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Abstract. This paper presents faster inversion-free point addition formulas for the
curve y(1 + az?) = cz(1 + dy?). The proposed formulas improve the point doubling
operation count record! from 6M + 58 to 8M and mixed addition operation count
record from 10M to 8M. Both sets of formulas are shown to be 4-way parallel,
leading to an effective cost of 2M per either of the group operations.

1 Introduction

Huff form of elliptic curves [9] were introduced to the crypto community in [10] at ANTS-IX,
where Joye, Tibouchi and Vergnaud investigated several interesting features of Huff form for
cryptographic applications. Their investigation provided: a more general curve model than
Huff’s original model, the explicit derivation of fast group operations, as well as formulas
for pairing computation and, an extension to the even characteristic case. Wu and Feng [11]
further extended the coverage to all elliptic curves having three points of order two.

Despite all the developments, we weren’t able to find any statement about Huff form
being faster than the other widely known forms of elliptic curves. This work presents new
and faster sets of formulas for the Huff form and shows that Huff form can be competitive.
The summary of contributions of this paper are as follows:

e The group operations of Huff form can be significantly accelerated when the curve is
embedded in P! x P! rather than P2. Plus, unlike the previous studies suggest, there is
no need to move the identity to a point at infinity in P! x P! to obtain faster formulas.
See also Section 5.

e There exist an efficient 2-isogeny from a Huff curve to another Huff curve which can be
used to speed-up the doubling operation.

e The basic group operations mixed-addition and doubling can be computed in parallel
4-way with the P! x P! embedding.

e This work provides an evidence that quartic projections can be of interest when studying
efficient group arithmetic on affine cubic curves.

e Huff form becomes competitive in performance, see Section 5.

Unfortunately, there is no consensus on how to write the curve equation for Huff form.
The original Huff form was introduced as az(y* —1) = by(2z*—1) by Huff in [9] and a twisted
version to cover more elliptic curves was given as az(y? — d) = by(2? — d) by Joye, Tibouchi
and Vergnaud in [10]. In a later work, the curve equation that covers even more elliptic
curves was given as z(ay®? — 1) = y(bz? — 1) by Wu and Feng in [11]. Finally, the curve
equation that covers equally many elliptic curves as Wu and Feng’s equation was given in
the form az(y? — ¢) = by(z? — d) by Aziz and Sow in [5]. In this work, the curve equation
is given by y(1 + az?) = cx(1 + dy?). The reasons of this way of writing is explained as
follows:
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11, M, S, D, a represents the cost of various field operations. I: inversion, M: multiplication, S:
squaring, D: multiplication by a curve constant, a: addition/subtraction.



e Wu and Feng’s equation z(ay? — 1) = y(bz? — 1) is a good start due to its extended
coverage. We simply obverse that all other curve forms are always written with “4”
in their curve equations in the literature. E.g. az? + y? = 1 + dz?y? (twisted Edwards
form) [1], y? = da* + 2az? + 1 (extended Jacobi quartic form) [4], az® + % + 1 = dxy
(twisted Hessian form) [2], y? = 2% + ax + b (short Weierstrass form), etc. So, as the
first step, writing the equation in the form x(1+ ay?) = y(1 + bx?) complies better with
the literature of other curve forms. This tweak does not effect the coverage of Wu and
Feng’s equation.

e In all speed oriented formulas, both a and b do appear with respect to the equation
(1 + ay?) = y(1 + ba?). Therefore, it is desirable to keep these constants as small
as possible. But then, the number of elliptic curves over some suitable field, becomes
very limited in the context of cryptographic applications. The constants outside the
parentheses of Aziz and Sow’s equation is helpful in this sense, however, both constants
clash with a and b of Wu and Feng’s equation. We can write cz(1+ay?) = dy(1+bz?) to
prevent the clashing. However, having just ¢ suffices since a point satisfying this equation
also satisfies (¢/d)z(1 + ay?) = y(1 + bx?). Renaming c¢/d as ¢ we have cz(1 + ay?) =
y(1 + ba?).

e Finally, we keep a as is and replace b with d since most curve forms use the letters
a and d. The curve equation now reads y(1 + az?) = cx(1 + dy?). The right and left
hand sides of the equation is swapped in order to have the curve constant appear in
alphabetic order. To prevent ambiguation, the name of this equation is referred to as
extended Huff form in this work. Extended Huff form has the same coverage as Wu and
Feng’s equation, i.e. extended Huff form covers all elliptic curves having three points of
order two.

