
Rational Proofs against Rational Verifiers

Keita Inasawa∗ Kenji Yasunaga†

March 24, 2017

Abstract

Rational proofs, introduced by Azar and Micali (STOC 2012), are a variant of interactive
proofs in which the prover is rational, and may deviate from the protocol for increasing his
reward. Guo et al. (ITCS 2014) demonstrated that rational proofs are relevant to delegation
of computation. By restricting the prover to be computationally bounded, they presented a
one-round delegation scheme with sublinear verification for functions computable by log-space
uniform circuits with logarithmic depth. In this work, we study rational proofs in which the
verifier is also rational, and may deviate from the protocol for decreasing the prover’s reward. We
construct a three-message delegation scheme with sublinear verification for functions computable
by log-space uniform circuits with polylogarithmic depth in the random oracle model.

1 Introduction

Rational proofs, introduced by Azar and Micali [1], are interactive proofs that utilize the rationality
of the prover. Specifically, the verifier pays the prover a reward based on the transcript of the
interaction. The protocol for a function f is designed so that, on a common input x, the receiver
can learn f(x) assuming the prover follows the protocol, and the best way for the prover to receive
a maximal reward is to follow the protocol. Thus, the verifier can learn f(x) not by verifying the
correctness of the computation by the prover, but by relying on the rationality of the prover.

Azar and Micali [1] demonstrated the power of rational proofs by presenting a one-round rational
proof for any search problem in #P . In subsequent work, Azar and Micali [2] gave “super-efficient”
rational proofs, in which the verifier runs in logarithmic time, and showed that they capture the class
of constant-depth polynomial-size circuits with threshold gates. Guo, Hubáček, Rosen, and Vald [7]
introduced the notion of rational arguments, where the prover is restricted to be computationally
bounded. They constructed a one-round rational argument with a polylogarithmic verification for
the class NC1, of search problems computable by log-space uniform circuits of logarithmic depth.
Recently, Guo, Hubáček, Rosen, and Vald [8] gave a construction of a one-round scheme with
sublinear verification for all languages in P.

The work of [2, 7, 8] can be seen as delegation of computation in the setting of rational proofs. A
small device with limited computing power (the verifier) delegates a computation to a cloud server
(the prover). On common input x, the device expects the server to return the correct value f(x)
by paying a reward for the computation to the server. As far as the server prefers to maximize

∗Kanazawa University. Kanazawa, Japan. E-mail: ina@stu.kanazawa-u.ac.jp
†Kanazawa University. Kanazawa, Japan. E-mail: yasunaga@se.kanazawa-u.ac.jp

1

the reward, the device can learn the correct value. Compared to the previous setting of delegation
schemes [6, 10, 9], delegation schemes in rational proofs achieve polylogarithmic verification.

In existing rational proofs, the rationality is considered only for the prover. Since the verifier
pays a reward to the prover, it seems natural to consider rational verifiers. Namely, the small
device may try to minimize the reward as far as the correct value can be received.

1.1 This Work

We study rational proofs in which verifiers also behave rationally. First, we demonstrate that a
rational verifier can indeed reduce the reward by deviating from the protocol of [7], which is for
functions computable by threshold circuits. Since the protocol is a public-coin protocol, the verifier
only samples random coins and sends the result to the prover in each round. The result is used
for choosing a child gate of the current gate from the root to the inputs. We observe that if the
underlying threshold has a gate in which an input wire is connected with an input to the circuit,
the verifier can reduce the reward by intentionally choosing that wire. Although this is not possible
for layered circuits, we show that even for layered circuits the verifier can reduce the reward by
carefully choosing gates for which the expected reward becomes smaller.

Next, we define the notion of fully-rational proofs, in which both the prover and the receiver
behave rationally, and the protocol can be performed between them. In other words, a protocol
for fully-rational proofs assures that following the protocol description is a Nash equilibrium. The
definition is based on that of rational arguments, introduced in [7]. We present a fully-rational
argument for functions computable by threshold circuits. The protocol is a variant of the pro-
tocol of [7] for threshold circuits in which random coins of the verifier are chosen by collective
coin-flipping. Although coin-flipping can be implemented with commitment schemes, they usually
require polynomial-time verification, which is not suitable for delegation of computation. Instead,
we use a commitment scheme in the random oracle model for achieving polylogarithmic verification.
By employing such commitment, we construct a three-message protocol for any threshold circuits,
while the round complexity of the underlying protocol [7] is d for threshold circuits with depth d.
We show that our protocol is a fully-rational proof with polylogarithmic verification for threshold
circuits with polylogarithmic depth.

