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Abstract. Secure Message Transmission (SMT) is a two-party crypto-
graphic scheme by which a sender securely and reliably sends messages
to a receiver using n channels. Suppose that an adversary corrupts at
most t out of n channels and makes eavesdropping or tampering over the
corrupted channels. It is known that if t < n/2 then the perfect SMT
(PSMT) in the information-theoretic sense is achievable and if t ≥ n/2
then no PSMT scheme is possible to construct. If we are allowed to use
a public channel in addition to the normal channels, we can achieve the
almost reliable SMT (ARSMT), which admits transmission failures of
small probability, against t < n corruptions. In the standard setting in
cryptography, the participants are classified into honest ones and cor-
rupted ones: every honest participant follows the protocol but corrupted
ones are controlled by the adversary and behave maliciously. As a real
setting, the notion of rationality in the game theory is often incorporated
into cryptography. In this paper, we first consider “rational adversary”
who behaves according to his own preference in SMT. We show that it
is possible to achieve PSMT even against any t < n corruptions under
some reasonable settings for rational adversaries.

Keywords: secure message transmission, secret sharing, rational adversary,
cryptography, game theory

1 Introduction

It is common to use the information network to send and receive messages. In
the physical sense, the channels between senders and receivers might be real-
ized by combining apparatus for communication, which allow some adversary
to eavesdrop or tamper. As a technique for protecting data over communication
from their leakage, we often use public-key cryptosystems. Since the security of



public-key cryptosystems is based on computational assumptions and the com-
putational assumptions might be falsified, it is desirable to develop methods of
protecting data in the information-theoretic sense.

While a single communication channel is assumed in the typical two-party
cryptographic schemes, the current information network technologies can let
many channels be available. Secure Message Transmission (SMT), originally pro-
posed by Dolev et al. [1], is a cryptographic scheme by which a sender securely
sends messages to a receiver using multiple channels. Even if any adversary cor-
rupts at most t out of n channels and makes eavesdropping or tampering over
the corrupted channels, then any messages can be securely transmitted in the
information-theoretic sense by using SMT. The requirement for SMT consists
of the privacy and the correctness. The privacy means that any adversary can-
not get any information about the message and the correctness means that the
messages which the sender sends and which the receiver receives are agreed. If
an SMT scheme satisfies both the requirements in the perfect sense, the scheme
is called perfect SMT (PSMT). The most round-efficient PSMT scheme is given
by Kurosawa and Suzuki [2]. Dolev et al. [1] showed that any one-round PSMT
must satisfies t < n/3 and any PSMT whose round number is two or more must
satisfies t < n/2. Franklin and Wright [3] considered the almost reliable SMT
(ARSMT) which allows transmission failures of small probability. They showed
that ARSMT against t < n corruptions is achievable by using a public channel
in addition to the normal channels. Moreover, the most round-efficient ARSMT
protocols using public channels are given in [4, 5].

In the standard setting in cryptography, the participants are classified into
honest ones and corrupted ones: the former ones follow the protocol and the later
ones are controlled by the adversary and behave maliciously. Generally speak-
ing, the adversarial behavior may be illegal and involve some risks. This means
that some adversary in the standard cryptographic setting can act maliciously
regardless of the risks. On the other hand, some adversary in reality decides his
behavior by taking the risks into account. To formalize the above situation, we
incorporate the notion of “rational player” of the game theory into cryptogra-
phy. “Rational players” behave according to their own preference. That could
provide a more realistic security model. The incorporation of the rationality
into cryptography was firstly consider by Halpern and Teague [6]. They consid-
ered the rationality in Shamir’s secret sharing scheme [7]. If the shareholders in
Shamir’s scheme are all honest, they can uniquely reconstruct the secret. Halpern
and Teague [6] supposed that shareholders are rational. This means that each
shareholder wants to know the secret but the number of shareholders who can
reconstruct the secret should be minimized. It was shown that no shareholders
can reconstruct the secret in the above rational setting. Since then, the rational
secret sharing have been intensively studied [8–12].

