
Quantum preimage, 2nd-preimage, and collision
resistance of SHA3

Jan Czajkowski1, Leon Groot Bruinderink2, Andreas Hülsing2, and Christian
Schaffner1

1 University of Amsterdam, CWI, QuSoft
Institute for Logic, Language and Computaion (ILLC)

P.O. Box 94242, 1090 GE Amsterdam, The Netherlands
j.czajkowski@uva.nl , c.schaffner@uva.nl

2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
l.groot.bruinderink@tue.nl,andreas@huelsing.net

Abstract. SHA3 and its extendable output variant SHAKE belong to
the family of sponge functions. In this work, we present formal security
arguments for the quantum preimage, 2nd-preimage, and collision resis-
tance of any sponge function. We just assume that the internally used
transformation behaves like a random transformation. These are the first
formal arguments that sponge functions (incl. SHA3 and SHAKE) are
secure in the post-quantum setting.
We even go one step further and prove that sponges are collapsing (Un-
ruh, EUROCRYPT’16). Thereby, we can also derive the applicability of
sponge functions for collapse-binding commitments.
In addition to the security arguments, we also present a quantum colli-
sion attack against sponges. The complexity of our attack asymptotically
matches the proven lower bound up to a square root.

Keywords: Post-quantum cryptography; SHA3, SHAKE, sponges, kec-
cak, hash function, quantum security, quantum collision resistance, quan-
tum second-preimage resistance, quantum preimage resistance.

1 Introduction

(Cryptographic) hash functions are one of the most basic building blocks in cryp-
tography. They are virtually used everywhere: As cryptographically secure check-
sums to verify integrity of software or data packages, as building block in security
protocols, including TLS, SSH, IPSEC, as part of any efficient variable-input-
length signature scheme, to build full-fledged hash-based signature schemes, in
transformations for CCA-secure encryption, and many more.

This work was supported in part by the Commission of the European Communities
through the Horizon 2020 program under project number 645622 PQCRYPTO. CS
and JC are supported by a NWO VIDI grant. Permanent ID of this document:
287718adca85c4a117f2d334d94d1b08. Date: April 4, 2017

2 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

While all widely deployed public-key cryptography is threatened by the rise
of quantum computers, hash functions are widely believed to only be mildly
effected. The reason for this is twofold. On the one hand, generic quantum at-
tacks achieve at most a square-root speed up compared to their pre-quantum
counterparts and can be proven asymptotically optimal [4,14,9]. On the other
hand, there do not exist any dedicated quantum attacks on any specific hash
function (excluding of course those based on number theory like, e.g., VSH [6])
that perform better than the generic quantum attacks.

However, in the pre-quantum setting we can give stronger security arguments
than just the absence of dedicated attacks. For modern hash functions like SHA2
or SHA3 there exist proofs that show security properties of the hash function,
assuming that an internal building block of the construction has a certain prop-
erty. For example, the SHA3 hash function is an instantiation of the sponge
construction [3]. For sponge functions it was shown [3] that if the internally used
permutation (or function) behaves like a random permutation (or function), then
the sponge function achieves one of the strongest security properties possible:
indifferentiability from a random oracle. This property guarantees that there do
not exist any attacks that perform better than generic attacks against SHA3 as
long as the permutation used in SHA3 behaves like a random permutation.

Sadly, the security reduction for sponge functions does not carry over to the
quantum setting. The key issue here is that the core of the security argument is
query-based. Informally, omitting a lot of details, the core-argument goes in two
steps:

1. The only source of non-random behavior are collisions in the internal state
of the sponge.

2. Any adversary making a polynomially bounded number of (classical) queries
has only negligible chance to see such an inner collision.

For this discussion it is irrelevant what inner collisions exactly are as these
arguments do not work against a quantum adversary A. Such an adversary can
use a quantum circuit implementing SHA3 and can thereby query the function in
superposition. In particular, A could execute SHA3 on the uniform superposition
over all messages of a certain length. For suitable parameters, A is actually
guaranteed that for several branches of the superposition inner collisions occur,
possibly helping A to distinguish SHA3 from a random oracle. This leaves us
with no security argument for SHA3 besides the absence of attacks which is an
unfortunate situation.

Our contribution. In this paper, we solve this issue for the most fundamental
security properties of a hash function. We provide formal security arguments
for the quantum preimage, 2nd-preimage, and collision resistance of any sponge
function under the assumption that the internally used permutation (or func-
tion) behaves like a random permutation (or function). Actually, we even go one
step further and prove that sponges are collapsing under the same assumption.
Collapsing is a property of (hash) functions, defined by Unruh [12] in the context
of post-quantum secure commitment schemes – so called collapse-binding com-
mitments. As a side-product we thereby also show the applicability of sponge

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 3

functions for collapse-binding commitments. As collapsing tightly implies colli-
sion resistance, which in turn tightly implies second-preimage and (for strongly
compressing functions) preimage resistance, we immediately derive the claimed
result from this proof. As our main result, we prove the following theorem (using
terminology from Section 2) :

Theorem 1. Let Sponge[f, pad, r] be a sponge construction with capacity c and
bitrate r. Moreover, assume that a minimum output length ` is given. The success
probability of any quantum collision finder A, making at most q queries, is upper
bounded by O(

√
q3 ·max(2−`, 2−r, 2−c)).

In addition to our constructive result, we also present a quantum attack
for the same setting, providing an upper bound for security. We describe a
quantum attack against any sponge function that internally uses a random
function (or random permutation). Our attack has a success probability of
O(q3·max(2−`, 2−c)) when making q quantum queries to an oracle, implementing
the internal function. This matches our bound from Theorem 1 up to a square
root, showing our bound is almost optimal.

Related work. In [12], Unruh introduces collapsing hash functions as technical
tool to construct collapse-binding commitments. In the same work he shows that
random oracles are collapsing. In a follow-up work [11], Unruh presents the first
standard-model instantiation of collapsing hash functions and thereby collapse-
binding commitments. As a step in this proof, he shows that hash functions
using the Merkle-Damg̊ard construction are collapsing if the internal compression
function is. Thereby he implicitly gave a formal argument for the preimage, 2nd-
preimage, and collision resistance of the SHA family (assuming the compression
function behaves like a random oracle).

Brassard, Høyer, and Tapp [4] presented the first generic quantum algorithm
for collision search in any r-to-1 function. Zhandry [14] extends this result, pre-
senting upper and lower bounds for quantum collision search for random func-
tions. In [9], Hülsing, Song, and Rijneveld present upper and lower bounds for
quantum preimage and second-preimage search in the case of random functions.
In [1], the authors give detailed cost estimates for Grover’s algorithm when used
to find preimages in SHA2 and SHA3.

Organization. In Section 2, we revisit some preliminaries. In Section 3, we begin
with showing that the internal mechanisms used in the sponge are collapsing.
Afterwards, we prove our main technical result, Lemma 6, from which we derive
our main theorem and its implications for the security of SHA3. In Section 4 we
describe a quantum algorithm for finding collisions in sponge function.

2 Preliminaries

In this section we briefly introduce quantum computing as needed for this work.
We revisit terminology and notations of sponge constructions, which is used
through out this paper. Next we recall the definition of collapsing and two related

4 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

results, we end the section with description of algorithm by [4] and discuss its
performance.

Basic notations. We say that ε = ε(n) is negligible if, for all polynomials p(n),
ε(n) < 1/p(n) for large enough n. With x←$X, we denote sampling an element
x at random from set X. With 0 we denote the all zero bitstring.

Quantum computing. We assume the reader is familiar with the usual nota-
tions in quantum computation, but we give a very short introduction here. A
quantum system A is a complex Hilbert space H, together with an inner prod-
uct 〈·|·〉.The state of a quantum system is given by a vector |ψ〉 of unit norm
(〈ψ|ψ〉 = 1). A joint system of H1 and H2 is denoted by H = H1 ⊗ H2, with
elements |ψ〉 = |ψ1〉 |ψ2〉 for |ψ1〉 ∈ H1, |ψ2〉 ∈ H2. A unitary transformation U
over a d-dimensional Hilbert space H is a d× d matrix U such that UU† = Id,
where U† represents the conjugate transpose. In this paper, we assume quantum-
accessible oracles, i.e., we will implement an oracle O : X → Y by a unitary
transformation O such that: O |x, y〉 = |x, y +O(x)〉, where + : Y × Y → Y is
some group operation on Y . Any quantum algorithm making q queries can then
be written as a final transformation UqOq . . .U1O1U0 for unitaries Ui applied
between queries and oracle queries Oi.

For a quantum register M we denote by m ← Mcomp the measurement of
M in the computational basis with outcome m. For a function f , we denote
by Mf (M) the projective measurement of register M with projectors Py =∑

m:f(m)=y |m〉〈m|. In other words, applying y ←Mf (M) causes M to collapse
to superpositions of values m which all map to the same image y under f . We
will recall some notations and a definition from [13]. Given two sets X and Y ,
define Y X as the set of functions f : X → Y . If a function f maps X to Y × Z,
we can think of f as two functions: one that maps X to Y and one that maps X
to Z. We will define quantum indistinguishability from random in the following
sense for function families F .

