
GEOPHYSICAL RESEARCH LETTERS, VOL. 0, NO. 0, PAGES 0-0, M 0, 2001

Evolution of electron phase-space holes in 3D
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Abstract. Electron phase-space holes are regions of de-
pleted electron density commonly generated during the non-
linear stage of the two-stream instability. Recently, bipolar
electric field structures — a signature of electron holes —
have been identified in the acceleration region of the auroral
ionosphere. This paper compares the evolution of electron
holes in 2-D and 3-D using massively-parallel PIC simula-
tions. In 2-D, the holes decay after hundreds of plasma
periods while emitting electrostatic whistler waves. In the
3-D simulations, electron holes also go unstable and generate
whistlers but, due to physical processes not present in 2-D,
energy flows out of the whistlers and into highly perpen-
dicular lower hybrid modes. As a result of this difference,
3-D holes do not decay as far as 2-D holes. The differences
between 2-D and 3-D evolution may have important impli-
cations for hole longevity and wave generation in the auroral
ionosphere.

1. Introduction and Background

Electric field probes aboard the FAST and POLAR satel-
lites frequently measure solitary, bipolar electric field pulses
with amplitudes sometimes exceeding 1V/m in the auroral
ionosphere, making these among the most energetic wave
phenomena in space physics [Carlson et al., 1998; Ergun
et al., 1998; Franz et al., 1998]. Recent research has es-
tablished that these pulses result from electron phase-space
holes similar to those generated in the nonlinear stage of
the two-stream plasma instability [Matsumoto et al., 1994;
Muschietti et al., 1999]. Simulations have contributed to
our understanding of the complex, nonlinear dynamics as-
sociated with electron phase-space holes in 1-D and 2-D
[Omura et al., 1996; Miyake et al., 1998; Goldman et al.,
1999; Oppenheim et al., 1999a]. In this paper we extend this
understanding through the use of the first large-scale, long
duration, and 3-D simulations [Oppenheim et al., 1999b].
These simulations reveal a new physical process which does
not appear in 1-D or 2-D.
This paper is organized as follows. First, we briefly re-

view the history and literature of bipolar electric field pulses
and electron phase-space holes. Second, we discuss the tech-
niques in our 3-D simulations of electron holes and the re-
sults, focusing particularly on the new features not seen in
earlier simulations. Finally, we analyze these new results
and summarize.
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In 1994, Matsumoto, et al. [1994] first identified holes as
the origin of bipolar electric fields measured by the GEO-
TAIL satellite in the Earth’s magnetotail. In 1998, FAST
satellite instruments measured bipolar electric field pulses
in the downward current regions of the auroral ionosphere
at ∼ 2000 km altitude [Ergun et al., 1998]. The FAST ob-
servation was quickly followed by reports that the POLAR
antennae had measured similar waveforms at altitudes be-
tween 2 and 8.5 Earth radii and by WIND in the Earth’s
foreshock region [Franz et al., 1998; Bounds et al., 1999; Bale
et al., 1998].
The theoretical study of electron holes extends back to

the earliest days of kinetic simulations of plasmas [Morse
and Nielson, 1969]. In 1-D, coincident counter-streaming
electrons beams generate the two-stream instability which
eventually evolves into long-lived structures of depleted elec-
tron density. These structures appear in phase-space as ro-
tating vortices of trapped particles around “holes.” The
nonlinear evolution of these holes has been the subject
of substantial theoretical and computational investigations,
principally in 1-D [Dupree, 1982; Turikov , 1984; Lynov et al.,
1985]. The phase space structure of these holes has been
modeled using stationary BGK modes of the Vlasov equa-
tion [Bernstein et al., 1957; Krasovsky et al., 1997]. In higher
dimensions, electron phase-space hole physics has received
recent attention [Miyake et al., 1998; Goldman et al., 1999;
Oppenheim et al., 1999a] in the interpretation of spacecraft
data.
The earliest multidimensional simulations of the two-

stream instability showed that phase-space holes, which re-
main stable in 1-D, quickly dissipate in an unmagnetized 2-D
or 3-D plasma [Morse and Nielson, 1969]. However, a mag-
netic field enables holes to persist in higher dimensions for
hundreds of plasma periods[Miyake et al., 1998]. Singh, et
al.[2000] shows results from 3-D simulations of magnetized
electron holes and observes whistler wave development sim-
ilar to that described by Oppenheim, et al. [1999] but does
not make any comparisons with 2-D simulations nor do they
resolve the evolution of the modes from whistler waves to
lower hybrid waves as shown in this letter.

