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Abstract. We are constantly moving to a digital world, whereby the
majority of information is stored at the weakest link: users’ devices and
data enclaves – vulnerable to attacks by adversaries. Users are often in-
terested to share some information, such as the set intersection of their
data sets. So as to reduce the communication bandwidth, cloud based
protocols have been proposed in the literature, with a rather weak secu-
rity model. Either there is a semi-honest cloud, which is far from realistic
nowadays, or the leakage from the protocol puts the data at risk. In this
paper, we achieve the best of the two worlds: We design and analyze a
non-interactive, cloud based private set intersection (PSI) protocol se-
cure in a stronger security model. Our protocol assures privacy on data
set inputs in case of a malicious cloud and enforces authorized only com-
putations by the users. Moreover the computation is verifiable and the
asymptotic communication cost for the computation of the intersection
is linear on the common elements k. Our protocol is secure in the ran-
dom oracle model under standard assumptions and a new mathematical
assumption whose security evidence is given in the generic group model.

1 Introduction

Private Set Intersection (PSI) protocols allow users to compute the in-
tersection of their datasets without revealing anything about the data
beyond the intersection. PSI has a variety of real world applications:

– Airline companies in order to determine whether specific flight pas-
sengers appear in a black list, perform a private set intersection
operation between the private passenger list and the government’s
list.

– National agencies (e.g., the FBI) need to obtain information on sus-
pects from other agencies, e.g., local police departments, the military,
DMV, IRS, or employers. The FBI may wish to search suspects on
other agencies’ lists, but no agency wants to divulge members of his
suspect list unnecessarily to others.

Over the years, due to its importance, researchers have designed a num-
ber of PSI protocols [4, 8–12, 14, 17–19, 23, 24, 26–28]. Alas, for any two
users to jointly compute the set intersection, there is a communication



burden at least proportional to the size of their datasets. Thus, each user
must have large network bandwidth to run PSI with others. Another is-
sue with jointly computing the set intersection is that a malicious user
may change its dataset every time it computes an intersection in order
to gradually learn others’ datasets over time. To tackle this problem, a
trusted party must authorize all datasets in advance.

A cloud infrastructure with its cost effective storage and computation re-
sources may alleviate the communication burden any two users need to
exchange. However, as it may act maliciously it will try to infer plaintext
of users’ datasets even if datasets are encrypted. The most crucial at-
tacks to infer plaintext datasets from encrypted datasets are brute-force
attacks, whereby a malicious or semi-honest adversary leverages public
information, such as the ciphertexts of the datasets, to compromise data
set privacy. These adversaries are able to recover any user’s dataset after
guessing the plaintext from a non-random distribution of the ciphertext.
As such users’ privacy should be taken into account.

Recent research surveys [3,16] have shown that the cloud cannot be fully
trusted and it may misbehave by exposing or tampering with users’ sen-
sitive data, or changing the results of the computation. It is essential
though, for users not only to protect the confidentiality of their out-
sourced data, but also to verify the integrity of the data and the result
of the computation delegated to the cloud.

State of the art work on cloud-based solutions enable efficient PSI com-
putation without linear size information to be exchanged in between
users [30]. However, to achieve that improvement the cloud has to run
the computations with the aid of some auxiliary information, forwarded
by each data owner. We realize this information renders the protocol vul-
nerable to brute-force attacks. In order to address the above limitations,
we re-randomize the final ciphertext with an extra secret key (xa for user
A). Later, xa is canceled out by the cloud using some auxiliary informa-
tion that is sent by the users to allow the cloud run the PSI protocol
between the encrypted datasets. The auxiliary information is a function
of xa and a common secret value, tk (secret to the malicious cloud) in
the exponent that is computed by the users independently. Thanks to
tk value that appears in the ciphertexts, the malicious cloud is not able
to launch a brute force attack. The secret value tk is a Diffie-Hellman
key exchange value. Each user evaluates a function of his secret key and
other users’ public key. This conversion helps the cloud to compare the
ciphertexts of the users with respect to the intersection operation.

Our scheme also uses a multi-accumulator primitive that allows a verifier
to test if multiple dataset values that are sent by the cloud are truly part
of the original dataset. While a single accumulator scheme allows a veri-
fier to test data item existence one-by-one, the multi-accumulator scheme
allows verifier to test multi data items at once. The multi-accumulator
value is further signed in order to protect from tampering it.

Contributions Our major contributions are three folds. First, we design
a verifiable PSI protocol that is communication efficient in between the
engaged users and the cloud, without requiring heavy communication in
between the users; in contrast with previous work [2,8,9,11,12,15,18–21].
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Second, the proposed scheme does not allow malicious cloud or semi
honest users to apply brute-force attacks on the encrypted data sets.
Lastly, our PSI protocol does not allow a malicious cloud to run the PSI
protocol at will in an unauthorized way without users’ permission.
To sum up, in this paper, we present a secure verifiable delegated set
intersection protocol, dubbed SEVDSI, with the following properties:
1. Verifiability: Users can check that the cloud has honestly computed

the set intersection. Moreover, the verification for each user requires
an amount of computation at most linear in the cardinality of the
set intersection.

2. Communication Efficiency: Any two users outsource their encrypted
datasets and afterwards they are engaged in a communication round
with the cloud which is constant. We call this constant size informa-
tion as auxiliary information. Moreover, the cloud sends the inter-
section result, whose size is linear in the set intersection cardinality.

3. Computational Efficiency: The verification computation complexity
for users is at most linear to the intersection cardinality, i.e. O(k).
This is more efficient than the straightforward solution whereby each
user needs to access all the encrypted inputs and perform verification
operations linear to the number of inputs, i.e. O(n) if k << n, where
n is the number of values in a users dataset, k is the set intersection
cardinality.

4. Non-Interactive PSI: Users encrypt, upload and learn the private set
intersection of their datasets with the aid of a cloud, avoiding the
need to interact with each other during the protocol execution.

5. Privacy: Users learn nothing beyond the intersection about other
users’ datasets. The cloud learns nothing about either dataset or
their intersection.

6. Authorized PSI: The cloud is allowed to run PSI between datasets
owned by users who have granted permission to it. In other words,
the cloud needs to be authorized by both users to execute the PSI
protocol.

Outline: In Section 2 we introduce state-of-art PSI schemes in Multi-
Party Computation (MPC), and cloud settings. We present the overview
of the cryptographic primitives and assumptions used for SEVDSI in
Section 3. Section 4 formulates the problem, the security guarantees and
the idea of our solution. In Section 5, we present our protocol, its security
and efficiency analysis. Finally we conclude the paper in Section 6.