Definition 1 (Quantum-Indistinguishability). We call a family of func-
tions F ⊆ Y X quantum-indistinguishable from random if no efficient quantum
adversary A making quantum queries can distinguish between a function drawn
at random from F and a truly random function. That is, for every security pa-
rameter n and quantum adversary A, there exists a negligible function ε = ε(n)
such that:

AdvQI
Y X

(F ;A) := | P
f←$F

[Af (1n) = 1]− P
O←$Y X

[AO(1n) = 1]| < ε

We call AdvQI the oracle-distinguishing advantage.

The sponge construction. The concept of cryptographic sponges was intro-
duced in [3]. A sponge is a function Sponge[f, pad, r] : {0, 1}∗ → {0, 1}∞ that
uses a fixed-length transformation (a function or a permutation) f (also called
internal function in this paper), a sponge-compliant padding rule pad and a
parameter bitrate r. Padding is a procedure used to prepare input in a form

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 5

suitable for the sponge construction. It increases the length of the input message
M so that the length of M‖pad[r](|M|) is a multiple of r. We will use specific
padding functions called sponge-compliant,

Definition 2. A padding rule is sponge-compliant if it never results in the
empty string and if it satisfies the following criterion:

∀n ≥ 0 ∀M,M′ ∈ {0, 1}∗ : M 6= M′ ⇒M‖pad[r](|M|) 6= M′‖pad[r](|M′|)‖0nr.

An example of such padding rule is pad10∗, which appends a single bit 1 followed
by the minimum number of bits 0 in order to get a multiple of r. A finite length
output can be obtained by truncating the theoretically infinite output to its first
` bits. For any message M ∈ {0, 1}∗, we denote the ` bit truncated output by
Z = Sponge[f, pad, r](M, `). A graphical description is shown in Figure 1.

The transformation f operates on r+ c bits, which we call the state. We call
the first r bits of the state the outer part and the last c bits the inner part. One
of the security parameters of the sponge construction is this inner part c of the
state, which is hidden from the user. The size of this inner part c is called the
capacity. For a state s ∈ {0, 1}r+c, we denote its outer part with an overline and
the inner part with a hat: s = (s, ŝ) with s ∈ {0, 1}r and ŝ ∈ {0, 1}c.

First, the state is initialized to zero. The input message is padded using
pad and cut into r-bit blocks. Then the sponge proceeds in two phases. In the
absorbing phase, the first r bits of the state (the outer part) are XORed with the
r-bit message blocks, interleaved with applications of transformation f . When
all message blocks are processed, the sponge switches to the squeezing phase. In
this phase, the outer part of the state is iteratively returned as output blocks,
again, interleaved with applications of f . The number of iterations is determined
by the requested number of output bits `. In particular, this means for ` ≤ r
that no additional applications of f are needed after the absorbing phase.

In the following we will assume oracle access to the sponge. It is important to
specify the cost of each query. Different queries can not always be equally costly,
since there might be both varying length input and varying length output. The
cost of applying Sponge is the number of evaluations of the internal function f .

So evaluating Sponge[f, pad10∗, r](M, `) costs
⌈
|M|+1
r

⌉
+
⌈
`
r

⌉
queries. This could

vary slightly if a different padding rule is used.

Collapsing hash functions. At EUROCRYPT 2016 [12], Unruh introduced
the notion of collapsing. This is a purely quantum notion, which is defined for a
function H as follows:

Definition 3. [12, Definition 23] For a function H and algorithms A,B, con-
sider the following games:

Game1 :(S,M, c)← A(1n), m←Mcomp(M),b← B(1n, S,M)

Game2 :(S,M, c)← A(1n), b← B(1n, S,M)

6 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

r

c

0

0

⊕

f

⊕

f f

⊕

pad(M)

M

f f

absorbing squeezing

b·c`

Z

. . .

Fig. 1: The sponge construction Z = Sponge[f, pad, r](M, `)

Here, S,M are quantum registers andMcomp(M) is a measurement of M in the
computational basis. We call an adversary (A,B) valid if P[H(m) = c] = 1 when
we run (S,M, c)← A(1n) and measure M in the computational basis as m.

A function H is collapsing iff for any valid quantum-polynomial-time adver-
sary (A,B), the difference AdvcollH (A,B) := |P[b = 1 : Game1]−P[b = 1 : Game2]|
is negligible. We call AdvcollH the collapsing advantage.

Two related results from [12], which we use are:

Theorem 2. [12, Theorem 38] Let Y be finite, and X ⊆ {0, 1}∗ (finite or infi-
nite). Then H←$Y

X is collapsing with advantage O(
√
q3/|Y |).

Lemma 1. [12, Lemma 25] A collapsing function is collision resistance.

Proof sketch: A tight reduction is given in [12]. The basic idea is to use two
colliding messages (m,m′) with H(m) = H(m′) = c, and initialize register M
with |ψm,m′〉 = 1√

2
(|m〉 + |m′〉). Algorithm B is able to detect a measurement

of register M with non-negligible probability, using the projective measurement
|ψm,m′〉 〈ψm,m′ |. Details are given in the original paper.

In another recent paper by Unruh [11], it is proven that the Merkle-D̊amgard
construction is collapsing when the compression function is. From this result and
Lemma 1, it follows that the Merkle-D̊amgard construction is collision resistant.

BHT algorithm For the attack on the sponge function, We base our results
on the quantum collision-finding algorithm developed by Brassard, Høyer and
Tapp [4]. This is proved optimal by Zhandry [14]. Consider a function f : X → Y ,
with X = {0, 1}n. The bht algorithm for finding a collision in f that makes q
queries, first creates a classical table L of pairs (x, f(x)) of size q

3 . Then the
algorithm uses Grover search (see Appendix B) to find an element of the do-
main that was not previously queried, but has the same image as some x ∈ L.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 7

That way, bht outputs a pair of colliding inputs. The performance of BHT was
investigated in [13,14], the results are as follows:

Theorem 3. For |Y | = N and |X| ∈ Ω(N2/3) the success probability of bht,

making q queries to f : X → Y is bounded by SuccqN (bht) ≤ 27 (q+2)3

N , where
the probability is taken over the random choice of f .

3 The security of Sponge hashes

At the end of this section, we will proof Theorem 1, which shows the collision
resistance of the sponge construction. We do this by showing that the sponge
construction is collapsing. This requires the internal mechanisms used in the
sponge to be collapsing, which we will show first.

Collapsing internal functions. The sponge construction uses an internal func-
tion f : {0, 1}r+c → {0, 1}r+c, which is either a random function fR or a random
permutation fπ. Since the function maps values in X = {0, 1}r+c into two spaces
Y0 = {0, 1}r and Y1 = {0, 1}c with |X| = |Y0| · |Y1|, we can think of this function
as two functions f0 and f1, mapping X to Y0 and Y1, respectively. In the follow-
ing, let Pi(f(x)) be the projection of f(x) onto Yi (this means Pi(f(x)) = fi(x))
for i ∈ {0, 1}.
Lemma 2. Let F ⊆ (Y0 × Y1)X be a family of quantum-secure functions, i.e.,
for any efficient quantum adversary A and security parameter n, there exists a
negligible function ε = ε(n) with

AdvQI
(Y0×Y1)X

(F ;A) := | P
O←$F

[AO(1n) = 1]− P
O←$(Y0×Y1)X

[AO(1n) = 1]| < ε

Let Fi def= {Pi(f)|f ∈ F}, i.e., the family of the projections of all elements of
F onto Yi, for i ∈ {0, 1}. Then for all efficient quantum adversaries Ai and all
i ∈ {0, 1}:

AdvQI
Y Xi

(F ;Ai) := | P
O←$Fi

[AOi (1n) = 1]− P
O←$Y

X
i

[AOi (1n) = 1]| ≤ ε

Proof. Suppose there exists an adversary Ai such that AdvQI
Y Xi

(F ;Ai) = µ > ε

for arbitrary but fixed i ∈ {0, 1}. We will now construct an oracle machineMAi
to distinguish f←$Fi from a random function with AdvQI

(Y0×Y1)X
(F ;MAi) > ε.

The oracle machine MAi is given black box access to O which is either
randomly drawn from F or Y X , and distinguishes the two cases as follows:

1. Construct function g : X → Yi by g(x) = Pi(O(x)).
2. Simulate Ai with function g, and output whatever Ai outputs.

It is easy to see that AdvQI
(Y0×Y1)X

(F ;MAi) = µ > ε. In particular, when MAi
is given access to an element of F , Ai will be given access to g ∈ Fi. When
MAi is given a random O←$Y

X , Ai will be given g = Pi(O) which is randomly
distributed in Y Xi . Hence, the advantage of MAi will be exactly µ. ut

8 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

Let FR ⊂ (Y0 × Y1)X denote the family of random functions and let Fπ ⊂
(Y0×Y1)X denote the case of a family of random permutations. When a random

function fR is used as the internal function, we have that AdvQI
(Y0×Y1)X

(FR;A) =

0 for any quantum adversary A, since the output distributions for these functions
are the same. This means that also for fR0 and fR1 as defined above we have

AdvQI
Y Xi

(FR;Ai) = 0 for any quantum adversary Ai.
For the case the internal function is a random permutation fπ, it is shown

in [14, Section 3.1] that the distinguishing advantage between a random per-

mutation and a random function is AdvQI
(Y0×Y1)X

(Fπ;A) ≤ ε ∈ O(q3/|X|) for

any A making q quantum queries. Therefore, using Lemma 2 we also have that
the parts fπ0 , f

π
1 have AdvQI

Y Xi
(Fπ;Ai) ≤ ε ∈ O(q3/|X|) for any Ai making q

quantum queries and i ∈ {0, 1}.
In [12], it was shown that a random oracle O : {0, 1}∗ → Y is collapsing

with advantage AdvcollO (A,B) = |P[Game1 : b = 1] − P[Game2 : b = 1]| ≤ δ ∈
O(
√
q3/|Y |), where the adversary (A,B) makes at most q queries. From this

result, the following lemma follows immediately:

Lemma 3. Let f : X → Y0 × Y1 either be a random function or a random
permutation with |X| = |Y0| · |Y1|. Let fi : X → Yi be given by Pi(f(x)), where
Pi is the projection onto Yi, for i ∈ {0, 1}. Then fi is collapsing for i ∈ {0, 1}
with advantage O(

√
q3/|Yi|) for any adversary (A,B) making at most q queries.