2. Simulation Methods and Results

Our kinetic simulations use a massively-parallel, electro-
static, particle-in-cell (PIC) algorithm capable of modeling
either a finite or an infinite magnetic field in 1, 2, or 3-D
[Birdsall and Langdon, 1985]. This code applies periodic
boundary conditions to an initial-value problem and uses
“quiet-start” algorithms to minimize particle noise. Run-
ning the code on super-computers enables us to employ over
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Figure 1. Electric field amplitudes, Ex and Ey for nearly identical 2-D and 3-D baseline simulations at 3 times. Ex emphasizes
structures with fields pointing parallel to B0, principally the kinked electron holes, and Ey emphasizes structures with fields pointing
perpendicular to B0, principally the electrostatic whistler waves. Darkly shaded regions show positive Ex and Ey while light shades
show negative Ex and Ey. Both simulations span roughly 400 Debye lengths parallel to B0 and 250 perpendicular. The 3-D images
show-cross section of the full 3-D data set.

4 × 108 particles on meshes resolving up to 512 × 64 × 64
cells. Our PIC simulation results have been validated, in
the case of an infinite magnetic field, through comparisons
with a simulator that solves the Vlasov equation numerically
and, in the case of finite magnetic fields, through comparison
with linear theory.
We initiate both 2-D and 3-D simulations with counter-

streaming beams of equal density and temperature where
each beam begins with a velocity ±2.5 times its initial ther-
mal velocity. A magnetic field, B0, parallels the x̂ axis
with an amplitude such that the ratio of the electron cy-
clotron, Ωe, to the electron plasma frequency, ωe, is 2.5.
The time step of ∆t = 0.25ω−1e just resolves Ωe, where ωe
results from the combined density of the beams. The grid
resolves 256 × 128 × 64 cells and spans 1024 × 256 × 128
initial Debye lengths, λD0. Since the two stream instabil-
ity leads to substantial heating parallel to B0, the parallel
cells span only 1.5λD after a few tens of plasma periods.
The simulated electron holes range in size from x =∼ 12λD
to x =∼ 24λD which means the simulator resolves them
well. Further, halving the grid spacing and timestep so that
a cell spans 0.75λD does not change hole size or evolution
substantially.
Ion populations measured in the downward current re-

gion have a range of masses, temperatures and mean ve-
locities. To illustrate the simplest physical processes, we
initially describe a baseline simulation containing a uniform
immobile (infinitely massive) ion population. We then com-
pare this simulation with runs containing populations of ions
with different temperatures, mean velocities, and masses to
illustrate the effects ions have on the evolution of electron
holes.
In the earliest stages, 2-D and 3-D simulations follow the

same evolutionary path described in Goldman et al. [1999]
while in later stages striking differences appear. Initially,

waves from the two-stream instability evolve into electron
phase-space holes extending ∼ 20λD parallel to B0 and
∼ 200λD perpendicular to B0. Each hole has a distinct
electrical field amplitude, size, and velocity similar to those
measured in the auroral ionosphere. When two holes col-
lide, they usually merge into a single, larger amplitude,
hole. Hence, after ∼ 300ω−1e , relatively few holes persist,
all traveling at almost the same velocity, as seen in Fig. 1
at t = 320ω−1e . Additionally, these holes have electron dis-
tributions where the parallel temperature substantially ex-
ceeds the perpendicular temperature as measured by FAST
instruments.
Electron holes in 2-D and 3-D are subject to the slow

instability described in Oppenheim, et al. [1999]. Over
hundreds of plasma periods, the holes develop kinks and
generate electrostatic whistler waves (magnetized Langmuir
waves propagating obliquely to the geomagnetic field, B0).
This phenomenon appears in both the 2-D and 3-D simula-
tions as illustrated by Fig. 1 at t = 320ω−1e and t = 832ω−1e .
The power spectra shown in Fig. 2 identify the modes

