
Partitioned Group Password-Based
Authenticated Key Exchange

Dario Fiore1, Maŕıa Isabel González Vasco2, Claudio Soriente3

1 IMDEA Software Institute, Madrid, Spain;
dario.fiore@imdea.org

2 MACIMTE, Universidad Rey Juan Carlos, Madrid, Spain;
mariaisabel.vasco@urjc.es

3 Telefónica Research, Barcelona, Spain;
claudio.soriente@telefonica.com

Abstract. Group Password-Based Authenticated Key Exchange (GPAKE) allows a group of users to
establish a secret key, as long as all of them share the same password. However, in existing GPAKE
protocols as soon as one user runs the protocol with a non-matching password, all the others abort and
no key is established. In this paper we seek for a more flexible, yet secure, GPAKE and put forward
the notion of partitioned GPAKE. Partitioned GPAKE tolerates users that run the protocol on different
passwords. Through a protocol run, any subgroup of users that indeed share a password, establish
a session key, factoring out the “noise” of inputs by users holding different passwords. At the same
time any two keys, each established by a different subgroup of users, are pair-wise independent if the
corresponding subgroups hold different passwords. We also introduce the notion of password-privacy
for partitioned GPAKE, which is a kind of affiliation hiding property, ensuring that an adversary should
not be able to tell whether any given set of users share a password. Finally, we propose an efficient
instantiation of partitioned GPAKE building on an unforgeable symmetric encryption scheme and a
PAKE by Bellare et al. [6]. Our proposal is proven secure in the random oracle/ideal cipher model, and
requires only two communication rounds.

1 Introduction

Password Authenticated Key Exchange (PAKE) [6,10] allows two parties sharing a (short, low-entropy)
password to agree on a session key, even in presence of active adversaries. Group PAKE (GPAKE) is the
natural extension to PAKE that empowers groups of more than two users to establish a session key, given
that they share a common password. Constant-round GPAKE protocols exist in both the standard (e.g., [2])
and the random oracle model (e.g., [3]).

To the best of our knowledge, no GPAKE protocol tolerates users holding different passwords. That is,
prior to engaging in a GPAKE protocol, users must identify the purported group members claiming to hold
the password. The GPAKE protocol, then, allows to prove knowledge of the password (and to establish a
session key). However, if just one user engages in a protocol execution with a different password, she is
regarded as an active adversary and causes the users to abort (even if all other users do share the same
password). The same principle is actually applied in (non-password) group key exchange protocols [23];
whenever authentication fails, users typically abort the protocol execution and no joint key is established
among those who successfully authenticate each others.

In this paper, we pursue a more flexible design for group key exchange, where robustness with respect
to authentication failures is provided. Focusing on the password scenario, we consider a setting in which
users are not aware in advance of who else in the group of participants may actually share a password with
them. When the protocol is over, any subset of users that indeed share a password, establish a session key
(with corresponding correct partner identifier – pid – and session identifier – sid), factoring out the “noise”
of inputs by users holding different passwords. Passwords, therefore, induce a partition on the set of users.

Once the protocol is over, users in each subset of this partition obtain a shared secret key, whereas keys
established by different subsets are pair-wise independent.4

By definition, an execution of partitioned GPAKE does not “abort” when it involves parties with a
different password. Rather, it factors out messages by those parties and allows to compute a shared key
among users who do share a password. We remark that the lack of abort does not weaken the security
against online attacks. In both our protocols and a traditional GPAKE with aborts, a user can indeed tell if
some parties have input a different password by checking if they have been included in the partner identifier.
Therefore, as in the case of aborts, it is up to the specific application scenario to decide whether the other
party should be granted another attempt.

Partitioned GPAKE finds natural application in ad-hoc scenarios. For example, in an Internet-of-Things
(IoT) swarm, devices belonging to the same user may need to establish a shared key (assuming that all
devices of a given user have been initialized with the same password). Moreover, in a multi-user scenario,
different IoT swarms belonging to different users will co-exist and key establishment in one swarm should
not affect the others.

Also, partitioned GPAKE may surprisingly be used in scenarios where sharing a password is not desirable.
For example, password reuse across accounts is considered bad practice because of the consequences that
a security breach at a service provider may have for others. By using partitioned GPAKE several service
providers may identify those individuals who re-use the same password across accounts. Of course, this
usage of partitioned GPAKE is only possible when servers actually store the passwords for authentication (or
a deterministic function of them).

Related work. Our goal is to accomplish secure and efficient designs for GPAKE which are in addition
resilient to authentication failures. With a similar (yet more general) motivation, a notion of robustness has
been defined for group key establishment protocols: a key establishment protocol is defined as robust if it
runs to completion even if some players “fail” during a protocol execution [4,11,17,19,24]. At this, failures
are generic and not necessarily linked to authentication, which is our main concern here. Rather, they reflect
the situation in which one of the involved participants actually disappears before completing all interaction
phases described in the protocol specification. Many of these proposals are inefficient, while others make
strong assumptions on the failure probabilities of users, on the existence of synchronization measures or on
the communication network itself. The most efficient ones [24,19] actually assume to have at hand reliable
and authenticated broadcast channels.