2 Related Work

Multi-Party Computation (MPC) based PSI: The first study that
introduces PSI [12] is based on oblivious polynomial evaluation (OPE).
Then, a plethora protocols of PSI [4,8–11,14,17–19,23,27,28] has been
proposed with different adversarial models: Semi-honest, malicious, and
covert adversarial models. In the semi-honest adversarial model, users
faithfully follow the protocol specification and do not change the content
of their datasets. In the malicious adversarial model, malicious users can
arbitrarily deviate from the protocol. They can change their inputs or
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respond with different outputs. In the covert adversarial model, adver-
saries are willing to actively cheat (and as such are not semi-honest),
but only if they will not be caught (and as such they are not arbitrarily
malicious) [5]. The protocols in [4,7,10,17,23,27,28] are secure in the pres-
ence of semi-honest adversaries, while solutions in [8, 9, 11, 12, 15, 18, 19]
are secure in the presence of malicious adversaries and [14] is secure
against covert adversaries. The studies in [4,7] hide the users’ input sets.
Authors in [14] propose a different approach, designing a PSI protocol
based on oblivious pseudorandom function evaluation, which is later im-
proved by [10,18]. Garbled circuits for PSI introduced in [17], while [11]
employs garbled bloom filters and has O(n) communication and com-
putation complexity but introduces false positives. In [7], users need an
extra round of communication. The size of communication is linear in a
bound t that is chosen by the user. The user is able to check at most t
of his data values against the other user’s datasets.
Cloud-based PSI: The studies in [20, 21] show that users share some
secrets interactively to encrypt their datasets. Later, they send their en-
crypted datasets to a cloud. The cloud computes the set intersection
on behalf of the users. Kerschbaum [21] and Kamara et al. [20] propose
protocols whereby the users need to agree on a common secret key and
to send O(n) information to the cloud for each intersection operation.
Another flaw of these schemes is that a honest but curious user can brute
force other users’ datasets. To alleviate the brute force attacks a trusted
third party authorizes users’ datasets to prevent them from changing
their input values. The protocols in [20, 21] need linear O(n) commu-
nication complexity between cloud and the user. The protocol in [20]
introduces extra interaction between users (O(n)). Our scheme does not
require any collaborative preprocessing. Users outsource their encrypted
datasets only once and only need to engage in minimal communication
with the cloud on a per-intersection basis.

The studies in [22,25] propose PSI protocols, in which the cloud is semi-
honest. Furthermore, the author of [22] propose a protocol that may
yield false positives and requires quadratic communication complexity.
Authors in [30] suggest a verifiable set intersection protocol secure under
a malicious cloud: If the cloud dishonestly executes the set intersection
protocol, it is caught with high probability at the cost of O(k) com-
munication complexity between users and the cloud, where k is the set
intersection cardinality. However, their protocol leaks plaintexts and does
not have the authorized PSI property. In this paper we mitigate these
shortcomings.

The study in [1] proposes a secure private set intersection protocol that
does not provide verifiability. A later study by the same authors in [2]
provides verifiability, but it is not efficient. Specifically, if user A wants
to know which data items are common with user B’s data items, A
sends a secret value and O(n) information to B. Then, B performs O(n)
internal computations in order to embed the secret value (chosen by
A) in his dataset, and then sends the resulting values to the cloud. An
inherent drawback of this scheme is that B may not agree on the secret
information chosen by A. The second drawback in [1] is that B performs
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Scheme Verify PP FP U-U CS-U U-CS Leakage

MPC

[12] yes no no O(nκ) n/a n/a no
[23] no no no O(nκ) n/a n/a no
[9] yes no no O(nκ2 log2 n) n/a n/a no
[18] yes yes no O(nκ) n/a n/a no
[19] yes no no O(nκ) n/a n/a no
[8] yes yes no O(nκ) n/a n/a no
[15] yes no no O(nκ) n/a n/a no
[10] no yes no O(nκ) n/a n/a no
[4] no yes no O(nκ) n/a n/a no
[17] no no no O(nκ logn) n/a n/a no
[11] yes no yes O(nκ) n/a n/a no
[28] no no no O(nκ logn) n/a n/a no
[27] no no no O(nκ logn) n/a n/a no
[7] no no no O(nκ) n/a n/a no

Cloud

[21] yes yes no no O(nκ) O(nκ) no
[20] yes yes no O(nκ) O(nκ) O(nκ) no
[22] no yes yes no O(nκ) O(n2κt) no
[25] no no no no O(nκ) O(nκ) |Da ∩Db|
[30] yes no no no O(kκ) O(1) |Da ∩Db|, Da, Db
[1] no yes no O(nκ) O(nκ) O(nκ) no
[2] yes yes no O(nκ) O(nκ) O(nκ) no
Ours yes no no no O(kκ) O(1) |Da ∩Db|

Table 1. Comparison of protocols in the MPC, and Cloud settings: κ is the security
parameter, n is the number of values in a user’s dataset, k is the set intersection
cardinality. The column U-CS denotes the size of the information sent to the cloud
from users after outsourcing of the encrypted dataset, the column CS-U is the size
of the information sent to users from the cloud. The column PP applies to protocols
where users share secret values with each other interactively or there is a trusted third
party that provides secret values to users to encrypt their datasets. The column U-U
indicates the total communication between two users and the column FP indicates
whether a protocol introduces false positives. Some of the protocols use a bloom filter.
In those cases, t represents the number of hash functions that are used in the bloom
filter. Since all the schemes in the table leak the sizes of the datasets (except [4, 7]),
we do not mention it in the leakage column. |Da ∩Db| is the size of the intersection of
two sets Da and Db.
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O(n) computation and sends O(n) information to the cloud on behalf of
A. In other words, user B does the heavy work. The second situation can
be even worse if m users want to do set intersection operation with user
B. In this case, user B needs to perform O(mn) computations and send
O(mn) information to the cloud. Moreover, if user A wants to compute
intersections with m different partners, user A needs to send a total of
O(mn) values to m users, and perform O(mn) operations.

3 Preliminaries and Complexity Assumptions

In this section we present the cryptographic primitives used in our pro-
tocol and the underlying mathematical assumptions.

3.1 Cryptographic primitives

Bilinear Maps: Let G and G′ denote two multiplicative cyclic groups
of prime order p and let g be a generator of G. A map e : G × G → G′

is bilinear if it has the following properties: (1) for all u, v ∈ G and
a, b ∈ Zp, we have e

(
ua, vb

)
= e (u, v)ab; (2) the map is not degenerate,

i.e., e (g, g) 6= 1, and (3) e is an efficiently computable function.

Unforgeable Digital Signature [13]: A digital signature scheme, Sig,
consists of three algorithms, Sig = (sigKeyGen, sigSign, sigVerify), where
sigKeyGen generates public and private keys sigPK, sigSK, sigSign gen-
erates a signature for a message, and sigVerify determines if a signature
is generated under the corresponding message. We say that a digital
signature scheme is secure if the signature scheme is existentially un-
forgeable under adaptive chosen message attack (UF-CMA). UF-CMA
means that an adversary who is given signatures for some messages of
its choice adaptively should not be able to produce a signature for a
new message. Any signature scheme satisfying the standard definition of
UF-CMA can be used in our construction.

Multi-accumulator: We employ the multi-accumulator scheme of [30]
that allows to check membership of multiple elements at once. A multi-
accumulator is defined as follows:
Suppose A has a data set Da and outsources it to the cloud (as the
prover). B (as the verifier) has a dataset Db and queries the cloud for
Da ∩Db.

– (acSk, acPk) ← acKeyGen(κ): The trusted third party runs this
algorithm to generate a pair of public and private key (acPk, acSk)
for the algorithm.