containing the most electrostatic field energy. The modes
having substantial k‖ but small |k⊥| result from the energy
stored in the electron holes. The modes lying close to per-
pendicular (k‖ = 0) result from the electrostatic whistlers.
Both 2-D and 3-D spectra show these oblique modes at both
t = 320ω−1e and t = 832ω−1e .
By t = 832ω−1e , the 2-D and 3-D simulations are evolv-

ing along distinctly separate paths. In 2-D, progressively
more energy shifts from the electron holes to the electro-
static whistler waves until almost all the energy resides in the
whistlers. In 3-D, a third mode along k‖ = 0 develops only
after substantial energy accumulates in the oblique whistler
modes. It appears that energy from the oblique whistlers
waves flows into k‖ = 0 modes. These modes are also elec-
trostatic whistler waves but with a very small frequency.
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Figure 2. Power spectra showing E2(kx, ky) from 2-D and 3-
D baseline simulations at 2 times. The energy amplitude ranges
from |E|2max in each frame, shown in black, to energies less than
or equal to |E|2max/1000, shown in white, on a logarithmic scale.
The 3-D spectra are averaged for all k⊥.

Ultimately, after t = 1600ω−1e , these k‖ = 0 modes end up
containing most of the simulation’s wave energy. This en-
ergy conversion does not occur in 2-D, nor does it occur
in 3-D when we suppress perpendicular electron dynamics
(B0 →∞). This implies that the crucial difference between
2-D and 3-D results from plasma drifts such as E×B or
gradient drifts. Animations of E and potential show these
dynamical processes more clearly.

1

Ion dynamics modifies the rate at which energy flows
into perpendicular modes and, also, modifies the particular
modes energized. Fig. 3 shows power spectra from a simula-
tion similar to the baseline case except it contains H+ ions
starting with Ti = Te where the mean velocity of the ions
matches one of the beams. Further, the direction parallel
to B0 is twice as long as in the baseline case, spanning 512
grid cells, while the perpendicular directions both span 64
grid cells. At t = 832ω−1e little energy appears in the per-
pendicular modes, a clear distinction from the baseline case
with immobile ions. However, by t = 1600ω−1e much of the
energy now appears in shorter wavelength, mostly perpen-
dicular, lower hybrid modes. Also the strictly perpendicular
modes contain far less energy than in the baseline case, im-
plying that these modes fail to be energized or that they
are damped. Additionally, substantial perpendicular heat-
ing of the faster moving ions appears in both 2-D and 3-D
simulations (ie., tail heating).

3. Discussion and Conclusions

In both 2-D and 3-D, electron holes go unstable, kink,
and generate electrostatic whistler waves but in 3-D the
holes do not decay as far as in 2-D. Instead, the kinking
halts and the holes appear to straighten into elongated, ir-
regular structures. The striking difference between 2-D and
3-D hole structure appears clearly in the Ex images of Fig 1
at t = 1600ω−1e . Franz et al. [2000] observed that holes

1Available via Web browser or FTP from ftp://kosmos
.agu.org (username=“anonymous”, password=“guest”), di-
rectory “append”; subdirectories arranged by paper number.
Information available at http://www.agu.org/pubs/e-supp
about.html.

appear elongated, perpendicular to B, when Ωe < ωe and
become more spherical with increasing magnetic field. Elec-
tron holes generated by simulations in 2-D or 3-D with in-
finite B0 become spherical – a fact which agrees with the
observations. Simulations with weaker fields in 3-D, such
as Ωe/ωe = 1.25 − 2.5, generate holes which remain more
elongated than the Franz et al. observations predict. This
difference may result from one of the following effects. First,
the substantial variations of E along the length of the hole
perpendicular to B might make the hole appear to have a
finite extent. Second, the simulation excludes highly oblique
modes which may play an essential role in hole evolutions
as discussed in the following paragraph.
Why do the reduced amplitude holes seen at the end of