This text is organized as follows. Section 1 provides fundamental properties of extended
Huff form elliptic curves. Section 2 presents necessary tweaks for point addition and point
doubling formulas for extended Huff form. Section 3 presents fast and inversion-free point
addition and point doubling formulas in P! x P!. Section 3 also presents new isogeny maps
that becomes very handy in speeding up the doubling formulas. Section 4 shows how to
schedule point operations at low level to allow a full speed 4-way parallel implementation.
Section 5 makes comparisons with the literature and derives conclusions.

2 Extended Huff Curves

Let K be a field with char(K) # 2 and a, ¢, d € K such that acd(a — ¢*d) # 0. An extended

Huff curve over K is a non-singular curve of the form
Hyca:y(1+az?) = cx(1+ dy?). (1)

The curve H, . 4 has j-invariant 256(a® — ac®d + c¢*d?)?/(ac*d(a — c¢®d))?. The subscripts
are dropped when clear from the context.

Theorem 1. FEvery elliptic curve having three points of order two is isomorphic over K to
an extended Huff curve.

Proof. The proof is very similar to that of Wu and Feng [11]. The proof is included for self
containment. Every elliptic curve having three points of order two is isomorphic over K to
a Weierstrass curve of the form W : y? = z(z — ¢’)(z — f’). The curve W with identity
element at (0: 1: 0) is isomorphic over K to an extended Huff curve with identity element
at (0,0) under the birational maps

—c2d —c%d
o:H—W, (z,y)»—)(cxa ¢ ,ca ¢ )
cx—y cr—y
_ r x—(a—c%d)
oW = H, (z,y) —(=,c——-" 2
() = —) (2)



where €/ = a—c%d and f’ = —c?d with ¢ being a free variable satisfying acd(a—c?d) # 0. O

The three points of order two (0,0), (¢/,0), (f’,0) on W corresponds to the three points
at infinity (0: 1:0), (1:0:0), (cd: a: 0) on H, respectively. The negative of a point (z,y)
on H is given by (—z, —y).

The birational maps in Theorem 1 could have been further simplified if the curve
constant ¢ were rescaled to 1 by substituting x/c to . However, we intentionally keep the
track of ¢ because it is computationally more advantageous to rescale a and d to “small”?
elements. Let a’ and d’ be such “small” elements so that a = o?a’ and d = §2d’ for some

a,d € K. The rescaling isomorphism reads
Hoca— Hy 5o gy (7,y) = (ax,0y). (3)

Explicit derivation of the point addition formulas for H from the chord-and tangent
rule leads to cumbersome expressions. Step by step derivations are given in [10, Section 2.1]
and [11, Section 4.1]. Nevertheless, the derived formulas can be simplified using the curve
equation. The simplified addition formulas in affine coordinates are given as

(@1 +22)(1 —dyry2) (1 — az122)(y1 + y2)
(301,3/1) + ($2,y2) = ((1 — azlxg)(l + dy1y2)’ (1 + axlxg)(l — dy1y2)) (4)
_ ( (z1 —22) (1 +y2) (w1 +22)(y1 —y2) ) (5)
(14 aziz2)(y1 — y2) (w1 — 22)(1 + dyry2)
The first set of formulas is called the unified addition formulas while the second set is called

the dedicated addition formulas. The simplified doubling formulas in affine coordinates are
given as

221(1 — dy?) 2y1 (1 — ax?)
2)(z1, 1) = , . 6
o = (22 o T e )
All three sets of formulas (4), (5), and (6) are obtained from [10, 11, 5] with minor tweaks for
the positioning of the curve constants and sign tweaks. Therefore, we do not claim credits
on (4), (5), and (6). On the other hand, studying their properties in P! x P! first appears
in this work. Our results are given in the following section.