– sa ← acGen(acPk,Da): User A runs this algorithm to generate a
digest sa which is accumulated dataset Da of A. Similarly, B can
generate sb with respect to Db.

– (acRslt, acWit) ← acProve(acPk,Db, Da): Given dataset Db,
dataset Da and acPk, the cloud generates acRslt = (Da ∩ Db),
the intersection of Da and Db with an accompanying witness acWit
for this fact.

6



– {0, 1} ← acV erify(acPk, sb, acRslt, acWit, sa): B runs this algo-
rithm to examine if acRslt = Da ∩ Db, where sa is the digest (ac-
cumulated) with respect to Da and sb is the digest with respect to
Db. If so, outputs 1; otherwise, outputs 0.

3.2 Assumptions

Variant Decisional Diffie-Hellman Assumption (V DDH): For
given

T =

(
g, v, gγa , gγb , gβa , gβb , grβa , grβb , g

r βa
γa , g

r
βb
γb , Z

)
, γa,γb,βa,βb,r uniformly at random elements in Zp, generator g ∈ G
of prime order p and v any element in G, V DDH assumption asks an

adversary A to distinguish Z = vr from a value gc ∈ G, c
$← Zp with

non-negligible probability ε. The advantage of an algorithm A in distin-

guishing vr from gc, c
$← Zp is

|Pr [A (T, vr) = 0]− Pr [A (T, gc) = 0]| .

Definition 1. V DDH holds in G if no polynomial time advesary can
achieve non-negligible advantage in deciding correctly the V DDH as-
sumption.

To provide some security confidence for the VDDH assumption we show
a lower bound on the computational complexity of an adversary A at-
tacking the VDDH problem in the generic group model (GGM) as pre-
sented by Shoup [29]. The idea of the GGM model is to “mirror” the
elements of bilinear groups with random encodings accessible to an ad-
versary through random encoding injective function ξ : Zp → {0, 1}∗ for
elements in G. That is, ξ maps elements from Zp through G to random
encoding string in {0, 1}∗. We write ξ(x) to represent the encoding of gx.

Let βa, βb, γa, γb, c, r
$← Zp, T0 = vr, T1 = gc and d ← {0, 1}. A receives

the encodings of g, v, gγa , gγb , gβa , gβb , grβa , grβb , g
r βa
γa , g

r
βb
γb , Td, Td−1.

Finally we show that after at most q queries, A can guess d with a

probability no greater than 1
2

+O( q
2

p
).

Theorem 1. Suppose A is an algorithm that solves the VDDH problem,
making at most q oracle queries for the group operations in G and G′.
Suppose that the integers βa, βb, γa, γb, r and the encoding function ξ are
chosen at random. Then

Pr


A

p, ξ(1), ξ(u), ξ(βa), ξ(βb), ξ(γa),

ξ(γb), ξ(rβa), ξ(rβb), ξ(
rβa
γa

),

ξ( rβb
γb

), ξ(t0), ξ(t1)

 = d :

c, r, βa, βb, γa, γb,
$← Z∗p,

d← {0, 1}, td ← vr, t1−d ← gc

−
1

2
≤ (q + 11)2

p
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Proof. We show how a challenger B interacts with A. During the interac-
tion B encodes elements with the random encoding function and answers
algebraic operations in group G with the encoding of the result.
B defines polynomial F1 ∈ Zp[Ba, Bb, Γa, Γb, T0, T1], i ∈ {1, τ} with
determinants Ba, Bb, Γa, Γb, T0, T1 ∈ Zp. It also stores the list L1 =
{F1,i, ξ1,i : i = 0, . . . , τ1}, with the invariant that at each step τ ,
τ1 = τ + 11. Initially F1,0 = 1, F1,1 = Ba, F1,2 = Bb, F1,3 = Γa, F1,4 =
Γb, F1,5 = RBa, F1,6 = RBb, F1,7 = RBa

Γa
, F1,8 = RBb

Γb
, F1,9 = T0, F1,10 =

T1, so as to τ1 = 11.
At the beginning of the game A gets the random encodings
ξ1,2, . . . , ξ1,13, ξτ,1 = ξ′(t0). These random encodings are mapped to the
random polynomial F1,τ1 by B. The polynomial is kept secret and never
exposed to A. Whenever A asks for group operations B simulates it as
follows:
Group Operations: For any two operands ξi, ξj with 0 ≤ i, j < τ1
B computes F1,τ1 ← F1,τi + / − F1,τj depending the sign action be it
multiplication or division. B checks if F1,τ exists in the list L1 and returns

that ξτ1 to A. Otherwise sets τ1 = τ1 + 1, returns ξτ1
$←{0, 1}∗ to A and

adds (F1,τ1 , ξτ1) to the list L1.
Eventually A outputs its guess d′ ∈ {0, 1}. Notice that at any time
the maximum degree of any F1 is at most 2. B assigns random ele-

ments βa, βb, γa, γb
$← Zp and sets t0 ← vr, t1 ← gc for the variables

Ba, Bb, Γa, Γb, T0, T1. We will bound the success probabilities of ran-
domly assigning values to the polynomial F1 with the SchwartzZippel
lemma. Namely, in order A to guess correctly the following should hold:

F1,i(βa, βb, γa, γb, r, c)− F1,j(βa, βb, γa, γb, r, c) = 0, F1,i 6= F1,j

The success probability of A is thus: ε ≤
(
τ1
2

)
2
p
. It is also true that:

τ1 ≤ τ + 11. Plugging q = τ where q represents the total number of
queries it holds that:

ε ≤ (q + 11)2

p

The security of our protocol also depends on the decision linear assump-
tion and the q-strong Bilinear Diffie-Hellman assumption which are pre-
sented in Appendix section A.1

4 Definitions

In this section we give the definitional framework of our secure and ef-
ficient verifiable set intersection protocol (SEVDSI) and we present its
privacy and security definitions.

4.1 SEVDSI Function Definition

Users first send their encrypted datasets to the cloud, later they run
the PSI protocol with the help of it. Let Da = {da,0, ..., da,n} denote
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A’s plaintext dataset and let Db = {db,0, ..., db,n} denote B’s plaintext
dataset. We assume that users A and B have the same number of ele-
ments in their datasets, for the sake of simplicity. User A (B) outsources
his encrypted dataset Ca (Cb) to the cloud. When users A and B want
to compute Da∩Db, they delegate the computation to the cloud by pro-
viding auxiliary information aua (aub) to allow the cloud compute the
set intersection. As an important note, the common elements do not leak
any information about any plain data to the cloud. These values are still
encrypted.

Definition 2. A SEVDSI scheme comprises seven algorithms:
– pm ← Setup(κ): This algorithm is run by a trusted third party. It

takes a security parameter κ and outputs system public parameters
pm.

– (pka, ska)← KeyGen(pm): It is a randomized algorithm run by user
A. It takes the system public parameter (pm) and outputs a pair of
public and private keys (pka, ska), where pka is made public and ska
is kept secret by A. Similarly, user B generates his public and private
key pairs, (pkb, skb).

– Ca ← Enc((ska, pka), Da): This algorithm takes dataset Da, pub-
lic/secret key pair, (ska, pka) of A and outputs ciphertext Ca, which
is outsourced to the cloud. B can generate Cb similarly.

