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Abstract

We propose a nonce misuse-resistant message authentication scheme called EHE

(Encrypt-Hash-Encrypt). In EHE, a message-dependent polynomial is evaluated at the

point which is an encrypted nonce. The resulting polynomial hash value is encrypted

again and becomes an authentication tag. We prove the prf-security of the EHE scheme

and extend it to two authenticated encryption modes which follow the “encrypt-then-

authenticate” paradigm.

1 Introduction

Let F be a finite field of 𝑁 ≫ 1 elements. Polynomial hashing over F is defined as follows:

A message 𝑋 to be hashed is transformed into a polynomial 𝑓𝑋(𝜆) ∈ F[𝜆], this polynomial is

evaluated at some point 𝐻 ∈ F, the result of evaluation becomes a hash value of 𝑋. Further

we suppose that the polynomial 𝑓𝑋 has positive degree, its constant terms equals 0, different

messages are transformed into different polynomials. Usually the message 𝑋 is divided into

blocks which determine the coefficients of 𝑓𝑋 . The shorter 𝑋, the lower the degree of 𝑓𝑋 . Let

messages be rather short and deg 𝑓𝑋 ≤ 𝑑 ≪ 𝑁 .

If 𝐻 is chosen uniformly at random from F, then the hash values of different messages 𝑋

and 𝑋 ′ coincide with only small probability:

Pr{𝑓𝑋(𝐻) = 𝑓𝑋′(𝐻)} = Pr{𝐻 is a root of 𝑓𝑋 − 𝑓𝑋′} ≤ 𝑑

𝑁
. (1)

This simple fact supports security of message authentication schemes based on polynomial

hashing. Possibly the most well-known scheme of this type was proposed by M. Wegman and

J. Carter in [11] and refined by V. Shoup in [9]. Following [1], we call it WCS, by the first

letters of the authors’ names.

The WCS scheme was successfully used in GCM, a widely deployed authenticated encryp-

tion (AE) mode. GCM was introduced in [5] and standardized in [2]. Recall that an AE

mode augments an authentication scheme with encryption one.

Describe WCS with inessential simplifications. The point 𝐻 becomes a random secret

key. The additional key is a random permutation 𝜋 acting on F. An authentication tag 𝑇 (a

key-dependent hash value) of 𝑋 is calculated using a unique nonce 𝑆 ∈ F as follows:

𝑇 = 𝑓𝑋(𝐻) + 𝜋(𝑆).
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To instantiate WCS, 𝜋 is usually chosen as an encryption permutation of some block cipher

and 𝐻 is usually a result of encryption of a fixed element 𝑐 ∈ F using 𝜋. This is how WCS is

instantiated in GCM.

The uniqueness of nonces is essential. Indeed, if the tags 𝑇 = 𝑓𝑋(𝐻) + 𝜋(𝑆) and 𝑇 ′ =

𝑓𝑋′(𝐻) + 𝜋(𝑆 ′) are calculated with 𝑋 ̸= 𝑋 ′ but 𝑆 = 𝑆 ′, then an adversary can effectively

determine 𝐻 as one of the roots of the polynomial equation 𝑓𝑋(𝐻) − 𝑓𝑋′(𝐻) = 𝑇 − 𝑇 ′.

After determining 𝐻, the adversary finds 𝜋(𝑆) = 𝑇 − 𝑓𝑋(𝐻) and then can calculate the

tag 𝑇 ′′ = 𝑓𝑋′′(𝐻) + 𝜋(𝑆) of any 𝑋 ′′.

The described situation, the significant loss of security after some event, we call the security

collapse. Message authentication schemes collapse in different ways. For example, in the

schemes of type CBC-MAC (see, for example, [8]) an internal collision, which occurs after

processing about
√
𝑁 message blocks, allows to perform a selective forgery, that is, to forge

tags of special messages. For comparison, WCS collapses much more seriously: universal

forgery after only a single nonce repetition.

In the mentioned standard [2] nonce repetition is considered as misuse of GCM. The

standard proposes to solve the misuse problem at the cryptoengineering layer. But it is

preferable to solve such problems cryptographically, by designing authentication schemes or

AE modes which security does not collapse so much after nonce repetition. Such schemes and

modes are called nonce misuse-resistant.