1.2 Related Work

As described above, rational proofs were introduced by Azar and Micali [1]. Rational proofs with
logarithmic verification were also studied by Azar and Micali [2]. Guo et al. [7] introduced rational
arguments, and showed a one-round protocol with polylogarithmic verification for the class NC1.
Later, Guo et al. [8] presented a one-round rational argument with polylogarithmic verification for
all languages in P. Campanelli and Gennaro [4] studied the composability of rational proofs and
presented a sequentially composable rational proof for arithmetic circuits. Chen, McCauley, and
Singh [5] studied rational proofs that allows multiple provers, and showed that multiple rational
provers are strictly more powerful than one.

2 Preliminaries

For n ∈ N, let [n] = {1, 2, . . . , n}. A function ε : N → R≥0 is said to be negligible if for any
polynomial p(·), ε(n) < p−1(n) for every sufficiently large n ∈ N. We denote by negl(·) a negligible

2

function.

2.1 Rational Proofs

In rational proofs, the verifier pays the prover a reward according to the transcript of the com-
munication. Protocols are designed so that the correct evaluation f(x) can be obtained from the
transcript that maximizes the expected reward. For a pair of interactive Turing machines P and
V , we denote by (P, V)(x) the random variable representing the transcript between P and V when
interacting on common input x. Let Out((P, V)(x)) denote the output of V after interacting with
P on common input x. For a reward function Rew that maps transcripts to real values, we denote
by Rew((P, V)(x)) the reward calculated by V in the interaction with P on input x.

Definition 1 (Rational Proof). A function f : {0, 1}∗ → {0, 1}∗ admits a rational proof if there
exists a protocol (P, V) and a reward function Rew : {0, 1}∗ → R≥0 such that for any x ∈ {0, 1}∗,

1. Pr[Out((P, V)(x)) = f(x)] = 1.

2. For any prover P ∗,
E[Rew((P ∗, V)(x))] ≤ E[Rew((P, V)(x))].

3. For any prover P ∗, if there is a polynomial p(·) such that

Pr[Out((P ∗, V)(x)) ̸= f(x)] ≥ p−1(|x|),

then there is a polynomial q(·) such that

E[Rew((P ∗, V)(x)] ≤ E[Rew((P, V)(x)]− q−1(|x|).

A public-coin protocol is one in which every message from V consists of all random coins tossed
by V in the round.

2.2 Scoring Rules

The main technical tools employed in the constructions of rational proofs in [1, 2, 7] are scoring
rules, which can be used for forecasters to report the true weather forecast. A scoring rule assigns a
real value S(Q,ω) to a probability distribution Q and an event ω drawn from the actual distribution
P . The expected value is maximized if the forecaster reports the true distribution P as a forecast.

Definition 2 (Strictly Proper Scoring Rule). Let P be a probability distribution over a probability
space Ω. We say that a function S : {0, 1}∗ → R is a strictly proper scoring rule with respect to P
if for every probability distribution Q ̸= P over Ω,et∑

ω∈Ω
P (ω)S(P, ω) >

∑
ω∈Ω

P (ω)S(Q,ω).

The study of scoring rules was initiated by Brier [3]. A variant of the scoring rule given in [3]
is a function

SB(P, ω) = 2P (ω)−
∑
ω∈Ω

P (ω)2 − 1.

3

2.3 Protocol of Guo et al. [7]

We review the rational proof proposed by Guo et al. [7] for functions computable by log-space
uniform threshold circuits. The protocol consists of rational proofs for threshold gates. First, a
rational proof for the output gate is performed, which begins with sending the output value to
the verifier. Since the reward is calculated by randomly choosing an input wire to the gate, the
verifier chooses a child gate uniformly at random. Then, a rational proof for the chosen gate will
be performed until an input wire to the circuit is chosen as a child.

