NOTE

Simple relationship between ²⁶Al production rate and major elemental composition of meteorite samples

H. KUSUNO,¹* T. FUKUOKA¹ and H. MATSUZAKI²

¹Graduate School of Geo-environmental Science, Rissho University, 1700, Magechi, Kumagaya, Saitama 360-0194, Japan ²School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

(Received August 27, 2012; Accepted December 5, 2012)

Estimation of 26 Al (half-life = 705 kyr) content at the time of meteorite fall is required to calculate the terrestrial age of meteorites using the 26 Al content. Previous studies (e.g., Cressy, 1971; Hampel *et al.*, 1980) provided empirical equations for the estimation of 26 Al content in meteorites at the time of meteorite fall. However, the equations overestimate the 26 Al content of howardites and eucrites, which have a high Al content (5–8%). In this study, we present a new simple empirical equation based on the relationship between 26 Al content and the content of two main target elements, Al and Si, in 37 falls meteorites from various classes (one howardite, 10 eucrites, 13 diogenites, 8 chondrites, 3 ureilites, and one angrite). The equation estimates the 26 Al content of howardites and eucrites at the time of meteorite fall within a 9% difference of the measured 26 Al content. This difference is lower than in any other equations presented in previous literature.

Keywords: production rate, ²⁶Al, terrestrial age, howardite, eucrite

INTRODUCTION

Cosmogenic 26 Al (half-life = 705 kyr) is a useful tool for dating the terrestrial age of meteorites. ²⁶Al in meteorites is produced by a nuclear reaction via cosmic-ray irradiation. If the irradiation time is more than 10 times as long as the half-life, the ²⁶Al activity reaches saturation. After a meteorite falls to Earth, the ²⁶Al content decreases according to the decay constant. The production of ²⁶Al and other cosmogenic nuclides are mainly dependent on several factors: the target element compositions, the primary cosmic-ray flux, and the preatmospheric sizes and shape of the meteorites. To calculate the ²⁶Al production rate of a meteorite, numerical simulations using Monte Carlo particle production have been presented (e.g., Masarik and Reedy, 1994; Herpers et al., 1995; Leya et al., 2000; Leya and Masarik, 2009). However, these simulations use empirical production rates because the cross section of ²⁶Al production by high energy neutron reactions is not known.

Cressy (1971) and Hampel et al. (1980) presented

empirical equations, which calculated the ²⁶Al content in meteorites at the time of the meteorite's fall (P_{26}), based on the relationship between ²⁶Al content and the elemental composition of bulk or minerals in falls chondrites. However, the P_{26} of howardites and eucrites calculated in equations by Cressy and Hampel, are overestimated. Aylmer *et al.* (1988) presented the empirical ²⁶Al production rate of eucrites. However, the P_{26} of howardites and eucrites calculated by Aylmer's production rate tends to be higher than the actual ²⁶Al contents.

In this study, we propose a new empirical equation for the ²⁶Al production rate based on the relationship between the bulk ²⁶Al content and the content of major elements in various classes of 37 falls stony meteorites (one howardite, 10 eucrites, 13 diogenites, 8 chondrites, 3 ureilites, and one angrite). 18 of the 37 meteorites were measured in this study and data of another 19 meteorites were obtained from literature. The relationship between ²⁶Al content and content of target element is obtained clearly by using various classes of meteorite with different elemental composition. Production rate of ²⁶Al in meteorites is strongly affected by the shielding effect. The shielding condition is not constant, because shielding effect depends on depth and shape of meteoroid. We expected the shielding effect to be averaged out by measuring ²⁶Al content from 37 meteorite samples.

^{*}Corresponding author (e-mail: cosmo-geochem_hk@ris.ac.jp)

Copyright © 2013 by The Geochemical Society of Japan.