GPAKE protocols, including our work, share some similarities with Affiliation-Hiding Authenticated Key
Exchange (AH-AKE) [18,25] protocols. AH-AKE allows users affiliated with the same authority (i.e., hold-
ing a credential issued by that authority) to establish a secret key, without disclosing their affiliation to
eavesdroppers or users holding non-matching credentials. Some AH-AKE are realized using pseudonyms and
are often linkable, i.e., the involvement of a given user can be recognized across multiple sessions [5,12,18],
yet there are also unlinkable AH-AKE [20]. Affiliation-Hiding Authenticated Group Key Agreement protocols
(AH-GAKE) [16,17,26] are the natural extension of AH-AKE to the multiparty setting. These proposals call for
some heavy infrastructure involving authorities and publicly available revocation lists. In contrast, GPAKE
focuses on a simpler and somewhat more realistic scenario where users simply hold passwords, rather than
credentials, and there is no revocation.5 We note that the affiliation hiding property of AH-GAKE prevents an
adversary from telling whether two users share an affiliation. In our setting, affiliation is password-defined,
and borrowing from AH we define password-privacy (see Section 2.3) that strengthens the privacy provisions
of partitioned GPAKE protocols.

Contributions. We introduce here the new notion of partitioned GPAKE, aiming at designs suited for
scenarios where the specific group of users sharing a password is not known a priori. We thus augment

4 A user not sharing her password with any other user is assigned to a singleton subset and therefore obtains a key
only known to her.

5 In a scenario where users are “affiliated” to a group by the knowledge of a password, revocation is only possible if
all non-revoked members update the group password.

the correctness requirements from standard GPAKE, while the usual key-secrecy guarantees must also be
attained. Further, we define password-privacy as a kind of affiliation-hiding property. Once the security
model under consideration has been made explicit in Section 2, we give in Section 3 a design of a partitioned
GPAKE building on an unforgeable symmetric encryption scheme and a PAKE by Bellare et al. [6]. We further
prove it attains key secrecy and password-privacy in the ideal cipher/random oracle model. Our proposal
is simple and efficient, as it requires only two rounds and, during the first one, each participant essentially
broadcasts the (ideal-cipher) encryption of a single group element, regardless of the number of users engaged
in the protocol execution. Our main efficiency advantage comes from the fact that users must not run a
preliminary phase in order to recognize their partners on the actual GPAKE. In the concluding section, we
further comment on possible variants of our design that may be proven secure without idealized assumptions,
at the price of losing efficiency.

2 Security Model and Security Goals

Similar to previous work, we assume a public password dictionary D ⊆ {0, 1}∗ to be efficiently recognizable
and of constant or polynomial size. In particular, we assume that a polynomially bounded adversary is
able to enumerate D. The set S = {U1, . . . , UN} of users is partitioned in l ≥ 2 disjoint subsets, such that
S = U1 ∪ U2 · · · ∪ Ul. All users in Uδ, for δ = 1, . . . , l share a common password pwδ ∈ D, with pwδ 6= pwγ

given δ 6= γ ∈ {1, . . . , l}. For the sake of simplicity, we assume all passwords are chosen uniformly at random
from D, and are represented by bitstrings of the same size (denoted by k).

2.1 Communication Model and Adversarial Capabilities

Protocol instances. Users are modeled as probabilistic polynomial time (ppt) Turing machines. Each user
U ∈ S may execute a polynomial number of protocol instances in parallel and we use Πj

i to refer to the j-th
instance of user i, which can be considered as a process executed by Ui. To each instance we assign seven
variables:

– usedji indicates whether this instance is being or has been used for a protocol run;

– stateji keeps the state information needed during the protocol execution;

– termj
i indicates if the execution has terminated;

– skji stores the session key once it is accepted by Πj
i . Before acceptance, it stores a distinguished null

value;

– sidji denotes a (possibly public) session identifier that can serve as an identifier for the session key skji ;

– pidji stores the set of identities of those users that Πj
i establishes a key with—including Ui himself; 6

– accji indicates if the protocol instance was successful, i. e., the user accepted the session key.

For more details on the usage of the variables we refer to the work of Bellare et al. in [6].

Communication network. Arbitrary point-to-point connections among the users are assumed to be avail-
able. The network is, however, non-private and fully asynchronous. More specifically, it is controlled by the
adversary, who may delay, insert and delete messages at will.

6 This will be defined dynamically. In previous work on PAKE, pid is set a priori and stores the set of identities
of those users who claim to share a password. In our setting, this is unknown since users engage in a protocol
execution without knowing which password the others hold.

Adversarial capabilities. We restrict to probabilistic polynomial time (ppt) adversaries. The capabilities of
an adversary A are made explicit through a number of oracles allowing A to communicate with protocol
instances run by the users:

– Send(Ui, j,M). Sends message M to the instance Πj
i of Ui and returns the reply generated by this

instance. IfA queries this oracle with an unused instanceΠj
i andM being the set of users {Ui1 , . . . , Uiµ} ⊆

S, engaging in the protocol (including Ui), then the flag usedji is set, and the first protocol message of

Πj
i for initializing a protocol run involving {Ui1 , . . . , Uiµ} is returned.

– Execute({Πj1
i1
, . . . ,Π

jµ
iµ
}). Executes a complete protocol run among the specified unused instances of the

respective users. The adversary obtains a transcript of all messages sent over the network. A query to
the Execute oracle is supposed to reflect passive eavesdropping. In particular, no password online-guess
can be implemented with this oracle.

– Reveal(Ui, j). Yields the session key skji (if this has been defined).

– Test(Ui, j). Only one query of this form is allowed for an active adversary A. Provided that skji is defined,

(i. e. accji = true and skji 6= null), A can issue this query at any time when being activated. Then with

probability 1/2 the session key skji and with probability 1/2 a uniformly chosen random session key is
returned.

– Corrupt(Ui). Returns the password pwi held by Ui.