– (aua, sa) ← AuGen(ska, Da, pm, pkb): User A authorizes the cloud
to conduct the set intersection operation on the outsourced cipher-
texts Ca and Cb with AuGen algorithm. This algorithm takes as in-
put (ska, Da, pm, pkb) and it outputs some auxiliary information aua
and an internal secret sa. Then aua is sent to the cloud through the
authenticated user-to-cloud private communication channel while sa
is kept as a secret. Similarly, user B can generate aub by taking
(skb, Db, pm, pka) as input. Then, B sends aub to the cloud.

– {(rslta, proofa), (rsltb, proofb)} ← SetInt(Ca, aua, Cb, aub): This al-
gorithm runs by the cloud. It takes Ca, aua, Cb, aub as input and
outputs (rslta, proofa) and (rsltb, proofb). Then, the cloud sends
(rslta, proofa) to A and (rsltb, proofb) to B, where proofa and
proofb are proofs to demonstrate faithful private set intersection
computation by the cloud.

– {D,⊥} ← Dec(ska,b, rslta,b): Each user A,B executes this algorithm
to decrypt the intersection result. It takes ciphertext rslta as input,
which is the output of the delegated set intersection operation com-
puted by the cloud on ciphertexts Ca and Cb, and ska and it outputs
the intersection set D = Da ∩ Db. If Da ∩ Db = ∅, the algorithm
outputs ⊥. Similarly, B obtains Da ∩Db.

– {0, 1} ← Verify(ska, sa, rslta, proofa): A runs this algo-
rithm to verify whether rslta is honestly generated. It takes
(ska, sa, rslta, proofa) and outputs 1 if the rslta honestly generated.
It outputs 0 if the cloud is cheating. Similarly, B verifies that if the
outputs of the computation is correct.

4.2 Adversarial model and Security Guarantees

We assume that users are honest-but-curious adversaries, meaning that
they use their benign inputs for the protocol, but they are curious about
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other users’ data. We assume that the cloud is malicious: It can arbitrar-
ily deviate from the prescribed protocols in any way. The malicious cloud
can manipulate the integrity of the outsourced data. We also assume that
the cloud does not collude with any data owners. This is a reasonable
assumption that is also explained in [1]. If the cloud is controlled by
an adversary, the adversary also has control over all the communica-
tion channels. SEVDSI scheme leaks only the set intersection size of two
datasets.
Function Output Secrecy. Function output secrecy assures that even
if previous information about any data v ∈ Da ∪ Db is given to the
malicious cloud, it will not able to perform brute-force attack to figure
out if any ciphertext has encoding of v in C′a ∪C′b. In order to eliminate
the brute-force attacks that are performed by the cloud, the resulting
ciphertexts C′a, C

′
b should have a common secret value in order to allow

the cloud to compare ciphertexts in the set intersection phase. Moreover,
having this common secret value also prevents the adversary (cloud)
to run the PSI protocol between different users without having their
permission. In SEVDSI, this secret element is the Diffie-Hellman key
tkab = gγaγb of A and B.
The function outputs secrecy game between a challenger B and an at-
tacker A is the following,
Setup. Challenger B runs Setup algorithm, it outputs public/secret key
pair pka, ska for user A and pkb, skb for user B. Then, it gives pka, pkb
to attacker A.
Query. A issues encryption queries. For query q, A outputs D′a, D

′
b. B

runs (C′a, C
′
b)← Enc algorithm and gives (C′a, C

′
b) to A.

SetInt. A issues set intersection queries. B runs (au′a, s
′
a, au

′
b, s
′
b) ←

AuGen algorithm and gives (au′a, au
′
b) to A.

Challenge. A outputs (Da, Db, v) to be challenged upon, where v is
any dataset element in Da ∪ Db. B randomly chooses a bit b ∈ {0, 1}
and sends Cv and aua (assuming that v is in Da) to A, where if b = 0;
Otherwise, it sends Cv′ , aua, where v′ is a random element in G.
Guess. A outputs b′ ∈ {0, 1}.

Definition 3 (Function Output Secrecy). We say that SEVDSI as-
sures Function Output Secrecy if the advantage of A in winning the afore-
mentioned game is AdvA = Pr[b = b′] ≤ 1/2 + ε(λ), for a negligible
function ε and security parameter λ.

Verifiability. In order to assure that the cloud honestly computes the
set intersection, the users ask the malicious cloud to generate a proof
about the result of the computation. With the proof and the result users
are able to check whether the malicious cloud has honestly executed
the delegated set intersection operations or not. Verifiability exposes to
the user malicious private set intersection computations performed by a
malicious cloud server. We use the same security game for verifiability
as in [30], defined between an adversary A and a challenger B as follows:

– KeyGen: Given public parameters pm, B runs KeyGen(pm) algo-
rithm to obtain encryption/decryption keys (pka, ska) for user A,
(pkb, skb) for user B and gives pka, pkb to A.
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– Phase 1: A issues the following queries:
• Enc: Given the dataset D′a, B runs C′a ← Enc((ska, pka), D′a)

and returns C′a to A.
• Enc: Given the dataset D′b, B runs C′b ← Enc((skb, pkb), D

′
b)

and returns C′b to A.
• AuGen: B runs au′a, s

′
a ← AuGen(ska, D

′
a, pm, pkb) and returns

au′a to A.
• AuGen: B runs au′b, s

′
b ← AuGen(skb, D

′
b, pm, pka) and returns

au′b to A.
• Verify: B runs Verify(ska, s

′
a, rslta, proofa) and returns the out-

put to A.
• Verify: B runs Verify(skb, s

′
b, rsltb, proofb) and returns the out-

put to A.
Challenge: A selects Da, Db of its choice, and sends them
to B. B runs Ca ← Enc((ska, pka), Da) and Cb ←
Enc((skb, pkb), Db), aua, sa ← AuGen(ska, Da, pm, pkb) and
aub, sb ← AuGen(skb, Db, pm, pka), and returns Ca, aua, Cb, aub to
A.
Phase 2: A and B follow the similar steps as that are in Phase 1.
Guess: A outputs (rslta, proofa), (rsltb, proofb) to B.

Definition 4. A SEVDSI scheme satisfies the verifiability functionality
if the following holds:

Pr



pm← Setup(κ), (pka, ska)← KeyGen(pm), (pkb, skb)← KeyGen(pm)

(Da, Db)← AEnc,AuGen,SetInt,Verify(pka, pkb)
Ca ← Enc((ska, pka), Da), Cb ← Enc((skb, pkb), Db),

aua, sa ← AuGen(ska, Da, pm, pkb),
aub, sb ← AuGen(skb, Db, pm, pka)
{(rstla, proofa), (rsltb, proofb)} ←

AEnc,SetInt,Verify(pka, aua, Da, Ca, pkb, aub, Db, Cb) :
1← Verify(ska, sa, rslta, proofa)∧
1← Verify(skb, sb, rsltb, proofb)∧

(Dec(ska, rslta) 6= Dec(skb, rsltb) ∨Dec(ska, rslta) 6= (Da ∩Db)


≤ ε(λ)

for a negligible function ε and security parameter λ.