Meteorite name	Class	2	²⁶ A1		Si	Ti	Al	Fe	Mn	Mg	Ca	Na	Ni	S
	dpm/kg					90								
Béréba	Eucrite	95.8	±	1.7	25.9	0.44	6.50	11.0	0.396	4.0	7.2	0.313		
Bouvante	Eucrite	80.2	±	1.3	24.7	0.54	5.67	15.2	0.411	3.5	6.6	0.392	—	—
Jonzac	Eucrite	92.5	±	2.5	24.0	0.40	6.74	13.3	0.413	3.9	7.8	0.371	—	—
Juvinas	Eucrite	92.7	±	2.8	24.3	0.41	6.55	13.7	0.444	3.8	7.1	0.340	—	—
Millbillillie	Eucrite	89.7	±	0.8	23.9	0.40	6.56	15.3	0.472	3.9	6.3	0.325	—	—
Talampaya	Eucrite	88.7	±	2.2	23.6	0.07	6.54	11.1	0.398	7.9	6.4	0.177	—	—
Bilanga	Diogenite	77.8	±	1.7	24.8	0.04	0.44	12.2	0.348	18	0.5	0.009	—	—
Johnstown	Diogenite	81.7	±	2.0	24.7	0.05	0.62	13.6	0.395	16	1.3	0.005	—	—
Shalka	Diogenite	70.2	±	1.4	25.7	0.06	0.38	12.3	0.438	16	0.6	0.016	—	—
Tatahouine	Diogenite	74.4	±	2.0	26.2	0.04	2.23	9.7	0.402	15	1.2	0.060	—	—
Allende ¹	CV3	52.5	±	0.7	15.6	0.09	2.04	24.3	0.158	13	2.1	0.421	1.34	2.2
Lance ¹	CO3.4	67.7	±	1.5	15.9	0.16	1.44	25.8	0.144	14	1.8	0.446	1.40	2.0
Ningqiang ¹	CK3	51.4	±	0.6	15.1	0.13	1.78	21.6	0.155	14	1.9	0.527	1.27	1.6
Valera ¹	L5	65.9	±	0.6	18.5	0.04	2.10	21.6	0.278	14	1.2	0.614	1.20	2.2
Mbale ¹	L5-6	71.1	±	2.0	18.5	0.07	1.35	21.6	0.304	15	1.3	0.832	1.20	2.2
Kyushu ¹	L6	67.0	±	1.9	18.5	0.10	0.91	21.6	0.205	11	1.4	0.613	1.20	2.2
Oum Dreyga ¹	H3-5	56.5	±	1.6	16.9	0.08	1.26	27.8	0.264	15	1.3	0.688	1.60	2.0
Dashoguz ¹	Н5	63.9	±	0.8	16.9	0.06	1.33	27.8	0.326	17	1.6	0.785	1.60	2.0
Error % ²		0.9	9–3.0)	1-4 ³	4–46	0.4–2	0.1–1	0.6–1	3–5	1-10	0.8–35	_	_

Table 1. The ²⁶Al content and major elemental composition of 18 falls meteorite

"—" means no data.

¹Si, Fe, Ni, and S contents are from Hutchison (2004).

²Errors due to counting error.

³Errors of Si were calculated from counting errors of other elements.