Proof. In the following, let (A,B) be any adversary making at most q queries.
From the fact that random oracles are collapsing (Theorem 2) and Lemma 2, it
follows straightforward that random functions fR0 , f

R
1 are collapsing with advan-

tage AdvcollfRi
(A,B) = |P[b = 1 : Game1]− P[b = 1 : Game2]| ≤ δRi ∈ O(

√
q3/|Yi|)

for i ∈ {0, 1}. The random permutations fπ0 , f
π
1 are indistinguishable from ran-

dom functions with advantage ε ∈ O(q3/|X|), so we have collapsing advantage
Advcollfπ (A,B) ≤ δRi + ε =: δπi ∈ O(

√
q3/|Yi|) as well. ut

Collapsing step function. For the proof of Theorem 1, we show that the
sponge construction is collapsing by using an hybrid argument. Each step in the
hybrid argument exploits the fact that the internal function used in the sponge
is collapsing. However, for the flow of the proof it is easier to look at a different

function, which we call stepf . To make this more formal: for f(x) = (f(x), f̂(x)),

we define stepf (x, y) := f(x)⊕ (y||0) = (f(x)⊕ y, f̂(x)). In the proof below, we
only use the second way of writing stepf (x, y), since this underlines the fact that

we have two functions f(x) and f̂(x). The next lemma shows that stepf (x, y) is

collapsing if f̂(x) is collapsing.

Lemma 4. Let X = Y × Ŷ , f : X → X be given by two functions f(x) =

(f(x), f̂(x)), with f(x) : X → Y , and f̂(x) : X → Ŷ , for x ∈ X. Define

stepf : X × Y → X as stepf (x, y) := f(x)⊕ (y||0) = (f(x)⊕ y, f̂(x)). Then if f̂
is collapsing with advantage ε, then also stepf is collapsing with advantage ε.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 9

The proof is given in Appendix D.

Note that the above Lemma does not hold for f(x) instead of f̂(x). To be
a valid adversary, MA has to construct a register M and a register c, where
register M contains messages x such that f(x) = c with probability 1. However,
from adversary A it receives messages |x, y〉 from register M∗ = (X∗, Y ∗), such
that f(x)⊕ y = c. In particular, this could mean that |x, y〉 is in a superposition
of entangled states, satisfying f(x) = c ⊕ y. If |x, y〉 is in a superposition, then
possibly f(x) is also in a superposition of states. ButMA should give a fixed out-
come c (with probability 1) for f(x). The only possible way is to measure register
Y ∗, but this measurement (possibly) violates any collapsing advantage of (A,B)
for stepf . Hence, it is not possible to construct a valid adversary (MA,MB) for

f(x), that communicates with (A,B).

Collapsing sponges. Recall that a sponge is denoted by Sponge[f, pad, r](M, `)
with capacity c, where f : {0, 1}r+c → {0, 1}r+c is the internal permutation (or
function), pad is the sponge-compliant padding rule, r is the bitrate, M ∈ {0, 1}∗
is the message and ` is the fixed output length. For simplicity we take ` = r in the
following Lemma. We handle cases ` < r and ` > r separately, afterwards. This
simplified sponge construction will be denoted by Sf and is defined as follows:

Definition 4. We define the internal iteration of the sponge as If : ({0, 1}r)∗ →
({0, 1}r+c), with message length divisible by r, If (λ) := 0 for the empty word λ,
and If (m||m′) := f(If (m) ⊕ (m′||0)), for m′ ∈ {0, 1}r. The simplified sponge

function is then defined by Sf : ({0, 1}r)∗ → ({0, 1}r), with Sf (m) = If (m),

where If (m) denotes the outer part of If (m). We assume m = pad(M) is the
output of a sponge-compliant padding function.

We omit the term ”simplified” below. Our notation and proof technique follows
Unruh’s proof for the collapsing property of the Merkle-Damg̊ard (M-D) con-
struction in [11, Section 4]. However, the proof for the sponge construction turns
out to be more complicated. The main reason being the necessity to consider the

two parts of f : both f(x) and f̂(x) need to be collapsing. There are two reasons
for this. First, the output does not allow to compute the full final state of the
function: only the outer part of the final state is given as output of the sponge.
The second reason is that in contrast to M-D, in a sponge, message blocks are
not used as direct input to the internal function f . These message blocks are
XORed with the outer part, which makes it more difficult to analyze. This even
requires a second property of f , which is naturally fulfilled by random functions
(or permutations):

Definition 5. A family of functions F = {f : Xn → {0, 1}n} is zero-preimage
resistant if for any efficient quantum adversary A there exists a negligible ε(n)
such that

SucczpreA (F) := P
[
f←$F , x← Af (1n) : f(x) = 0

]
< ε(n)

In the definition, we are giving the adversary oracle access to f as we are con-
cerned with zero-preimage resistance of perfectly random functions. In a defi-

10 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

nition for efficient function families (i.e., with polynomial-size descriptions), A
would just be given a description of f .

Lemma 5. Given a security parameter n ∈ N, r, c ∈ poly(n), the success proba-
bility of any q-query quantum adversary against the zero-preimage resistance of
the family of random functions F = {f : {0, 1}r+c → {0, 1}c} is upper bounded
by

SucczpreA (F) ≤ O(q2/2c) .

We omit a detailed proof of Lemma 5 as it can be obtained by following the
proof for quantum preimage resistance of random functions in [9].

We need this property later in the proof, because using a f̂ -pre-image of zero,
one can easily construct a collision for the sponge: given an input x ∈ {0, 1}r
such that f̂(x||0) = 0, a collision of the sponge is given by two messages m1 =
(x||y ⊕ x′) and m2 = x′ for any random x′ ∈ {0, 1}r and y = f(x). Note that
the above construction does not give a collision for the internal function f , but
it does give a collision for Sf .

Lemma 6. Let P ⊂ ({0, 1}r)∗ be the set of padded messages for some sponge-
compliant padding with padded messages m ∈ P such that T ≥ |m| ≥ 2 for some
upper bound T . If the internal function of the sponge f : {0, 1}r+c → {0, 1}r+c
is f(x) = (f(x), f̂(x)) where both outer part f(x) : {0, 1}r+c → {0, 1}r and

inner part f̂(x) : {0, 1}r+c → {0, 1}c are collapsing with advantages ε, ε̂ respec-

tively, and furthermore f̂ is zero-pre-image resistant with advantage εz.Then Sf
is collapsing on P with advantage maxp∈[0,1](ε+ (T − 1)(p2

√
εz + (1− p)ε̂)) .

Proof sketch: We have to show that if an adversary (A,B) outputs classical
c = Sf (m), we can measure register M without the adversary noticing. We show
this developing hybrids that successively measure more and more of the message
register M . Afterwards we upper bound the advantage of (A,B) in the collapsing
game by upper bounding the success probability of (A,B) in distinguishing any
two consecutive hybrids.

The output of the sponge is simply the outer part of If (m). Hence, we can
upper bound the advantage of detecting the measurement of the last state of
the sponge using the collapsing property of f . For all the remaining hybrids, we
can upper bound the distinguishing advantage using the collapsing property of
stepf and the zero-preimage resistance of f̂ . The intuition is that a successful
distinguisher either uses a superposition of messages where the i-th blocks of
some of the messages are different (which then would allow to break the collaps-
ing property of stepf) or of some messages of length i and some other messages
that are longer (which allows to extract a zero-preimage).

The full proof is given in Appendix A.

In Appendix C we give a step-by-step example with |m| = 3, with Figures
to explain the meanings of partiali(m) and inputi(m). We hope this will help
the reader to understand the formal proof given in Appendix A.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 11

3.1 The collision resistance of SHA3

In the following we use Lemma 6 to derive our main results. But first we still
have to show that Sponge[f, pad, r](M, `) is also collapsing for r 6= `.

Corollary 1. Let Sponge[f, pad, r](M, `) be a sponge construction with capac-
ity c. Then, the collapsing advantage of any valid, efficient quantum adversary
(A,B) against Sponge, making no more than q queries, is upper bounded by
AdvcollSponge(A,B) ∈ O(

√
q3 ·max(2−`, 2−r, 2−c)).