In the study of the rational secret sharing, the Nash equilibria among several
parties plays an important role. For protocols secure against rational players are
designed to satisfy that obeying the protocols should be the Nash equilibrium. In
some protocols, the simplest case of the rationality is considered. The simplest



case means that the game has one player (i.e., the adversary). As in the rational
secret sharing, we essentially consider what is a Nash equilibrium strategy for
the adversary. However, the Nash equilibrium of a one-player game is just a
utility-optimization. Along this line, Groce et al. [13] incorporated the rationality
into the Byzantine agreement, proposed by Pease, Shostak and Lamport [14].
We assume that there are n generals who want to decide the next operation,
either “attack” or “retreat”, and that the generals can directly communicate
via channels with each other. For the next operation, they have to reach an
agreement. If any adversary corrupts at most t out of n channels (for each
general) and makes eavesdropping or tampering over the corrupted channels,
it is possible to reach an agreement in the information-theoretic sense. In the
standard setting, the bound t < n/3 is obtained [14]. Groce et al. [13] assume the
rational adversarial generals only want to lead to a disagreement and consider
that the agreement “retreat” is better than “attack”. In this rational setting, we
have a better bound t < n than the standard case.

If we want to see more connections between cryptography and game theory,
we may consult with [15, 16].

In this paper, we take the simplest case as in the rational Byzantine agree-
ment [13] and consider “rational adversaries” who behave according to their own
preference in “Secure Message Transmission” (SMT). We consider several cases
for the preference and show that it is possible to achieve PSMT even against
t < n corruptions under some reasonable preference settings in the rational
adversary model.

2 Secure Message Transmission

2.1 Definitions

We assume that our network can be represented as an incomplete graph. Two
parties, a sender S and a receiver R, correspond to a pair of nodes in the graph,
where the two nodes are connected by n node-disjoint paths, called channels.
In addition to the channels, we assume that there is an authentic and reliable
public channel between the sender and the receiver. Messages m ∈ M over the
public channel are publicly accessible and correctly delivered to the receiver.
SMT protocols proceed in rounds. In each round, one party may synchronously
send a message on each (normal or public) channel, while the other party will
only receive the sent messages. The sent messages will be delivered before the
next round starts.

The adversary A is computationally unbounded and can corrupt at most t
nodes on channels between the sender and the receiver. A channel is said to be
corrupted if at least one node on the channel is corrupted.

The adversary can eavesdrop and tamper over the corrupted channels. (Block-
ing messages sent over the channels is regarded as tampering.)

We refer to points during the protocol execution as view of the adversary A,
and denote it by VA. A view VA consists of his randomly generated strings and
some messages sent over the corrupted channel.



Here, we define SMT schemes as follows.

Definition 1. At the end of the protocol, if the following two properties hold,
then the protocol can achieve (σ, ϵ)-SMT.

– Privacy:

For any m1,m2 ∈M and for any possible view V of the adversary, it holds
that ∣∣Pr[m = m1|VA = V ]− Pr[m = m2|VA = V ]

∣∣ ≤ σ.

– Correctness:

For any messagem ∈M, the receiverR receives a messagem′ which satisfies
that

Pr[m′ ̸= m] ≤ ϵ.

If a protocol achieves (0, 0)-SMT, the scheme is called perfect SMT (PSMT),
and if the protocol achieves (0, ϵ)-SMT, which admits transmission failures of
small probability ϵ, the scheme is called almost reliable SMT (ARSMT).

For PSMT, Dolev et al. [1] showed the below.

Theorem 1. ([1]) PSMT schemes are achievable if and only if any adversary
can corrupt t < n/2 channels.

2.2 Universal Hash Functions

Wegman and Carter [17] defined a notion of (almost) universal hash functions
and gave its construction. We will consider SMT schemes in which universal
hash functions are used.

Definition 2. Suppose that a class of hash functions H = {h : {0, 1}m →
{0, 1}ℓ}, where m ≥ ℓ, satisfies the following: for any distinct x1, x2 ∈ {0, 1}m
and y1, y2 ∈ {0, 1}ℓ,

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] ≤ γ.

Then H is γ-almost strongly universal. In the above, the randomness comes from
the uniform choice of h over H.