|--|

Meteorite name	Class	2	²⁶ A1		Si	Ti	Al	Fe	Mn	Mg	Ca	Na	Ni	S	Reference
dpm/kg												-			
Yurtuk	Howardite	71.1	±	4.7	25.08	0.28	4.61	11.7	0.336	8.9	4.8	0.190		_	1, 2
Haraiya	Eucrite	85.0	±	1.3	23.42	0.32	6.62	14.6	0.332	4.2	7.3	0.312	_	_	1, 2
Moore County	Eucrite	73.9	±	3.6	22.55	0.26	6.70	13.4	0.314	5.7	6.7	_	_	_	1, 3
Nuevo Laredo	Eucrite	81.4	±	3.1	23.10	0.50	6.46	15.2	0.350	3.3	7.4	0.378	_	_	1, 4
Sioux County	Eucrite	103.5	±	3.1	22.96	0.35	6.88	14.3	0.332	4.1	7.5	0.304	_	0.07	1, 4
Stannern	Eucrite	109.8	±	3.0	23.19	0.59	6.51	13.8	0.320	4.2	7.7	0.460	_	_	1, 4
Aioun el Atrouss	Diogenite	67.7	±	1.6	23.94	0.08	0.54	12.0	0.400	15	0.9	_	_	_	5
Ellemeet	Diogenite	70.4	±	1.7	22.90	0.04	0.55	12.8	0.450	15	0.4	_	_	_	5
Garland	Diogenite	70.5	±	1.5	24.54	0.09	1.16	12.6	0.430	13	1.3	_	_	_	5
Johnstown-1	Diogenite	67.2	±	2.4	24.50	0.06	0.79	12.4	0.289	15	1.3	0.015	_	0.22	1, 4
Johnstown-2	Diogenite	75.9	±	2.3	24.74	0.07	0.51	11.7	0.390	15	0.8	_	_	_	5
Roda	Diogenite	52.5	±	1.5	23.44	0.08	0.58	13.1	0.380	16	0.8	_	_	_	5
Shalka-05*	Diogenite	63.8	±	1.8	24.64	0.05	0.39	13.0	0.440	15	0.5	_	_	_	5
Shalka-80*	Diogenite	71.3	±	1.8	24.64	0.04	0.34	12.7	0.440	15	0.5	_	_	_	5
Tatahouine	Diogenite	80.3	±	2.3	24.34	0.04	0.27	11.5	0.390	15	0.5	_	_	_	5
Dyalpur	Ureilite	55.8	±	4.8	19.55	0.11	0.17	10.3	0.247	23	1.0	0.059	0.13	_	1, 4
Haverö	Ureilite	43.0	±	3.0	18.81	0.04	0.14	11.0	0.223	24	0.1	0.030	0.12	_	1, 4
Novo-Urei	Ureilite	45.7	±	1.9	18.55	0.08	0.22	11.7	0.241	22	0.6	0.134	0.12	_	1, 3
Angra dos Reis	Angrite	105.1	±	5.1	20.39	1.23	4.95	7.3	0.060	6.5	16.4	0.022	_	_	1, 4

"—" means no data.

*Shalka-05 and -80 are taken 5 mm and 80 mm from fusion crust (Welten et al., 1997). References: 1, Nishiizumi (1987); 2, Fukuoka et al. (1977); 3, Dodd (1981); 4, Hutchison (2004); 5, Welten et al. (1997).

Table 3. Equations for estimation of ²⁶Al content in meteorites

Reference	The production rate equation for ²⁶ Al
This study Aylmer <i>et al.</i> (1988) Hampel <i>et al.</i> (1980) Leya and Masarik (2009) Cressy (1971)	$\begin{array}{l} P_{26}=3.7Al+2.8Si\\ P_{26}=4.8Al+2.7Si\\ P_{26}=4.92Al+2.74Si+0.42Mg+0.24Ca+1.33S+0.03Fe\\ P_{26}=5.46Al+3.20Si+0.037Fe\\ P_{26}=11.3Al+2.4Si+0.28Mg+0.24Ca+1.33S+0.022(Fe+Ni) \end{array}$

 P_{26} is the calculated ²⁶Al content (dpm/kg) of meteorite at time of fall. Al, Si, Mg, Ca, S, Fe, and Ni are the content of each element (%).

MEASUREMENTS FOR ²⁶Al CONTENT AND MAJOR ELEMENT COMPOSITION

About 0.1 g of meteorite sample was crushed and powdered on an agate mortar to homogenize the sample. Magnetic fractions of chondrite samples were excluded with a hand magnet. 10 mg of the powdered sample with 3 mg of Al carrier (WAKO chemical, 1000 mg/l Al, HNO₃ solution) were performed with HF treatment in a Teflon beaker. Mg and Na were removed from Al and Fe fraction by NH₄OH solution. In general, Fe is removed from Al using the cation exchange method, but we removed Fe by KOH to simplify and reduce the time of the purification. The Fe removed was used for AAS measurements to determine Fe contents. The purified Al was acidified by 2N HCl, precipitated as $Al(OH)_3$ with NH_4OH solution and then baked as Al₂O₃ at 900°C. The Al₂O₃ was mixed with an approximate 1:1 amount of silver powder (99.99%, Sigma-Aldrich), and then pressed into cleaned copper cathodes. AMS measurements were performed at the Micro Analysis Laboratory, Tandem Accelerator, University of Tokyo (MALT). To normalize the ²⁶Al/²⁷Al ratio, we used standard samples, KN-4 ($^{26}Al/^{27}Al = 7.44*$ 10⁻¹¹, Nishiizumi, 2004).