Proof. In the following, let (A,B) by any adversary making at most q queries.
We have handled the case where ` = r in Lemma 6. By plugging values ε ∈
O(
√
q3/2r) and ε̂ ∈ O(

√
q3/2c) for the collapsing of f, f̂ respectively (using

Lemma 3), and εz ∈ O(q2/2c) (using Lemma 5) into the bound of Lemma 6, we
derive at a collapsing advantage ofO(

√
q3/2r+

√
q3/2c+

√
q2/2c) = O(

√
q3/2r+√

q3/2c) for a sponge construction Sponge[f, pad, r](M, r) with capacity c.
We denote Z = Sponge[f, pad, r](M, `) to be the output of the sponge con-

struction with ` > r. Since the ` > r output bits are truncated after the squeez-
ing phase, we have that the first r output bits of Z are equal to Sf (m) where
m = pad(M) (see Figure 1). Thus, we can simply ignore the remaining ` − r
output bits and use the same arguments as in Lemma 6 to obtain the bound
O(
√
q3/2r +

√
q3/2c).

When ` < r, we only have a difference with the proof of Lemma 6 in
the first step of the hybrid argument. Defining f` : {0, 1}r+c → {0, 1}` by
f`(x) = P`(f(x)), where P` is the projection onto the first ` bits, we can
apply (a slightly modified version of) Lemma 3 to get a collapsing advan-
tage of ε` := Advcoll

f`
(A,B) = O(

√
q3/2`) for f`. The remaining part of the

proof of Lemma 6 remains the same, but in the final result changing ε to ε`.
This means the collapsing advantage in this case will be upper-bounded by
AdvcollSponge(A,B) ∈ O(

√
q3/2` +

√
q3/2c).

Lastly, note that in Lemma 4 we required |m| ≥ 2, but we drop this restriction
in here. The collapsing case for |m| = 1 is trivial, as it follows from the collapsing
of f and Sf (m) = f(m||0) where Sf is defined as in Lemma 6.

Depending on the sizes of `, r and c, we get the result in the corollary. ut
We are now ready to prove Theorem 1:

Theorem 1. Let Sponge[f, pad, r](M, `) be a sponge construction with capac-
ity c. Any quantum collision finder A making at most q queries, has a success
probability of at most O(

√
q3 ·max(2−`, 2−r, 2−c)).

Proof. The proof follows immediately from Corollary 1 and the tight reduction
of collision resistance to collapsing(Lemma 1).

Given Theorem 1, we immediately obtain the following corollary on quantum
second-preimage resistance.

Corollary 2. Let Sponge[f, pad, r](M, `) be a sponge construction with capac-
ity c. Any quantum second-preimage finder A making at most q queries, has a
success probability of at most O(

√
q3 ·max(2−`, 2−r, 2−c)).

12 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

The corollary follows from Theorem 1 as any second-preimage finder A can be
used as collision finder. The reduction just runs A on a random domain element
x and returns x together with A’s output.

With slightly more effort, we also obtain the following corollary on quantum
preimage resistance.

Corollary 3. Let Sponge[f, pad, r](M, `) be a sponge construction with capacity
c. Any quantum preimage finder A making at most q queries, has a success
probability of at most O(

√
q3 ·max(2−`, 2−r, 2−c)).

The corollary follows from Theorem 1 as any preimage finder A can be used
as collision finder. The reduction takes a random domain element x, runs A on
Sf (x) and returns x together with A’s output. A sponge function compresses
inputs of length up to Tr bits to an intermediate state of r+ c bits. For all prac-
tical parameters, Tr � (r+ c) and a sponge is classically indistinguishable from
a random function. Hence, every image has an exponential number of preimages.
Therefore, the probability that A returns x is negligible.

4 Quantum collision attack

In this section we present our quantum collision attack against random sponges,
i.e. sponges where the internal function is a truly random function or permuta-
tion. Our attack makes heavy use of the bht algorithm. There are two possible
approaches to find collisions in a sponge. One is a generic search that treats the
Sponge as a black box. The other exploits the internal structure of sponges. In
the former case one can just apply the plain bht algorithm, which will succeed

with probability O(q
3

2`
), making q queries, as stated in Theorem 3, where ` is the

output length of the Sponge.
When taking the internal structure into account, it was already observed

in [3] that an inner-collision can be transformed into a state collision. This,
in turn, yields a full collision for Sponge s of any length. Hence, the second
way of attacking Sponge s is via an inner-collision attack. Asymptotically, an

inner-collision finder succeeds with probability O(q
3

2c), as there are 2c possible
inner-states. A challenge is to bypass the fact that the adversary has no access to
the inner-state. In Appendix B we present a subroutine detect that allows to
check if two messages lead to an inner-collision. In the same section, we present

an algorithm that achieves the success probability of O(q
3

2c) without knowledge
of the value of the inner-state.

Theorem 4. There exists a quantum collision finder against random Sponges
with output length ` that, making q queries to the Sponge, succeeds with proba-
bility O(q3 ·max(2−`, 2−c)).

The Theorem follows immediately from the existence of the two different
attack strategies, choosing the more efficient strategy depending on the output
length.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 13

References

1. Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent,
and John Schanck. Estimating the cost of generic quantum pre-image attacks
on sha-2 and sha-3. Cryptology ePrint Archive, Report 2016/992, 2016. http:

//eprint.iacr.org/2016/992.
2. Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.

Strengths and weaknesses of quantum computing. SIAM journal on Computing,
26(5):1510–1523, 1997.

3. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. ECRYPT Hash Workshop, 2007.

4. Gilles Brassard, Peter Hoyer, and Alain Tapp. Quantum algorithm for the collision
problem. arXiv preprint quant-ph/9705002, 1997.

5. Anthony Chefles. Quantum state discrimination. Contemporary Physics,
41(6):401–424, 2000.

6. Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an Efficient and Provable
Collision-Resistant Hash Function, pages 165–182. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

7. Lov K Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 212–219. ACM, 1996.

8. Carl W Helstrom. Quantum detection and estimation theory. Journal of Statistical
Physics, 1(2):231–252, 1969.

9. Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating Multi-target Attacks
in Hash-Based Signatures, pages 387–416. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2016.

10. Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via
quantum walk. SIAM Journal on Computing, 40(1):142–164, 2011.

11. Dominique Unruh. Collapse-binding quantum commitments without random or-
acles. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part II, volume 10032 of Lecture Notes in Computer Science,
pages 166–195, 2016.

12. Dominique Unruh. Computationally binding quantum commitments. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 497–527. Springer, 2016.

13. Mark Zhandry. How to construct quantum random functions. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick,
NJ, USA, October 20-23, 2012, pages 679–687. IEEE Computer Society, 2012.

14. Mark Zhandry. A note on the quantum collision and set equality problems. Quan-
tum Information and Computation, 15(7&8), 2015.

15. Mark Zhandry. Secure identity-based encryption in the quantum random oracle
model. International Journal of Quantum Information, 13(4), 2015.

http://eprint.iacr.org/2016/992
http://eprint.iacr.org/2016/992

14 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

A Proof of Lemma 6

Here we will formally prove Lemma 6, using a hybrid argument.

Proof. Assume a quantum-polynomial-time adversary (A,B) that is valid on P
for the sponge function Sf .Let Game1 and Game2 be the collapsing games from
Definition 3 for adversary (A,B). Let

ε := AdvcollSf (A,B) =
∣∣P[b = 1 : Game1]− P[b = 1 : Game2]

∣∣.
In the following we upper bound ε.

As the padded message space P is the output of a sponge-compliant padding,
it cannot contain the empty word. For a multi-block message m ∈ ({0, 1}r)∗, let
from now on |m| denote the number of r-bit blocks in m (so the bit-length of m
is r|m|), overloading notation. Let mi be the i-th block of m. Let m−i denote
the i-th block from the end (so m−1 is the last message block). Let m≥−i denote
all the blocks in m starting from m−i (so m≥−i consists of the last i blocks of
m). Let m<−i denote the blocks before m−i (so m = m<−i||m≥−i for i ≤ |m|).
See Figure 2 for an example, showing the meaning of these terms.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m<−3 m≥−3

Fig. 2: Example of 10-block message m, showing the meaning of m<−3 and m≥−3

Let T be a (polynomial) upper bound on the number of blocks for |m| (so
|m| ≤ T). For a message m and −1 ≤ i ≤ T , we define:

partiali(m) :=


(⊥,⊥,m) (if |m| ≤ i)
(If (m<−(i+1))⊕ (m−(i+1)||0c),m−i,m>−i) (if 0 < i < |m|)
(If (m<−1)⊕ (m−1||0c),⊥,⊥) (if i = 0)

(Sf (m),⊥,⊥) (if i = −1)

We use partiali to define partial measurements of the message register output by
A. The intuition behind partiali(m) is the following. The last two elements show
the message blocks that are not yet processed by the sponge (none in the case of
partial−1(m) and partial0(m) and all in the case of partial|m|(m)). If the second
element is non-empty, this element would be the next block to be processed by
the sponge. The first element in partiali(m) shows the (intermediate) state of
the sponge, which will be input to internal function f for the next iteration.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 15

Note that partiali(m) always contains enough information to compute If (m)
and therefore also Sf (m).

We need one more function inputi(m), which is basically the necessary in-
formation to compute the first element in partiali−1 for 0 ≤ i ≤ |m|:

inputi(m) :=


(⊥,⊥) (if |m| ≤ i)
(If (m<−(i+1))⊕ (m−(i+1)||0c),m−i) (if 0 < i < |m|)
(If (m<−1)⊕ (m−1||0c),⊥) (if i = 0)

Note that for 0 ≤ i < |m|, inputi(m) is equal to the first two elements of
partiali(m). The idea is that inputi(m) will be used as input to collapsing func-
tions, which will then allow us to (basically) map the elements in partiali(m)
to the elements in partiali+1(m). We will now make this formal by deriving the
following facts for inputi and partiali from their definition:

Fact 1 input|m|−1(m) = (m1||0c,m2)

From If (m<−|m|) = If (λ) = 0c, the fact follows straightforward. What this
Fact will mean to our proof, is that in the (|m|−1)’th hybrid argument (defined
below), we will measure the last two message blocks at the same time.