The GCM mode follows the “encrypt-then-authenticate” paradigm. In this paradigm the

nonce misuse-sensitive scheme WCS cannot provide misuse-resistance of the whole mode.

Resistance appears if we turn the paradigm into “authenticate-then-encrypt” keeping WCS.

This approach was successfully implemented in the GCM-SIV mode [3]. Unfortunately, due

to the paradigm shift, GCM-SIV requires an additional pass over the protected data.

In this paper we propose another approach: strengthening the basic message authentica-

tion scheme. In Section 2 we introduce a nonce misuse-resistant scheme called EHE. We justify

its security and then, in Section 3, discuss details of its instantiation based on a block cipher.

In Section 4 we extend EHE to AE modes which preserve the “encrypt-then-authenticate”

paradigm. We denote these modes as AE[EHE]. Note that the first mode was standardized

in [10] under the name belt-datawrap. We accompanied it with a rather cumbersome proof

of security. In this paper the proof is drastically simplified.

2 The EHE scheme

In the proposed EHE scheme, a key is a pair of permutations 𝜋1 and 𝜋2 acting on F. A

message 𝑋 to be authenticated is represented by a polynomial 𝑓𝑋 which satisfies the previous

restrictions. A tag 𝑇 is calculated using a nonce 𝑆 ∈ F as a value of the following function:

𝜙[𝜋1, 𝜋2](𝑋,𝑆) = 𝜋2(𝑓𝑋(𝜋1(𝑆))).

In this function we start with the permutation 𝜋1, continue with polynomial hashing and

finish with the permutation 𝜋2. The permutations mean block encryption, so we deal with

the Encrypt-Hash-Encrypt cascade or EHE in short.

In contrast to WCS, the polynomials 𝑓𝑋 are evaluated not in a fixed point 𝐻 = 𝜋(𝑐)

but generally in different points 𝐻 = 𝜋1(𝑆). It is well known (see for example [4, Theo-

rem 6.13]) that the polynomial 𝑔(𝜆, 𝜆′) = 𝑓𝑋(𝜆) − 𝑓𝑋′(𝜆′) ∈ F[𝜆, 𝜆′] has at most deg 𝑔 ·𝑁 =

max(deg 𝑓𝑋 , deg 𝑓𝑋′)𝑁 roots in F2. Therefore, for independent random 𝐻, 𝐻 ′, each uniformly
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distributed over F, and for arbitrary messages 𝑋, 𝑋 ′ it holds that:

Pr{𝑓𝑋(𝐻) = 𝑓𝑋′(𝐻 ′)} ≤ max(deg 𝑓𝑋 , deg 𝑓𝑋′)𝑁

𝑁2
≤ 𝑑

𝑁
.

This bound forms the basis of our security proofs of EHE.

More precisely, we use the slightly stronger bound:

Pr{𝑓𝑋(𝐻) = 𝑓𝑋′(𝐻 ′) | 𝐻 ̸= 𝐻 ′} ≤ 𝑑

𝑁
. (2)

It followed from the fact that the polynomial 𝑔(𝜆, 𝜆′) has at most 𝑑(𝑁 −1) roots (𝐻,𝐻 ′) such

that 𝐻 ̸= 𝐻 ′. Indeed, the substitution 𝜆′ = 𝜆 + 𝜇 transforms 𝑔 into a polynomial 𝑔′(𝜆, 𝜇). A

number of the suitable roots of 𝑔 is the number of roots of 𝑔′ with a nonzero last coordinate.

This coordinate can be chosen in 𝑁 − 1 ways. Each choice 𝜇 = 𝑐 yields the univariate

polynomial 𝑔′(𝜆, 𝑐) which has at most 𝑑 roots.

Let us justify the prf-security of EHE, that is, the indistinguishability of 𝜙[𝜋1, 𝜋2] from a

truly random (ideal) message authentication function. The indistinguishability means that

𝜙[𝜋1, 𝜋2] is pseudorandom (it “looks” like random) or prf in short. Let an adversary (a proba-

bilistic algorithm) have access to a message authentication oracle 𝐺 which on a query (𝑋,𝑆)

gives a response 𝑇 . The oracle implements either the function 𝜙[𝜋1, 𝜋2] (a real implementa-

tion) or a truly random function 𝜌 (an ideal implementation). In the real implementation,

the permutations 𝜋1, 𝜋2 are chosen independently uniformly at random from the set of all

permutations on F. In the ideal implementation, the oracle, given a new query, chooses a

response 𝑇 uniformly at random from F independently of previous responses. The adversary

can make arbitrary queries, can collect and analyze the corresponding responses. Its task is

to determine which function 𝐺 implements. The adversary returns 1 if it is 𝜙[𝜋1, 𝜋2], or 0 if

it is 𝜌. Let 𝐴𝐺 be the output of 𝐴.