Here we mention a useful property of almost universal hash functions, which
guarantees the security of some SMT protocols.

Lemma 1. ([5]) Let H = {h : {0, 1}m → {0, 1}ℓ} be a γ-almost strongly uni-
versal hash function family. The for any (x1, c1) ̸= (x2, c2) ∈ {0, 1}m × {0, 1}ℓ,
we have

Pr
h∈H

[c1 ⊕ h(x1) = c2 ⊕ h(x2)] ≤ 2ℓγ.



In [17], Wegman and Carter constructed a family of 21−2ℓ-almost strongly
universal hash functions. In particular, their hash function family Hwc = {h :
{0, 1}m → {0, 1}ℓ} satisfies that

Pr
h∈Hwc

[h(x1) = y1 ∧ h(x2) = y2] = 21−2ℓ

for any distinct x1, x2 ∈ {0, 1}m and for any y1, y2 ∈ {0, 1}ℓ and also

Pr
h∈Hwc

[c1 ⊕ h(x1) ∧ c2h(x2)] = 21−ℓ

for any distict pairs (x1, c1) ̸= (x2, c2) ∈ {0, 1}m × {0, 1}ℓ.

2.3 Secret sharing

Here, we briefly review Shamir’s threshold secret sharing scheme [7]. We will use
Shamir’s scheme as an ingredient of our PSMT scheme.

Let Fp be a finite field of p elements and s ∈ Fp be a secret. The dealer
randomly chooses a polynomial f (coefficients are elements in Fp) of degree n−1
such that f(0) = s. The dealer divides s into shares (s1, s2, . . . , sm), where si =
f(i), and distributes them to m shareholders. Then, if any n shareholders get
together, they can recover the polynomial by using the Lagrange interpolation
and then reconstruct s uniquely. This scheme is called (m,n)-threshold secret
sharing, because any n − 1 or less share holders cannot get any information on
the secret s.

2.4 Secure Message Transmission with Public Channel

In this paper, we will discuss two SMT schemes. The first scheme is actually an
ARSMT scheme with the public channel and we will show that the scheme works
as a PSMT scheme in the rational adversary model. Here, we take an ARSMT
scheme given by Shi, Jiang, Safavi-Naini, and Tuhin in [5] and call it SJST11
protocol. Since we do not use any specific properties of the ARSMT scheme, we
may use another ARSMT scheme (e.g., a scheme by Garay and Ostrovsky [4])
instead of Shi et al.’s scheme. The second scheme is a PSMT scheme without
public channel, which we will propose later.

Let us review SJST11 ARSMT protocol with the public channel. Their pro-
tocol [5] has three rounds and achieves the correctness ϵ = (n− 1) · 21−ℓ, where
ℓ is the length of hash values which are used in the protocol and proportional to
the security parameter.

Protocol 1 (SJST11 ARSMT scheme [5])

Let n be the number of channels and m be a message that the sender S wants
to send to the receiver R.



1. For each number of i with 1 ≤ i ≤ n, S chooses random bits ri ∈ {0, 1}ℓ and
Ri ∈ {0, 1}m and sends the ith pair (ri, Ri) to R over the ith channel.

2. For i = 1, . . . , n, if R correctly receives a pair (r′i, R
′
i) over the ith channel

(i.e., r′i ∈ {0, 1}ℓ and R′
i ∈ {0, 1}m), R uniformly selects hi ← H and

computes T ′
i = r′i⊕hi(R

′
i); otherwise, the ith channel is assumed corrupted.R

then constructs an indicator bit string B = b1b2 · · · bn where bi = 1 if the ith
channel is corrupted and bi = 0 otherwise. Finally,R sends (B, (H1, . . . , Hn))
over the public channel, where Hi = (hi, T

′
i ) if bi = 0; and Hi is empty,

otherwise.

3. S ignores the ith channel if bi = 1. For i = 1, . . . , n, if bi = 0, S computes
Ti = ri ⊕ hi(Ri) and checks T ′

i = Ti; if T
′
i = Ti, the ith channel is assumed

consistent; otherwise, the ith channel is corrupted. S constructs an indicator
bit string V = v1v2 · · · vn, where vi = 1 if the ith channel is considered
consistent; otherwise vi = 0. S sends the pair (V,C = m⊕ (

⊕
vi=1 Ri)) over

the public channel.