3 Embedding of H into P! x P!

The projective closure of H in P! x P! is given by
H={((X:2),Y: 1) eP' xP': YT(Z* + aX?) = cXZ(T* + dY?)}. (7)

A point (x,y) on H maps to ((z: 1),(y: 1)) on H. The point ((z: 1),(y: 1)) can
be represented by ((Az: A),(dy: 0)) for any nonzero \,§ € K in the usual way. The
identity element is ((0: 1),(0: 1)). The negative of a point (X : Z),(Y :T)) on H is
(=X :2),(-Y :T)). All points ((X : Z),(Y : T)) on H other than the points at infinity,
corresponds to the point (X7 :YZ: TZ) in homogeneous projective coordinates. The
three points at infinity ((0: 1),(1:0)), ((1:0),(0: 1)), ((1:0),(1:0)) on H corresponds
to the three points of order two (0: 1:0), (1: 0:0), (¢d: a: 0) in homogeneous
projective coordinates as given in the proof of Theorem 1, respectively. The unified
addition formulas correspond to the following in P x P! setting: ((X;: Z1), (Y1 : Th)) +

(X2: Z2), (Y2 : Tn)) =
( ((X1Z2 + 21 Xo)(Th T — dY1Ys) : (217 — aX 1 Xo)(ThTo + dY1Y2))7
((leQ —aX1 Xo) N 1o +ThY2) : (Z1Z2 + a X1 Xo)(Th T — dY1YQ)) ) (8)

2 Here, “small” refers to any distinguished element for which multiplication with other field
elements is significantly faster than the usual multiplication of two arbitrary elements in K.



whereas the dedicated addition formulas correspond to

( ((Xlzg — ZlXQ)(YlTQ + T1Y2) . (Z1Z2 —+ aXlXQ)(YlTQ — T1Y2)),

(X125 + Z1 Xo) (i To — T1Ya) : (X122 — Z1 Xo)(Th Ty + dY1Y2)) ) (9)

Both sets of formulas are of lower total degrees when considered as polynomial expressions,
in comparison with the corresponding formulas in [10,11,5]. Similar comments apply for
the projective doubling formulas which correspond to the following in P! x P! setting:
2]((X1: Z1),(V1: Th)) =

((@X220(T7 — avP) s (23 - aXP)(T} + YD),
(NTi(Z3 —aX}) s (23 +aXD)(TE - dV?) ). (10)

The unified addition and dedicated addition take 10M+2D+12a and 10M+4D+13a,
respectively. Both operation counts improve upon the previous best records 11M-+14a in
[10] and 11M+3D+14a in [11]. The unified mixed-addition and dedicated mixed-addition
(i.e. Zo = To = 1) both take 8M+2D+6a. This operation count improves upon the previous
best record 10M+14a in [10]. The doubling takes 4M+6S+2D+10a with a plain operation
count which improves upon the previous best operation counts 10M+1S+14a in [10] and
6M+5S+3D+12a in [11]. See Section 4 for justifications of our claimed operation counts.

We extend our investigation to 2-isogeny maps to find further improvements in the
following subsection in order to investigate further speedup options for the point doubling
operation.

3.1 Isogeny to an extended Huff curve

Moody and Shumov [6, Section 5] derived a 2-isogeny from a Huff form elliptic curve to
another Huff form elliptic curve. We found in our investigation that more speed-oriented
isogenies can be derived. The following theorem states this isogeny and its dual explicitly.

Theorem 2. In accordance with Theorem 1, let a,c,d,r € K satisfy
acd(a — c*d) #0, r*=ad.

Then, the curve
H: y(14 az®) = cx(l + dy?)

is 2-isogenous over K to the extended Huff curve

a — Ccr

G:y(l—az?) = ( >z(1 —ay?).

a—+cr

The 2-isogeny and its dual are given explicitly as follows:

:C+L zfl
¢: H—G, (w,y)H( a¥ “y),

1+ray’ 1 —ray
Tty

R rT—y a
: G- H > -— .
¢ , (z,y) (1axy,1+axy T)

Proof. We will first show that Ag # 0, hence G is a Huff form elliptic curve, by using the
inequality Ay = acd(a — c®>d) # 0. We have a — ¢*>d # 0 and ¢ # 0 since Ay # 0. It follows
that (a/c)? # ad = r2. So, r # +a/c. We have, atcr # 0. So, (a—cr)/(a+cr) # 0. We also



have, (—a)((—a) — ((a —cr)/(a+cr))*(—a) = 2acr/(a+ cr) # 0 since r # 0 and a + cr # 0.