The quality of 𝐴’s distinguishing capabilities is characterized by the advantage

Adv
prf

EHE
(𝐴) = |Pr{𝐴𝜙[𝜋1,𝜋2] = 1} − Pr{𝐴𝜌 = 1}|.

The probabilities here are over the random tape of 𝐴 and over the random choice of 𝜋1, 𝜋2

and 𝜌. If Advprf

EHE
(𝐴) is small then the adversary is hard to distinguish 𝜙[𝜋1, 𝜋2] from 𝜌.

Theorem 1. Let EHE be built over a field of 𝑁 elements. Let an adversary 𝐴 make at

most 𝑞 queries (𝑋,𝑆) and messages 𝑋 in these queries be such that deg 𝑓𝑋 ≤ 𝑑. Then

Adv
prf

EHE
(𝐴) ≤ 𝑞(𝑞 − 1)𝑑

2𝑁
.

Proof. Let (𝑋1, 𝑆1), . . . , (𝑋𝑞, 𝑆𝑞) be different queries and 𝑇1, . . . , 𝑇𝑞 be different elements of F
(potential responses). It is sufficient to prove that

𝑝 = Pr{𝜙[𝜋1, 𝜋2](𝑋𝑖, 𝑆𝑖) = 𝑇𝑖 : 𝑖 = 1, . . . , 𝑞} ≥ 1

𝑁 𝑞
(1 − 𝜀), 𝜀 =

𝑞(𝑞 − 1)(𝑑− 1)

2𝑁
.

Indeed, then using the 𝐻-coefficients technique [7] or, more precisely, Theorem 1 from [6], we

obtain

Adv
prf

EHE
(𝐴) ≤ 𝑞(𝑞 − 1)

2𝑁
+ 𝜀 =

𝑞(𝑞 − 1)𝑑

2𝑁
.

Let 𝐻𝑖 = 𝜋1(𝑆𝑖) and 𝑌𝑖 = 𝑓𝑋𝑖
(𝐻𝑖), 𝑖 = 1, . . . , 𝑞. Introduce the event D1 that all 𝑌𝑖 are

distinct and the event D2 that 𝜋2(𝑌𝑖) = 𝑇𝑖 for each 𝑖. Let us estimate the probabilities Pr{D1}
and Pr{D2 | D1}. They are correspondingly determined by the random choice of 𝜋1 and 𝜋2.
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The estimates (1), (2) imply

Pr{𝑌𝑖 = 𝑌𝑗} = Pr{𝑓𝑋𝑖
(𝜋1(𝑆𝑖)) = 𝑓𝑋𝑗

(𝜋1(𝑆𝑗))} = Pr{𝑓𝑋𝑖
(𝐻𝑖) = 𝑓𝑋𝑗

(𝐻𝑗)} ≤ 𝑑

𝑁

regardless of whether 𝑆𝑖 and 𝑆𝑗 coincide or not. Indeed, if 𝑆𝑖 = 𝑆𝑗 then 𝐻𝑖 = 𝐻𝑗 is uniformly

distrubuted over F and (1) works. If 𝑆𝑖 ̸= 𝑆𝑗 then (𝐻𝑖, 𝐻𝑗) is uniformly distributed over

F2 ∖ {(𝑎, 𝑎) : 𝑎 ∈ F} and (2) works. In whole,

Pr{D1} ≥ 1 −
∑︁

1≤𝑖<𝑗≤𝑞

Pr{𝑌𝑖 = 𝑌𝑗} ≥ 1 − 𝑞(𝑞 − 1)𝑑

2𝑁
.

