 5.7 is a simulation-secure CHCPRF for NC*

constraints.

7q7777X,

Proof overview. The simulation algorithm and the overall proof strategy is similar to the one for the bit-
fixing constraints. Namely, we close the trapdoors for A matrices from level z to level 1. Within each level v,
there are several GLWE instance associated with A, whose trapdoor is closed in the previous hybrid. The
additional complexity comes from dealing with secrets with permutation matrix structures. They are handled
by the new GLWE packages from Section 3.

Proof. The simulator samples {A; < U(Ry™“™) }ic[1,.+1)> and {D! «+ Y}bef0,1},icl]- It also samples J «
n'**, computes A ; := JA1+E; where E; < x'**™. Outputs the constrained key (A 7, {D} ;¢ pefo,11)-
The simulator responds the input queries by picking {y*)} ke[t according to {d(k)}ke[t]: if d®) = 1, then

k
outputs y*) = {AJ I, ng )-‘ ; otherwise y*) « U(Rp<wm).
P

The proof consists of two parts. The first part (Lemma 5.9) shows that the real distribution is indistinguishable
from a semi-simulated one, where all the D matrices on the constrained key are sampled without knowing
the constraint and trapdoors of A matrices, and all the outputs are expressed by these obliviously sampled A
and D matrices. The second part (Lemma 5.10) argues that the outputs are pseudorandom if they are in the
constrained area.

In the first part, we define intermediate hybrid distributions { HU}UE[O,Z] . H, corresponds to the real constrained
key and output distributions, Hq corresponds to the simulated constrained key and the semi-simulated outputs.
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The simulators in H,, H,_1, ..., H; know the full description of the constraint BP = {B?}ie[z],be{o,lp the
simulator in Hy only knows the indicators {d(*)} kel

Descriptions of H,,, v € [0, z|: The simulator in H,,
1. Samples {(A;, 7j) <= TrapSam(R“** 1", 1™, q)} je[,) With trapdoors; samples { A i < U (R ™)} jrcut1,241]
uniformly random;
2. Samples the GLWE secrets {sf — n}be{()’l}’ie[v] below level v; and a bookend vector J « n'*%
3. Samples Yb (Bb ® S/ ) A+ E’f; computes A ; :=JA; + Ej;
4. Simulates {D% < PreimgSam(A;, i, Y?, ) }be{0,1},ic[v] @ the constrained-key below level v. Sam-

ples the rest of the D matrices obliviously {D? — Y hbe{0,1} iclv+1,2]-

5. Simulates the outputs. For k € [t], computes y(k) as

z (k)
y(k) — |7 x H B;am ®HS L<z> X Ayit H D )
j=v+1 j=v+1 »

Lemma 5.9. H, ~. H,_1, forv € [z].

Proof. The difference of H, and H,,_ lies in the sampling of D%, D! and the outputs {3/(*)}. We first examine
the outputs. For k € [t], we express the output y®), starting from the expression in H, to the one in H,_1:

-1
i (k) v (k) z (k)
k) _ T Tu(i) )
s = || (T B ) oI | < ava TT 0
Jj=v+1 =1 j=v+1
L P
-1
z (B ozl (k) 20 z 20
— |Jx H B T4y ® HS (4) « <Iw><w Qs l(v)> Av+1 H D i)
j=v+1 j=v+1
- p
-1
) ozl (k) RO -1 2R o) o)
- |Jx H B T ® H To() x (B, To(v) ®1g < ( B, Tov) ®s L( ) Ayiq H D T(5)
L j=v+1 j=v+1 P
-1
z (k) v=1 (k) O 2
~. |J Brm‘) 0 B, L) To(v) E D Lm
sl [T ) T )« [(mi o) A e T
j=v i=1 Jj=v+1 p
Z v=l ) RO N 2(®)
= |J x H ij(]) ® H siL(l) x Y, Zi(v) H D e
j=v i=1 Jj=v+1

i=1
- p

-1
) vl e
x| (I e[| A, HDL“)
j=v
(3)
2(F) 2(F)

where Y, B = A,D, ‘). The correctness of this equation is a routine check. The implication is that the
difference of H, and H,_1 fully lies in the sampling of YO, Y} (being GLWE samples in H,, or uniform in
H,_1) and their preimages DY, D} sampled by the trapdoor of A.,.
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Formally, suppose there is an attacker A’ that distinguishes H,, and H,_; with non-negligible probability ¢,
we can build an attacker A who distinguishes:

A, (Y] = (BZ ® 32) Appr+ Eg}be{o,l}

from
{U(Rzluxwm X R;Ume % R;uxwm)}

To do so, once A obtains the samples, it samples { A } [, With trapdoors, and produce the preimages (Db «
PreimgSam(A., 7y, Y5, 0)}peqo,1}- Then places Ayy1, Y9, Y, DY, D} in the constrained key and the out-
puts. It further samples GLWE secrets {s? < N}oefo,1}i€l0]> {D? + PreimgSam(A;,7;, Y?, ) }be{0,1},icv]
as the constrained-key below level v. Samples the rest of the D matrices obliviously {Dg’ — ’V}be{o,l},z'e[vH, 2
With these matrices the attacker A is able to simulate the rest of the outputs, send the outputs and constrained
key to A’. If the samples are from GLWE, then it corresponds to H,; if the samples are uniform, then the
matrices {D?},c (0,1} sampled via {D} < PreimgSam(A.,, 7, Y5, 0)}peq0,1} are statistically close to the
obliviously sampled ones due to Lemma 2.6, so it is statistically close to H,_1. Hence A breaks GLWE with
probability more than /2, which contradicts to Lemma 3.1. O

Lemma 5.10. If C(z¥)) = 0, then the output y*) in H is pseudorandom.

Proof. Following Eqn. 2, a constrained output 3(*) in Hy can be expressed as:
o (k) o (k)

y® = I x (P o1p) x A [][D;9| = [(Ix (P! ®1r) x Ay +E) [[ D@ @)

— i—1
J p J p

For JA | +E as part of the constrained key, J x (P_1 ®1 R) x A +E as part of the constrained output y*),

(JA1+E;,Jx (P~ ® 1) x A1 +E) is indistinguishable from U (R} *“™, R;**™) due to Lemma 3.2. This
(k)

means each constrained output y(*) is indistinguishable from {U | D]x-b(j )—‘ where U < U(Ry*™).

P

Hence y*) is pseudorandom if C'(z(*)) = 0 due to Lemma 2.13. O

The proof completes by combining the Lemmas 5.9 and 5.10. O

6 Private-key functional encryption from CHCPRF

We construct private-key function-hiding functional encryptions for NC! circuits from (1) CHCPRFs for
NC!; (2) semantic secure private-key encryption schemes with decryption in NC!. The scheme satisfies 1-key
simulation-based security.

6.1 The definition of functional encryption

Definition 6.1 (Function-hiding private-key functional encryption [GKP13]). A functional encryption scheme
for aclass of functions C, = {C : {0, 1} — {0, 1}} is a tuple of p.p.t. algorithms (Setup, FSKGen, Enc, Dec)
such that:

e Setu p(l/\) takes as input the security parameter 1*, outputs the master secret key MSK.
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e FSKGen(MSK, C) takes MSK and a function C' € C,,, ouputs a functional decryption key FSKc.
e Enc(MSK, m) takes MSK and a message m € {0, 1}*, outputs a ciphertext CT p,.

e Dec(FSK¢, CT,,) takes as input a ciphertext CT,, and a functional decryption key FSK¢, outputs (in
the clear) the result C(m) of applying the function on the message.

We require that:

Correctness. For every message m € {0, 1}* and function C € C,, we have:

MSK  «+ Setup(1*)
FSKe < FSKGen(MSK, C)
CT,, <«  Enc(MSK,m)

b + Dec(FSK¢,CT,)

Pr |b=C(m) =1 — negl(\)

Security. We require that for all polytime, stateful algorithm Adv, there is a polytime, stateful algorithm Sim
such that:
{Experiment REALpy, (1) }xen ~. {Experiment IDEALpy, sim (1M }ren

The real and ideal experiments of stateful algorithms Adv, Sim are as follow:

Experiment REALpy, (1) Experiment IDEALpg, sim (1)
MSK < Gen(1?%), Sim « 1%
Repeat : Repeat :
Adv — (m, dm); Adv < Enc(MSK,m);  Adv — (m,dp,); Adv < Sim(1!™ d,,);
Adv — C Adv — C

if dy, # C(m)for some m then Output L if d,,, # C(m)for some m then Output L
else Adv  FSKo = FSKGen(MSK, C);  else Adv + FSKg = Sim(1/€1);

Repeat : Repeat :
Adv — m; Adv + Enc(MSK, m) Adv — m; Adv « Sim(1™l, C(m))
Adv — b; Output b Adv — b; Output b