Let f : {0, 1}∗ → {0, 1} be a function computable by a threshold circuit of depth d = d(n) on
input x ∈ {0, 1}n. The protocol (P, V) is specified as follows.

1. P : Evaluate the circuit on x ∈ {0, 1}n and send the output value y1 to V .

2. V : Set γ = 1/(1+ 2m2
0), where m0 is the largest fan-in over all gates in the circuit.1 Identify

the root gate g1 and invoke the procedure Round(1, g1, y1),

where Round(i, gi, yi) for 1 ≤ i ≤ d is defined as follows.

1. V : Choose a child gi+1 of gi uniformly at random.

• If gi+1 is a threshold gate, ask P for the output value of gi+1.

• Otherwise, if gi+1 is an input to the circuit of value b ∈ {0, 1}, then pay P the reward
γd−i/2 · Brier(gi, yi) and halt the protocol, where Brier(g, y) is defined to be

Brier(g, y) =

{
2βy − (1− βy)

2 − β2y + 1 if b = 1,

2(1− βy)− (1− βy)
2 − β2y + 1 otherwise,

β1 = t/m, β0 = (t − 1)/m, and t and m are the threshold and the fan-in of gate g,
respectively.

2. P : Send the output value yi+1 of the gate gi+1 to V .

3. V : Pay P the reward γd−i/2 · Brier(gi, yi) for b = yi+1 and invoke Round(i+ 1, gi+1, yi+1).

In the protocol, Brier’s scoring rule is employed such that the prover can choose either β1 and
β0 as a forecast. For each forecast, the true distribution is β = #{input wires with value 1}/m.
Brier’s rule has the property that the expected score gets higher by answering y = 1 if β ≥ t/m,
and y = 0 if β < t/m. Thus, the prover has an incentive to answer the true output value for each
gate. The scores are less discounted on the consecutive levels from the root to the input in order
to prevent the prover from deviating from the protocol at the later stages.

The following theorem holds [7].

Theorem 1 ([7]). If f : {0, 1}∗ → {0, 1} is computable by a family of O(logS(n))-space uniform
threshold circuits of size S(n) and depth d(n), then f admits a rational proof such that (1) a protocol
(P, V) is a d(n)-round public-coin protocol; (2) the communication complexity of P is d(n); (3) the
running time of V is O(d(n) · poly(logS(n))).

1We can set m0 to be any number larger than the maximal fan-in.

4

𝑔0

𝑔# 𝑔$

0 1

0 0 0 0 1 1 1 1

Figure 1: A circuit with three gates

3 Rational Proofs against Rational Verifiers

In rational proofs, the verifier is assumed to follow the protocol honestly. However, the verifier
needs to pay a reward to the prover by performing the protocol. It seems natural to consider
rational verifiers who try to reduce the amount of rewards paid to the prover.

3.1 Behavior of Rational Verifiers

We show that rational verifiers can indeed reduce the expected reward by deviating from the
protocol of [7], which is presented in Section 2.3. Note that the verifier can choose next child at
each gate in the protocol, where the verifier is supposed to choose uniformly at random.

One trivial example is to choose an input wire to the circuit when other wires are connected
to other gates. Since the total score is a sum of scores of chosen gates, the total gets lower if the
verifier intentionally chooses an input wire so early.

Although the first example can be avoided by considering layered circuits, there is another less
trivial example. Consider a gate g with threshold t and fan-in m. Let (x1, . . . , xm) ∈ {0, 1}m be
the input to g, and X = Prr∈[m][xr = 1]. The expected reward when the prover answers y as the
output value for g is

E[Brier(g, y)] = X(2βy − (1− βy)
2 − β2y + 1) + (1−X)(2(1− βy)− (1− βy)

2 − β2y + 1)

= 2(2βy − 1)X + 2− 2β2y .

Thus, the expected reward is minimized by choosing larger X if βy < 1/2, and choosing smaller X
if βy ≥ 1/2.