Denote by 𝑁 [𝑞] the 𝑞th factorial power of 𝑁 :

𝑁 [𝑞] = 𝑁(𝑁 − 1) . . . (𝑁 − 𝑞 + 1) = 𝑁 𝑞

𝑞−1∏︁
𝑖=0

(︂
1 − 𝑖

𝑁

)︂
≤ 𝑁 𝑞

(︂
1 − 𝑞(𝑞 − 1)

2𝑁

)︂
.

We have

Pr{D2 | D1} =
1

𝑁 [𝑞]
≥ 1

𝑁 𝑞

(︂
1 +

𝑞(𝑞 − 1)

2𝑁

)︂
and

𝑝 ≥ Pr{D2 | D1}Pr{D1} ≥ 1

𝑁 𝑞

(︂
1 +

𝑞(𝑞 − 1)

2𝑁

)︂(︂
1 − 𝑞(𝑞 − 1)𝑑

2𝑁

)︂
≥ 1

𝑁 𝑞
(1 − 𝜀)

which was to be proved. �

The theorem implies that the EHE authentication remains prf-secure as long as the number

of messages processed by a single key is well below
√︀
𝑁/𝑑. The prf-security is the strongest

property of the message authentication schemes. In particular, it implies the security against

forgery attacks. In these attacks an adversary interacts with 𝐺 = 𝜙[𝜋1, 𝜋2] making arbitrary

queries and getting corresponding responses. The adversary’s aim is to predict a response to

a query that has not been made yet.

Both permutations 𝜋1 and 𝜋2 in EHE are necessary. Confirm this fact in the context of the

forgery attacks. If 𝜋1 is omitted, then an adversary can effectively find different messages 𝑋

and 𝑋 ′ with the same hash values 𝑓𝑋(𝑆) and 𝑓𝑋′(𝑆). Then using a tag 𝑇 = 𝜋2(𝑓𝑋(𝑆))

of 𝑋 the adversary determines the tag 𝑇 ′ = 𝑇 of 𝑋 ′ without a query. If 𝜋2 is omitted, then

an adversary finds 𝐻 = 𝜋1(𝑆) from 𝑇 = 𝑓𝑋(𝐻) and determines the tag 𝑇 ′ = 𝑓𝑋′(𝐻) of

arbitrary 𝑋 ′, again without a query.

The theorem means that EHE preserves security even if nonces repeat. In principle,

EHE can be used with a fixed nonce 𝑆 = 𝑐. But in this case the security is collapsed in

the following sense. As soon as an adversary finds a collision of tags 𝑇 and 𝑇 ′ of different

messages 𝑋 and 𝑋 ′, it obtains the polynomial equiation 𝑓𝑋(𝐻) = 𝑓𝑋′(𝐻) in 𝐻 = 𝜋1(𝑐). After

determining 𝐻, the adversary constructs a new message 𝑋 ′′ such that 𝑓𝑋′′(𝐻) = 𝑓𝑋(𝐻) and

determines its tag 𝑇 ′′ = 𝑇 without a query. Note that the collision 𝑇 = 𝑇 ′ is expected to

occur and EHE is expected to collapse after about
√
𝑁 queries to the authentication oracle.

This fact does not contradict to the bound of the theorem.

To determine 𝐻 the adversary first finds roots of the polynomial 𝑓𝑋(𝜆) − 𝑓𝑋′(𝜆) (let us

ignore the time required) and then checks each of them to localize the right one. To check

a root it is necessary to make a special query, for example, (𝑋 ′′, 𝑆). Let 𝑀 be the number
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of different roots. If 𝑀 is large, then the number of check queries is large too. But if 𝑀 is

small, then the collision probability 𝑀
𝑁

is small too. Therefore, regardless of 𝑀 , check-time

to collision-probability ratio for the pair (𝑋,𝑋 ′) is of order 𝑁 .

The situation changes drastically if nonces do not repeat. In this case the collision 𝑇 = 𝑇 ′

means that (𝐻,𝐻 ′) is a root of the bivariate polynomial 𝑔(𝜆, 𝜆′) = 𝑓𝑋(𝜆) − 𝑓𝑋(𝜆′). Let 𝑔

have 𝑀 different roots. There are at least 𝑀
2𝑑

different coordinates of these roots and time to

check is of lower order 𝑀
𝑑
. The collision occurs with the probability 𝑀

𝑁(𝑁−1)
and check-time

to collision-probability ratio of the pair (𝑋,𝑋 ′) is of lower order 𝑁2

𝑑
, that is, it dramatically

increases comparing to the previous situation.