Therefore, )
a0 =Ca( 52 ca(Ca- (52) o) 2o

x+ r—= —
Setting u = ¥ and v = a? , we have v(1 — au?) — a—a u(l — av?)
1+ray 1—rzy

—2r(1 — az?)(a — r?y?)(ay(1 + az?) — cx(a + r?y?))
a?(a+er)(1 —r2a?y?)? '

By replacing r? with ad and organizing the terms, we get

—2r(1 — az?)(1 — dy?)
(a+ cr)(1 — ada?y?)?

(y(l + az?) — cx(1 + dy2)) .

which shows that ¢ is a rational map from H to G. In addition, ¢((0,0)) = (0,0). Therefore,

@ is an isogeny from H to G.
T —
Setting u =

and v =2 Y , we have v(1 + au?) — u(1 + dv?) =
1 —axy r 14+ azxy

- (c(z +9)(1 — axy)(1 + axy)?/(r — ra*z*y?) 2)7’2+
(a(m — )1+ azy)(1 + az?®)(1 + ay?®)/(r — ra*z?y?) 2)r
(a%ed(@ +y)(1 — azy)(@ — )/ (r = ra*a®y?)?).

By replacing d with r2/a and organizing the terms, we get

(y(l —az?) — (a - Cr)x(l _ ay2)) (ater)(+ az?)(1 + ay?)

a+cr —r(1 — ax2y?)?

which shows that ¢ is a rational map from G to H. In addition, $((0,0)) = (0,0). Therefore,
¢ is an isogeny from G to H.

It remains to show that pop = 2]y € K(H) and po$ = [2]¢ € K(G). We readily have,
pop=

—2xy(ax — cdy)(ax?® — 2cdxy + dy?) —2zy(ax — cdy)(acz? — 2axy + cdy?)
(az? — dy?)(acx?® — 2axy + cdy?) = clax? — dy?)(ax? — 2cdxy + dy?)

To see that these formulas give [2]y € K(H), eliminate ¢ using ¢ = y(1 + az?)/(x(1 + dy?)
which is obtained by the curve equation for H, and then, factor the remaining expression.
Similarly, ¢ o ¢ = [2]¢ € K(F) can be verified by eliminating ¢ from the expanded ¢ o @,
using the relation

ay(1l — az?) — ax(1 — ay?)

ry(l —ax?) + rz(l — ay?)
which is obtained by the curve equation for G, and then eliminating d using the relation
d =12 /a. See the full version of this work for a constructive proof to obtain ¢ and ¢. O

The maps ¢ and ¢ takes a particularly simple form for twisted Huff curves i.e. when
a = d and so, 7 = +a. We will use this setting in the remainder of the text for efficiency
purposes. Taking r = a and noting the P* x P! embedding of G as

1-
I+ec

G: YT(Z? —aX?) = < )XZ(T —aY?),



the projective 2-isogeny ¢y : H — G and its dual ¢g : G — H are given as

(X:2),(Y 1)~ (XT+YZ:TZ+aXY),(XT-YZ:TZ—aXY)),
(X:2),(Y 1)~ (XT+YZ:TZ—aXY),(XT-YZ:TZ+aXY)), (11)

respectively. The kernel of ¢y is {((0:1),(0:1)),((1:0),(1:0))} € H. The kernel of
¢g is {((0:1),(0:1)),((1:0),(1:0))} €G. An algorithm to evaluate [2]3 = @g o 3 at
points of H is provided in the next section. See also Section 4 for further justifications.

We note that both 4 and G are non-singular. The maps ¢y and ¢g can be used to
accelerate the 4M+6S+2D-+12a doubling formulas in Section 3. In particular, doubling on
H now takes SM+2D+8a if d = a, with the new set of formulas. See Section 4 for further
justifications.