The Al, Ca, Mg, Na, Mn, and Ti content in the samples was measured using instrumental neutron activation analysis (INAA). The neutron irradiation for INAA was performed at the research reactor JRR-3M (3.5 MW), Japanese Atomic Energy Agency (JAEA), and gammaray counting was performed by the gamma-ray counting system at JAEA.

Fe content was measured by atomic absorption spectrometry (AAS) at Rissho University. Si content was calculated by subtracting the other major chemical compositions from 100%: $SiO_2 = 100 - (FeO + Al_2O_3 + CaO + MgO + Na_2O + MnO + TiO_2)$.

RELATIONSHIP BETWEEN ²⁶Al CONTENT AND MAJOR ELEMENT CONTENT

The results of bulk ²⁶Al content and the major elemental composition of 18 meteorite samples measured in this study are shown in Table 1. Si, Fe, Ni, and S content in chondrites are from Hutchison (2004) because FeNimetals and sulfides in the chondrite samples were not determined in this study. Table 2 shows the bulk ²⁶Al content and major elemental composition of 19 meteorites from previous literature.

The Al and Si content of the 37 meteorites show a positive linear relation with the ²⁶Al content. However, the other elemental compositions do not. Although the Ca content also shows a positive linear relation to the ²⁶Al content, the ²⁶Al produced by Ca is only about one tenth of that of Si and Al (Leya and Masarik, 2009). The Ca content of stony meteorites ranges from 0.07 to 8% (Hutchison, 2004), and the ²⁶Al content produced by Ca is comparable to the errors of the ²⁶Al content measured by AMS (about 3% of ²⁶Al content). Because the Ca and Al content in meteorites are similar, the relationship between ²⁶Al and Ca content appears to have a linear relationship. We therefore used only the Al and Si content to determine the equation.

The relationship between the ²⁶Al content and the Al and Si content in the 37 meteorite samples are expressed in the following equation based on multiple linear regression analysis:

$$P_{26} = 3.7 \,Al + 2.8 \,Si \tag{1}$$

where P_{26} is the calculated ²⁶Al content at the time of meteorite fall and *Al* and *Si* are the Al and Si content (%) of the meteorite sample, respectively. The squared multiple relation coefficient adjusted for the degree of freedom (R^2) is 0.98 and the standard error for the calculated ²⁶Al content is 10. The *t* distribution is 5.6 for Al and 24.9 for Si, respectively.

ESTIMATION OF ²⁶Al CONTENT

Table 3 shows equations calculating P_{26} in this study and in studies by Aylmer *et al.* (1988), Hampel *et al.* (1980), Cressy (1971), and Leya and Masarik (2009). The equation in Table 3 of Leya and Masarik (2009) was converted from their model calculation for a depth of about

Meteorite name	Class	P ₂₆									
		This study	Aylmer <i>et al.</i> (1988)	Cressy (1971)	Hampel et al. (1980)	Leya and Masarik (2009)					
		dpm/kg									
Yurtuk	Howardite	87	90	116	97	106					
Béréba	Eucrite	96	101	139	107	119					
Bouvante	Eucrite	90	94	126	99	111					
Haraiya	Eucrite	90	95	134	101	112					
Jonzac	Eucrite	92	97	137	103	114					
Juvinas	Eucrite	92	97	135	103	114					
Millbillillie	Eucrite	91	96	134	101	113					
Moore County	Eucrite	88	93	133	99	109					
Nuevo Laredo	Eucrite	89	93	131	99	110					
Sioux County	Eucrite	90	95	136	101	112					
Stannern	Eucrite	89	94	133	100	110					
Talampaya	Eucrite	90	95	135	102	112					
Aioun el Atrouss	Diogenite	69	67	68	75	80					
Bilanga	Diogenite	71	69	70	78	82					
Ellemeet	Diogenite	66	64	66	72	77					
Garland	Diogenite	73	72	76	79	85					
Johnstown	Diogenite	72	70	71	78	83					
Johnstown-1	Diogenite	72	70	73	78	83					
Johnstown-2	Diogenite	71	69	70	77	82					
Roda	Diogenite	68	66	68	74	79					
Shalka	Diogenite	73	71	71	80	85					
Shalka-05	Diogenite	70	68	68	76	81					
Shalka-80	Diogenite	70	68	67	76	81					
Tatahouine	Diogenite	82	81	93	90	96					
Tatahouine	Diogenite	69	67	66	75	80					
Dvalpur	Ureilite	55	54	56	65	64					
Haverö	Ureilite	53	51	53	62	61					
Novo-Urei	Ureilite	53	51	54	62	61					
Angra dos Reis	Angrite	75	79	111	82 87	93					
Allende	CV3	52	53	69	63	63					
Lance	CO3 4	49	49	61	60	59					
Ninggiang	CK3	49	49	61	57	59					
Valera	1.5	55	56	72	66	66					
Mbale	L5-6	52	52	64	63	62					
Kyushu	L6	55	54	61	64	65					
Oum Drevoa	H3-5	56	56	66	67	67					
Dashoguz	H5 5	57	56	68	68	67					
Difference [%]*		0-29 (10)	0-28 (11)	0-80 (22)	0-45 (14)	0-50 (19)					