For a concrete example, let consider a circuit with three gates g0, g1, g2 as in Figure 1. Suppose
that thresholds of g1 and g2 are 2 and 1, respectively, and that all the input values to g1 are 0 and
those to g2 are 1. Then, the left gate g1 has the values β0 = 1/4 and X = 0, and the right gate
g2 has the values β1 = 1/4 and X = 1. Thus, the expected reward becomes smaller if the verifier
chooses g2 since we know that if βy < 1/2, the reward is minimized by choosing larger X. Indeed,
the reward obtained by choosing g2 is 7/8, while that obtained by g1 is 15/8.

As illustrated in the above, the verifier can deviate from the protocol so that the expected
reward will be smaller than that obtained by following the protocol.

5

3.2 Definition

We introduce the notion of fully-rational proof, in which the protocol can be performed between a
rational prover and a rational verifier. Intuitively, it is a rational proof in which the verifier cannot
decrease the reward by deviating from the protocol.

The definition is based on the notion of rational arguments, introduced in [7], that are a variant
of rational proofs in which the prover is restricted to be computationally bounded.

Definition 3 (Fully-Rational Argument). A function f : {0, 1}∗ → {0, 1}∗ admits a fully-rational
argument if there exists a protocol (P, V) and a reward function Rew : {0, 1}∗ → R≥0 such that for
any x ∈ {0, 1}∗,

1. Pr[Out((P, V)(x)) = f(x)] = 1.

2. For any P ∗ of size poly(|x|),

E[Rew((P ∗, V)(x))] ≤ E[Rew((P, V)(x))] + negl(|x|).

3. For any P ∗ of size poly(|x|), if there is a polynomial p(·) such that

Pr[Out((P ∗, V)(x)) ̸= f(x)] ≥ p−1(|x|),

then there is a polynomial q(·) such that

E[Rew((P ∗, V)(x)] ≤ E[Rew((P, V)(x)]− q−1(|x|).

4. For any V ∗ of size poly(|x|),

E[Rew((P, V ∗)(x)] ≥ E[Rew((P, V)(x)]− negl(|x|).

The second and forth conditions imply that the strategy of following the protocol is a compu-
tational Nash equilibrium. In addition, the third condition partially assures a computational strict
Nash equilibrium, since it guarantees that any deviation by the prover that results in an incorrect
answer for f(x) must decrease the reward by a noticeable amount.

4 Our Protocol

We present a protocol for a fully-rational proof based on the protocol of Guo et al. [7]. The
problem of rational verifiers in the protocol of [7] is that they can choose next child for minimizing
the reward. To prevent such deviation, we use a collective coin-flipping to choose a next child. A
coin-flipping protocol can be constructed with a commitment scheme. However, usual commitment
schemes do not allow poly(log n)-time verification. In order to achieve poly(log n)-time computation
for verifiers, we employ a commitment scheme in the random oracle model. Furthermore, the
commitment in the random oracle model allows us to achieve a three-message protocol for any
threshold circuit, while the round complexity of the underlying protocol [7] is d for threshold
circuits with depth d.

Let f : {0, 1}∗ → {0, 1} be a function computable by a threshold circuit of depth d = d(n) on
input x ∈ {0, 1}n. For simplicity, we assume that every fan-in of gates in the circuit is m = m(n).
We define our protocol (P, V) using a random oracle H : [M] → [M], where M = M(n) is a
multiple of m satisfying ω(log n) ≤ logM(n) ≤ poly(log n).

6

1. P : Choose a ∈ [M] uniformly at random and compute ad−i = H i(a) for 0 ≤ i ≤ d − 1 by
querying the random oracle. Evaluate the circuit on x ∈ {0, 1}n and send the output value
y1 and Hd(a) to V .

2. V : Given y1 and h̃, set γ = 1/(1 + 2m2) and choose b1, . . . , bd ∈ [M] uniformly at random
and send them to P .

3. P : For 1 ≤ i ≤ d, do the following:

• Set ri = ai + bi mod m and choose the ri-th child gi+1 of the gate gi, where g1 is the
root gate.

– If gi+1 is a threshold gate, set yi+1 to be the output value of gi+1 and go to next i.

