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Abstract

In encryption schemes, the sender may not generate randomness properly if generating randomness
is costly, and the sender is not concerned about the security of a message. The problem was studied by
the first author (2016), and was formalized in a game-theoretic framework. In this work, we construct an
encryption scheme with an optimal round complexity on the basis of the mechanism of repeated games.

1 Introduction

Randomness is essential for many cryptographic primitives. In practice, generating randomness is a complex
and difficult task. There are many cryptographic failures [20, 9, 4, 10, 5, 22, 18, 16].

Even though users can access to a good randomness source, they may not use it if generating randomness
itself is a costly task. Such a situation arises naturally for energy-saving devices. In encryption schemes, the
sender may not generate randomness properly if she is not concerned about the security of a message to be
encrypted. Namely, the sender may rationally decide not to generate costly randomness.

The problem of such rationality was studied in [21] for public-key encryption schemes. In [21], the
author considers a setting in which rational senders and receivers can choose either good randomness and
bad randomness. Good one is a truly random string, but is costly. Bad one is a fixed string, e.g., the all-zero
string, and can be generated without cost. The author provided constructions of secure encryption schemes
depending on the given information to the sender and the receiver. For the most basic situation, in which
the receiver does not know whether a message to be sent is valuable to him or not, a two-round scheme is
constructed based on any secure public-key encryption scheme. In a more difficult situation, in which the
receiver may know the value of a message to him, the two-round scheme is not secure. Then, the author
presented a three-round scheme with a peculiar final step, where the receiver encrypts a recovered message
with the sender’s public key and makes it public.

1.1 This Work

We study the problem of rational behavior for generating randomness in encryption by treating the security
game as a repeated game. In public-key encryption schemes, after generating a pair of public and secret
keys, messages are assumed to be encrypted repeatedly. Thus, it is natural to formalize the security game
of encryption schemes as a repeated game. We present a round-efficient scheme based on a mechanism of
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repeated games. Specifically, we construct a secure two-round scheme in the setting for which a three-round
scheme was presented in [21]. The scheme is the first two-round scheme in the setting where the receiver
may know the value of a message to be sent. Since non-interactive schemes cannot be secure [21], the
scheme achieves the optimal round complexity.

1.2 Our Model

Our security model is based on the study of [21]. We define a variant of chosen plaintext attack (CPA)
game of encryption schemes. The game consists of the key generation phase, which is conducted only once,
and the encryption phase, which is played repeatedly. In the encryption phase, an adversary, on input public
keys, chooses two challenge messages, and, given a ciphertext, tries to guess which of the two messages was
encrypted. The sender and the receiver are rational players, and have their own utility functions. The values
of utilities are determined by the outcome of the game. Each rational player needs to choose either good
or bad randomness before performing probabilistic algorithms. Roughly speaking, an encryption scheme
is said to be secure if the prescribed strategy for rational players is a Nash equilibrium, and a message is
securely encrypted in every encryption phase when rational players follow the prescribed strategy.

In this work, we model the above repeated game as an infinitely repeated game. More concretely,
we consider an infinite sequence of adversaries A1, A2, . . . such that Ai plays only at the i-th encryption
phase, called a stage game. The i-th stage game is conducted between the sender, the receiver, and Ai.
Since Ai cannot communicate with other adversaries, we can avoid the problem of using computationally-
secure primitives an exponential number of times. Although the message security is considered for every
stage game, rational players are assumed to calculate their utilities as a total of infinitely-many stage games.
Thus, we can utilize a mechanism of infinitely repeated games in the framework of CPA games of encryption
schemes.

1.3 Related Work

There are many studies using game-theoretic analysis for cryptographic primitives, including secret shar-
ing [14, 1, 6, 3], two-party protocols [2, 8, 17], public-key encryption [21], and protocol design [7]. Among
them, repeated games have been introduced only in rational secret sharing [19]. This work shows that the
mechanism of repeated games is effective for reducing the round complexity of encryption schemes.