5 SEVDSI Protocol

The PSI protocol in [30] is vulnerable to brute force attacks: the malicious
cloud is able to infer users’ plain datasets from ciphertexts by checking all
possible dataset values. Another issue in [30] is that the malicious cloud
is allowed to do set intersection operation between any two users, with-
out having any permission by them. The cloud can proceed as follows:
(1) In time t0, users A and user B wish to run the set intersection pro-
tocol with the aid of the cloud by sending their corresponding auxiliary
information to it. (2) In time t1, users A and C run the set intersec-
tion protocol with the help of the cloud by sending their corresponding
auxiliary information to it. (3) In time t2, where t2 > t1 ∧ t2 > t0, the
cloud is able to perform PSI operation on the encrypted datasets of user
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B and user C, without their permission. This contradicts their protocol
specifications, whereby users are required to send auxiliary information
to the cloud in order the latter conduct the set intersection protocol.

Before delving into SEVDSI protocol, we present the idea for resiliency to
cloud-side and user-side brute-force attacks. Also, we demonstrate how
to achieve authorized and verifiable PSI.

– In order to build a system resilient against the cloud side brute force
attacks, the ciphertexts are blinded with an extra random value xa
by user A (xb by user B). Later, xa, xb is converted to a common
random tkab that is independently computed by user A and user
B to allow the cloud to do set intersection operation. tkab prevents
the malicious cloud to perform brute force attack on the datasets in
order to infer the users’ plaintext values.

– To avoid permissionless PSI by the malicious cloud on behalf of two
users without getting any permission by them, users agree on a com-
mon random tkab which is Diffie-Hellman key exchange value. This
value is unique for each pair of users. According to the given exam-
ple above, the cloud is not able to perform PSI protocol on behalf of
user B and user C without getting any authorization (permission)
from them. The only way the malicious cloud can perform PSI is to
extract tkbc.

– The auxiliary information that is sent to the cloud by user A consists
of two parts. The first part is a function of xa and tkab. The second
part is the aggregated user A’s dataset values (sa) that is masked
under user B’s public key. User A also signs this masked value and
appends it to the second part of the auxiliary information which is
directly forwarded to user B later by the cloud.

– In order to allow user B to verify if the set intersection result that is
computed by the cloud is correct, the cloud sends a (proofb, resultb)
tuple to user B. proofb consists of two parts: The first part is a
witness that is generated by the cloud. The second part is the second
part of user A’s auxiliary information.

– In our scheme user A (B) also uses da,0 (db,0) random data value
as in [30] to randomize his accumulated dataset, sa. This prevents
semi-honest user B (A) from recovering user A’s (B’s) dataset items
in cleartext via brute force attacks. This can happen since user B
holds the aggregated user A dataset (sa) (this is forwarded by the
cloud) and the intersection result, which is computed by the cloud.
Thus, user B can verifiably guess the uncommon data values of user
A by exhaustively searching the dataset. The random data value da,0
prevents brute force attacks from honest-but-curious users.

We now present SEVDSI in full details:

– Setup(κ): Given security parameter κ, the trusted party runs
(acPk, acSk) ← acKeyGen(κ) and outputs system parameters
pm = acPk, g, e(, ), G,G′, p,H1, H2, where g is the generator of the
group G of prime order p, H1 : G→ Zp and H2 : G′ → Zp.

– KeyGen(pm): Users A and B take system public parameters, pm,
and generate their secret and public keys. The secret and public keys
for users A and B are

12



(ska, pka) = ((xa, βa, γa, sigSKa), (gβa , gγa , sigPKa)) and
(skb, pkb) = ((xb, βb, γb, sigSKb), (g

βb , gγb , sigPKb)), where
sigPKa and sigSKa are generated using (sigPKa, sigSKa) ←
sigKeyGen(κ); sigPKb and sigSKb are generated similarly.

– Enc((ska, pka), Da): User A takes Da = (da,1, .., da,n), his secret
and public key pair (ska, pka)

• picks a random da,0 ∈ G,
• picks two random values ra,i1, ra,i2 for each i = {0, .., n},
• computes cpha,i = (gra,i2 , gra,i1γa , dxaa,ig

(ra,i1+ra,i2)xaβa) =
(Ca,i,1, Ca,i,2, Ca,i,3)

• sets Ca = {cpha,0, . . . , cpha,n}.
Similarly, user B, with Db = (db,0, db,1, . . . , db,n) where db,i ∈ G for
0 ≤ i ≤ n, can obtain Cb = {cphb,0, . . . , cphb,n}.

– AuGen(ska, Da, pm, pkb): Once two users (A and B) agree on set
intersection operation that is delegated to the cloud, user A

• generates rekey, rka =
(
gH1(tkab)βa/γa , gH1(tkab)βa , gH1(tkab)/xa

)
=

(RKa,1, RKa,2, RKa,3), where tkab = gγaγb .

• computes, for 0 ≤ i ≤ n, Ti = H2

(
e
(
d
H1(tkab)
a,i , g

))
and sa =

sa ← acGen(acPk, {T0, . . . , Tn}).
• masks the secret information sa using user B’s public key pkb

to obtain cphb =
(
gr2 , gγbr1 , sag

βb(r1+r2)
)

, where r1, r2 ← Zp.
Then, user A runs ρa ← sigSign(sigSKa, cphb) to obtain a
signature ρa on message cphb. Finally, user A sets aua =
(rka, cphb, ρa) and sends it to the cloud. Similarly, user B can
generate aub = (rkb, cpha, ρb) and send it to the cloud.

– SetInt(Ca, aua, Cb, aub): The cloud

• transforms ciphertexts cpha,i for 0 ≤ i ≤ n into Ta,i using aua
and computes Ta as follows:

Ta,i =
e(Ca,i,3,RKa,3)

e(Ca,i,2,RKa,1)e(Ca,i,1,RKa,2)

Ta,i =
e

(
d
xa
a,ig

xaβa(ra,i1+ra,i2),gH1(tkab)/xa

)
e
(
g
γara,i1 ,gH1(tkab)βa/γa

)
e
(
g
ra,i2 ,gH1(tkab)βa

) ,

=
e
(
d
xa
a,i,g

H1(tkab)/xa
)
e

(
g
xaβa(ra,i1+ra,i2),gH1(tkab)/xa

)
e(g,g)

ra,i1H1(tkab)βae(g,g)
ra,i2H1(tkab)βa

,

=
e(da,i,g)

H1(tkab)e(g,g)
H1(tkab)βa(ra,i1+ra,i2)

e(g,g)
H1(tkab)βa(ra,i1+ra,i2)

= e (da,i, g)H1(tkab).

Ta = {H2(Ta,0), ..., H2(Ta,n)}
The cloud follows the same steps to compute Tb.

• generates the intersection sets rslta, rsltb and the proofs
proofa, proofb with respect to Ca and Cb as follows:
(acRslt, acWita) ← acProve(acPk, Ta, Tb) and set rslta =
{cpha,i | H2 (Ta,i) ∈ acRslt}, proofa = (acWita, cpha, ρb)
and (acRslt, acWitb) ← acProve(acPk, Tb, Ta) and set rsltb =
{cphb,i | H2 (Tb,i) ∈ acRslt}, proofb = (acWitb, cphb, ρa).