3 Instantiation

Instead of two secret permutations it is convenient to use only one, say 𝜋, and derive 𝜋1

and 𝜋2 from it. We are interested in two variants (instantiation templates) of such deriving:

(𝜋1, 𝜋2) = (𝜋, 𝜋) and (𝜋1, 𝜋2) = (𝜋2, 𝜋). The first template is clearly natural, the second one

will be used in the following section while extending EHE to AE[EHE]. Let, as usual, 𝜋 be

chosen uniformly at random from the set of all permutations on F.

Theorem 2. Let EHE be built over a field of𝑁 elements with (𝜋1, 𝜋2) = (𝜋, 𝜋). Let an adver-

sary 𝐴make at most 𝑞 queries (𝑋,𝑆) and messages𝑋 in these queries be such that deg 𝑓𝑋 ≤ 𝑑.

Then

Adv
prf

EHE
(𝐴) ≤ 𝑞(3𝑞 − 1)𝑑

2𝑁
.

Proof. Modify the previous proof. Let the event D1 suppress not only the collisions 𝑌𝑖 = 𝑌𝑗

but also the collisions 𝑌𝑖 = 𝑆𝑗 and 𝑇𝑖 = 𝐻𝑗. Additional restrictions mean that every pair

(𝑌𝑖, 𝑇𝑖) is fresh, that is, 𝜋2 can map 𝑌𝑖 to 𝑇𝑖 despite the facts that 𝐻𝑗 = 𝜋1(𝑆𝑗) and 𝜋1 = 𝜋2.

There are 𝑞2 additional collisions of each type, their probabilities:

Pr{𝑌𝑖 = 𝑆𝑗} = Pr{𝑓𝑋(𝜋1(𝑆𝑖)) = 𝑆𝑗} = Pr{𝜋1(𝑆𝑖) is a root of 𝑓𝑋 − 𝑆𝑗} ≤ 𝑑

𝑁
,

Pr{𝑇𝑖 = 𝐻𝑗} = Pr{𝜋1(𝑆𝑗) = 𝑇𝑖} =
1

𝑁
.

In whole,

Pr{D1} ≥ 1 − 𝑞(𝑞 − 1)𝑑

2𝑁
− 𝑞2𝑑

𝑁
− 𝑞2

𝑁
= 1 − 𝑞(3𝑞 − 1)𝑑 + 2𝑞2

2𝑁
.

The event D1 fixes no more than 𝑞 different pairs (a preimage 𝑆𝑖, an image 𝐻𝑖) of 𝜋1 = 𝜋.

So there are at least (𝑁 − 𝑞)[𝑞] ways to determine images of 𝜋2 = 𝜋 for the 𝑞 additional

preimages 𝑌1, . . . , 𝑌𝑞 and only one of these ways is suitable, that is, 𝑇1, . . . , 𝑇𝑞. Repeating the

estimation technique of the previous proof, we obtain

Pr{D2 | D1} ≥ 1

(𝑁 − 𝑞)[𝑞]
≥ 1

𝑁 𝑞

(︂
1 +

𝑞(3𝑞 − 1)

2𝑁

)︂
.

Combining the bounds on Pr{D1} and Pr{D2 | D1} completes the proof. �

The permutation 𝜋 can be interpreted as an ideal implementation of a block encryption

oracle 𝐸. It is an internal oracle of EHE to which 𝐴 does not have a direct access. A real

implementation of 𝐸 is a permutation 𝐹𝐾 uniformly at random chosen from a family 𝐹 of
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permutations acting on F. This family is called a block cipher. The index 𝐾 above is a

random key of this cipher. Let EHE[𝐹 ] be the EHE scheme with the described instantiation

of 𝐸.

The advantage of 𝐴 against EHE[𝐹 ] is defined and estimated in the following way:

Adv
prf

EHE[𝐹 ](𝐴) = |Pr{𝐴𝜙[𝐹𝐾 ,𝐹𝐾 ] = 1} − Pr{𝐴𝜌 = 1}| ≤

≤ Adv
prf

EHE
(𝐴) + |Pr{𝐴𝜙[𝐹𝐾 ,𝐹𝐾 ] = 1} − Pr{𝐴𝜙[𝜋,𝜋] = 1}|.