Halpern and Pass [11] introduced the framework of machine games for incorporating the cost of compu-
tation, including the cost of randomization, in utility functions. They showed that if randomization is free,
there always exists a Nash equilibrium in machine games. In this work, we employ a simpler framework
specific to encryption schemes, and show that a Nash equilibrium strategy satisfies CPA security.

Halpern et al. [13, 12] used cryptographic primitives for finding equilibria in repeated games played by
computationally-bounded players.

Halpin and Naor [15] proposed a method for generating randomness by human game play.

1.4 Notations

A function ε(·) is called negligible if for any constant c, ε(λ) < 1/λc for every sufficiently large λ. For
two families of random variable X = {Xn}n∈N and Y = {Yn}n∈N, we say X and Y are computationally in-
distinguishable, denoted by X ≈c Y , if for every probabilistic polynomial-time distinguisher D, there is a
negligible function ε(·) such that |Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| ≤ ε(n) for every sufficiently large n. For
a probabilistic algorithm A, we denote by A(x; r) the output of A running on input x with randomness r.
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2 Repeated Games for Public-Key Encryption

We assume that both the sender and the receiver are rational players. Each player has a set of valuable
messages, and prefers a message to be sent confidentially if it is valuable to the player. We consider the cost
of generating randomness for algorithms. Each player can choose one of the two types of randomness, good
randomness and bad randomness. The former is a truly random string but costly to generate. The latter is
the all-zero string and can be generated without cost.

We model the interactions between the sender and the receiver as a game. The game is a variant of the
chosen plaintext attack (CPA) game of encryption schemes. First, the key generation phase is conducted
by the sender and the receiver individually. Then, the guessing game is conducted between the sender, the
receiver, and an adversary. The adversary chooses two messages m0 and m1. A randomly chosen message
is encrypted by the interaction between the sender and the receiver. Given the transcript of the interaction,
the adversary tries to guess which message was encrypted. The guessing game is played repeatedly. We
assume that the repeated game is perfect monitoring, in the sense that the players can observe each other’s
actions after each guessing game ends. Let MS and MR be the sets of valuable messages for the sender
and the receiver, respectively. In each guessing game, the adversary chooses two messages so that both of
them are in either MS \ MR, MR \ MS , or MS ∩ MR. Let pS , pR, pS R denote the probabilities that the
chosen messages are inMS \ MR, MR \ MS , andMS ∩ MR, respectively. It holds that pS , pR, pS R ≥ 0
and pS + pR + pS R = 1. We assume that pS , pR, pS R are a priori fixed, and the same values are used in each
iterated game.

As observed in [21], it is necessary to define a public-key encryption scheme as an interactive protocol
in which both the sender and the receiver can generate their own public and secret keys.

Definition 1 (Public-key encryption scheme). An n-round public-key encryption scheme Π is the tuple
({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) such that

• Key generation: For each w ∈ {S ,R}, on input 1λ, Genw outputs (pkw, skw). LetM denote the message
space.

• Encryption: For a message m ∈ M, set stS = (pkS , pkR, skS ,m), stR = (pkS , pkR, skR), and c0 = ⊥.
Let w ∈ {S ,R} be the first sender, and w̄ ∈ {S ,R} \ {w} the second sender. For each round i ∈
{1, . . . , n}, when i is odd, Enci(ci−1, stw) outputs (ci, st′w), and stw is updated to st′w, and when i is even,
Enci(ci−1, stw̄) outputs (ci, st′w̄), and stw̄ is updated to st′w̄.

• Decryption: After the encryption phase, on input stR, Dec outputs m̂.

• Correctness: For any message m ∈ M, after the encryption phase, Dec(stR) = m.

We define a formal security game for rational sender and receiver in repeated games. Without loss of
generality, we assume that every probabilistic algorithm requires random bits of length equal to the security
parameter, and that, in the encryption phase, only the first algorithm for each party is probabilistic.