– Dec(ska, rslta): Given the cloud-generated ciphertext intersection
set rslta = {cpha,j , ..., cpha,k} where 0 ≤ j, k ≤ n, user A decrypts
ciphertexts cpha,i for j ≤ i ≤ k as follows:
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(Ca,i,3)x
−1
a(

C
βa
a,i,1

)(
C
βa/γa
a,i,2

) =

(
d
xa
a,ig

xaβa(ra,i1+ra,i2)
)x−1

a

(
g
ra,i2βa

)(
g
γara,i1βa/γa

) = da,i.

The decryption of rslta is Da ∩Db = {da,j , ..., da,k}. Note that this
algorithm can also be used to decrypt Ca without involving any
delegated set operations. Similarly, user B can decrypt the cloud-
generated ciphertext intersection set rsltb = {cphb,j , ..., cphb,k}
where j ≤ i ≤ k to obtain Da ∩Db.

– Verify(ska, sa, rslta, proofa): Given rslta and proofa, user A veri-
fies that the cloud faithfully executed the SetInt protocol as follows:

• verifies the integrity of cpha by running
sigVerify(sigPKb, cpha, ρb). If the signature verification
fails the protocol halts, otherwise, proceed to the next step.

• decrypts cpha using private key ska according to sb =
sbg

βa(r1+r2)

(gr2βa)(gγar1βa/γa)
.

• if rslta is not empty, decrypts rslta to obtain the plaintexts and

computes Ya = {e
(
d
H1(tkab)
a,i , g

)
| cpha,i ∈ rslta}. Otherwise, let

Ya = ∅.
• runs acVerify(acPk, sa, Ya, acWita, sb). If it the multi-

accumulator fails to verify the protocol halts. Otherwise,
the alglorithm runs call Dec(ska, rslta) to obtain Da ∩ Db.
Similarly, user B runs the same algorithm to verify that the
cloud faithfully computed the set intersection computation.

Remark 1. When users A and B wish to learn their intersection on new
datasets, Dnew

a , Dnew
b , user A uses a new value ya instead of using xa to

encrypt Dnew
a (B uses yb to encrypt Dnew

b ) and generates a new rknewa

(rknewb for user B). To generate a new rka, the users agree on a new
common secret key, tkab. Therefore, aunewa (aunewb for user B) is gener-
ated. The reason to use new ya to encrypt Dnew

a and choose new rka is
to eliminate the compatibility of Cnewa and auolda . Otherwise, the cloud
with

(
Cnewa , auolda

)
and

(
Cnewb , auoldb

)
can compute the set intersection

operation on users’ new datasets in a permissionless manner.

5.1 Efficiency Analysis

The computational complexity for encrypting the dataset per user,
equals 4n exponentiations. Decryption costs 3n exponentiations, while
the AuGen algorithm amounts in (n+ 7) exponentiations, n pairing
evaluations and one signature evaluation. The cloud performs the pri-
vate set intersection running the SetInt algorithm, which results in 6n
pairings and 2n exponentiations. Each user verifies the result with the
Verify algorithm by evaluating (4k + 3) exponentiations, (k + 7) pair-
ings and one signature verification. We assume that |Da| = |Db| = n and
|Da ∩Db| = k. SEVDSI outperforms in communication efficiency com-
pared with MPC and Cloud based PSI protocols. In MPC and Cloud
based PSI protocols, users need to send at least O(n) information to
each other for every PSI instance, while in SEVDSI after users outsource
their encrypted datasets to the cloud, they need to send only constant
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size information (au) to the cloud. The cloud sends O(k) information to
each user. If a user wants to perform PSI protocol with m different users,
he needs to send O(mn) information to each other in MPC and Cloud
based PSI protocols, while in SEVDSI a user sends O(m) information to
the cloud, which in turn sends O(mk) information to the user.

5.2 Security

In this section we analyze the security of SEVDSI scheme that is formally
defined in Section 4. SEVDSI protocol adheres to two security guaran-
tees: function output secrecy and verifiability. We model H1 as a random
function and H2 as a collision resistant hash function.

Theorem 2. SEVDSI scheme assures function output secrecy if the
VDDH assumption holds.

The reductionist proof is based on the VDDH assumption. We establish
that if there exists an adversary A winning the function output secrecy
game with non-negligible probability ε, then there is an adversary B
breaking the VDDH assumption in G with non-negligible probability.

Proof. The VDDH oracle chooses a uniformly random t
$←{0, 1} and

passes T =

(
g, v, gγa , gγb , gβa , gβb , grβa , grβb , g

r βa
γa , g

r
βb
γb , Z

)
to B, where

Z = vr if t = 0 and Z some random element in G if t = 1. B simulates
A’s queries during the game as follows:
Setup. B obtains sigPKa and sigSKa using (sigPKa, sigSKa) ←
sigKeyGen(κ); sigPKb and sigSKb are generated similarly. B gives
pka =

(
gγa , gβa , sigPKa

)
and pkb

(
gγb , gβb , sigPKb

)
to attacker A.

Query. A issues encryption queries. For query q, A outputs D′a =
{d′a,0, . . . , d′a,n}, D′b = {d′b,0, . . . , d′b,n}. B runs (C′a, C

′
b)← Enc algorithm

as follows:
– B finds the corresponding data items from T such that d′a,i = va,i

and d′b,j = vb,j ,
– picks random values r′, ra,i,1, ra,i,2, xa, xb ∈ Zp, where i = 0, . . . , n,
– computes cpha,i = gra,i,2 , gra,i,1γa , vrxaa,i g

(ra,i,1+ra,i,2)xarβa =
(Ca,i,1, Ca,i,2, Ca,i,3)

– computes (Cb,i,1, Cb,i,2, Cb,i,3) by the same way above and and gives
(C′a, C

′
b) to A.

SetInt. A issues set intersection queries for D′a, D
′
b. B runs

(au′a, s
′
a, au

′
b, s
′
b)← AuGen algorithm as follows:

– generates rekey, rk′a =
(
grr
′βa/γa , grr

′βa , gr
′/xa

)
=

(RKa,1, RKa,2, RKa,3).

– computes, for 0 ≤ i ≤ n, Ti = H2

(
e
(
vrr
′

a,i , g
))

and s′a ←
acGen(acPk, {T0, . . . , Tn}).

– encrypts the secret information s′a using user B’s public key pkb to

obtain ciphertext cph′b =
(
gr5 , gγbr6 , s′ag

βb(r5+r6)
)

, where r5, r6 ←
Zp. Then, user A runs ρ′a ← sigSign(sigSKa, cph

′
b) to obtain a sig-

nature ρ′a on message cph′b. Finally, user A sets au′a = (rk′a, cph
′
b, ρ
′
a).