Fact 2 If partial−1(m) = (h′−1,⊥,⊥) and partial0(m) = (h′0,⊥,⊥) then

f(input0(m)) = f(h′0) = Sf (m) = h′−1

Note that we slightly abused notation here, as we ignored the second element
⊥ of input0(m), i.e., f (and below also f) only acts on the first element of
input0(m). It is easy to see that m must be a message such that the output
of the sponge is Sf (m) = h′−1. Also, input0(m) ∈ {0, 1}r+c must be such that

f(input0(m)) = If (m). But this means that if we would apply f to input0(m),
we get the sponge outcome: f(input0(m)) = h′−1 = Sf (m). Lastly, as also
mentioned above, we defined input0(m) in such a way that input0(m) = h′0.

Using stepf (x, y) := f(x)⊕ (y||0c) = (f(x)⊕ y, f̂(x)) as defined in Lemma 4,
we now have the following facts for partiali.

Fact 3 For 0 ≤ i < |m| − 1, let partiali(m) = (h′i, si, s
′
i). Then

stepf (inputi+1(m)) = stepf (hi+1, si+1) = h′i

Since 1 ≤ i+ 1, we have

stepf (inputi+1(m)) = stepf (If (m<−(i+2))⊕ (m−(i+2)||0c),m−(i+1))

= f(If (m<−(i+2))⊕ (m−(i+2)||0c))⊕ (m−(i+1)||0c)
= If (m<−(i+1))⊕ (m−(i+1)||0c) = h′i

Fact 4 From (partiali(m), inputi+1(m)), one can compute partiali+1(m) and
vice versa.

16 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

Note that the last element of partiali(m) is also contained in the last element of
partiali+1(m). The missing elements are contained in inputi+1(m). So basically,
partiali(m) interpolates between knowledge of only Sf (m) (case i = −1), and
full knowledge of m (case i = T − 1). We will make this formal by defining the
following hybrid games, for i = −1, . . . , T − 1:

Hybi :(S,M, c)← A(1n) (1)

(h′, s, s′)←Mpartiali(M) (2)

b← B(S,M) (3)

Here, Mpartiali is Mf with f(m) = partiali(m), as defined in Section 2. By
construction of function partiali, we have

P[b = 1 : Hyb−1] = P[b = 1 : Game2]

since in Hyb−1, the measurement (h′,⊥,⊥)←Mpartial−1
(M) does not have any

influence: in this case, h′ has a determined outcome, namely h′ = h.

We also have

P[b = 1 : HybT−1] = P[b = 1 : Game1]

since (m1||0c,m2,m>2) ← MpartialT−1
(M) fully measures register M in the

computational basis3, which would also be the case in Game1. So this means

ε =
∣∣P[b = 1 : HybT−1]− P[b = 1 : Hyb−1]

∣∣ (4)

A standard hybrid argument shows that we can now bound ε by bounding the
success probability of (A,B) in distinguishing any two consecutive hybrids. To-
wards bounding these distinguishing advantages, we now define oracle machines
(MAi ,MB) for i = −1, . . . , T − 1 that use (A,B)’s distinguishing advantage to
either win some collapsing game or find a preimage of zero.

Let Uinputi refer to the unitary transformation |x〉 |y〉 → |x〉 |y⊕ inputi(x)〉.
We define the oracle machines (MAi ,MB) for i = −1, . . . , T − 1 in Algorithm 1
and Algorithm 2.

3 This is the measurement outcome for messages of length T , for shorter messages the
whole measured message is already in the last register.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 17

Algorithm 1 Algorithm MAi with −1 ≤ i ≤ T − 1

Input: Security parameter n, index −1 ≤ i ≤ T − 1.
Output: Valid quantum registers (S,M, c) or zero-preimage x.
1: (S∗,M∗, h∗)← A(1n)
2: (h′, s, s′)←Mpartiali(M

∗)
3: If h′ = ⊥, abort
4: If ĥ′ = 0c:
5: (h′i+1, si+1)←Minputi+1

(M∗)
6: Output h′i+1

7: If 0 ≤ i ≤ T − 1:
8: Initialize M with |0r+c〉|0r〉
9: Else if i = −1:

10: Initialize M with |0r+c〉
11: Apply Uinputi+1

to M∗,M .
12: Set c := h′

13: Let S = S∗,M∗, h′, i
14: Return (S,M, c)

Algorithm 2 Algorithm MB
Input: Security parameter n, quantum registers (S,M, c)
Output: Bit b.
1: Unpack S, giving S∗,M∗, h′, i
2: Apply Uinputi+1

to M∗,M
3: Run b← B(S∗,M∗)
4: Return b.

We now have the following claims for adversary (MAi ,MB). We begin with
showing that the advantage of (A,B) in distinguishing Hyb−1 from Hyb0 is
bounded by the collapsing advantage of any efficient quantum adversary against
f̄ . This is done in the first four claims using the properties of (MA−1,MB).

Claim 1 (MA−1,MB) is a valid adversary for f

We show this claim: after the measurement (h′,⊥,⊥) ← Mpartial−1
(M∗), we

have that M∗ contains a superposition of messages |m〉 with partial−1(m) =
(h′,⊥,⊥). So by Fact 2, M∗ contains a superposition of messages |m〉 such that
f(input0(m)) = h′ = c. Now algorithm MA−1 initializes M with |0r+c〉 and
applies Uinput0 to M∗,M . Thus after that, M is in a superposition of messages

|m〉 such that f(m) = c. Concluding, (MA−1,MB) is a valid adversary for f .

Let Game
M−1

1 denote Game1 from Definition 3, but with adversary (MA−1,MB)

and function f , analogous for Game
M−1

2 .

Claim 2 P[b = 1 : Game
M−1

2] = P[b = 1 : Hyb−1].

18 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

We show this claim: in Game
M−1

2 no measurement occurs between Uinput0 by
MA−1 and the invocation of Uinput0 by MB.Thus, these two invocations cancel
each other out. So only the invocations of A,Mpartial−1

(M∗) and B remain. This
is exactly Hyb−1.

Claim 3 P[b = 1 : Game
M−1

1] = P[b = 1 : Hyb0].

In Game
M−1

1 , M is initialized with |0r+c〉. Uinput0 is applied to M∗,M . M
is measured in the computational basis (with outcome m). Uinput0 is applied to
M∗,M . Then M is discarded. This is equivalent to executing m←Minput0(M∗).

Thus, in Game
M−1

1 , both (h′, s, s′) ← Mpartial−1
(M∗) and m ← Minput0(M∗)

were executed. By Fact 4, this is equivalent to executing (h′, s, s′)←Mpartial0(M∗).
This is exactly Hyb0.

From Claim 2 and Claim 3 and by assumption of this Lemma, we get:

Claim 4
∣∣P[b = 1 : Hyb0]− P[b = 1 : Hyb−1]

∣∣ ≤ ε.
Let µi :=

∣∣P[b = 1 : Hybi+1] − P[b = 1 : Hybi]
∣∣ for i ≥ 0 be the advantage

of adversary (A,B) in distinguishing games Hybi and Hybi+1. Next, we are up-
per bounding this advantage for 0 ≤ i < T . This is done analyzing the success
probability of (MAi ,MB) for 0 ≤ i < T . Note that whenever the case h′ = ⊥
in line 3 of MAi occurs, the two hybrids Hybi and Hybi+1 are perfectly indis-
tinguishable as applyingMpartiali+1

(M∗) has no effect at all. Hence, these cases
cannot contribute to (A,B)’s success probability and we can abort. Therefore,
the distinguishing advantage µi must come from cases where h′ 6= ⊥. We can
split these cases into two depending on the value of ĥ′. In the following, we denote
by µ′i the advantage of (A,B) in distinguishing Hybi and Hybi+1 conditioned on

ĥ′ = 0c and by µ′′i the distinguishing advantage conditioned on ĥ′ 6= 0c. These
two probabilities are related by the following claim.

Claim 5 There exists a p ∈ [0, 1] such that

µi = pµ′i + (1− p)µ′′i .

As the conditioning is on a binary event such a p must exist.
Now, we first develop a bound on µ′′i in the next four claims.

Claim 6 (MAi ,MB) is a valid adversary for function stepf for 0 ≤ i ≤ T − 1,

conditioned on ĥ′ 6= 0c.

After measurement (h′, s, s′) ←Mpartiali(M
∗), we have that M∗ contains a

superposition of messages |m〉 with partiali(m) = (h′, s, s′). Per assumption we

got ĥ′ 6= 0c. So by Fact 4, M∗ contains a superposition of messages |m〉 such
that stepf (inputi+1(m)) = h′ = c. Now MAi initializes M with |0r+c〉|0r〉 and
applies inputi+1 to M∗,M . Thus after that, M is in a superposition of |x, y〉
such that stepf (x, y) = c. This means (MAi ,MB) is a valid adversary for stepf .

For 0 ≤ i ≤ T − 1, let GameMi
1 denote Game1 of Definition 3, but with

adversary (MAi ,MB) and function stepf . Analogous for GameMi
2 .