2.2 Correctness and Key Secrecy

Correctness. Our definition of correctness extends the standard one in GPAKE. Namely, without active
adversarial interference, it should be the case that users holding matching passwords end up establishing a
common session key as intended and assigning the same name (sid) to it. Furthermore, messages from users
with non-matching password should not disrupt session key computations.

Definition 1 (Correctness). Let D be a dictionary and S be a set of users as described earlier. Then,
a partitioned group password-based key establishment protocol P is correct if in the presence of a passive
adversary A —i. e., A only uses the Execute oracle—a single execution of the protocol among Ui1 , . . . , Uiµ
involves µ instances Πj1

i1
, . . . ,Π

jµ
iµ

and ensures that with overwhelming probability all instances:

– accept, i. e., accj1i1 = · · · = acc
jµ
iµ

= true;

– users belonging to the same subset Uτ of the password-induced partition on S have accepted the same
session key associated with the common session and partner identifier, that is

∀s, r ∈ {1, . . . , µ} whenever Uis , Uir ∈ Uτ ,

it holds

skjsis = skjrir 6= null, sidjsis = sidjrir and pidjsis = pidjrir 6= null.

(Note that if Uis is the only user in Uτ , then she will end up with unique pidjsis , sidjsis , and skjsis .)

Key Secrecy. Here we define the main security notion of partitioned GPAKE protocols. In order to do so,
we introduce the notions of partnering and freshness to express which instances are associated in a common
protocol session, and how to rule out trivial attacks, respectively.

Partnering. We adopt the notion of partnering from [9] where instances Πj
i , Πm

t are partnered if sidji = sidmt ,

pidji = pidmt and accji = accmt = true. However, in [9] pid lists user instances engaging in a common protocol
execution. In our scenario, pid explicits instances that engage in a common protocol execution and share a
password. In other words, in [9] and in other GPAKE proposals, a user defines pid at the beginning of the
protocol, while in our settings, a user discovers pid at the end of the protocol.

Note that the above notion of partnering defines an equivalence relation on the set of possible instances
(namely, it is reflexive, symmetric and transitive). Further, to avoid trivial cases we assume that an instance
Πj
i always accepts the session key constructed at the end of the corresponding protocol run, if no deviation

from the protocol specification occurs. Moreover, without adversarial interference all users in the same
protocol session belonging to the same subset Uk, i.e., holding the same password, should come up with the
same session key, store it under the same session identifier and be aware of whom they share it with.

Freshness. This notion helps specifying under which conditions a Test-query can be executed by the adversary
in the security experiment. An instance Πj

i is called fresh if the adversary never made one of the following
queries:

– Corrupt(Ut) to any Ut holding the same password as Ui (i.e., so that Ui and Ut are both in Uτ for some
τ ∈ {1, . . . , l});

– Reveal(Ut,m) with Πj
i and Πm

t being partnered.

The notion of freshness allows to rule out trivial attacks. In particular, revealing a session key from an
instance Πj

i clearly yields the session key of all instances partnered with Πj
i and, therefore, this kind of

“attack” is not taken into account for the security definition. Also, note that this definition of freshness
implies that corrupting users which hold a different password from the one held by the uses specified in the
Test query, should be of no help to the adversary.

Key secrecy. Now that we have introduced the notions of partnering and freshness, we are ready to fully define
key secrecy. As typical in password-based protocols, we observe that since the dictionary D has polynomial
size we cannot prevent an adversary from correctly guessing a password pw ∈ D used by any of the users.
Therefore, our goal is to restrict the adversary A to such online-verification of password guesses.

In the above setting, for a fixed group key establishment protocol P, let Succ(`) be the probability that
an adversary A queries Test on a fresh instance Πj

i and guesses correctly the bit b used by the Test oracle

in a moment when Πj
i is still fresh. Now we define A′s advantage as the function

AdvA(`) := |2 · Succ(`)− 1|.

We now introduce a function ε to capture the weaknesses that may originate in the employed authenti-
cation technique; namely, as the adversary might be able to guess passwords online, ε will explicit a bound
on A′s probability of guessing a shared password.

Definition 2 (Key-secrecy). Let P be a correct partitioned group password-authenticated key establishment
protocol, with D and S as described above. Let A be a probabilistic polynomial time adversary having access
to the Execute, Send, Reveal and Corrupt oracles. We say that P provides key secrecy, if for every such A,
running in the experiment described in Section 2.1 and querying the Send oracle to at most q instances, the
following inequality holds for some negligible function negl and some function ε which is at most linear in
its second variable q,

AdvA(`) ≤ ε(`, q) + negl(`).

Note that assuming passwords are selected uniformly at random and only a constant number of passwords

can be checked by the adversary on each on-line attack, it holds ε(`, q) = O
(

q
|D|

)
.

Remark 1. Typically, in GAKE the Corrupt oracle is used to model different flavours of forward security,
i.e., to establish to what extent the leakage of authentication keys compromises the security of previously
agreed session keys. In our scenario, however, corrupted users are to be understood as adversaries who might
actually be legitimate members of a different password-defined subset Uδ. Thus, our model implicitly states
that everyone who is not in the same password-defined subset is understood as under adversarial control.

2.3 Password privacy

In this section we introduce a security notion for partitioned GPAKE protocols that we call password-privacy.
Very intuitively, password-privacy ensures that an active adversary should not gain any information on the
passwords used by legitimate users, so he should not even be able to tell whether a given set of users actually
share the same password or not unless he has guessed the involved password(s). Basically, if we consider
the partition on the set of users induced by the password assignment, then the adversary should not learn
information about such partitions beyond what he may get by just making wild guesses.