– Otherwise, if gi+1 is an input to the circuit of value b ∈ {0, 1}, then set yi+1 = b and
yj = ⊥ for all i+ 2 ≤ j ≤ d. Send a, y2, . . . , yd to V .

4. V : Given a, y2, . . . , yd from P , compute ad−i = H i(a) for 0 ≤ i ≤ d− 1.

• If Hd(a) ̸= h̃, then pay nothing to P and halt the protocol.

• Otherwise, for 1 ≤ i ≤ d, set ri = ai + bi mod m, identify the ri-th child gi+1 of the
gate gi, and set ψi = γd−i/2 · Brier(gi, yi) for b = yi+1, where Brier(g, y) is the same as
described in Section 2.3 and ψi = 0 if yi+1 = ⊥. Pay P the reward

∑
j∈[d] ψj and halt

the protocol.

In the above protocol, we use H(ai) as a commitment of the value ai, which is defined to be
ai = Hd−i(a) and is uniformly distributed. Since Hd(a) can work as a commitment of the values
a1, . . . , ad, the prover cannot change the values a1, . . . , ad after sending Hd(a). If the commitment
verification fails, the verifier pay nothing to the prover. Since Hd(a) reveals no information about
a1, . . . , ad, the verifier cannot control the values ri = ai+bi mod m, which are uniformly distributed.
We use these values r1, . . . , rd to choose next children from the root.

Theorem 2. If f : {0, 1}∗ → {0, 1} is computable by a family of O(logS(n))-space uniform thresh-
old circuits of size S(n) and depth d(n), then f admits a fully-rational argument such that (1) a
protocol (P, V) is a three-message public-coin protocol; (2) the communication complexity of P is
2 logM(n) + d(n); (3) the running time of V is O(d(n) logM(n) + poly(logS(n))).

Proof. Our protocol described above is a three-message public-coin protocol. Let S = S(n), M =
M(n), and d = d(n). It is not difficult to see that the communication complexity of P is 2 logM+d.
In the original protocol [7], the reward is computed in time poly(log n). Thus, the reward in our
protocol is also computed in time poly(log n). In addition, the verifier needs to sample d instances
from [M], add elements in [M] d times, and identify children d times. Since the circuit is O(logS)-
space uniform, identifying a child can be computed in time poly(logS). Hence, the running time
of the verifier is O(d(logM + poly(logS)).

To prove the four properties of fully-rational argument, it is helpful to define two intermediate
protocols (P1, V1) and (P2, V2). The protocol (P1, V1) is a variant of the protocol of [7] in which, a
sum of two random values ri = ai+bi (mod m) is used for choosing a random child, and the prover
sends a commitment H(ai) of ai before the receiver sends bi. The following is a formal description
of (P1, V1), where the differences are highlighted with underlines.

7

Protocol (P1, V1) :

1. P1: Choose a1 ∈ [M] uniformly at random. Evaluate the circuit on x ∈ {0, 1}n and send the
output value y1 and H(a1) to V1.

2. V1: Given y1 and h̃1, set γ = 1/(1+2m2). Identify the root gate g1 and invoke the procedure
Round1(1, g1, y1),

where Round1(i, gi, yi) for 1 ≤ i ≤ d is defined as follows.

1. V1: Choose bi ∈ [M] uniformly at random, and send bi to P1.

2. P1: Set ri = ai + bi mod m, and choose the ri-th child gi+1 of gi.
If gi+1 is a threshold gate, set yi+1 to be the output value of gi+1. Otherwise set yi+1 = ⊥.
Send ai, H(ai+1), and yi+1 to V1.

3. V1: Given ãi, h̃i+1, and yi+1, if H(ãi) ̸= h̃i, pay P1 nothing and halt the protocol.
Otherwise, set ri = ãi + bi mod m, and choose the ri-th child gi+1 of gi.

• If gi+1 is a threshold gate, pay P1 the reward γ
d−i/2 ·Brier(gi, yi) for b = yi+1, and invoke

Round1(i+ 1, gi+1, yi+1).

• Otherwise, if gi+1 is an input to the circuit of value b ∈ {0, 1}, then pay P1 the reward
γd−i/2 · Brier(gi, yi) and halt the protocol.