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 19

Claim 7 P[b = 1 : GameMi
2] = P[b = 1 : Hybi], conditioned on ĥ′ 6= 0c.

In GameMi
2 , no measurement occurs between the two invocations of Uinputi+1

by

MAi andMB, so these two invocations cancel out. Thus only the invocations of
A,Mpartiali and B remain. This is exactly Hybi.

Claim 8 P[b = 1 : GameMi
1] = P[b = 1 : Hybi+1], conditioned on ĥ′ 6= 0c.

We show this claim: note that in GameMi
1 , after the measurement Mpartiali , on

the registers M∗,M we have the following sequence of operations. As ĥ′ 6= 0c per
assumption, M is initialized with |0r+c〉|0r〉. Uinputi+1

is applied to M∗,M . M
is measured in the computational basis (with outcome m). Uinputi+1

is applied
to M∗,M . M is discarded. This is equivalent to executing m←Minputi+1

(M∗).
So Mpartiali(M

∗) and Minputi+1
(M∗) were executed. By Fact 4, this is the

same as executingMpartiali+1
(M∗). This means GameMi

1 is equivalent to Hybi+1,
which is the claim.

From Claims 6, 7, and 8, Lemma 4 and the assumptions of this Lemma, we
get:

Claim 9 µ′′i ≤ Advcollstepf
(MAi ,MB) ≤ ε̂.

Before we can put things together, we still have to upper bound µ′i. This is
done in the next claim.

To upper bound µ′i we have to analyze the case where ĥ′ = 0c. From the
definition of inputi+1 we know that applying Uinputi+1

to M∗, |0r+c〉|0r〉 leads to
a superposition of messages in the second register of the following form: Every
message in the superposition is either ⊥ (if the message only consisted of i

blocks) or some mj such that f̂(mj) = 0c, i.e., a preimage of zero. It remains
to show that executing Minputi+1

(M∗) outputs one of the mj and not ⊥ with a
probability close to µ′i.

Claim 10 µ′i ≤ 2
√
εz.

We can see the success probability µ′i of the adversary (MAi ,MB) in dis-
tinguishing Game2 from Game1 as quantum state-discrimanation problem be-
tween the two states ρ0 and ρ1, where ρ0 is the superposition of messages
|m〉 in M∗ after measuring partiali and ρ1 is the superposition in M∗ after
measuring partiali+1. Notice that ρ0 = |m〉 〈m| is a pure state, and ρ1 =∑

mj
|αmj

|2 |mj〉 〈mj | is a mixture where some additional measurement in the

computational basis has been performed on ρ0. The success probability µ′i of the
adversary is upper bounded by the maximum success probability to distinguish
ρ0 from ρ1 which by the Helström bound [8] is at most 1

2 (1+ 1
2‖ρ0−ρ1‖1), where

1
2‖ρ0 − ρ1‖1 is the trace distance between the two states. We use the triangle
inequality to derive

µ′i ≤
1

2
‖ρ0 − ρ1‖1 ≤

∑
mj

|αmj
|2 1

2
‖ρ0 − |mj〉 〈mj | ‖1 =

∑
mj

|αmj
|2
√

1− |αmj
|2,

(5)

20 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

where in the last equality, we used that the trace distance of two pure states
|m1〉 and α |m1〉+ β |m2〉 equals

√
1− |α|2 [5].

Let ms be the message (of length i) for which applying inputi+1 will result
in ⊥. Note that there can be at most a single such message, as the adversary has
already applied partiali and thereby measured the whole message ms. For all
other messages mj 6= ms, our adversary will find a preimage of zero by applying
inputi+1, and hence the sum of their squared amplitudes

∑
mj 6=ms

|αmj
|2 is at

most εz. For the same reason, we have that
√

1− |αms
|2 =

√∑
mj 6=ms

|αmj
|2 ≤

√
εz. Continuing (5), we get

µ′i ≤
∑
mj

|αmj
|2
√

1− |αmj
|2

= |αms
|2
√

1− |αms
|2 +

∑
mj 6=ms

|αmj
|2
√

1− |αmj
|2

≤ |αms
|2√εz +

∑
mj 6=ms

|αmj
|2

≤ √εz + εz ≤ 2
√
εz .

Putting Claims 9 and 10 together with Claim 5 we obtain

Claim 11 There exists a p ∈ [0, 1] such that

µi ≤ p2
√
εz + (1− p)ε̂.

Thus, using Claims 4 and 11, we get:

ε
(4)
=
∣∣P[b = 1 : Hyb−1]− P[b = 1 : HybT−1]

∣∣
=

∣∣∣∣∣
T−2∑
i=−1

P[b = 1 : Hybi]−
T−2∑
i=−1

P[b = 1 : Hybi+1]

∣∣∣∣∣
=
∣∣∣P[b = 1 : Hyb−1]− P[b = 1 : Hyb0] +

T−2∑
i=0

(P[b = 1 : Hybi]− P[b = 1 : Hybi+1])
∣∣∣

=
∣∣∣ε+

T−2∑
i=0

(P[b = 1 : GameMi
2]− P[b = 1 : GameMi

1])
∣∣∣

≤ |ε+ (T − 1)(2p
√
εz + (1− p)ε̂)| = ε+ (T − 1)(2p

√
εz + (1− p)ε̂)

This is exactly the claimed bound and thereby concludes the proof. ut

B Quantum Attack

In what follows we present several observations that will help us better under-
stand the structure of the sponge construction. Our goal is to define an algorithm

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 21

that would output a collision in a sponge. First we give a proper definition of
bht algorithm.

A crucial subroutine of this algorithm is Grover’s search algorithm [7] grover,
proven optimal in [2]. We use the notation introduced by [10] to clarify the cal-
culation of complexity of introduced algorithms. Given a state space Ω and a
marked set M we define a function H : Ω → {0, 1},

H(M) =

{
1 if M ∈M
0 otherwise

. (6)

The algorithm additionally needs a sampling distribution π on Ω and a lower
bound on probability that a random element is marked ε ≤ ∑M∈M π(M). For

a uniform distribution ε = |M |
|Ω| . The algorithm searches the domain of H for

elements that map to 1. Doing so it runs sampling subroutine to sample M from
Ω and checking subroutine to check if M ∈ M . Cost of those subroutines are
S and C respectively. Number of runs necessary for the algorithm to succeed is
1
ε and so complexity is O

(
1√
ε
(S + C)

)
, where the square root comes from the

”quantumness” of the algorithm.

We will focus on the average case instead of the worst-case scenario, meaning
that performance of an algorithm making q queries will be measured in terms of
the success probability Succq of the algorithm after q queries to H. Nevertheless
we will keep track of cost of subroutines by using qC := q(S + C). In case of
grover, the probability is taken over the random choice of a function H that
marks an element with probability 1

N .

Definition 6. Let F := {H : {0, 1}n → {0, 1}} be a set of Boolean functions.
D1/N is a family of distributions on F such that H ← D1/N outputs 1 with

probability 1
N . Then

Succq1/N (grover) := PH←D1/N
[H(M) = 1 : M← groverH(.)]. (7)

Grover’s algorithm, searching for a marked element in a set of size N has
success probability given by [9,15]:

Theorem 5. [9, Theorem 1] Succq1/N (grover) ≤ 8 (q+1)2

N holds for any quan-

tum algorithm grover with q queries.

Now we are ready to describe the bht algorithm.

22 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

Algorithm 3 bhtF

Require: F : X → Y , q ≥ 0.
Output: (x0, x1)
1: Create a random subset x ⊆ X of cardinality q

3
and query all its elements to F ,

write the pairs (x, F (x)) in a table L.
2: Sort L according to the second entry in each item of L.
3: Check if L contains a collision, that is, check if there exist two entries in L

(x0, F (x0)) and (x1, F (x1)) such that x0 6= x1 and F (x0) = F (x1). If so go to
step 6.

4: Run groverH making 2q
3

queries, where H(x) = 1 if there exists x0 ∈ x such that
(x0, F (x)) ∈ L but x1 6= x0. grover outputs some x1.

5: Find (x0, F (x1)) ∈ L.
6: Return the collision (x0, x1).

Complexity of the classical part, i.e. from Step 1 to Step 3 is O
(
q
3 (S + C)

)
,

cost S is constant, each sample is just a single query to F . Note however that
for some cases, like in Sponge , the cost of checking C might not be, we will
investigate that in the next section. For now though lets say that C is essentially
constant as it corresponds to looking through a sorted database. Complexity of
the quantum part comes from grover. It depends on the size of the created

database L. Probability that x is marked ε = q/3
|Y | , as F is random each element

has the same probability to yield a collision with a member of x. Total complexity
is

O
(

(
q

3
+

1√
ε

)(S + C)

)
. (8)

Optimization over q gives us complexity of order O(|Y |1/3) for q ∈ O(|Y |1/3).
Now that we know what exact steps we want to do we will provide the reader with
formal construction of the subroutine allowing us to look for an inner-collision.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 23

B.1 Detecting an inner collision

Formal definition of the construction is provided as Algorithm 4. |P |r signifies
number of blocks of length r in P , Pi is the i-th block of P and bZc` are the
first ` bits of Z.