It is interesting to note that such a notion is not relevant in many GPAKE proposals, as by design messages
constructed from a non-matching password are typically recognized as adversarially generated and result in
an abort (see for instance [1,2,3]). Indeed, in such scenario an active adversary may learn if two users Ui and
Ut share the same password by starting a new session involving Ui and replaying him messages constructed
by Ut in a different execution. Now, the adversary just observes whether this rouge session is aborted or not.
In contrast, in partitioned GPAKE protocols, executions always succeed and at their end every participant
ends up with a valid key (even if only participants sharing the same password will share the same session
key).

Our notion of password-privacy is rather inspired to that of affiliation hiding [18,25] considered in au-
thenticated key exchange. Affiliation hiding implies that an active adversary should not be able to obtain any
information on group membership through a protocol execution (without considering trivial attacks where
the adversary shares the affiliation of the victims). In particular, an adversary should not be able to tell
whether two users share the same affiliation or not. In our scenario, this translates into guaranteeing that no
active adversary should gain information on which users do share a password, assuming he has not guessed
the password used by any/some of them.

We model password-privacy with a kind of indistinguishability game where the adversary A interacts
with a challenger. First, he chooses the victim subgroup U ⊆ S and two partitions P0 and P1 of it. Then the
challenger randomly selects one of the two partitions and assigns passwords (chosen uniformly at random)
consistently to the corresponding subgroups. A wins if it can tell which of the two partitions has actually been
chosen by the challenger, under the restriction that A cannot query the Reveal or Corrupt oracles on any of
the users in U .7 We stress that in our game we make no assumption about the passwords of all the remaining
users in S \ U ; these passwords can be even chosen by the adversary (i.e., the adversary can simulate any of
these users on its own). This reflects the fact that our definition models the privacy of passwords not known
by the adversary.

Definition 3 (Password-privacy). Let P be a correct partitioned GPAKE protocol. Consider a public
dictionary D and (potential) set of users S = {U1, . . . , UN}, where N is polynomial in the security parameter
`.
Let A be a probabilistic polynomial time adversary interacting with a challenger Ch in the following game:

1. A selects a set of users U ⊆ S, and two partitions P0 and P1 of U
2. Ch chooses a bit b ∈ {0, 1} uniformly at random and assigns a password, also chosen uniformly at random

from the dictionary, for each subgroup of the partition Pb. Further, he follows the specification of P.

7 Otherwise, A could trivially win the game through direct Corrupt calls or by testing if two users share the same
session key at the end of the protocol execution through the corresponding Reveal calls.

3. A, equipped with Send and Execute, must output a guess b′ and wins if b′ = b.8

We say that P achieves password-privacy if every p.p.t. A wins the above password-privacy game with
(at most) negligible probability over a random guess, provided he did not guess any password from a user in
U . More precisely, for every p.p.t. let Succ(`) be the probability that an adversary A guesses correctly the bit
b selected by Ch. Now we define A′s advantage as the function

AdvpwpriA (`) := |2 · Succ(`)− 1|.

Let q denote the number of instances to which A has made a Send query. Then a protocol P has password-
privacy if the following holds for some negligible function negl and some function ε which is at most most
linear in q,

AdvpwpriA (`) ≤ ε(`, q) + negl(`).

3 Our Construction of Partitioned GPAKE

We propose an instantiation of a partitioned GPAKE that satisfies key secrecy and password-privacy. Our
idea builds on the two-party password based key exchange protocol presented by Bellare, Pointcheval and
Rogaway in [6], and is also inspired by an n-party private equality test (PET) protocol by Gelles, Ostrovsky
and Winoto (see Protocol 4 of [15]), which allows a distinguished user (Alice) to detect whether the n − 1
private inputs of her peers are actually equal.

At first glance it may seem that partitioned GPAKE may be achieved by directly combining a PET
protocol with a “standard” GPAKE. It is however not clear how to end up with a correct and efficient
system in that fashion. Let us first note that assuming |D| > N the number of possible dictionary-induced
partitions of S is of size super-exponential in N ,9 thus directly executing a PET protocol to check on every
possible partition is simply infeasible. Furthermore, constructions for n-party PET are asymmetric: upon
termination a distinguished user (Alice) learns whether or not all private inputs are equal while the other
parties learn nothing. Thus, once a group of users sharing the same password is identified via PET subsequent
communication would be required so that each user learns who they share a password with before the actual
GPAKE starts.

Our approach is easier to understand with a high-level description in two stages: during the first stage,
users from S run pair-wise PAKE in such a way that, after the execution, any two users establish a common
key, provided they both hold the same password—users holding different passwords will get as output from
this stage random independent keys. Let us denote by ski,t the (first stage) output two-party key that user
Ui stores as shared with Ut. Indeed, if Ui and Ut hold matching passwords, the corresponding two-party keys
will coincide, i.e., ski,t = skt,i. Otherwise, ski,t and skt,i will be chosen independently at random from a
fixed key space. Notice that this first stage can be carried through with the same number of communication
rounds as the underlying PAKE. During the second stage, each user picks a random key contribution and
sends it to each other user, symmetrically encrypting it with the shared key established before. That is, Ui
selects a random nonce ri and encrypts it for each t 6= i using ski,t. To conclude each user computes the final
key by combining the key contributions that she can decrypt (including her own). Note this second stage is
completed with one only communication round.