4 Efficient computation

This section presents efficient algorithms and operation counts. The 4-way parallel
algorithms are central to this work. The algorithms in this section are designed as to allow
working destructively on registers X, Z1, Y7, and Ti. Specifically, X3, Z3, Y3, and T3 are
allowed to be the same registers as X, Z1, Y7, and T3, respectively. The registers R; are
temporary registers and C; are cache registers.

In the following algorithms, a, ¢, d are arbitrary unless stated otherwise. The constants
always satisfy acd(a — c2d) # 0. We also assume that the inputs are carefully selected so
that the output is defined. The output is always defined for doubling and unified addition
formulas if the arithmetic is restricted to odd order subgroup. This result can be deduced
from [10, Corollary 1]. The output is always defined for dedicated addition formulas if the
arithmetic is restricted to odd order subgroup and the input operands do not represent the
same point.

The first two algorithms make the assumption that a = d = 1. This assumption implies
that the least possible cofactor is 8.

— Doubling with a = d = 1 via 2-isogeny decomposition (11) takes 8M+8a. The following
is a 4-way parallel algorithm with cost 4 x (2M + 2a):

Ro = X1 - T, Ri:=Yi- 7, Ro =T - 71, Ry = X, - Y4,
X3 := Ro + Ru, Y3 := Ro — Ru, T3 := Ry — R3, Z3 = R2 + R3,
Ro = X3 - T, Ry =Y Zs, Ro =T - Zs, Ry = X3 - Ya,
X3 := Ro + R, Y3 := Ro — Ru, Z3 = R2 — R3, T3 := R2 + Rs.

— Unified addition with a = d = 1 and Zy = T5 = 1 takes 8M+6a. The following is a
4-way parallel algorithm with cost 4 x (2M + 2a):

Ro := X1 - Xo, Ry =271 X, Ry =Y - Ya, Rz =T - Ya,

Ry := Z1 + Ro, Ry = X1 + Ry, Rs :=T1 + Ro, R3 :=Y1 + Rs,
Ro := Z1 — Ry, idle Ry :=T1 — Ry, idle

Z3 := Ro - Rs, X3 := R1 - Ra, T5 := Ry - Ry, Y3 := R3 - Ro.

The following two algorithms make the assumption that a = d = 2. This assumption
implies that the least possible cofactor is 4.

— Doubling with @ = d = 2 via 2-isogeny decomposition (11) takes 8M+10a. The following
is a 4-way parallel algorithm with cost 4 x (2M + 4a):



idle idle idle Ry =X1+ X1

Ro := X, - Tv, Ry :=Y1- Zy, Ry =T -7, R3:=Ry4-Y1,
X3 := Ro+ R1, Y3 := Ro — R, T5 := R2 — R, Z3 = R2 + Rs,
idle idle idle Ry := X3+ X3
Ro = X3 - T3, R :=Ys:Z3, Re :=1Ts - Zs, Rs := R4 - Y3,

X3 = RO+R17 Y3 = 1%0—R17 Zg = RQ—R,?” T3 = R2+R3.

— Unified addition with a = d = 2 and Z; = T5 = 1 takes 8M+8a. The following is a
4-way parallel algorithm with cost 4 x (2M + 2a):

Ry := X1 - Xo, Ri := 71 - Xo, Ry :=Y1Ya, R3 =T - Ya,

Ry := Ro + Ro, Ri1 := R1 + Xu, R2 := Rs + Ro, Rs := Rs + Y1,
Ry :=Ro+ Z1, R7 := Ry — Za, R¢ := Ry — T, Rs := R2 + T,
T5 := Ry4 - R, Y3 := R7 - Rs, X3 :=R¢ - Ry, Z3 := Rs - Ry.