Algorithm 4 Sponge [f, pad, r]

Input: M ∈ {0, 1}∗, ` ≥ 0.
Output: Z ∈ {0, 1}l
1: P := M‖pad[r](|M|), and s := 0r+c.
2: For i = 0 to |P |r − 1 do:
3: s = s⊕ (Pi‖0c)
4: s = f(s)
5: Z := bscr
6: While |Z|rr < ` do
7: s = f(s)
8: Z = Z‖bscr
9: Return bZc`

The Algorithm 5 is the absorbing part of a sponge that outputs the whole
state of f , but does not apply the padding rule of the sponge.

Algorithm 5 absorb[f, r]

Input: P ∈ {0, 1}∗.
Output: s ∈ {0, 1}r+c

1: s := 0r+c.
2: For i = 0 to |P |r − 1 do:
3: s = s⊕ (Pi‖0c)
4: s = f(s)
5: Return s.

With above definitions at hand we will focus on the problem of detecting
inner-collisions without having access to the value of ŝ. A pair of messages M1 6=
M2 are inner-colliding if

̂absorb(M1‖pad(|M1|)) = ̂absorb(M2‖pad(|M2|)). (9)

A first problem we encounter is not knowing what is the actual value of the
inner state. But as shown in [3] inner collision can easily be transformed into a
state collision which is visible to the user. A way to check whether or not two mes-
sages are inner-colliding without access to the inner part of the state is described
in Algorithm 6. In the following we will abbreviate Sponge[f, pad, r](M, `) with

24 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

Sponge(M, `r), assuming without loss of generality that user always asks for
output of length which is a multiple of r.

Algorithm 6 detectSponge

Input: M1,M2 ∈ {0, 1}∗, t > 0
Output: b ∈ {0, 1}
1: Query Sponge(M1, 1) and Sponge(M2, 1).
2: Calculate a1, a2 ∈ {0, 1}r, such that

Sponge(M1, 1)⊕ a1 = Sponge(M2, 1)⊕ a2. (10)

3: Query

Z1 := Sponge(M1‖pad[r](|M1|)‖a1, t),
Z2 := Sponge(M2‖pad[r](|M2|)‖a2, t).

4: If Z1 = Z2 set b = 1, else set b = 0.
5: Return b.

If M1 and M2 are inner-colliding then detect outputs 1, if not it outputs
1 with probability 2−tr in case there is no state collision during Step 3. We
will call t the confidence level. The probability that a state collision occurs is
2−(c+r)+1, although this is an error in detect, it is not an error if we look for
inner-collisions. We will include the possibility of this event at the end of the
collision finding algorithm. The cost in the number of queries to the internal

function f is at most 2k1 + 2k2 + 8 + 2t, where ki :=
⌈
|Mi|
r

⌉
.

We will also need a slightly modified version of the above algorithm ˜detect.
Input to ˜detect is (M1,M2, t, a1,Sponge(M1, 1),Sponge(M1‖pad[r](|M1|)‖a1, t))
and the output is (b, a2,Sponge(M2, 1),Sponge(M2‖pad[r](|M2|)‖a2, t)). This
modified algorithm makes only 2k2 + 4 + t queries to f .

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 25

B.2 Algorithm for finding inner collision

Below we give a detailed description of algorithm that outputs an inner-collision.

Algorithm 7 inn-collSponge

Input: t > 0, q ≥ 0, κ ≥ 0.
Output: M̃0, M̃1

1: Create a random subset k ⊆ K := {M : M ∈ {0, 1}∗, |M| ≤ κr} of cardinality q1 :=
q
3
. Sort k in lexicographical order.

2: Query Sponge to create the first entry to L:

entry1 := (M1, Sponge(M1, 1), 0r, Sponge(M1‖pad[r](|M1|)‖0r, t)). (11)

3: Set i := 1
4: while i < q1 do
5: Run ˜detect(entryi(0),Mi+1, t, entryi(2), entryi(1), entryi(3)) and save outputs

to L.

6: If ˜detect outputs b = 1 set

(M̃0, M̃1) := (entryi(0)‖padi‖entryi(2), entryi+1(0)‖padi+1‖entryi+1(2))
(12)

and go to Step 11. padi is padding appropriate for Mi.

7: i = i+ 1.

8: Sort database L according to the fourth entry and check if there are two distinct
entries for which entryi0

(3) = entryi1 6=i0
(3). If there is a collision set (M̃0, M̃1) :=

(entryi0
(0)‖padi0

‖entryi0
(2), entryi1

(0)‖padi1
‖entryi1

(2)) and go to Step 11.

9: Set q2 := 2q
3

and run groverH making q2 queries to H : K → {0, 1}, defined as

H(M) =

{
1 if M 6∈ k and detect(M,M0, t) = 1 for some M0 ∈ k,
0 otherwise.

(13)

10: Run ˜detect on output of groverH and set (M̃0, M̃1) to messages prolonged as
stated in Equation (12).

11: Return (M̃0, M̃1) .

Fact that we can only check if two elements are colliding makes a difference
when calculating complexity. In Equation 8 we assumed that C is constant,
which is also the case here but there we compared the checked element with all
members of x. In fact comparing with all L would cost O(q) queries and a simple

bht would not give good complexity. Actual checking cost is the cost of ˜detect,
which is at most C = 2κ+ t+ 4 +O(1). It is important to notice that we check
only one pair at a time but it does not pose a problem. Sampling requires only
constant time S ∈ O(1), generating a random message can be done efficiently
and does not require queries to Sponge .

For the algorithm to work properly we need to specify the input parameters.
Size of K is approximately 2(κ+1)r − q, we need to set κ sufficiently large so

26 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

that |K| ∈ Ω(22c/3), this is discussed is more detail in [14]. This means that
κ ≥ 1

r log(22c/3 + q). The parameter q is not actually the cost of queries to
Sponge the algorithm makes but sum of the number of runs of its subroutines.
The total cost of this algorithm is qC := qC1 + qC2 = (C+S)q1 + (C+S)(2q2 + 1).
Fortunately κ and t are relatively small and do not depend on the security
parameter c. As we have chosen a sufficiently large set K the Grover algorithm
certainly outputs a valid colliding pair. There is a possibility that the detection
algorithm makes a mistake, but either this is because it finds another collision
in the longer input, which we include by outputting the messages we are more
confident about, or can be made arbitrarily small by increasing t, which increases
the query complexity by a constant multiplicative factor.

B.3 Unitaries for Grover algorithm

A detailed analysis of Grover’s algorithm will justify calculations of number of
queries our algorithm makes to the internal function f .

Algorithm 8 groverH

Require: H : {0, 1}n → {0, 1}, q ≥ 0.
Output: M ∈ {0, 1}n
1: Construct

G := U (2 |0〉 〈0| − 1)U∗O. (14)

2: Prepare the initial state |Ψ〉 := U |0〉.
3: Apply the Grover iterate G q times.
4: Measure the state and set M to the outcome of measurement.
5: Return M.

Operator U prepares the initial state in an equal superposition of states ready
to be evaluated by the oracle. This is where we want to formulate a quantum
counterpart of the algorithm detect. In our case we want to have an equal
superposition of messages that are already detected, that is a suitable query
was done to Sponge, similarly to the steps of detect. First thing we need is a
sponge unitary,

USponge1 : |M〉 |z〉 7→ |M〉 |z ⊕ Sponge(M, 1)〉 . (15)

For the second part of the detection if two messages collide we define a function

checkt(M, z1, a1, z2) := Sponge(M‖pad[r](|M|)‖a2, t), (16)

where a2 := z1 ⊕ a1 ⊕ z2. Operator corresponding to it is

Ucheckt : |M〉 |z1〉 |a1〉 |z2〉 |z〉 7→ |M〉 |z1〉 |a1〉 |z2〉 |z ⊕ checkt(M, z1, a1, z2)〉 .
(17)

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 27

For the full operator allowing us to prepare a suitable initial state we merge the
above unitaries

Udetect :HABCDE → HABCDE (18)

Udetect : = Ucheckt,CABDEUSponge1,CD (19)

Udetect : |Sponge(M, 1)〉A |a〉B |M∗〉C |0(1+t)r〉DE 7→ (20)

|Sponge(M, 1)〉A |a〉B |M∗〉C |Sponge(M∗, 1)〉D |0tr〉E 7→ (21)

|Sponge(M, 1)〉A |a〉B |M∗〉C |Sponge(M∗, 1)〉D ⊗
|checkt(M∗,Sponge(M, 1), a,Sponge(M∗, 1))〉E , (22)

dummy entries (previously denoted as z) are set to 0, that is just for the conve-
nience of the reader but in general they can differ, this also applies to the initial
value of the entry in subspace A. The subscripts denote the Hilbert spaces on
which the given operators act. The cost of applying Udetect to |M∗〉 is at most

2d |M
∗|+1
r e+ t+ 2.

Finally we can define a unitary that can be the input to grover

U := Udetect,ABCDEUL,GABFUK̃,C (23)

U |0〉 := UdetectABCDE

∑
M∗∈K̃

q1∑
i=1

1√
|K̃|q1

|entryi(0)〉G |entryi(1)〉A⊗

|entryi(2)〉B |M∗〉C |0(1+t)r〉DE |entryi(3)〉F . (24)

UL,GABF denotes a unitary acting on subspaces GABF by XORing the values
encountered in database L (of size q1) in an equal superposition. UK̃,C acts

similarly on C by preparing a superposition of states in K̃. K̃ being a set of
messages not in the first column of L and of length at most κr. Using notation
from Algorithm 7 K̃ := K \ k.