8 We remark here that A does not have the Reveal oracle when confronting the password-privacy game. Indeed, it
would trivially allow him to learn whether two users share a password or not (moreover, simply by executing a
session involving all users, he would learn through reveal queries the password induced partition in S — for the
case S polynomial).

9 It is actually BN , the so-called N -th Bell number. The following recursive formula is satisfied: BN =
∑n

k=0

(
N
k

)
Bk,

see [13].

The security guarantees of each proposal following the structure depicted above, clearly depends on the
concrete choices for the underlying PAKE and symmetric encryption scheme. Indeed, for achieving password-
privacy the PAKE underlying our proposal should provide assurance that the message flow from the first
stage does not leak any information on the initial password-induced partition. Furthermore, we must also
require that the second-stage encryptions of (random) values using the same keys are not linkable. In the
next section, we describe the specific building blocks that we adopted to build a secure protocol following the
above idea. Aiming at an efficient design, we also select a PAKE with the nice feature that each user must
only broadcast one message during the first stage. This message enables her to establish an independent
two-party key with any other user sharing the same password.

3.1 Tools

Bellare, Pointcheval and Rogaway PAKE. Our main building block is the EKE2 PAKE presented by
Bellare et al. in [6] which is secure in the so-called ideal cipher model (see [8]). In this model, it is assumed
that there exists a publicly accessible random block cipher with a k-bit key and a n-bit input/output,10 that
is chosen uniformly at random among all block ciphers of this form. Further it is needed to assume that ideal
random function exists, namely, we will model a hash function H used in the key derivation process as a
random oracle [7]. These two models can actually be proven equivalent, as evidenced in [14].

Informally, EKE2 can be described as a Diffie-Hellman key exchange where message flows are encrypted
using the password as secret key, and the two-party key is the random oracle image of the Diffie-Hellman
triplet concatenated with the users names. Further, session identifiers are constructed concatenating the
message flow.

Unforgeable encryption. For the choice of our second building block, a symmetric encryption scheme Π,
we will select a construction which fulfills a very strong notion of unforgeability; namely, we should not even
allow the adversary to produce any new valid ciphertext without the private key. Such property is defined
in [22] as existential unforgeability ; we adapt Definition 5 from that paper here;

Definition 4. Let Π = (KEYGEN,ENC,DEC) be a private-key encryption scheme. Let ` be the security
parameter and A be any pptm algoritm. Define

AdvexistA,Π(`) = Pr
[
sk ← KEYGEN(1`); y ← A : DECsk(y) 6=⊥

]
.

At this, y is produced by the adversary A which may use an encryption oracle Esk, yet y must not have
been directly returned by Esk. We say that Π is (t, p, b; δ)-secure in the sense of existential unforgeability if
for any adversary A which runs in time at most t and asks at most p queries to the encryption oracle, these
totaling at most b bits11, we have AdvexistA,Π(`) ≤ δ(`).

If δ is negligible in `, we will simply say that Π is an unforgeable encryption scheme.

Furthermore, in Theorem 1 of [22] it is proven that unforgeability along with chosen plaintext security
implies adaptive chosen ciphertext security. For our generic construction we will make use of a symmetric
key encryption scheme Π secure in this sense, thus, we may assume that the adversary will not be able to
produce any valid ciphertext, nor to gain any information on the plaintexts underlying encrypted values.

3.2 Our construction

Now we are ready to present our concrete construction, which is depicted in Figure 1. Its main building
blocks are:

10 In our construction, k is the bit size of passwords and n is the number of bits needed to represent elements in G
11 Obviously t, p and b, as well as δ must be seen as functions on `

– a hash function H, wich will be modelled as a random oracle; we assume it to range on {0, 1}d, for d
polynomial in the security parameter `,

– a private key encryption scheme Π = (KEYGEN,ENC,DEC), assumed to be secure in the the sense of
existential unforgeability and achieving chosen ciphertext security (see [22] and section 4 above). For
each choice of the security parameter, we will denote by P and C the corresponding polynomial sized
plaintext and ciphertext spaces, and assume P to be an additive group.12 Furthermore, we will assume
KEYGEN selects keys uniformly at random from the range of the random oracle H. 13

– an ideal cipher E : D × G 7−→ Ĝ, where D is the password dictionary, G is a cyclic group of order q
(polynomial in `) and Ĝ is a finite set of q elements.

Round 1
Broadcast. Each Ui chooses uniformly at random a value xi ∈ {1, . . . , q − 1} and broadcasts

M1
i := (Ui, Yi), where Yi := Epwi(g

xi)

Computation. For every received message (Ut, Yt), the user Ui sets

sidi,t = Ui||Yi||Ut||Yt.

Further, if E−1
pwi(Yt) = Xt 6= ⊥, Ui sets

ski,t := H(Ui‖Ut‖Xi‖Xt‖Xxi
t),

otherwise Ui selects ski,t uniformly at random in the range of H.
As a result, for every Ut holding the same password as Ui, user Ui defines a two-party key

ski,t := H(Ui‖Ut‖gxi‖gxt‖gxixt),

and a matching session identifiera.

Round 2:
Broadcast. Each user Ui selects u.a.r. ri ∈ P, and sends, for each t 6= i,

M2
it := (Ui, sidi,t, ait) := (Ui, sidi,t,ENCski,t(ri))

Computation. For every received message (Ut, sidt,i, ati), user Ui computes cit := DECskit(ati) and sets
pid = {i} ∪ {t : cit 6= {ri,⊥}}. Further, for each t ∈ pid, t 6= i, it sets r∗t := cit and also r∗i := ri.