4. R receives (V,C) and recovers m = C ⊕ (
⊕

vi=1 R
′
i).

Theorem 2. ([5]) Protocol 1 is a (0, (n − 1) · 21−ℓ)-ARSMT scheme against
any adversary who corrupts t < n channels.　

We can find a complete proof of the above theorem in [5]. For self-containment,
we will give a brief sketch of the proof.

– Privacy:
Since the sender S sends C = m ⊕ (

⊕
Ri) over the public channel, the

adversary can get C = m⊕ (
⊕

Ri). But m is masked by uniformly random
Ri, thus the adversary has to corrupt all the normal channels to recover the
original message m. Although the adversary can get T ′

i = r′i⊕hi(R
′
i) = ri⊕

hi(Ri), which may include information on Ri, h(Ri) is masked by uniformly
random ri and ri cannot be eavesdropped from any uncorrupted channels.
Therefore, the adversary cannot get any information on m and thus Protocol
1 satisfies the perfect privacy.

– Correctness:
Protocol 1 has three rounds. Since Protocol 1 uses only the public channel at
the second and the third round, only chance the adversary tampers is at the
first round. Suppose that the adversary tampers (ri, Ri). If (ri, Ri) ̸= (r′i, R

′
i)

and Ti = T ′
i then ri ⊕ hi(Ri) = r′i ⊕ hi(R

′
i) holds and a wrong message

would be recovered without being detected the tampering. We can bound
the probability where the above (failure) event happens. Since there exists a
21−2ℓ-almost strongly universal hash function family [17] and the adversary
corrupts at most n − 1 normal channels, we can say that the failure event
happens with probability at most (n − 1)21−ℓ from Lemma 1. Finally note
that if the adversary does not tamper any channel, the correct message would
be recovered due to the construction of Protocol 1.



3 Game Theory for Secure Message Transmission

In the game theory (e.g., see [18]), we refer to each player’s behavior as strategy,
and denote it by σ. We refer to the evaluation value to be decided by the game
as utility, and denote it by u. Since the utility is decided by the player’s strategy,
the utility when the player selects a strategy σi is denoted by u(σi). Players who
have the strategies and the utilities, and make decisions so as to get the highest
utility values are called “rational players”.

We have stated that the utility is determined by the player’s strategy, but
sometimes the utility in some game is not determined uniquely. For example,
we assume a game where a player chooses a strategy σ, the utility is ui with
probability p and uj with probability 1 − p. Then the expected utility of this
game when the player selects the strategy σ is defined as

u(σ) = p · ui + (1− p) · uj .

Rational players always choose the strategy that the expected utility is the high-
est.

3.1 Settings for Rational Adversaries

Players involved in SMT are (1) a sender and a receiver who want to securely
and reliably transmit messages by using the SMT protocol and (2) an adversary
who attacks on the protocol for SMT. While, in the standard cryptographic set-
ting, we usually suppose that the adversary can take any thoughtless strategies
for the attack, they are not realistic from the social/economic point of view. For
example, if the tampering over a channel by the adversary is detected, the adver-
sary’s use of the channel might be prohibited or the adversary might compensate
for the tampering.

We consider strategies of the rational adversary for SMT. The rational ad-
versary can make “eavesdropping” or “tampering”, so strategies of the rational
adversary are defined as combinations over these actions. Tampering means re-
placing data over the channel with different data or blocking messages sent over
the channel. We assume that strategies with respect to the tampering is either
“tampering” or “not tampering”. Eavesdropping means getting information over
the corrupting channel. In this paper, we consider that there are no methods to
detect eavesdropping, so we assume that strategies with respect to eavesdropping
is “eavesdropping” only. To combine these actions, we define strategies of ratio-
nal adversary in SMT are “eavesdropping and tampering” and “eavesdropping
only”. The former can be considered as active attack and the later as passive
attack.