— Doubling (10) takes 4M+6S+2D+10a:

Ro:=X? X3:=X1+2721, X3:=X2, X3:=Xs3—Ro, Z3:=2% X3:=X3— Zs,
Ro :=aRo, Ri =73+ Ro, Zs:=Z3—Ro, Ro:=Y?, Ys:=Y1+Ti, Ys3:=YZ
Ys:=Ys—Ro, Ts:=T2, Ys3:=Ys—Ts, Ro:=dRo, Rz:=Ts+ Ro, Ts:=Ts— Ro,
Xg = X3 . Tg, Yg = Yg . Zg, Zg = Zg . 1%27 T3 = T3 . RL

— Doubling exploiting the 2-isogeny decomposition (11) with a = d, takes 8M+2D~+8a:

Ro = aXh X3 = Xl -Tl, Ro = RQ-Yi, T3 = T1 'Zl7 Yg = le 'Zl, Zg = T‘g-‘y—}%o7
T3 := T3 — Ro, Ro:= X3+Y3 Y3:=X3-Y3, X3:=aRy, X3:= X3-Y3,
R() = R() . ,Tg7 Ts = T3 - Zg7 Y3 = Y3 . Zg, Zg = 15 — )(37 Ts = T3 + )(37
Xg = RO + Yrg7 Yg = RO - Y34

— Unified readdition with Zy = Ty = 1, takes 8M+6a if Cy := aXs and C; = dY3
is precomputed and cached. The following is a 4-way parallel algorithm when similar
operations are grouped, with cost 4 x (2M + 2a):

Ro = X1 . C’o7 Rl = Zl . X27 R2 = Y1 . 017 R3 = T1 . YQ, R4 = Zl —|— 1%07
Ry = X1 + R17 Rs :=T1 + ]%27 Rs :=Y1+ R3, Ro:=21— Ry, Ro:=7T) — R27
Z3 = RQ-R5, X3 = Rl -RQ, T3 = R2~R4, Y3 = Rg'Ro.

— Unified readdition takes 10M+2D+10a if Cy and C; are precomputed and reused in
the below algorithm. Unified addition takes 10M+2D+12a:

Co = Xo+ 22, Cir:=Ya+To, Ro:= X1 X2, Ri:=Y1-Ys, Ro:= 271 2o,
Rs =T, ~TQ7 X3 = X1 —‘y—Zl7 Ys = Y1 —l—Tl7 Ry == Ro+ R2, Rs := R —‘y—Rg7
Xg = X3 . 007 Y3 = Yg . 01, Zg = CI,RQ7 T3 = dR17 RO = Rg +T37 T3 = R3 - T‘g7
R1 :=Ra+ 23, Z3s:= Ry —Z3, X3 := Xs— R4, Y3:=Ys—Rs, X3:= X3-Tj,
Yg = Yg . Zg, Zg = Zg . ]%07 T3 = T3 . RL

— Dedicated addition with a =d =1 and Zy = T, = 1 takes 8M+6a. The following is a

4-way parallel algorithm when similar operations are grouped, with cost 4 x (2M + 2a):
Ro == X1 X2, R1 =21 X2, Re:=Y1-Ya, Rs:=1T1- Y2, Ro:= Z1+ Ro,
Ry = X1+ Ri, Ro:=Ti+R2, Rs :=Y1+4+ Rs, Ri:=X1—Ri, Rs:=Y1 — Rs,
Zg = Ro . 1%37 Xg = Rl . 1%57 T3 = R2 . Rl, Yg = R3 . R4.

— Dedicated readdition with Zy = T = 1 takes 8M+6a if Cy := aXs and Cq := dYs
is precomputed and cached. The following is a 4-way parallel algorithm when similar
operations are grouped, with cost 4 x (2M + 2a):

Ro = X1 . C’o7 Rl = Zl . X27 R2 = Y1 . 017 R3 = T1 . YQ, RO = Zl —|— 1%07
Ry =X1 4+ Ri, Ry =Ti+Re, Rs :=Y1+ R3s, Ri1:=X1—Ri, Rs:=Y1 — Rs,
Z3 = Ro . Rg, X3 = Rl . R5, T3 = RQ . Rl, Y3 = R3 . R4.