The last summand characterizes the quality of distinguishing of 𝐸, that is, differentiating

between its real implementation 𝐹𝐾 and its ideal implementation 𝜋. The advantage of an

adversary 𝐵 which distinguish 𝐸 is defined similar to the advantage of 𝐴:

Adv
prp

𝐹 (𝐵) =
⃒⃒
Pr{𝐵𝐹𝐾 = 1} − Pr{𝐵𝜋 = 1}

⃒⃒
.

Let Advprp

𝐹 (𝑡, 𝑞) be the maximum of Advprp

𝐹 (𝐵) over all 𝐵 which run in time at most 𝑡 and

make at most 𝑞 queries to 𝐸.

The adversary 𝐵 can use 𝐴 to distinguish 𝐸. To do this, 𝐵 simulates the oracle 𝐺 =

𝜙[𝐸,𝐸] which responses 𝐸(𝑓𝑋(𝐸(𝑆))) to (𝑋,𝑆) the adversary determines making two queries

to 𝐸 and one polynomial hashing. The adversary 𝐵 grants 𝐴 access to the simulated oracle,

waits for the output from 𝐴 and returns this output as its own. The simulation of𝐺 needs 𝑞* =

2𝑞 queries to 𝐸 and time 𝑡* = 𝑂(𝑞𝑑).

If 𝐴 runs in time 𝑡, then

|Pr{𝐴𝜙[𝐹𝐾 ,𝐹𝐾 ] = 1} − Pr{𝐴𝜙[𝜋,𝜋] = 1}| = Adv
prp

𝐹 (𝐵) ≤ Adv
prp

𝐹 (𝑞*, 𝑡 + 𝑡*)

and, in whole,

Adv
prf

EHE[𝐹 ](𝐴) ≤ Adv
prf

EHE
(𝐴) + Adv

prp

𝐹 (𝑞*, 𝑡 + 𝑡*).

The arguments above are standard in provable security. The last estimate can be used to

continue all our further theorems. In such a continuation one should only refine 𝑞* (the total

number of 𝐴’s indirect queries to the internal oracle 𝐸) and 𝑡* (time to simulate 𝐺 over 𝐸).

4 The AE[EHE] modes

The permutation 𝜋 can be used not only to instantiate EHE, but also to manage encryption,

that is, to extend EHE to AE[EHE]. In this section we provide two modes of authenticated

encryption based on EHE. In both modes plaintexts and ciphertexts are considered as words

in the alphabet F.
A plaintext is encrypted in the counter mode using a full-cycle permutation next acting

on F. A nonce 𝑆 is used to calculate 𝐻 = 𝜋(𝑆) and then the sequence 𝐶1 = next(𝐻),

𝐶2 = next(𝐶1) = next2(𝐻), . . . of counters. The encrypted counters Γ𝑘 = 𝜋(𝐶𝑘) are added

to the plaintext symbols during encryption or subtracted from the ciphertext symbols during

decryption. An adversary can get 𝜋(𝐶𝑘) (it can subtract a known plaintext from an intersected

ciphertext) but not 𝐶𝑘.

The obtained ciphertext and arbitrary additional data form a message 𝑋 which is au-

thenticated using EHE. Since deg 𝑓𝑋 ≤ 𝑑, the length of the plaintext cannot exceed 𝑑 and at

most 𝑑 symbols Γ𝑘 are sufficient for encryption.

We cannot justify the security of AE[EHE] in the general case if the template (𝜋1, 𝜋2) =

(𝜋, 𝜋) is used. It is due to possible similarities between 𝑓𝑋 and next𝑘. For example,
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if 𝑓𝑋 and next𝑘 act identically, then an adversary can predict 𝑇 = 𝜋(𝑓𝑋(𝜋(𝑆))) us-

ing Γ𝑘 = 𝜋(next𝑘(𝜋(𝑆))) = 𝑇 . We should either impose restrictions on next or change

the template.

Start with the second option. The simplest suitable template is (𝜋1, 𝜋2) = (𝜋2, 𝜋). It

separates a preimage 𝜋2(𝑆) of 𝑓𝑋 from a preimage 𝜋(𝑆) of next𝑘 and makes similarities

between 𝑓𝑋 and next𝑘 ineffective. The whole AE[EHE] mode with the new template can be

depicted as follows:

𝑆

𝑍 𝐶1 𝐶2 𝐶3 . . .