We show that the protocol (P1, V1) satisfies the four properties of fully-rational arguments. The
first property of completeness immediately follows from the protocol. Let P ∗ be a prover of size
poly(|x|). It is not difficult to see that as far as ri’s are uniformly distributed, the expected reward
is the same as that in the original protocol of [7]. The only way to increase the reward by P ∗ is to
choose a′i ∈ [M] satisfying H(ai) = H(a′i) after sending a commitment H(ai). Since M is of size
2ω(log |x|) andH : [M] → [M] is a random oracle, it is difficult for P ∗ to find a collision a′i except with
a negligible probability. Thus, we have that E[Rew((P ∗, V)(x))] ≤ E[Rew((P, V)(x))] + negl(|x|).
To prove the third property, let consider P ∗ of size poly(|x|) such that Pr[Out((P ∗, V)(x)) ̸=
f(x)] ≥ p−1(|x|) for some polynomial p(·). This is the case that P ∗ sends an incorrect value y1
at the first step. If so, as in the above analysis, P ∗ cannot increase the reward by more than a
negligible amount. It follows from the third property of a rational proof for the original protocol
that there is a polynomial q(·) such that E[Rew((P ∗, V)(x)] ≤ E[Rew((P, V)(x)]−q−1(|x|). Finally,
let consider V ∗ of size poly(|x|). As far as ri’s are uniformly distributed, V ∗ cannot decrease the
expected reward. Thus, to decrease the reward, V ∗ needs to learn the information about ai from
H(ai) before choosing bi. However, since H : [M] → [M] is a random oracle with M = 2ω(log |x|),
the information cannot be learned by any polynomial-time computation except with a negligible
probability. Therefore, we have that E[Rew((P, V ∗)(x)] ≥ E[Rew((P, V)(x)]− negl(|x|).

Next, we define a protocol (P2, V2) that is a variant of (P1, V1) in which H(ai+1) is used as ai,
and thus the prover only needs to sample a random element a and set ad−i = H i(a). The following
is a formal descriptions of (P2, V2), where the differences are highlighted with underlines.

8

Protocol (P2, V2) :

1. P2: Choose a ∈ [M] uniformly at random and compute ad−i = H i(a) for 0 ≤ i ≤ d− 1. Eval-
uate the circuit on x ∈ {0, 1}n and send the output value y1 and H(a1) to V2.

2. V2: Given y1 and h̃1, set γ = 1/(1+2m2). Identify the root gate g1 and invoke the procedure
Round2(1, g1, y1),

where Round2(i, gi, yi) for 1 ≤ i ≤ d is defined as follows.

1. V2: Choose bi ∈ [M] uniformly at random, and send bi to P2.

2. P2: Set ri = ai + bi mod m, and choose the ri-th child gi+1 of gi. If gi+1 is a thresh-
old gate, set yi+1 to be the output value of gi+1. Otherwise set yi+1 = ⊥. Send ai
(which is equal to H(ai+1)) and yi+1 to V2.

3. V2: Given ãi and yi+1, if H(ãi) ̸= h̃i, pay P2 nothing and halt the protocol. Otherwise, set
ri = ãi + bi mod m, and choose the ri-th child gi+1 of gi.

• If gi+1 is a threshold gate, pay P2 the reward γ
d−i/2 ·Brier(gi, yi) for b = yi+1, and invoke

Round2(i+ 1, gi+1, yi+1).

• Otherwise, if gi+1 is an input to the circuit of value b ∈ {0, 1}, then pay P2 the reward
γd−i/2 · Brier(gi, yi) and halt the protocol.

This protocol also satisfies the four properties of fully-rational arguments. The only difference
from (P1, V1) is the way of choosing ai’s. Since ai is chosen as H(ai+1) and H is a random oracle,
ai is uniformly distributed except with a negligible probability. Thus, all the properties of fully-
rational arguments are satisfied.