— Dedicated readdition takes 10M+2D+1la if Cy = Zy — aXy and C; = Ty —
dYs are precomputed and reused in the below algorithm. Dedicated addition takes
10M+4D+13a:

Co = (1)(27 Co = ZQ — Co, Cl = dYé7 01 = TQ —01, Ro = Y1 . TQ7 R1 = T1 -YQ,
Ry := dRy, Rz := R+ Ry, 15 :=T1 — Y1, T3 := Cy-T3, T3 := T35+ Ra,
Ys := Ro — Ri, Ro:=X1-Z2, Ro:=Ro+ R, Ri:=21 X2, Z3:= 271 — Xi,
Zs = Co-Zs, Zs:= Zzs+ Ra, X3 := Ro — Ri, X3 := X3-Ro, Ro := aRi,
Ro := Ro+ Z3, Z3 :=Ys-Ro, Ro:= Rx+ Ri, Y3 :=Y3-Rog, Rz := Ro— Ry,
T3 :=1T5- Ro.

5 Comparison and conclusion

This work showed how to speed up the extended Huff form elliptic curves by embedding
the curve in projective space P! x P!. Table 1 compares the results of Section 4 with the

literature. Our formulas set the new operation count record for each group operation in
Huff form.

Table 1: Speed oriented operation counts for Huff form

Source & the curve equation | h [DBL muADD uADD

Wu, Feng [11] plus assuming b =1,
X(aY? - Z*)=Y(X? - 7%

Joye, Tibouchi, Vergnaud [10],
aX(Y? - 7% =bY(X? - 7%

4 |6M+5S+1D+12a|10M+1D+14a|11M+1D+14a

8 |6M+5S+13a 10M+14a 11M+14a

This work, 8M-+10a 8M+8a

4 10M+14a
YT(Z? +2X?) = cXZ(T? 4 2Y?) 4% (2M+4a) 4% (2M+2a)
This work, 8M+8a 8M+8a

8 10M+12a
YT(Z? + X?) = cXZ(T? +Y?) 4x (2M+2a) 4% (2M+2a)

— The column h represents the least possible cofactor in the given curve model.

—DBL, muADD, and uADD refer to doubling, unified addition with Z> = 1, and unified
addition operations, respectively. We stress the additional condition 75 = 1 for muADD in
the last two entries of Table 1.

— The counts for a do not appear in the reference works. We counted them without eliminating
the common subexpressions.

— The best operation counts in the reference works are reported by selecting the identity element
as (0: 1:0). In contrast, our formulas do not require moving the identity to a point at infinity.

— The operation count for the twisted Huff curve aX (Y2 —dZ?) = bY (X? — dZ?) is not provided
in [10]. Therefore, this case is missing in Table 1.

In addition, the most common group operations, doubling and mixed addition, are shown
to be 4-way parallelizable. The presented formulas are expected to be attractive for parallel
processing (e.g. special hardware, SIMD, video card settings). There is a need for further
investigation in this direction.

It is tempting to compare the performance of the new formulas with the fastest formulas
developed for twisted Edwards curves for which efficient 4-way parallel algorithms are given
in [8]. The presented formulas gets competitive with twisted Edwards curves in the 4-way
parallel setting. In the fastest scenario, twisted Edwards doubling takes 4 x (1M + 18)
where extended Huff doubling takes 4 x 2M. Both forms should give similar performance if



M = S. The fastest 4-way parallel mixed addition takes 4 x 2M in both forms. Therefore, if
double-and-add scalar multiplication algorithm is used and M = S, then both curve models
are expected to give similar performance. One advantage of twisted Edwards curves is that
the conversion of a projective point (X : Y : T : Z) to the affine point (X/Z,Y/Z) takes
I+ 2M. The conversion of a projective point ((X : Z),(Y : T)) on an extended Huff curve
to the affine point (X/Z,Y/T) takes I + 5M using Montgomery’s simultaneous inversion
technique [7]. However, the performance difference should be minor since I is many times
more costly than M. Yet, we do not disguise the fact that twisted Edwards will always win
in sequential implementations especially in windowed scalar multiplications.

P! x P! embedding of twisted Edwards curves and explicit group law formulas are given
in [3] in rather a different context, without operation counts. Therefore, it is not clear how
the two compare with each other. We also leave further comparisons with other forms to
the reader.
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