Session Key/session identifier definition. User Ui sets acci :=true, derives the (subgroup) key as the
addition

ski :=
∑
l∈pid

r∗l ,

and also the session identifierb

sidi = {sidi,t||ai,t}t∈pidi ||pidi.

a assuming i < t, i.e., users inputs are displayed ordered in the two party session identifiers.
b again, here some prefixed ordering is assumed in order to attain consistency of the sid’s.

Fig. 1. An efficient construction (ROM + Ideal Cipher)

12 given the security parameter `, we should write P` and C`. We however drop the subscripts for simplicity.
13 As a result, from the key secrecy of the Bellare-Pointcheval-Rogaway PAKE it follows that two-party keys output

from it are (computationally) indistinguishable from keys output by KEYGEN.

Theorem 1. Let Π = (KEYGEN,ENC,DEC) be a symmetric encryption scheme which is both unforgeable
and chosen plaintext semantically-secure. Then, the protocol from Figure 1 is a correct partitioned password
based group key agreement achieving key secrecy as defined in Definition 2 and password-privacy as defined
in Definition 3 under the computational Diffie-Hellman assumption in group G in the random oracle/ideal
cipher model.

Proof.

Correctness. In an honest execution of the protocol, it is easy to verify that all participants in the protocol
will terminate by accepting and computing the same session identifier and session key as those who hold the
same password.

Key Secrecy. The proof is set up in terms of several experiments or games, where a challenger interacts with
the adversary confronting him with a counterfeit Test-challenge in the spirit of Definition 2. From game to
game the challenger’s behavior somehow deviates from the previous, with the corresponding impact on A’s
success probability. Following standard notation, we denote by Adv(A, Gi) the advantage of the adversary
when confronted with Game i. The security parameter is denoted by `.

In the sequel, we denote by qexe the number of Execute calls made by the adversary. Also q will denote the
number of instances to which the adversary has made a Send query, thus, it is the number of instances that
have suffered on-line attacks. Similarly, qro will denote the number of queries A makes to the hash function
H.

Game 0. This first game corresponds to a real attack, in which all the parameters are chosen as in the actual
scheme. By definition, Adv(A, G0) = Adv(A).

Game 1.
We assume that the hash function H is simulated as a Random Oracle. Namely, every time a new query

α is asked, the simulator selects u.a.r a value hα from the range of H and stores the pair α, hα in a table
(from now on, the H-list). Should the value α be queried again, the simulator will look in the H-list and
forward hα as answer.

Furthermore, we explicit here the ideal cipher simulation. For a given password pw, the simulator will
maintain an ICpw-list in which for every query (pw, g) he stores a different value ĝ which is selected uniformly

at random in Ĝ.14 Similarly, he also maintains a list capturing the decryption calls done to the ideal cipher,
which we may denote IC−1pw-list. Thus, a bijection σpw : G 7−→ Ĝ and ist inverse are actually explicited by

the two lists ICpw-list, IC
−1
pw-list.

The Random Oracle and the Ideal Cipher assumptions are made explicit by assuming

Adv(A, G1) = Adv(A, G0).

Game 2. In this game, we exclude certain collisions of values chosen uniformly at random in different
sessions. Namely, this game aborts in case the same exponent in Round 1 or the same random contribution
in Round 2 is selected in different sessions by two (non-necessarily distinct) honest users. Similarly we exclude
the event that an H-collision occurs at the time of extracting different two-party keys or session identifiers
at the end of Round 1 in different protocol executions.

It is not hard to see that the difference between the two games∣∣Adv(A, G2)− Adv(A, G1)
∣∣

is bounded by the probability of “partial collisions” on independent transcripts, which is in turn bounded
by

14 The simulator selects ĝ u.a.r. from Ĝ; should the selection be already on the ICpw-list, it is discarded and a new
value is selected.

q2ro
2d

+N2(
1

|G|
+

1

|P|
)

where P is the plaintext space for Π, from where the nonces are selected in Round 1.

Game 3. Consider the event that A queries the random oracle on the 5-tuple

(Ui‖Ut‖Xi‖Xt‖Z)

such that both the values Xi and Xt were generated by the simulator during the game and Z = Xxi
t ,

(essentially, if A queries the oracle on a valid CDH tuple). If such event (that we call Bad) happens, the
simulation is aborted. Clearly,

|Adv(A, G3)− Adv(A, G2)| ≤ P (Bad).

It is easy to see that for any adversary A that cause the Bad event to happen it is possible to construct
another adversary B against the CDH assumption. The reduction is rather straightforward. B, on input
gx, gy, chooses a random index q∗ ← {1, . . . , qexe} and two user indices i, t ← {1, . . . , N} also at random.
Then, in the q∗-th protocol execution requested by the adversary B sets Xi = gx and Xt = gy for the
users i and t respectively. Finally, in the end of the game, it selects one random entry from H-list such that
among the ones with Xi = gx and Xt = gy, and returns the last value Z of the tuple. Clearly, if the event
Bad occurs, and B guessed correctly the indices i, t and q∗, then B found a solution for the CDH problem.
Otherwise, if any of the guess was wrong, B aborts. It is not hard to see that

P (Bad)× 1

qexe

1

N2

1

qro
≤ AdvCDH

G,g (`),

where AdvCDH
G,g (`) is the probability that B has of winning a computational Diffie-Hellman challenge over G

with generator g.