Similarly, user B can generate au′b = (rk′b, cph
′
a, ρ
′
b). Then, it gives

(au′a, au
′
b) to A.
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Challenge. A outputs Da = {da,0, . . . , da,n}, Db = {db,0, . . . , db,n}, v to
be challenged upon. B randomly chooses ya, r

′′ ← Zp. Then, if v ∈ Da
and v = va,n, B

– randomly chooses a bit b ∈ {0, 1} and sets Z = vra,n if b = 0. Then,
it finds the corresponding data items for T such that da,i = va,i,

– uniformly at random selects two values ra,1, ra,2, and sends Cv =
gra,1 , gra,2γa ,

(
Zya = vryaa,n

)
(gryaβa(ra,1+ra,2)) to A.

– generates rekey, rka =
(
gr
′′rβa/γa , gr

′′rβa , gr
′′/ya

)
=

(RKa,1, RKa,2, RKa,3).

– computes, Ti = H2

(
e
(
vrr
′′

a,i , g
))

and sa ←
acGen(acPk, {T0, . . . , Tn}) for 0 ≤ i ≤ n.

– encrypts the secret information sa using other user’s public key

pkb to obtain ciphertext cphb =
(
gr7 , gγbr8 , sag

βb(r7+r8)
)

, where

r7, r8 ← Zp. Then, B runs ρa ← sigSign(sigSKa, cphb) to obtain a
signature ρa on message cphb. Finally, B sets aua = (rka, cphb, ρa).

Guess. A outputs b ∈ {0, 1} and sends it to B. If t = b then A wins the
game. As the game is perfectly simulated by B, then if A chooses the
correct b then B also chooses as t = b and breaks the VDDH assumption,
with non-negligible probability ≥ 1

2
+ ε′(λ).

Theorem 3. If Sig is an unforgeable signature scheme, multi-
accumulator scheme is secure under q-SDH assumption, H1 is a random
function and H2 is a collision resistance hash function, SEVDSI scheme
assures the verifiability property.

Due to space limits we defer the proof in Appendix section A.3.

6 Conclusion

We designed and analyzed SEVDSI: a secure and efficient verifiable pri-
vate set intersection protocol that incorporates novel security guarantees,
which to the best of our knowledge are not assured at any of the exist-
ing work. In contrast with previous studies, our protocol is communica-
tion efficient without interaction between the users after the initial setup
phase. Furthermore, SEVDSI protocol does not allow a malicious cloud
to perform dictionary attacks on the encrypted datasets and the result
of the computation is verifiable. Moreover, we mitigate unauthorized set
intersection protocols on datasets by incorporating authorization infor-
mation during the protocol execution. Our protocol is provably secure
in the random oracle model based on standard and a new assumption,
whose security guarantee is analyzed in the generic group model.
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A Appendix

A.1 Assumptions

We denote as λ the security parameter and ε(λ) a negligible function on
input the security parameter λ.
Decision Linear assumption (DLA). Let G be a group of prime
order p. The Decision Linear problem [6] in G is stated as follows: given
g, f, h, gr1 , fr2 , Q ∈ G as input, output yes if c = r1 + r2 where Q = hc

and no otherwise. We define the advantage of an algorithm A in deciding
the Decisional Linear problem in G as

|Pr[A(g, f, h, gr1 , fr2 , hr1+r2) = yes : g, f, h ∈ G, r1, r2 ∈ Zp]−
Pr[A(g, f, h, gr1 , fr2 , θ) = yes : g, f, h, θ ∈ G, r1, r2 ∈ Zp]|.

Definition 5. DLA holds in G if no polynomial time advesary can
achieve non-negligible advantage in deciding correctly the Linear assump-
tion.

Bilinear q-strong Diffie-Hellman assumption (q-SDH): For given
(g, gα, .., gα

q

), where α ∈ Zp, and q is bounded by a polynomial in κ,
there exists no PPT algorithm A that can compute (s, e(g, g)1/(α+c)),
where c ∈ Zp with non-negligible probability ε. The probability is defined
over the random choices of parameters and random coins used by A. The
advantage of A is

Pr[A(g, gα, . . . , gα
q

) = (s, e(g, g)1/(α+s))]

Definition 6. q-SDH holds over bilinear groups G,G′ if no polynomial
time adversary A has advantage in breaking q-SDH greater than ε(λ).
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A.2 Multi-Accumulator [30]

We present the details of the multi-accumulator scheme that we use in our
protocol as presented in [30]. A multi-accumulator scheme can be based
on a single-accumulator scheme that supports both membership and non-
membership proofs, as follows: the cloud generates a witness for each el-
ement of Db showing the element is a member or non-member of Da and
simply puts them together as the witness for acRslt = Db ∩ Da. How-
ever, this straightforward approach is costly because both the compu-
tational and communication complexities are linear to |Db|. We present
a multi-accumulator scheme, where the size of the witness is constant
which does not depend on the cardinality of the sets, Da (Db). Sup-
pose user A’s data set is Da = {da,1, . . . , da,n}, user B’s data set is
Db = {db,1, . . . , db,m} (we assume that n = m), and acRslt = Da ∩Db.
We can encode Da via polynomial R(x) =

∏
t∈Da(x+ t), encode Db via

polynomial W (x) =
∏
t∈Db

(x+ t), encode the intersection set acRslt via
polynomial T (x) =

∏
t∈acRslt(x+ t), and encode the subset Db − acRslt

via polynomial Q(x) =
∏
t∈(Db−acRslt)

(x + t). These polynomials sat-

isfy the following: (i) T (x)Q(x) = W (x), (ii) T (x) is a divisor of R(x),
and (iii) Q(x) is co-prime to R(x). For the special case acRslt = ∅, the
three conditions also hold since T (x) = 1, Q(x) = W (x) =

∏
t∈Db

(x+ t)
and R(x) =

∏
t∈Da(x + t). Therefore, based on this idea, the multi-

accumulator scheme allows the cloud to show the correctness of the in-
tersection set, which can be either empty or non-empty. It can be con-
structed as follows:

– acKeyGen(κ): This algorithm takes security parameter κ, outputs

system parameters acPk = (gα, gα
2

, . . . , gα
q

), where random α ∈
Zp, acSk = (α), where q is bounded by a polynomial in security
parameter κ.

– acGen(acPk,Da): Given user A’s data set Da = {da,1, . . . , da,n} ∈
Znp , where n ≤ q, compute his digest as sa = g

∏n
i=1(da,i+α).

– acProve(acPk,Db, Da): Given user B’s data set Db =
(db,1, . . . , db,m) ∈ Zmp , where m ≤ q, compute acRslt = Db ∩ Da,
and generate a witness as follows:

• Let T (x) =
∏
t∈(Da−acRslt)(x+ t) and compute gT (α) by substi-

tuting x with α.
• Let Q(x) =

∏
t∈(Db−acRslt)

(x + t) and R(x) =
∏
t∈Da(x + t),

and find two polynomials Q(x), R(x) such that Q(x)Q′(x) +
R(x)R′(x) = 1 mod p by taking advantage of gcd(Q(x), R(x)) =

1. Compute (gQ(α), gQ
′(α), gR

′(α)) by substituting x with α. Set

acRslt = Db ∩Da and acWit = (gQ(α), gQ
′(α), gR

′(α), gT
′(α)).