That is, in the experiments Adv can ask for a single functional decryption key and polynomially many input
queries, in any order. For encryption queries m made before the decryption key query, Adv is expected to
provide a bit d, indicating whether C(m) = 1. In the real experiment Adv obtains the encryption of m. In
the ideal experiment Adv obtains a value generated by Sim, whereas Sim is given only 11! and d,,,. Once Adv
makes the functional key query for circuit C' € Cy, both experiments verify the consistency of the indicator
bits d,, for all the encryption queries m made by Adv so far. If any inconsistency is found then the experiment
halts. Next, in the real experiment Adv obtains the constrained key generated by the constraining algorithin,
in the ideal experiment Adv obtains a key generated by Sim, whereas Sim is given only the size of C. The
handling of encryption queries made by Adv after the circuit query is similar to the ones before, with the
exception that the indicator bit d,, is no longer needed and Sim obtains the value of C(m) instead. The
output of the experiment is the final output bit of Adv.
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6.2 The construction

Theorem 6.2. Ifthere are 1-key secure constraint-hiding constraint PRFs for constraint class C, and symmetric-
key encryption schemes with decryption in the class C, then there are 1-key secure private-key function-hiding
functional encryptions for function class C.

Corollary 6.3. Assuming the intractability of GLWE, there are 1-key secure private-key function-hiding func-
tional encryptions for NCL.

Construction 6.4. Given a CHCPRF (F.Gen, F.Constrain, F.Eval), a semantic secure symmetric-key encryp-
tion scheme (Sym.Gen, Sym.Enc, Sym.Dec), we build a private-key functional encryption FE as follows:

e FE.Setup(1?) takes as input the security parameter 1*, runs Sym.Gen(1*) — Sym.SK, F.Gen(1%) —
F.MSK, outputs the master secret key FE.MSK = (Sym.SK, F.MSK).

e FE.Enc(FE.MSK,m) parses FEMSK = (Sym.SK, F.MSK), computes Sym.CT = Sym.Enc(m),
Tag = F.Eval(F.MSK, Sym.CT). Outputs FE.CT = (Sym.CT, Tag).

e FE.FSKGen(FE.MSK, C') parses FE.MSK = (Sym.SK, F.MSK), outputs the functional decryption key
FE.FSK¢ = F.Constrain(F.MSK, F[Sym.SK, C]), where the functionality of F[Sym.SK, C](-) is:

- On input z, computes Sym.Dec(Sym.SK, z) — m € {0,1}* N L;

— ifm = L, return 0; else, return C'(m).

e FE.Dec(FE.FSK¢, FE.CT) parses FE.FSKe = F.CKp, FE.CT = (Sym.CT, Tag), computes T =
F.Eval(F.CKp, Sym.CT). Outputs 1 if T' = Tag, 0 if not.

Correctness. Correctness follows the correctness of Sym and F.

Proof. We build the FE simulator FE.Sim from the symmetric-key encryption simulator Sym.Sim and CHCPRF
simulator F.Sim:

1. Generates the simulated master secret-keys Sym.SK® and F.MSK®

2. Given a function-decryption key query (for function C'), FE.Sim runs CK® < F.Simy (1%, 11F[SymSK.C]|

F.MSK?®), outputs CK* as FE.FSK*®.

3. Given a ciphertext query and the output bit C'(mn), FE.Sim runs Sym.CT® « Sym.Sim(1*, 1™, Sym.SK%)
and Tag” < FSimy(F.MSK® CK% Sym.CT®, C(m)), outputs (Sym.CT*, Tag”) as FE.CT®.

To show that the simulated outputs are indistinguishable from the real outputs, consider an intermediate
simulator FE.Sim’ which is the same to FE.Sim, except that it uses the real Sym ciphertexts in the ciphertext
queries. Observe that the secret-key of Sym is not exposed in FE.Sim’ or FE.Sim, the output distributions of
FE.Sim’ and FE.Sim are indistinguishable following the security of Sym.

Next, assume there is a distinguisher D for the outputs of the real FE scheme and FE.Sim’, we build an
attacker A for the CHCPRF F. A samples a secret key for Sym, sends a constrained circuit query, obtains
the real CK if it is the real distribution, or the simulated CK® if it is the simulated distribution; then creates
symmetric-key ciphertexts, sends as the input queries to the CHCPRF. It obtains the real outputs if it is the
real case, or the simulated outputs if it is the simulated case. A treats the outputs as tags. A forwards the
ciphertexts, tags and FSK to D. D’s success probability transfers to the one for A. O
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Remark 6.5. For functionalities with T-bit outputs (represented by circuit C(m,i) = C;(m), i € [7]), let
the functional decryption key be CK[Sym.SK, C|(Sym.CT, ). The resulting ciphertext is Sym.CT, {Tag; =
F.Eval(F.MSK, (Sym.CT, 1)) };c] of size |Sym.CT(m)| + 7.
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