Game 4. Consider the event that A queries the random oracle on the 5-tuple

(Ui‖Ut‖Xi‖Xt‖Z)

such that the value Xt was generated by the simulator during the game, pw∗ is the (random) password held
by Ut whereas Xi is such that A made a query to the ideal cipher on input (pw∗, Xi) to get Yi, and a Send
query with the input (Ui, Yi). If such event (that we call Bad∗) happens, the simulation is aborted. Clearly,

|Adv(A, G4)− Adv(A, G3)| ≤ P (Bad∗).

Now, the probability of the event Bad∗ is bounded by the probability of a password guess, which is

O
(

q
|D|

)
.

We remark that from this point on in the simulation all H-queries of the form (Ui‖Ut‖Xi‖Xt‖Xxt
i) where

users Ui and Ut share a password pw∗ are either fully generated by the adversary or fully generated by the
challenger. This means that for any two users sharing a password pw∗ which has not been guessed by the
adversary the corresponding two-party keys will be indistinguishable from random.

Game 5. This game deals with adversaries that only modify messages in Round 2, for the tested instance
Πj
i . Precisely, consider any pair of users (Ui, Ut) for which the adversary had not made a random oracle

query as the ones “excluded” in the previous two games. Then if in the second part of the protocol execution
the adversary A sends a valid message M2

it that decrypts correctly and is not a replay, then the game aborts.
With a simple reduction to the unforgeability of the encryption scheme Π, it is possible to show that

|Adv(A, G5)− Adv(A, G4)| ≤ AdvexistA,Π(`)

where

AdvexistA,Π(`) ≤ δ(`),

for some negligible function δ.

Game 6. Now, we modify the Execute and Send simulation in that we construct messages ait as encryptions
of 0, i.e., ait := ENCskit(0). Precisely, this change is for all pairs of users (Ui, Ut) for which the adversary had
not made a random oracle query as the ones excluded in the previous games. By relying on the CCA-security
of Π one can argue that

|Adv(A, G6)− Adv(A, G5)| ≤ AdvCCAA,Π(`)

After making this last change, the session key of a fresh session is completely random and independent
from the simulated protocol transcript. Therefore, Succ(`) = 1/2, and the proof follows by putting together
the bounds between the games.

Password Privacy. The security proof for password privacy proceeds very similarly to the one of key
secrecy given above. The main idea is that after applying similar game changes as for key secrecy, the
protocol messages become independent of the users passwords.

The games are defined as follows.

Game 0. This first game corresponds to a real attack, in which all the parameters are chosen as in the actual
scheme. By definition, Adv(A, G0) = Adv(A).

Game 1. This is the same as Game 1 in the proof of Theorem 1. It simply makes explicit the simulation of
the random oracle and the ideal cipher.

Adv(A, G1) = Adv(A, G0).

Game 2. This is the same as Game 2 in the proof of Theorem 1, and thus

∣∣Adv(A, G2)− Adv(A, G1)
∣∣ ≤ q2ro

2d
+N2(

1

|G|
+

1

|P|
)

where P is the plaintext space for Π, from where the nonces are selected in Round 1.

Game 3. This is the same as Game 3 in the proof of Theorem 1, and thus

|Adv(A, G3)− Adv(A, G2)| ≤ qexe ·N2 · qro · AdvCDH
G,g (`)

Game 4. This proceeds similarly to Game 4 in the proof of Theorem 1. Let us consider the event that A
queries the random oracle on the 5-tuple

(Ui‖Ut‖Xi‖Xt‖Z)

such that the value Xt was generated by the simulator during the game, pw∗t is the (random) password held
by Ut

15 whereas Xi is such that A made a query to the ideal cipher on input (pw∗t , Xi) to get Yi, and a
Send query with the input (Ui, Yi). If such event (that we call Bad∗) happens, the simulation is aborted.
The difference between this and the previous game lies in the occurrence of event Bad∗ whose probability is
bounded by that of a password guess. Therefore,

|Adv(A, G4)− Adv(A, G3)| ≤ P (Bad∗) = O
(

q

|D|

)
.

15 Note that it could happen that no other user holds this same password.

Game 5. This is the same as Game 5 in the proof of Theorem 1, and thus

|Adv(A, G5)− Adv(A, G4)| ≤ AdvexistA,Π(`)

where

AdvexistA,Π(`) ≤ δ(`),

for some negligible function δ.

Game 6. Finally, in this game the challenger modifies the Execute and Send simulation by constructing
messages ait as encryptions of randomly selected values Rit, i.e., ait := ENCskit(Rit) while the session key is
still computed using the randomly sampled values ri. Based on the CCA-security of Π one can argue that

|Adv(A, G6)− Adv(A, G5)| ≤ AdvCCAA,Π(`)

Furthermore, after making this last change, the protocol messages in the simulation are independent of
the password choices, and in particular are distributed identically in both the cases when the users in U share
the same password pw∗ or have each a different password. So, the probability that the adversary succeeds in
correctly guessing the bit b in this game is 1/2 – Succ(`) = 1/2. Therefore, by putting together the various
bounds of the game differences we have that the chances of A to win the password-privacy game are only
negligibly above

1

2
+O

(
q

|D|

)
.

4 Final Remarks

It may be worth exploring our design idea aiming at a construction that can be proven secure without
idealized assumptions. Having efficiency in mind, our choice of the basic PAKE is optimal, yet using a
different scheme for the first stage could remove the need for the random oracle/ideal cipher assumption. A
good candidate for such a construction would be the scheme of Katz-Vaikuntanathan [21], which is also one-
round and in the (more realistic) common reference string model. Still, the underlying computational load
per user would be much higher, as random oracles are “substituted” by smooth projective hash functions.
In addition the message complexity from the first round would be much larger, as each user may actually be
forced to send a dedicated message to every other user. All in all, we believe it is indeed of interest to try
and find different constructions following the main idea presented here.