Definition 2 (Repeated CPA game for rational parties). LetΠ = ({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) be an n-
round public-key encryption scheme. For a sequence of adversaries A = (A1, A2, . . . ), the security parameter
λ, valuable message spacesMS andMR, and a pair of strategies (σS , σR), we define the following game
Gamerep(Π, λ, A,MS ,MR, σS , σR):

• Key generation phase:
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– Choice of randomness: For each w ∈ {S ,R}, compute (agen
w , stw) ← σw(1λ,Mw), where agen

w ∈
{Good,Bad} and stw is the state information of w. We assume that Mw has a polynomial-size
representation. If agen

w = Good, choose rgen
w ∈ {0, 1}λ uniformly at random. Otherwise, set

rgen
w = 0λ.

– Key generation: For each w ∈ {S ,R}, generate (pkw, skw) ← Genw(1λ; rgen
w ), and set the state

information for the challenge phase to be st1
w = (stw, pkw, skw, pkw̄), where w̄ ∈ {S ,R} \ {w}.

– Outcome of the key generation phase: Output (Numgen
S ,Numgen

R ), where Numgen
w takes 1 if

agen
w = Good, and 0 otherwise.

• Challenge phase: For i = 1, 2, . . . , do the following.

– Challenge generation: Given (pkS , pkR), Ai outputs (m0,m1, aS
A, a

R
A, stA), where m0,m1 ∈ MS ∪

MR, aS
A, a

R
A ∈ {0, 1} represent the choices of Ai for the auxiliary inputs to the sender and the

receiver, and stA is the state information of Ai. Then, b ∈ {0, 1} is chosen uniformly at random.

– Choice of randomness: For each w ∈ {S ,R}, compute (aenc,i
w , sti+1

w ) ←
σw(pkS , pkR, skw, sti

w, auxw), where aenc,i
w ∈ {Good,Bad}, auxS = (mb, v

i
R, a

enc,i−1
R ),

auxR = (aenc,i−1
S , viS ), aenc,0

R = aenc,0
S = ⊥, viR = ValiR if aS

A = 1, and viR = ⊥ otherwise,
viS = ValiS if aR

A = 1, and viS = ⊥ otherwise, where ValiR and ValiS are defined below. If
aenc,i
w = Good, then choose rgen

w ∈ {0, 1}λ uniformly at random. Otherwise, set rgen
w = 0λ.

– Guessing the challenge: The challenge message mb is encrypted by the interaction using
{Enci}i∈{1,...,n}, where w ∈ {S ,R} uses rgen

w as the random bits for the encryption algorithms.
Given the transcript of the interaction and stA, Ai outputs b′ ∈ {0, 1}.

– Outcome of the stage game: Output (Wini,ValiS ,ValiR,Numi
S ,Numi

R), where Wini takes 1 if
b′ = b, and 0 otherwise, Valiw takes 1 if mb ∈ Mw, and 0 otherwise, and Numi

w takes 1 if
aenc,i
w = Good, and 0 otherwise.

• The outcome of the game is (Numgen
S ,Numgen

R , {Advi,ValiS ,ValiR,Numi
S ,Numi

R}i=1,...), where Advi =

2|E[Wini] − 1/2|.

In the above game, the adversary can choose whether the sender (and the receiver) can know the value
of a message for the other player, namely ValiR (and ValiS ), before interacting with the other player. This
setting is challenging as observed in [21].

Note that the adversary Ai plays the CPA game only at the i-th stage game, and does not communicate
with other adversaries. Thus, it is possible to achieve a negligible advantage for every state game although
we define the whole CPA game as an infinitely-repeated game.

Next, we define the utility functions in the repeated CPA game. In repeated games, the discount factor
δ > 0 is employed so that the utility of the i-th stage game is discounted by the factor δi. We assume that
rational players calculate their utilities as if the stage games will be played infinitely.

Definition 3. For a discount factor δ ∈ (0, 1), the utility of player w ∈ {S ,R} when the players follow a pair
of strategies (σS , σR) is defined by

Uw(σS , σR) = −crand
w · Numgen

w +

∞∑
i=0

δiuw[i],
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where (Numgen
S ,Numgen

R , {Advi,ValiS ,ValiR,Numi
S ,Numi

R}i=1,...) is the outcome of the game
Gamerep(Π, λ, A,MS ,MR, σS , σR), uw[i] is the utility of player w in the i-th stage game, defined
by

uw[i] = usec
w · (−Ãdv

i
) · Valiw − crand

w · Numi
w,

and crand
w , usec

w ∈ R represent the cost of generating randomness and the utility when the message is sent

securely, respectively, and Ãdv
i
is equal to Advi except that Ãdv

i
= 0 if Advi is a negligible function in λ.