Next, we consider utilities of the rational adversary for SMT. The utilities
depend on the result of the execution of the SMT protocol or information that
the sender, the receiver or the adversary obtain. The results of the SMT pro-
tocol execution can be classified into (1) “success of the message transmission”
which means that the receiver receives what the sender sends; (2) “failure of the



message transmission” which means that the receiver receives a wrong message,
and (3) “abortion of the protocol” which means that either the sender or the
receiver aborts the protocol execution. Besides these three utilities, we consider
two more utilities: (4) “acquisition of the message” which means that the ad-
versary get the message which the sender sends and (5) “detection of corrupted
channels” which means that channels corrupted by the adversary are detected
in the protocol.

Here, we summarize strategies and utilities for the rational adversary in SMT
in Tables 1 and 2.

notation strategy

σa eavesdropping and tampering
σp eavesdropping only

Table 1. Strategies for the rational adversary

notation utility

us success of the message transmission
uf failure of the message transmission
ua abortion of the protocol
ud detection of corrupted channels
uq acquisition of the message

Table 2. Utilities for the rational adversary

3.2 Preference of Rational Adversary

By using the utilities in Table 2, we define some reasonable settings. We con-
sider settings for the standard (i.e., conventional) cryptographic model and two
realistic models.

– Standard cryptographic model :
In this model, regardless of any risks, the adversary primally tries to get the
message that the sender sends to the receiver by using the SMT protocol.
Otherwise, he tries to obstruct the message transmission by making the
protocol execution abort. Thus, the relation among the utilities must satisfy
the following:

min{ua, uf} > us, uq > 0 and ud = 0.



– “Timid” rational adversary model :
In this model, we consider that the rational adversary is afraid of loss of the
reliability. Precisely speaking, he is afraid of being exposed his dishonesty.
For example, we assume that the adversary owns a channel and gains the
usage fee from users. If he loses the reliability of the channel, then his gain
may be decreased or he may be accused of his behavior. Thus, the relation
among the utilities must satisfy the following:

min{ua, uf} > us, uq > 0 and ud < 0.

– “Conservative” rational adversary model :
In this model, we consider that the rational adversary is afraid of the en-
vironmental degradation. We suppose that the environmental degradation
means that the traffic environment could be difficult to maintain because
of the detection of some dishonesty. Thus, the adversary is afraid of be-
ing specified corrupted channels or the protocol abortion. Since the case of
“detection of corrupted channels” is discussed above in the timid rational
adversary model, we consider the case of “abortion of the protocol”. Thus,
we consider the following relation among the utilities:

uf > us > ua, uq > 0 and ud = 0.

In this paper, we assume that the utilities are publicly known. Under this
assumption, we will consider PSMT schemes in the timid rational adversary
model and in the conservative rational adversary model.

4 Protocol against Timid Rational Adversary

In this section, we show that Shi et al.’s ARSMT scheme [5] works as a PSMT
scheme in the timid rational adversary model. Note that their scheme (Proto-
col 1) uses the public channel.

Theorem 3. If we set the parameter ℓ in Protocol 1 as

ℓ > 1 + log
(n− 1)(.99uf − us − ud)

−ud

and if the adversary corrupts t < n channels, then Protocol 1, which uses the
public channel, works as a PSMT scheme in the timid rational adversary model.

Remark. In the above, the constant .99 is not essential value. By that, we mean
it is a constant close to 1.

As mentioned, Protocol 1 has the perfect privacy. Thus, in what follows,
we discuss the perfect correctness of Protocol 1. Due to the construction of
Protocol 1, if we can prevent the adversary from tampering during the execution
of Protocol 1, then the perfect correctness can be guaranteed. To show this, we
consider the expected utilities.

Strategies of the timid rational adversary is either σa, which denotes “eaves-
dropping and tampering”, or σp, which denotes “eavesdropping only”. We ana-
lyze these two strategies.