the 3-D simulations remain stable? By comparing hole evo-
lution in simulations with three different sizes, we show that
simulation size affects hole stability and wave growth. Two
simulations, having lengths parallel to B of 1024λD0 and
512λD0 follow evolutionary paths quite similar to the base-
line case describe above. However, a simulation spanning
only 256λD deviates substantially. This run develops elec-
tron holes which, because of the short box length along B0,
merge into a single hole by t = 450ω−1e . This final hole
spans the simulation perpendicular to B0 and extends over
roughly 1/4 of the direction parallel to B0. During the fi-
nal merging of the holes, some kinking and oblique whistler
waves appear as well as k‖ = 0 modes, but the final hole
maintains its amplitude and extent. A 2-D simulation with
the same length shows similar evolution to 3-D except no
energy flows into k‖ = 0 modes. We conclude that the short
box length excludes long parallel wavelengths, artificially
preventing the holes from giving up a large fraction of their
energy to whistler waves and, subsequently, k‖ = 0 modes.
Linear theory enables us to understand many of the char-

acteristics of the mostly perpendicular modes and the role
ions play in these simulations. The cold fluid dispersion
relation governing the combined behavior of electrostatic
whistler waves and lower hybrid waves in the regime where
ω � Ωi is

0 = 1 +
ω2i
ω2

(
Ω2i
ω2
cos2 θ − 1

)
+ ω2e

[
Ω2e/ω

2 cos2 θ − 1

ω2 − Ω2e

]
(1)

where θ is the angle between the magnetic field and the
wave vector; ω, ωi, and Ωi are the wave, ion plasma,
and ion cyclotron frequencies respectively. In the regime
where Ω2e � ω

2
e and Ω

2
e � ω

2
e then eqn. (1) simplifies to

ω2 = ω2e cos
2 θ+O(me/mi). Ions only become important in

eqn. (1) when w2 ∼ ω2i which occurs when θ ∼ π/2−ωi/ωe.

For our simulation parameters, θ = π/2−
√
me/mi = 88.7
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making the ions inconsequential for all but nearly perpen-
dicular, lower hybrid, modes.
The generation of perpendicular waves appears, from the

spectra, to result from mode coupling between the whistler
waves and the perpendicular waves. It is easy to satisfy
the wavevector and frequency matching conditions for three-
wave coupling. The mechanism which generates such a wide
range of wavevectors perpendicular to B0 remains unclear.
Since the 2-D and infinitely magnetized simulations do not
show this mode coupling it appears likely that the mode
coupling is mediated by the components of the equations
responsible for plasma drifts.
Dynamic H+ ions change the oscillation frequency of the

perpendicular modes from close to zero to the lower hy-
brid frequency. This difference modifies the frequency and
wavenumber matching conditions and may explain the re-
duced growth rates and amplitudes of the perpendicular
modes when comparing the cases with and without ions.
Additionally, ion Landau damping may play a role in elimi-
nating strictly perpendicular modes since waves with wave-
lengths shorter than twice the ion Larmor radius may damp.
Ions can play additional roles in electron hole dynamics.

If a large fraction of the ion population travels at electron
hole velocities then parallel ion-acoustic modes will couple
energy out of the electron holes and cause the eventual de-
struction of the electron holes [Saeki and Genma, 1998].
However, the observed auroral electron holes generally travel
much faster than the bulk of the ion population. That fact
originally made it clear that bipolar electric fields were an
electron phenomenon. Using artificially light ions, as fre-
quently done in plasma simulations, will modify the critical
angle at which ions play a role and will change the frequen-
cies of the oblique modes. Hence these ions can substantially
modify the resonant interaction between the holes and the
whistler waves.
These simulations show that many aspects of electron

hole evolution in the auroral ionosphere are governed by fully
3-D dynamics while some processes are well represented in 2-
D. Both 2-D and 3-D simulations show electron holes evolv-
ing along similar paths initially; developing from streaming
instabilities, merging, and generating oblique electrostatic
whistler waves while decaying. In 3-D, energy flows from
the whistlers into lower hybrid waves, probably as a result
of mode coupling which is suppressed in 2-D and in infinitely
magnetized systems. This implies that one might expect to
measure more energy in highly perpendicular lower hybrid
modes coincident with electron holes than in the less per-
pendicular electrostatic whistler modes. The ratio of energy
in these modes may allow us to learn something about the
stability, lifetime and origin of the holes. Finally, 3-D sim-
ulations predict longer electron hole longevity and greater
hole elongation perpendicular to B than do 2-D simulations.
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