We assume that usec
w > crand

w > 0, which implies that the security is worth paying the cost of generating
randomness.

A round version Ãdv
i
of Advi is introduced for the simplicity of arguments. In addition, we assume that

rational players are not concerned about a negligible advantage of their utility.

Definition 4 (Nash equilibrium). A pair of strategies (σS , σR) is called a Nash equilibrium if for every
w ∈ {S ,R} and strategy σ′w, it holds that Uw(σ∗S , σ

∗
R) ≤ Uw(σS , σR), where (σ∗S , σ

∗
R) = (σ′S , σR) if w = S ,

and (σ∗S , σ
∗
R) = (σS , σ

′
R) otherwise.

We define the security of encryption schemes for rational players. For an encryption scheme Π and a
pair of strategies (σS , σR), we require that (1) when the players follow (σS , σR), Π is secure in every stage
game, and (2) the strategy of following (σS , σR) is a Nash equilibrium.

Definition 5. Let Π = ({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) be a public-key encryption scheme, and (σS , σR)
a pair of strategies of the game Gamerep. We say (Π, σS , σR) is CPA secure with a Nash equilibrium if for
any sequence of probabilistic polynomial-time adversaries A = (A1, A2, . . . ), and any sets of message spaces
MS andMR,

1. there is a negligible function ε(·) such that Advi ≤ ε(λ) for every i in
Gamerep(Π, λ, A,MS ,MR, σS , σR); and

2. (σS , σR) is a Nash equilibrium in Gamerep(Π, λ, A,MS ,MR, σS , σR).

3 Two-Round Scheme

We propose a two-round scheme that achieves a CPA security with a Nash equilibrium. The scheme can be
based on any usual CPA-secure encryption scheme. In the key generation phase, both the sender and the
receiver generate their own public key and secret key. In the encryption phase, a key agreement protocol is
conducted to share a key. The shared key has the property such that it is a uniformly random string if and
only if both players use good randomness in the encryption phase.

The above two-round scheme is not secure in a one-shot game, since if a message to be sent is valuable
only to the receiver, the sender never uses good randomness. We overcome the insecurity in a one-shot
game by a mechanism of infinitely-repeated games. In repeated games, each player can choose an action
depending on the actions in the previous stage games. We employ a grim trigger strategy as a punishment
strategy in repeated games. Initially, players choose good randomness in the encryption phase regardless
of the value of a message to be sent. In any stage game, if some player chooses bad randomness, then bad
randomness will be chosen in every subsequent game. This strategy is effective when valuable messages
to each player will be chosen with at least a certain probability. The mechanism is similar to the repeated
prisoners’ dilemma.
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We present a formal description of our two-round scheme Πtwo = ({Genw}w∈{S ,R}, {Enc1,Enc2},Dec)
and the grim trigger strategy for the repeated CPA game. The scheme is based on a public-key encryption
scheme Π = (Gen,Enc,Dec).

• Genw(1λ) : Generate (pkw, skw) ← Gen(1λ), and output (pkw, skw). The state information is set to be
st1
w = (pkw, pkw̄, skw), where w̄ ∈ {S ,R} \ {w}.

• Enc1(st1
R): Sample r1 ∈ {0, 1}λ uniformly at random, compute c1 ← Enc(pkS , r1), and output (c1, st2

R),
where st2

R = (st1
R, r1).

Enc2(m, c1, st1
S ): Sample r2 ∈ {0, 1}λ uniformly at random and compute c2 ← Enc(pkR, r2) and

r̂1 ← Dec(skS , c1). Then, set r = r̂1 ◦ r2, compute c3 ← m⊕ r, and output (c2, c3), where ◦ denote the
concatenation operation.