Case of strategy σa

For Protocol 1, it is known that the failure probability of the message transmis-
sion is at most (n−1)21−ℓ. First, we consider this failure probability a bit more.
Let E be the event that the message transmission fails. Then, E can be written
as E = E1∨E2∨· · ·∨En−1, where Ei is the event the adversary successfully tam-
pers the data over the ith channel and Pr[Ei] = 21−ℓ. Thus, the upper bound of
the failure probability is derived by the union bound. Tampering the data over
the ithe channel is independent to tampering the data over the jth channel,
we can derive the lower bound of the failure probability. Let p = 21−ℓ for the
simplicity. By the inclusion-exclusion principle and the independence among the
sub-events E1, E2, . . . , En−1, we have Pr[E] ≥ p− (n− 1)p2. Since the value p is
a decreasing function in ℓ, we can say that Pr[E] ≥ p− (n− 1)p2 > .99p in the
asymptotic sense.

So if the rational adversary selects σa as his strategy, the adversary makes
a failure with probability .99(n − 1)21−ℓ at least and the utility uf , and the
corrupting channel is detected but the message transmission is succeeded with
probability 1− (n− 1)21−ℓ at least and the utility us + ud. Since us + ud < uf ,
we may assume that us+ud < .99uf . (We can take a larger constant, say .9999,
as needed.)

Thus, we have that the expected utility satisfies

u(σa) = uf · Pr[E] + (us + ud) · Pr[Ē]

> .99uf (n− 1)21−ℓ + (us + ud)(1− (n− 1)21−ℓ).

Case of strategy σp

If the rational adversary does not tamper, the receiver can reliably receive a
message. And the sender and the receiver cannot detect any channel that is
corrupted but not tampering. So the expected utility of the rational adversary
who selects strategy σp is

u(σp) = us.

The rational adversary chooses the strategy whose expected utility is the
highest. Since ℓ > 1 + log(n− 1)(.99uf − us − ud)/(−ud) from the assumption,
it holds that u(σp) > u(σa), that is,

us > .99uf (n− 1)21−ℓ + (1− (n− 1)21−ℓ)(us + ud).

Thus, the rational adversary does not tamper in Protocol 1. Therefore, Protocol 1
(by setting appropriately the parameter ℓ) works as a PSMT scheme in the timid
rational adversary model if the adversary corrupts t < n channels.

Remark.
In the above discussion, we do not use all the properties in the timid rational
adversary model. Thus, Theorem 3 can be generalized as follows.

Theorem 4. Suppose that the rational adversary has the following relation of
utilities:

(.99uf − us − ud)/ud < 0.



Then, Protocol 1 (by setting appropriately the parameter ℓ) works as a PSMT
scheme against the above rational adversary if the adversary corrupts t < n
channels.

5 Protocol against Conservative Rational Adversary

Remember that the conservative rational adversary is afraid of the protocol
abortion. In this section, we give a PSMT scheme in the conservative rational
adversary model. Unlike the case of the timid rational adversary, we can con-
struct a scheme without resorting the public channel. First, we give a description
of the PSMT scheme.

Protocol 2

Let n be the number of channels and m a message that the sender S wants to
send to the receiver R.

1. For the ith channel with 1 ≤ i ≤ n, R chooses a polynomial of degree
n− 1 whose coefficients are over finite field Fq (m < q) and sends each value
f(i) ∈ Fq over the ith channel.

2. By coin-flipping, S executes Sub-step 2(a) with probability p or Sub-step
2(b) with probability 1− p.
(a) Upon receiving f̃(1), f̃(2), . . . , f̃(n) fromR, S recovers a polynomial f̃(x)

which interpolates the data by using the Lagrange interpolation, and
sends s = f̃(0) +m over all the channels.

(b) S sends the received data (f̃(1), f̃(2), . . . , f̃(n)) over all the channels.
3. If the received data are not the same according to each channel, R aborts the

protocol execution. If the received data is a single data s then S executes Sub-
step 3(a), otherwise (the received data is a multiple data f̃(1), f̃(2), . . . , f̃(n))
S executes Sub-step 3(b).
(a) R retrieves m̃ = f(0)− s and terminates the execution of the protocol.
(b) If f(1), f(2), . . . , f(n) which R sent in Step 1 and f̃(1), f̃(2), . . . , f̃(n)

which R received are different, then R aborts the protocol execution. If
these are the same, restart the protocol from Step 1.