Table 4. Comparison of calculated ²⁶Al content by the equation in this study and those of four other studies

*The mean values of differences are shown in brackets "()."

How = Howardite; Euc = Eucrite; Dio = Diogenite. The elemental composition used for P_{26} calculation of the meteorites is taken from Tables 1 and 2.

60 g/cm² in a meteoroid with a radius of about 100 g/cm² composed of L chondrites. Table 4 shows P_{26} calculated using the five equations (Table 3) and the measured ²⁶Al content of the 37 meteorite samples. In Fig. 1, we plotted the differences% of the ²⁶Al content calculated by these equations. The "difference%" in Table 4 and Fig. 1 indicates the percentage of relative difference of P_{26} to the measured ²⁶Al contents (²⁶Al); difference% = $\sqrt{(P_{26}-{}^{26}Al)^2} / {}^{26}Al \times 100$.

P_{26} of howardites and eucrites

The P_{26} of one howardite and 10 eucrite samples, which both have a high Al content (5–7%), were calculated by our equation and agree well with the measured ²⁶Al content (Fig. 1). The P_{26} of the howardite and the eucrite samples calculated using our equation, agree well with measured ²⁶Al more than that of Aylmer *et al.* (1988), which is based on the relationship between ²⁶Al content and the major elemental content of the eucrites samples. The equation of Cressy (1971) gives a too high calcula-

Fig. 1. Difference% between calculated ${}^{26}Al$ content and measured ${}^{26}Al$ content. The vertical axis shows meteorite names. The horizontal axis shows difference% between measured ${}^{26}Al$ content and calculated ${}^{26}Al$ content. All measured ${}^{26}Al$ content and calculated ${}^{26}Al$ content are from Tables 2, 3 and 4, respectively.

tion of P_{26} for the howardite and the eucrites, compared with the measured ²⁶Al content (Fig. 1). These overestimations suggest that the production rate of Al in the equations in previous literature are overestimated, as Al is the main target element for the production of ²⁶Al and is a major element in howardite and eucrite.

P_{26} of diogenites, ureilites, and angrites

The P_{26} of 13 diogenites and 3 ureilites, which have a high Mg content (15–24%), were calculated by our equation, Aylmer *et al.* (1988), and Cressy (1971), agree with the measured ²⁶Al contents (Fig. 1). Those of Hampel *et al.* (1980) and Leya and Masarik (2009) tend to be higher than the measured ²⁶Al content (Fig. 1). The ²⁶Al production rate of Mg of Hampel *et al.* (1980) may be overestimated and the equation of Leya and Masarik (2009) does not include Mg. However, the ²⁶Al production rate of Si of Leya and Masarik (2009) may be overestimated.

The P_{26} of angrite calculated by the equations in Table 3 (except Cressy, 1971) are an underestimation. Discussion on this is limited due to there being only one sample of angrite.