• Dec(c2, c3, st2
R): Compute r̂2 ← Dec(skR, c2) and r̂ = r1 ⊕ r̂2. Then output m̂ = c3 ⊕ r̂.

The above scheme Πtwo is similar to the three-round scheme presented in [21]. In the scheme, a shared
key in the encryption phase has a property such that it is a uniformly-random string if one of the sender and
the receiver uses good randomness. This scheme is not secure without the final step. This is because the
sender does not have any incentive to use good randomness in the key generation phase. The sender can
achieve their own security only by using good randomness in the encryption phase. To prevent such laziness
of the sender, we need the final step in which the receiver encrypts a recovered message using the sender’s
public key and makes it public. In repeated CPA games, the final step is not needed since a punishment can
be imposed in subsequent stage games.

The grim trigger strategy (σtri
S , σ

tri
R ) for repeated CPA games is defined as follows.

• For each w ∈ {S ,R}, σtri
w (1λ,Mw) outputs (agen

w , stw) = (Good,Good).

• For each w ∈ {S ,R}, σtri
w (pkS , pkR, skw, sti

w, auxw) outputs (aenc,i
w , sti+1

w ), where sti+1
w =

(sti
w, a

enc,i
w , aenc,i−1

w̄ ), w̄ ∈ {S ,R} \ {w}, and aenc,i
w = Good if aenc,1

x = · · · = aenc,i−1
x = Good for ev-

ery x ∈ {S ,R}, and aenc,i
w = Bad otherwise.

Recall that pS , pR, pS R denote the probabilities that chosen messages in repeated CPA games are in
MS \MR,MR \MS , andMS ∩MR, respectively. We show that the scheme Πtwo is secure under the trigger
strategy if valuable messages to each player will be chosen in stage games with at least a certain probability.

Theorem 1. The tuple (Πtwo, σ
tri
S , σ

tri
R ) is CPA secure with a Nash equilibrium if pw + pS R > max{(2 −

δ)(crand
w /usec

w ), crand
w /(δusec

w )} for each w ∈ {S ,R}.
Proof. Let A = (A1, A2, . . . ) be a sequence of probabilistic polynomial-time adversaries, andMS andMR

sets of message spaces.
First, we show that there is a negligible function ε(·) such that Advi ≤ ε(λ) for every i in

Gamerep(Πtwo, λ, A,MS ,MR, σ
tri
S , σ

tri
R ). Since the players follow (σtri

S , σ
tri
R ), they choose good randomness

at the key generation phase and every encryption phase. For the i-th stage game, suppose Ai chooses m0,m1
as a pair of challenge messages. The view of Ai is

{pkS , pkR,m0,m1,Enc(pkS , r1),Enc(pkR, r2),mb ⊕ (r1 ◦ r2)}
≈c {pkS , pkR,m0,m1,Enc(pkS , r′1),Enc(pkR, r′2),mb ⊕ (r1 ◦ r2)}
= {pkS , pkR,m0,m1,Enc(pkS , r′1),Enc(pkR, r′2), r}
= {pkS , pkR,m0,m1,Enc(pkS , r′1),Enc(pkR, r′2),m1−b ⊕ (r1 ◦ r2)}
≈c {pkS , pkR,m0,m1,Enc(pkS , r1),Enc(pkR, r2),m1−b ⊕ (r1 ◦ r2), }
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where r1, r2, r′1, r
′
2 ∈ {0, 1}λ and r ∈ {0, 1}2λ are uniformly random strings. We have used the CPA security of

the underlying scheme Π for the relation ≈c. The above implies that there is a negligible function ε(·) such
that Advi ≤ ε(λ) for every i.