Operator O is called the oracle as it shifts the phase of marked elements by
π. In our case it is a simple operation,

O : |z1〉 |z2〉 7→ (−1)equal?(z1,z2) |z1〉 |z2〉 , (25)

where equal?(z1, z2) = 1 if z1 = z2 and 0 otherwise. Considering the Hilbert
spaces used by U we set O := OEF .

28 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

B.4 Algorithm for finding collisions in a random sponge

It actually could be simpler to find a collision in the sponge function without
looking for an inner collision. Fortunately we can just apply the BHT algorithm
without the consideration of the actual construction standing behind Sponge.
Up till now we assumed that output length of Sponge is always a multiple of
r, we no longer assume that. Sponge(m, `) now means a sponge making d `r e
evaluations of f in the squeezing phase and outputting only the first ` bits of
the total output.

Algorithm 9 collSponge

Input: `, q, κ ≥ 0.
Output: M̃0, M̃1

1: Create a random subset l ⊆ K = {M : M ∈ {0, 1}∗, |M| ≤ κr} of cardinality q1 :=
q
3
. Query Sponge(M, `) on elements of this set and create a database L of pairs

(M, Sponge(M, `)).
2: Sort L according to the second entry. If there exist two messages M0 and M1 6= M0

such that Sponge(M0, `) = Sponge(M1, `) output (M0,M1) and go to Step 5.
3: Set q2 := 2q

3
and run groverH making q2 queries to H : K → {0, 1}, defined as

H(M) =

{
1 if M 6∈ l and Sponge(M, `) = Sponge(M0, `) for some M0 ∈ l,
0 otherwise.

(26)
4: Set M̃1 to output of grover and find (M0, F (M1)) ∈ L.
5: Return (M̃0, M̃1) .

Similarly to inn-coll sampling and checking subroutines have constant cost,
S ∈ O(1) and C = κ + d `r e + O(1). For that algorithm number of elements we
are comparing to has size 2l, so analyzing K similarly as before we get that
κ ≥ 1

r log(22l/3 + q).

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 29

C Step-by-step example of Lemma 6

In this section, we will show the meaning of the games described in Lemma 6
with a small example, to give the idea behind the proof. We take |m| = 3 and
use M to denote a measurement in the computational basis, on a specific part
of the sponge. Note that this means that the output of the part is fixed after
measurement. The example construction of the Sponge is drawn in Figure 3.

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

Sf (m1,m2,m3)

Fig. 3: A Sponge construction with |m| = 3 and internal function f , that is either
a random function or random permutation.

30 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

For the collapsing games (Definition 3) for the Sponge function Sf (m), one
needs to distinguish the situations drawn in Figure 4.

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

M

Sf (m1,m2,m3)

(a) A drawing of Game2 = Hyb−1

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

Sf (m1,m2,m3)

MM M

(b) A drawing of Game1 = HybT−1

Fig. 4: A drawing of Game2 = Hyb−1 and Game1 = HybT−1 = Hyb|m|−1 for
sponge function Sf (m1,m2,m3). M denotes a measurement in the computa-
tional basis for the specified parts.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 31

By definition of partiali, we have the following figures for Hyb−1 (Figure 5a)
and Hyb0 (Figure 5b):

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

M

Sf (m1,m2,m3)

(a) A drawing of Hyb−1

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

Sf (m1,m2,m3)

M

M

(b) A drawing of Hyb0

Fig. 5: A drawing of Hyb−1 and Hyb0.M denotes a measurement in the compu-
tational basis for the specified parts.

Note that these two measurements occur on two sides of the function f ,
where in Hyb−1 only the output of f is measured, and in Hyb0 the input to f
is measured. So we have the drawing in Figure 6a for Hyb−1 (formally shown in
Claim 2) and the drawing in Figure 6b for Hyb0 (formally shown in Claim 3).

However, these parts are equal to Game
M−1

2 and Game
M−1

1 for function f .

32 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

x1

x2

f

c
M

(a) A drawing of Game
M−1
2

x1

x2

f

c
MM

M

(b) A drawing of Game
M−1
1

Fig. 6: A drawing of Game
M−1

2 and Game
M−1

1 for function f .M denotes a mea-
surement in the computational basis for the specified parts.

Since f is collapsing with advantage ε, we have that the advantage of distin-
guishing the situation in Figure 6a from the situation in Figure 6b is ε. However,
these situations are simular (as in, the advantage in both cases is the same) to
the situations in Figure 5. This means the advantage of distinguishing the situ-
ation in Figure 5a and the situation in Figure 5b is ε. This is formally shown in
Claim 4.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 33

Now we are ready to continue with one step. Figure 7 shows the measured
parts in Hyb0 and Hyb1.

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

Sf (m1,m2,m3)

M

M

(a) A drawing of Hyb0

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

Sf (m1,m2,m3)

M

M

M

(b) A drawing of Hyb1

Fig. 7: A drawing of Hyb0 and Hyb1. M denotes a measurement in the compu-
tational basis for the specified parts.

Note that input1(m) are exactly those parts which will be measured in Hyb1
(Figure 7b). We now have a similar situation as is the case in Figure 5, but
now the two games are the input/output of function stepf (x, y). In particular,
we have the drawing in Figure 8a for Hyb0 (formally shown in Claim 7) and
the drawing in Figure 8b for Hyb1 (formally shown in Claim 8). However, these
inputs are equal to GameM0

2 and GameM0
1 for function stepf (x, y). In Figure 8

there is a drawing of these two games.

34 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

x1

x2

⊕

y

f

c
M

M

(a) A drawing of GameM0
2

x1

x2

⊕

y

f

c
M

M

M

M

M

(b) A drawing of GameM0
1

Fig. 8: A drawing of GameM0
2 and GameM0

1 . M denotes a measurement in the
computational basis for the specified parts.

Since stepf (x, y) is collapsing with advantage ε∗ (by assumption of Lemma
4), we have that the advantage of distinguishing the situation in Figure 8a from
the situation in Figure 8b is ε∗. However, these situations are simular (as in, the
advantage in both cases is the same) to the situations in Figure 7. This means
the advantage of distinguishing the situation in Figure 7a and the situation in
Figure 7b is ε∗.

Quantum preimage, 2nd-preimage, and collision resistance of SHA3 35

For the last step, we have the same situations as in Figure 8, but by definition
partial2(m) also contains message block m3.

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

Sf (m1,m2,m3)

M

M

M

(a) A drawing of Hyb1

0

0

⊕

m1

f

⊕

m2

f f

⊕

m3

Sf (m1,m2,m3)

M

M

M M

(b) A drawing of Hyb2

Fig. 9: A drawing of Hyb1 and Hyb2. M denotes a measurement in the com-
putational basis for the specified parts. Note that in Hyb2, we used Fact 1 in
measuring m1.

Using the same arguments (in particular: stepf (x, y) is collapsing with ad-
vantage ε∗ in Figure 8), we can conclude that distinguishing the situation in
Figure 9a and the situation in Figure 9b is ε∗. Note that the additional mea-
sured parts in Figure 9b is equal to input(m), that is input2(m) = (m1||0,m2),
which is exactly the input to stepf .

Putting all arguments together, we can conclude that distinguishing the sit-
uation in Figure 4a (Game2) from the situation in Figure 4b(Game1) is ε+ 2ε∗.
This is what is formally shown in Lemma 6.

36 Czajkowski, Groot Bruinderink, Hülsing, Schaffner

D Proof of Lemma 4

Proof. Let (A,B) be a valid quantum-polynomial-time adversary for the collaps-
ing games for function stepf with advantage Advcollstepf

(A,B) = µ > ε. We now

construct a quantum-polynomial-time oracle machine (MA,MB) for function f̂
with collapsing advantage Advcoll

f̂
(MA,MB) = µ.

Let MA be the following quantum algorithm: it runs (S∗,M∗, c∗) ← A(1n)
to obtain quantum registers, such that B can distinguish between the collapsing
games for stepf with advantage µ > ε. In particular, M∗ is a quantum register
consisting of two registers M∗ = (X∗, Y ∗) which contain superpositions of basis
states |x, y〉 that fulfill stepf (x, y) = c∗. Note that the registers X∗ and Y ∗ can
be entangled. Denoting c∗ = c||ĉ, A outputs (S,M, c) with S = (S∗, Y ∗, c∗),
M = X∗ and c = ĉ. In other words, algorithm MA simply rearranges the
registers from A. The algorithm MB retrieves (S,M, c) and simply reverses the
rearrangement from MA: it sets M∗ to be (X∗, Y ∗) and sends (S∗,M∗) to B.
MB will output whatever B outputs.

We need to show two things now: (MA,MB) is a valid adversary for the

collapsing games of f̂ and Advcoll
f̂

(MA,MB) = µ. Validity of (MA,MB) follows

from validity of (A,B), because register M (which contains X∗) must yield

messages x for which f̂(x) = ĉ = c. Otherwise, (A,B) was invalid.
For the collapsing advantage of (MA,MB), we note that in Game1, register

M will be measured and collapsed to a single x such that f̂(x) = ĉ. However,
the crucial point is that also y = f(x) ⊕ c collapses, since by measuring x, the
part f(x) cannot be in a superposition anymore and c was already classical. In
Game2, no such measurement occurs on register M , so x is still (possibly) in

superposition. Therefore, the collapsing advantage of (MA,MB) for f̂ is equal
to the one of (A,B) for stepf . ut

	Quantum preimage, 2nd-preimage, and collision resistance of SHA3