Finally, we show that our protocol (P, V) satisfies the properties of fully-rational arguments
based on the fact that (P2, V2) satisfies them. In the protocol (P, V), the prover does not send
H i(ai+1) for 1 ≤ i ≤ d− 1 before sending a = ad at the final step of P . As in the previous analysis,
a polynomial-size P ∗ cannot find any collision in H except with a negligible probability. Thus, P ∗

cannot increase the reward more than a negligible amount in our protocol, which implies the second
and the third properties. Since Hd(a) does not reveal any information about a,H(a), . . . ,Hd−1(a)
for any polynomial-size V ∗ except with a negligible probability, such V ∗ cannot decrease the reward
by more than a negligible amount, which implies the forth property. Therefore, the statement
follows.

Theorem 2 implies that our protocol achieves poly(log n)-time verification for functions com-
putable by polynomial-size threshold circuits with poly(log n) depth. Although we have assumed
that every fan-in of gates in the circuit was m, the restriction can be removed. It is well-known that
threshold gates can be simulated with bounded fan-in AND and OR gates, and bounded fan-in AND
and OR gates can be simulated with bounded fan-in threshold gates. Thus, any polynomial-size
threshold circuit can be simulated with a polynomial-size threshold circuit consisting of bounded
fan-in threshold gates.

9

5 Conclusions

We have shown that the verifier in rational proofs may have an incentive to deviate from the
protocol for decreasing the reward for the prover. The notion of fully-rational proof is defined so
that the strategy of following the protocol is a Nash equilibrium for rational prover and verifier. We
have presented a three-message fully-rational proof with polylogarithmic verification for functions
computable by circuits with polylogarithmic depth in the random oracle model. One possible future
work is to construct a fully-rational proof with sublinear verification in the standard model. Another
one is to reduce the round complexity of our protocol, or to prove the optimality of three-message
protocols.

Acknowledgements

This work was supported in part by JSPS/MEXT Grant-in-Aid for Scientific Research Numbers
24240001, 15H00851, and 16H01705.

References

[1] P. D. Azar and S. Micali. Rational proofs. In H. J. Karloff and T. Pitassi, editors, Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, pages 1017–1028.
ACM, 2012.

[2] P. D. Azar and S. Micali. Super-efficient rational proofs. In M. Kearns, R. P. McAfee, and
É. Tardos, editors, ACM Conference on Electronic Commerce, EC’13, pages 29–30. ACM,
2013.

[3] G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather
Review, 78(1):1–3, 1950.

[4] M. Campanelli and R. Gennaro. Sequentially composable rational proofs. In M. H. R.
Khouzani, E. A. Panaousis, and G. Theodorakopoulos, editors, Decision and Game Theory
for Security - 6th International Conference, GameSec 2015, volume 9406 of Lecture Notes in
Computer Science, pages 270–288. Springer, 2015.

[5] J. Chen, S. McCauley, and S. Singh. Rational proofs with multiple provers. In M. Sudan,
editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, ITCS’16, pages 237–248. ACM, 2016.

[6] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs
for muggles. J. ACM, 62(4):27:1–27:64, 2015.

[7] S. Guo, P. Hubáček, A. Rosen, and M. Vald. Rational arguments: single round delegation
with sublinear verification. In M. Naor, editor, Innovations in Theoretical Computer Science,
ITCS’14, pages 523–540. ACM, 2014.

10

[8] S. Guo, P. Hubáček, A. Rosen, and M. Vald. Rational sumchecks. In E. Kushilevitz and
T. Malkin, editors, Theory of Cryptography - 13th International Conference, TCC 2016-A, Pro-
ceedings, Part II, volume 9563 of Lecture Notes in Computer Science, pages 319–351. Springer,
2016.

[9] Y. T. Kalai, R. Raz, and R. D. Rothblum. How to delegate computations: the power of no-
signaling proofs. In D. B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014,
pages 485–494. ACM, 2014.

[10] G. N. Rothblum, S. P. Vadhan, and A. Wigderson. Interactive proofs of proximity: delegating
computation in sublinear time. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC 2013, pages 793–802. ACM, 2013.

11

	Introduction
	This Work
	Related Work

	Preliminaries
	Rational Proofs
	Scoring Rules
	Protocol of Guo et al. GHRV14

	Rational Proofs against Rational Verifiers
	Behavior of Rational Verifiers
	Definition

	Our Protocol
	Conclusions