Next, we show that the pair of strategies (σtri
S , σ

tri
R ) is a Nash equilibrium in

Gamerep(Πtwo, λ, A,MS ,MR, σ
tri
S , σ

tri
R ). It follows from the above security analysis that

Uw(σtri
S , σ

tri
R ) ≥ −crand

w +

∞∑
i=0

δi(−crand
w )

≥ −crand
w − crand

w

1 − δ = −
(2 − δ)crand

w

1 − δ . (1)

Let consider the case that player w ∈ {S ,R} chooses Bad in the key generation phase. Suppose S chose
Bad in the key generation phase. (The same argument can be applied to the case for R.) The adversary Ai

can obtain r1 by decrypting Enc(pkS , r1) by using skS , which is a part of the output of Gen(1λ; 0λ). Thus Ai

can win every stage game by choosing m0,m1 such that the first halves of m0 and m1 are different, and, on
receiving c3, outputting b′ = 0 if the first half of c3 ⊕ (r1 ◦ 0λ) is equal to that of m0, and b′ = 1 otherwise.
Since the advantage Ãdv

i
will be 1 for every i, the utility US will be at most

∞∑
i=0

(
δiusec

S (−1)(pS + pS R)
)
= −

(pS + pS R)usec
S

1 − δ ,

which is less than (1) since pS + pS R > (2 − δ)(crand
S /usec

S ). Thus, each player cannot increase the utility by
choosing Bad in the key generation phase.

In the following, we consider players who choose Good in the key generation phase, but may choose
Bad in the encryption phase. In the analysis, we use the following three values for the utility uw[i] of the
i-th stage game:

• u1 = 0, which is the case that Valiw = 0 and Numi
w = 0;

• u2 = −crand
w , which is the case that Valiw = 0,Numi

w = 1 or that Advi = 0,Valw = 1,Numi
w = 1;

• u3 = −usec
w , which is the case that Ãdv

i
= 1, Valiw = 1, and Numi

w = 0.

Note that u1 > u2 > u3.
Suppose that player R follows σtri

R , and player S chooses Good for stages i = 1, . . . , r − 1, but chooses
Bad at the r-th stage game. Then, the utility uS [i] for the i-th stage game is u2 for i = 0, . . . , r − 1 since
both players chooses Good, and thus Ãdv

i
= 0. After the r-th stage, player R uses Bad in every subsequent

stage game since R follows σtri
R . Then, an adversary Ai can win the i-th stage game for every i > r. Since R

uses Bad, r1 = 0λ. Thus Ai can win the game by choosing m0,m1 such that the first halves of m0 and m1 are
different, and outputting b′ = 0 if the first half of c3 is equal to that of m0, and b′ = 1 otherwise. For such
Ai’s, uS [i] is u1 with probability pR, and u3 with probability pS + pS R. Thus, the utility US is at most

− crand
w + u2 + δu2 + · · · + δr−1u2 + δ

ru1 +

∞∑
i=r+1

δi (pRu1 + (pS + pS R)u3)

= −crand
w +

1 − δr
1 − δ u2 + δ

ru1 +
δr+1

1 − δ (pRu1 + (pS + pS R)u3)

= −
(2 − δ − δr)crand

S + δr+1(pS + pS R)usec
S

1 − δ ,
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which is less than (1) since pS + pS R > crand
S /(δusec

S ).
The same argument holds when player S follows σtri

S , but player R tries to choose Bad in the encryption
phase. Thus, both players S and R cannot increase their utility by changing their strategies from (σtri

S , σ
tri
R ).

Hence, (σtri
S , σ

tri
R ) is a Nash equilibrium, and thus the statement follows. □

4 Conclusions

In this work, we employed repeated games for reducing the round complexity of encryption schemes per-
formed by rational players. Our two-round scheme achieves a Nash equilibrium in the repeated CPA games.
However, a Nash equilibrium may not be a satisfying solution concept in repeated games. The notion of
a subgame-perfect equilibrium is known as a stronger solution concept in repeated games. Thus, one of
the future work is to achieve a subgame-perfect equilibrium in our framework. For the one-shot game, a
stronger solution concept, strict Nash equilibrium, was achieved in the previous work [21]. Another future
work is to explore the possibility of the mechanism of repeated games for other cryptographic primitives.
Since a repeated game models a long-term relationship, the mechanism may be applied to cryptographic
protocols by considering a long-term relationship.
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