References

1. Michel Abdalla, Jens-Matthias Bohli, Maria Isabel Gonzalez Vasco, and Rainer Steinwandt. (password) authenti-
cated key establishment: From 2-party to group. In Salil P. Vadhan, editor, Theory of Cryptography, 4th Theory of
Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, volume
4392 of Lecture Notes in Computer Science, pages 499–514. Springer, 2007.

2. Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Password-based Group Key
Exchange in a Constant Number of Rounds. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin,
editors, Public Key Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 427–442.
Springer, 2006.

3. Michel Abdalla and David Pointcheval. A scalable password-based group key exchange protocol in the standard
model. In International Conference on the Theory and Application of Cryptology and Information Security
(ASIACRYPT’06), pages 332–347, 2006.

4. Yair Amir, Cristina Nita-Rotaru, John L. Schultz, Jonathan Robert Stanton, Yongdae Kim, and Gene Tsudik.
Exploring robustness in group key agreement. In Proceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS 2001), Phoenix, Arizona, USA, April 16-19, 2001, pages 399–408. IEEE Computer
Society, 2001.

5. Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Staddon, and Hao-Chi Wong. Secret
handshakes from pairing-based key agreements. In 2003 IEEE Symposium on Security and Privacy (S&P), pages
180–196, 2003.

6. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange Secure Against Dictionary
Attacks. In Advances in Cryptology – EUROCRYPT 2000, pages 139–155, 2000.

7. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS ’93, pages 62–73,
New York, NY, USA, 1993. ACM.

8. John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In Bart Preneel, editor, Topics in
Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA Conference, 2002, San Jose, CA, USA,
February 18-22, 2002, Proceedings, volume 2271 of Lecture Notes in Computer Science, pages 114–130. Springer,
2002.

9. Jens-Matthias Bohli, Maŕıa Isabel González Vasco, and Rainer Steinwandt. Secure Group Key Establishment
Revisited. International Journal of Information Security, 6(4):243–254, 2007.

10. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated key exchange
using diffie-hellman. In Advances in Cryptology - EUROCRYPT 2000, pages 156–171, 2000.

11. Christian Cachin and Reto Strobl. Asynchronous group key exchange with failures. In Soma Chaudhuri and
Shay Kutten, editors, Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004, pages 357–366. ACM, 2004.

12. Claude Castelluccia, Stanislaw Jarecki, and Gene Tsudik. Secret handshakes from ca-oblivious encryption. In 10th
International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT),
pages 293–307, 2004.

13. J.H. Conway and R. Guy. The Book of Numbers. Copernicus Series. Springer New York, 1998.
14. Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle model and the ideal cipher model

are equivalent. In David Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes
in Computer Science, pages 1–20. Springer, 2008.

15. Ran Gelles, Rafail Ostrovsky, and Kina Winoto. Multiparty proximity testing with dishonest majority from
equality testing. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part II, volume 7392 of Lecture Notes in Computer Science, pages 537–548. Springer, 2012.

16. Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Authentication for paranoids: Multi-party secret handshakes. In
Jianying Zhou, Moti Yung, and Feng Bao, editors, Applied Cryptography and Network Security, 4th International
Conference, ACNS 2006, Singapore, June 6-9, 2006, Proceedings, volume 3989 of Lecture Notes in Computer
Science, pages 325–339, 2006.

17. Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Robust group key agreement using short broadcasts. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages
411–420. ACM, 2007.

18. Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Beyond secret handshakes: Affiliation-hiding authenticated
key exchange. In Tal Malkin, editor, Topics in Cryptology - CT-RSA 2008, The Cryptographers’ Track at the
RSA Conference 2008, San Francisco, CA, USA, April 8-11, 2008. Proceedings, volume 4964 of Lecture Notes in
Computer Science, pages 352–369. Springer, 2008.

19. Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Flexible robust group key agreement. IEEE Trans. Parallel
Distrib. Syst., 22(5):879–886, 2011.

20. Stanislaw Jarecki and Xiaomin Liu. Unlinkable secret handshakes and key-private group key management
schemes. In Applied Cryptography and Network Security (ACNS), pages 270–287, 2007.

21. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key exchange. J.
Cryptology, 26(4):714–743, 2013.

22. Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure modes of operation. In
Fast Software Encryption (FSE), pages 284–299, 2000.

23. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key exchange. In Advances in
Cryptology — CRYPTO’03, pages 110–125, 2003.

24. Jihye Kim and Gene Tsudik. Survival in the wild: Robust group key agreement in wide-area networks. In
Pil Joong Lee and Jung Hee Cheon, editors, Information Security and Cryptology - ICISC 2008, 11th International
Conference, Seoul, Korea, December 3-5, 2008, Revised Selected Papers, volume 5461 of Lecture Notes in Computer
Science, pages 66–83. Springer, 2008.

25. Mark Manulis, Bertram Poettering, and Gene Tsudik. Affiliation-hiding key exchange with untrusted group
authorities. In Applied Cryptography and Network Security (ACNS), pages 402–419, 2010.

26. Gene Tsudik and Shouhuai Xu. A flexible framework for secret handshakes. In George Danezis and Philippe Golle,
editors, Privacy Enhancing Technologies, 6th International Workshop, PET 2006, Cambridge, UK, June 28-30,
2006, Revised Selected Papers, volume 4258 of Lecture Notes in Computer Science, pages 295–315. Springer, 2006.

	Partitioned Group Password-Based Authenticated Key Exchange