Remark.
The number of repetitions in Protocol 2 depends on the probability parameter
p and its expected number is 1/p.

Theorem 5. Protocol 2 with the parameter p satisfying

0 < p ≤ us − ua

(1− 1/q) · uf + (1/q) · us − ua

is a PSMT scheme in the conservative rational adversary model, if the adversary
corrupts t < n channels.



First, we see the perfect privacy of Protocol 2. In Protocol 2, we use Shamir’s
(n, n)-threshold secret sharing scheme. The receiverR sends f(i), and the sender
S calculates f̃(x) from f̃(1), f̃(2), . . . , f̃(n) which S received by using the La-
grange interpolation, and sends s = f̃(0) + m to all over the channels. So the
adversary knows s and f(i) which is sent over the at most n − 1 corrupted
channels. But because of the perfect secrecy of Shamir’s scheme, the adversary
cannot calculate f̃(x) even if the adversary collects n−1 shares. So the adversary
cannot guess the value of s and thus the adversary cannot know any information
about m. Therefore, the perfect privacy holds.

Next, we move to the correctness of Protocol 2.
Strategies of the conservative rational adversary are ”eavesdropping and tam-

pering” and and ”eavesdropping only”. Now we respectively analyze these strate-
gies.

Case of strategy σa

The utility when the rational adversary tampers depends on the the action of
S in Step 2. In the case that 2(a) is executed, if the adversary tampers f(i),
S cannot calculate the correct f̃(x), and f̃(0) is also different from f(0) with
probability 1 − 1/q. Then R cannot get the correct message better than the
random guessing. The utility is us if f̃(0) = f(0) and uf otherwise.

In the case that 2(b) is executed, if the adversary tampers f(1), f(2), . . . , f(n),
R can detect tampering channels by comparing f(1), f(2), . . . , f(n) with
f̃(1), f̃(2), . . . , f̃(n) which S sends, and R aborts. Even if the adversary also
tampers f̃(i), R also aborts by the disagreed data. In this case, the utility is ua.

Then, the expected utility of the rational adversary who selects strategy σa

is
u(σa) = p(1− 1/q) · uf + (p/q) · us + (1− p) · ua.

Case of strategy σp

If the rational adversary does not tamper, R can reliably receive a message. And
S and R cannot detect any channel that is corrupted but not tampered. So the
expected utility of the rational adversary who selects strategy σp is

u(σp) = us.

The rational adversary chooses the strategy whose expected utility is the
highest, it holds that u(σp) > u(σa), that is,

us > p(1− 1/q) · uf + (p/q) · us + (1− p) · ua,

since p < (us − ua)/((1− 1/q) · uf + (1/q) · us − ua) < 1.
Thus, the rational adversary does not tamper in Protocol 2. Therefore Pro-

tocol 2 works as a PSMT scheme in conservative rational adversary model, if
the adversary corrupts t < n channels.

Remark.
In the above discussion, we do not use all the properties in the conservative
rational adversary model. Thus, Theorem 5 can be generalized as follows.



Theorem 6. Suppose that the rational adversary has the following relation of
utilities:

uf > us > ua.

Then, Protocol 2 (by setting appropriately the parameter p) works as a PSMT
scheme against the above rational adversary if the adversary corrupts t < n
channels.

6 Conclusion

We have incorporated the notion of rationality in the game theory into secure
message transmission. We have considered “rational adversary” who ”fears for
being detected of the corrupted channels” and “avoids the abortion of the pro-
tocol” as natural scenarios. In the first rational adversary scenario (i.e., timid
rational adversary model), we have showed that the ARSMT protocol (Proto-
col 1), which uses the public channel, by Shi et al. [5] works as a PSMT scheme
against t < n corruptions. In the second rational adversary scenario (i.e., conser-
vative rational adversary model), we have considered another protocol (Protocol
2), which does not use the public channel, and shown that Protocol 2 achieves
PSMT against t < n corruptions. These bounds in the rational adversary model
make a contrast to the bound t < n/2 in the conventional cryptographic adver-
sary in PSMT.
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