𝐻 Γ1 Γ2 Γ3 . . .

𝑌

𝑇

𝜋

next

𝜋

next

𝜋

next

𝜋

next

𝜋

𝑓𝑋

𝜋

Theorem 3. Let EHE be built over a field of 𝑁 elements with (𝜋1, 𝜋2) = (𝜋2, 𝜋). Let

an adversary 𝐴 make at most 𝑞 queries (𝑋,𝑆) and messages 𝑋 in these queries be such

that deg 𝑓𝑋 ≤ 𝑑. Let the adversary in addition to each response 𝑇 receive at most 𝑑 first

elements of the sequence

Γ1 = 𝜋(next(𝜋(𝑆))), Γ2 = 𝜋(next2(𝜋(𝑆))), . . .

and let 𝑟 be the total number of such elements. Then

Adv
prf

EHE
(𝐴) ≤ 𝑞(5𝑞 + 2𝑟 − 1)𝑑

2𝑁
.

Proof. Again modify the previous proof. Let 𝑍𝑖 = 𝜋(𝑆𝑖), 𝐻𝑖 = 𝜋(𝑍𝑖), 𝐶𝑖,𝑘 = next𝑘(𝑍𝑖),

Γ𝑖,𝑘 = 𝜋(𝐶𝑖,𝑘). In the event D1 suppress the following collisions:

collisions quantity probability (upper bound)

𝑌𝑖 = 𝑌𝑗 𝑞(𝑞 − 1)/2 𝑑/𝑁

𝑌𝑖 = 𝑆𝑗 𝑞2 𝑑/𝑁

𝑌𝑖 = 𝑍𝑗 𝑞2 𝑑/𝑁

𝑌𝑖 = 𝐶𝑗,𝑘 𝑞𝑟 𝑑/𝑁

𝑇𝑖 = 𝑍𝑗 𝑞2 1/𝑁

𝑇𝑖 = 𝐻𝑗 𝑞2 1/𝑁

𝑇𝑖 = Γ𝑗,𝑘 𝑞𝑟 1/𝑁

These restrictions guarantee the freshness of the pairs (𝑌𝑖, 𝑇𝑖). Processing the last two columns

of the table, we obtain

Pr{D1} ≥ 1 − 𝑞(5𝑞 + 2𝑟 − 1)𝑑 + 4𝑞2 + 2𝑞𝑟

2𝑁
.

7



The event D1 fixes at most 2𝑞 + 𝑟 different images of 𝜋. Hence there are at least (𝑁 −
2𝑞− 𝑟)[𝑞] ways to determine 𝑞 additional images which correspond to the preimages 𝑌1, . . . , 𝑌𝑞

and only one of these ways is suitable. In result,

Pr{D2 | D1} ≥ 1

(𝑁 − 2𝑞 − 𝑟)[𝑞]
≥ 1

𝑁 𝑞

(︂
1 +

𝑞(5𝑞 + 2𝑟 − 1)

2𝑁

)︂
.

Repeating the estimation technique of the previous proof, we get the result required. �

The instantiation template (𝜋1, 𝜋2) = (𝜋, 𝜋) is preferable than (𝜋1, 𝜋2) = (𝜋2, 𝜋) because

it requires 1 less encryption. As we said before, to securely use the template (𝜋1, 𝜋2) = (𝜋, 𝜋),

it is necessary to impose restrictions on next. These restrictions should impede the collisions

of the form 𝑓𝑋(𝐻) = next𝑘(𝐻 ′) or even the form 𝑓𝑋(𝐻) = next𝑘(𝐻 ′), 𝐻 ̸= 𝐻 ′.

In this connection, call the permutation next (𝑑, 𝛿)-uniform, if for any suitable 𝑓𝑋
with deg 𝑓𝑋 ≤ 𝑑 and each 𝑘 = 1, . . . , 𝑑 it holds that

Pr{𝑓𝑋(𝐻) = next𝑘(𝐻)}, Pr{𝑓𝑋(𝐻) = next𝑘(𝐻 ′) | 𝐻 ̸= 𝐻 ′} ≤ 𝑑𝛿

𝑁
.

Here 𝐻 and 𝐻 ′ are independent random, each uniformly distributed over F.