– acVerify(acPk, sb, acRslt, acWit, sa): Given acWit and acRslt
from the prover, the verifier proceeds as follows:

1. If acRslt = ∅, compute gT (α) according to T (x) =
∏
t∈acRslt(x+

t). Otherwise, let T (x) = 1 and gT (α) = g.
2. If e(gQ(α), gT (α)) = e(sb, g), return 0; otherwise, proceed to next

step.
3. If e(gT (α), gT

′(α)) = e(sa, g), return 0; otherwise, proceed to next
step.
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4. If e(gQ(α), gQ
′(α))e(sa, g

R(α)) = e(g, g), return 0; otherwise, re-
turn 1.

The security proof is based on the q-SDH assumption. For the details of
the proof the reader can read Theorem 1 at Zheng et al. paper [30].
Correctness of Multi-Accumulator. A multi-accumulator scheme is
correct if the following holds.

Pr


∀Da, Db,

(acSk, acPk)← acKeyGen(κ),
sb ← acGen(acPk,Db),
sa ← acGen(acPk,Da),

(acRslt, acWit)← acProve(acPk,Db, Da) :
1← acV erify(acPk, sb, acRslt, acWit, sa)

 = 1

Definition 7. A multi-accumulator scheme is secure if

Pr



(acPk, acSk)← acKeyGen(κ),

Da ← AacProve,acV erify(acPk),
sa ← acGen(acSk,Da),

(Db, acRslt, acWit)← AacProve,acV erify(acPk,Da) :
sb ← acGen(acPk,Db),

1← acV erify (acPk, sb, acRslt, acWit, sa) ,
acRslt 6= Db ∩Da


≤ ε(λ)

A.3 Verifiability Proof

Proof. We show that if there exists a probabilistic polynomial-time ad-
versary A who breaks the verifiability of the SEVDSI scheme with a
non-negligible probability ε, then we show how a probabilistic polyno-
mial time adversary B can break the assumption that Sig is an unforge-
able signature scheme or Ac is a secure multi-accumulator. In the proof
we assume H1 is a random function and H2 is a collision resistant hash
function. B proceeds as follows.
Setup: B runs pm ← Setup(κ) and makes pm publicly known.
It then runs KeyGen(pm) to obtain ska = (sigSKa, βa, γa, xa)
and pka = (sigPKa, g

βa , gγa), runs KeyGen(pm) to obtain skb =
(sigSKb, βb, γb, xb), pkb = (sigPKb, g

βb , gγb), and returns pka, pkb to
A.
Phase 1: A can make the following queries polynomially many times.

– Enc: Given the dataset D′a, B runs C′a ← Enc((ska, pka), D′a) and
returns C′a to A.

– Enc: Given the dataset D′b, B runs C′b ← Enc((skb, pkb), D
′
b) and

returns C′b to A.
– AuGen: B runs au′a, s

′
a ← AuGen(ska, D

′
a, pm, pkb) and returns

aua to A.
– AuGen: B runs au′b, s

′
b ← AuGen(skb, D

′
b, pm, pka) and returns aub

to A.
– Verify: B runs Verify(ska, s

′
a, rslta, proofa) and returns the output

to A.
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– Verify: B runs Verify(skb, s
′
b, rsltb, proofb) and returns the output

to A
Challenge: A selects Da, Db of its choice, and sends them to B. B
runs Ca ← Enc((ska, pka), Da) and Cb ← Enc((skb, pkb), Db), aua, sa ←
AuGen(ska, Da, pm, pkb) and aub, sb ← AuGen(skb, Db, pm, pka), and
returns Ca, aua, Cb, aub to A.
Phase 2: A issues queries in the same way as in Phase 1.
Guess: A outputs (rslta, proofa), (rsltb, proofb) to B. This completes
the simulation. First let us consider the verification for (rslta, proofa).
Note that cpha specified by proofa cannot be manipulated, otherwise it
breaks the unforgeability of Sig. B decrypts cpha to obtain sb. In addition,
B decrypts Dec(ska, rslta), and obtains
Ta = H2(e(d′a,i, g)H1(tkab)) | cpha,i ∈ rslta} where d′a,i is the plaintext
with respect to cpha,i and H1(tkab) is a random value.

T = H2(e(da,i, g)H1(tkab)) | (da,i ∈ Da) ∧ (tkab = gγaγb))∩

H2(e(db,i, g)H1(tkab)) | (db,i ∈ Db) ∧ (tkab = gγaγb)

. If A breaks the verifiability with (rslta, proofa), then at least one of
the following cases should hold:
Case 1:
1← acVerify(acPk, sa, Ta, acWita, sb)
1← acVerify(acPk, sa, T, acWita, sb)
T = Ta
∃d′a,i 6= da,i, H2(e(d′a,i, g)H1(tkab)) = H2(e(da,i, g)H1(tkab)),
Case 2:
1← acVerify(acPk, sa, Ta, acWita, sb)
1← acVerify(acPk, sa, T, acWita, sb)
T 6= Ta
If A breaks the verifiability regarding (rslta, proofa) with respect
to case 1, then it breaks the assumption that H2 is collision resis-
tant: (d′a,i 6= da,i) leads to e(d′a,i, g)H1(tkab) 6= e(da,i, g)H1(tkab) while

H2(e(d′a,i, g)H1(tkab)) = H2(e(da,i, g)H1(tkab)).
If A breaks the verifiability regarding (rslta, proofa) with respect to
case 2, then it breaks the security of the multi-accumulator scheme by
presenting acRslt = Ta, which is different from T .
Therefore, we proved that A breaks the verifiability of SEVDSI scheme
with respect to (rslta, proofa) or (rsltb, proofb) with negligible proba-
bility under the assumptions that Sig is unforgeable, H1 is a random
function, H2 is a collision resistant hash function and Ac is a secure
multi-accumulator scheme.

A.4 Discussion

In SEVDSI, if a user knows in advance all the users he wishes to run
the PSI protocol, he can compute the auxiliary information for these
users using AuGen algorithm in advance and can send au values (formed
by different users’ public keys) to the cloud together with his encrypted
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dataset. After that, he erases his local dataset copy. On the other hand,
if he does not know in advance the users for the PSI protocol, then he
has to keep locally his dataset. This is necessary since he needs to com-
pute the internal secret s (aggregated encrypted data items). Despite
the need for local dataset storage, SEVDSI outperforms in communica-
tion costs compared with MPC based and Cloud based PSI protocols.
Among all existing PSI solutions, the most efficient protocol needs O(n)
communication complexity, where n is the size of the users’ datasets [11]
(user keeps a local copy of his dataset), while in SEVDSI the communi-
cation complexity does not depend on the size of the users’ datasets. It
depends on O(k), where k is the size of the intersection of two datasets
since the cloud sends the common dataset items (in encrypted form) to
the users. When k � n, this results in a much lower communication
overhead. Last, instead of keeping the local copy of the dataset (da,i,
where i = 0, . . . , n for user A), a user can keep the hash of the dataset
values H(da,i), where H is a hash function. This allows users to store
less data. In order to preserve verifiability and set intersection function-
alities for this setting, they outsource their encrypted hash values (i.e.,
user A outsources encrypted H(da,i)i=0,...,n values instead of encrypted
da,i values).
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