P_{26} of chondrites

The P_{26} of chondrites calculated using our equation and that of Aylmer *et al.* (1988), tend to be lower than the measured ²⁶Al. The P_{26} of 8 chondrites calculated using the equations of Hampel *et al.* (1980) and Leya and Masarik (2009) agree well with the measured ²⁶Al content of the samples, compared with the P_{26} calculated by the other three equations (Fig. 1). The underestimation of P_{26} calculated by two equations (this study and Aylmer *et al.*, 1988) does not include S and Fe in the equations. ²⁶Al produced from S and Fe may not be negligible in chondrite samples.

SUMMARY

We found our equation to be successful in determining calculation of the ²⁶Al content in howardites, eucrites, diogenites, ureilites compared with the equations in previous literature (Fig. 1). In particular, the P_{26} calculated by our equation agrees well with the measured ²⁶Al content in howardite and eucrite, which have a high Al content. These calculations agree more than the P_{26} calculated by Aylmer *et al.* (1988), which is based on eucrites. Features of our equation are as follows: 1) the production rate of Al for P_{26} is lower than that of previous literature, where the production rate of Al is overestimated and 2) production rates of Mg and Ca are not contained in the equation (the amount of ²⁶Al produced from Mg and Ca is negligible). For chondrite, P_{26} is calculated using the equation of this study and that of Aylmer *et al.* (1988). The P_{26} tend to be lower than the actual ²⁶Al contents. These two equations do not contain S and Fe. This suggests that the amount of ²⁶Al produced by the S and Fe content is not negligible in chondrites.

Acknowledgments—The neutron irradiation experiments were supported by the Inter-University Laboratory for the Common Use of Nuclear Facilities for Joint use of JAEA Facilities. We are grateful to Dr. H. Nagai, Dr. Y. Miura, an anonymous reviewer, and Dr. M. Honda for their helpful reviews.

REFERENCES

- Aylmer, D., Herzog, G. F., Klein, J. and Middleton, R. (1988) ¹⁰Be and ²⁶Al contents of eucrites: Implications for production rates and exposure ages. *Geochim. Cosmochim. Acta* 52, 1691–1698.
- Cressy, P. J., Jr. (1971) The production rate of ²⁶Al from target element in the Bruderheimc hondrite. *Geochim. Cosmochim. Acta* **35**, 1283–1296.
- Dodd, R. (1981) *Meteorites: A Petrologic-Chemical Synthesis*. Cambridge Univ. Press.
- Fukuoka, T., Boynton, W. V., Ma, M.-S. and Schmitt, R. A. (1977) Genesis of howardites, diogenites, and eucrites. *Proc. LSC 8th*, 187–210.
- Hampel, W., Wänke, H., Hofmeister, H., Spettel, B. and Herzog,
 G. F. (1980) ²⁶Al and rare gases in Allende, Bereba and
 Juvinas: implications for production rates. *Geochim. Cosmochim. Acta* 44, 539–547.
- Herpers, U., Vogt, S., Bremer, K., Hofmann, H. J., Suter, M., Wieler, R., Lange, H.-J. and Michel, R. (1995) Cosmogenic nuclides in differentiated Antarctic meteorites: measurements and model calculations. *Planet. Space Sci.* 43, 545– 556.
- Hutchison, R. (2004) Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge Univ. Press.
- Leya, I. and Masarik, J. (2009) Cosmogenic nuclides in stony meteorites revisited. *Meteor. Planet. Sci.* 44, 1061–1086.
- Leya, I., Lange, H.-J., Neumann, S., Wieler, R. and Michel, R. (2000) The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles. *Meteor. Planet. Sci.* 35, 259–286.
- Masarik, J. and Reedy, R. C. (1994) Effects of bulk composition on nuclide production processes in meteorites. *Geochim. Cosmochim. Acta* 58, 5307–5317.
- Nishiizumi, K. (1987) ⁵³Mn, ²⁶Al, ¹⁰Be and ³⁶Cl in meteorites: data compilation. *Nucl. Tracks Radiat. Meas.* **13**, 209–273.
- Nishiizumi, K. (2004) Preparation of ²⁶Al standards. *Nucl. Instr. Meth.* **B223–224**, 388–392.
- Welten, K. C., Lindner, L., van der Borg, K., Loeken, T., Scherer, P. and Schultz, L. (1997) Cosmic-ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies. *Meteor. Planet. Sci.* 32, 891–902.