Example. Consider an affine permutation aff : 𝐻 ↦→ 𝛼𝐻+𝛽, 𝛼, 𝛽 ∈ F∖{0}. If 𝛼 is the multiplicative

unit of F, then aff is (𝑑, 1)-uniform, the best we can get, but it is a full-cycle only if F is prime.

For arbitrary F the permutation aff turns into an almost-full-cycle if 𝛼 is primitive. Indeed, in this

case aff decomposes into a cycle of length 𝑁 − 1 and a fixed point 𝛽/(1 − 𝛼). The probability to

fall into the sole fixed point during encryption is negligible and aff can be used in the counter mode

without meaningful loss of security. �

Theorem 4. Let EHE be built over a field of𝑁 elements with (𝜋1, 𝜋2) = (𝜋, 𝜋). Let an adver-

sary 𝐴make at most 𝑞 queries (𝑋,𝑆) and messages𝑋 in these queries be such that deg 𝑓𝑋 ≤ 𝑑.

Let the adversary in addition to each response 𝑇 receive at most 𝑑 first elements of the se-

quence

Γ1 = 𝜋(next(𝜋(𝑆))), Γ2 = 𝜋(next2(𝜋(𝑆))), . . .

and let 𝑟 be the total number of such elements. Let next be (𝑑, 𝛿)-uniform. Then

Adv
prf

EHE
(𝐴) ≤ 𝑞(3𝑞 + 2𝑟𝛿 − 1)𝑑

2𝑁
.

Proof. Modify the proof of Theorem 2. Let 𝐶𝑖,𝑘 = next𝑘(𝐻𝑖), Γ𝑖,𝑘 = 𝜋(𝐶𝑖,𝑘). In the event D1

suppress the following collisions:

collisions quantity probability (upper bound)

𝑌𝑖 = 𝑌𝑗 𝑞(𝑞 − 1)/2 𝑑/𝑁

𝑌𝑖 = 𝑆𝑗 𝑞2 𝑑/𝑁

𝑌𝑖 = 𝐶𝑗,𝑘 𝑞𝑟 𝑑𝛿/𝑁

𝑇𝑖 = 𝐻𝑗 𝑞2 1/𝑁

𝑇𝑖 = Γ𝑗,𝑘 𝑞𝑟 1/𝑁

The result required follows from the estimates:

Pr{D1} ≥ 1 − 𝑞(3𝑞 + 2𝑟𝛿 − 1)𝑑 + 2𝑞2 + 2𝑞𝑟

2𝑁
,

Pr{D2 | D1} ≥ 1

(𝑁 − 𝑞 − 𝑟)[𝑞]
≥ 1

𝑁 𝑞

(︂
1 +

𝑞(3𝑞 + 2𝑟 − 1)

2𝑁

)︂
. �

8



To fully justify the security of the proposed AE[EHE] modes we need to show that it is

hard to distinguish from random not only the tags 𝑇 but also the symbols Γ𝑘 (provided that

the nonces 𝑆 do not repeat). Technically, it can be quite easily done by rebuilding the proofs

of Theorems 3 and 4. We leave such rebuilding outside the scope of this paper.
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[7] J. Patarin, Etude des Gènèrateurs de Permutations Basès sur le Sch‘ema du D.E.S.,

Ph.D. thesis, University of Paris, 1991.

[8] P. Rogaway, Evaluation of Some Blockcipher Modes of Operation, Cryptography Re-

search and Evaluation Committees (CRYPTREC) (2011), http://www.cryptrec.go.

jp/estimation/techrep_id2012_2.pdf.

[9] V. Shoup, On fast and provably secure message authentication based on universal hash-

ing, in: Advances in Cryptology — CRYPTO’2006, Lecture Notes in Comp. Sci. 1109,

Springer, Berlin (1996), 313–328.

[10] STB 34.101.31-2011. Information Technology and Security. Data Encryption and In-

tegrity Algorithms, Standard of Belarus (2011), http://apmi.bsu.by/assets/files/

std/belt-spec27.pdf, in Russian.

[11] M. Wegman and J. Carter, New hash functions and their use in authentication and set

equality, J. Comp. and System Sci. 22 (1981), 265–279.

9

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf

	Introduction
	The EHE scheme
	Instantiation
	The AE[EHE] modes

