
Privacy-Preserving Linear Regression on
Distributed Data

Irene Giacomelli, Somesh Jha, and C. David Page

University of Wisconsin-Madison, Madison, WI, US

April 14, 2017

Abstract. Linear regression is an important statistical tool that models
the relationship between some explanatory values and an outcome value
using a linear function. In many current applications (e.g. predictive
modelling in personalized healthcare), these values represent sensitive
data owned by several different parties that are unwilling to share them.
In this setting, training a linear regression model becomes challenging
and needs specific cryptographic solutions. In this work, we propose a
new system that can train two different variants of linear regression (i.e.
ridge regression and lasso regression) on a dataset obtained by merging a
finite number of private datasets. Our system assures that no extra infor-
mation on a single private dataset is revealed to the entities performing
the learning algorithm. Moreover, our solution is based on efficient cryp-
tographic tools (e.g. Paillier’s scheme and pseudorandom generator).

1 Introduction

Linear regression is an important statistical tool that models the relationship
between some explanatory values (features) and an outcome value using a linear
function. More precisely, given the data-points (x1, y1), . . . , (xn, yn) where xi is
a vector of d real values (features) and yi is a real value (outcome), a linear
regression method is a learning algorithm for finding a vector w (the model)
with d real components such that the value w(1)xi(1) + · · ·+ w(d)xi(d) is close
to yi for all i = 1, . . . , n. Despite its simple definition, a linear regression model
is very useful. Indeed, w can be used to quantify the relationship between the
features and the outcome (e.g. identify which features influence more directly
the outcome value) and for future prediction (e.g. if a new vector of features
with no known outcome is given, w can be used to make a prediction about it).

Motivation. In the standard statistics setting, it is assumed that the party per-
forming the regression has direct access to all the data points in the training set
in order to compute the model w. This common assumption becomes non-trivial
in some relevant areas where linear regression finds application (e.g. personalized
medicine [C+09]) because the data-points encode sensitive information owned
by different and possibly mutually distrustful entities. Often, these entities will
not (or can not) share their private data, making traditional linear regression
algorithms difficult (or even impossible) to apply. On the other hand, it is known

that having a large training dataset composed by a good variety of data-points
(e.g. more relevant features or more data-points) improves the ability to compute
a reliable model. Consider the following example: We would like to use a given
linear regression method in order to predict the weight of a baby at birth on the
basis of some ultrasound measurements made during last month of pregnancy
(e.g. head circumference, femur length, etc). In order to avoid computing a bi-
ased model, we would like to run the selected learning algorithm on data points
collected in different hospitals in different countries. On the other hand, each
hospital legally cannot share (in the clear) patients’ sensitive data (the measure-
ments) with other hospitals or with a third party (e.g. a cloud-computing server).
This real-life case exemplifies the challenge on which we focus in this work: train-
ing a linear regression model on data points that must be kept confidential and
are owned by multiple parties.

This work. Our paper takes up this challenge and proposes an efficient solution
in the setting in which the training set is a combination of data input by differ-
ent parties (data-owners). Specifically, we consider the setting in which the fea-
tures in the training dataset are distributed among different parties (vertically-
partitioned dataset) and the setting in which each party has some of the data-
points that form the training set (horizontally-partitioned dataset).
Our system is based on two efficiently implementable cryptographic primitives
(public-key encryption schemes and pseudorandom generators) and is composed
by two phases. In the first phase, we use a public-key encryption scheme with
limited homomorphic property to let the data-owners securely submit their data
to a third party. After this first step, the homomorphic property of the scheme is
used to design an ad-hoc randomized algorithm that computes the desired linear
regression model (i.e. ridge or lasso) from the encrypted version of the merged
dataset. This algorithm is run by the party who collected the encrypted data
with the help of a crypto-service provider. Neither one of these two parties have
to handle the input data in the clear and moreover no extra information (beside
that released by the model itself) is revealed to these two parties. To the best of
our knowledge, our system is the first one to implement linear regression in the
lasso version (i.e. with a norm-1 penalty applied to the model). Moreover, no-
tice that the data-owners are active only in the first phase of the entire system.
This makes our solution suitable for all applications in which the majority of
data-owners are willing to help in order to run collaborative analysis but don’t
want to (or can not) spend to much resources for it.

Related work. The question of privacy-preserving machine learning was intro-
duced in 2000 by two pioneering works [LP00,AS00]. Later on, privacy-preserving
linear regression was considered in a number of different works (e.g. [KLSR04],
[DHC04,SKLR04,KLSR05,KLSR09,HFN11,CDNN15,AHPW15]).
In 2013, Nikolaenko et al. introduced in [NWI+13] the scenario considered in this
paper: the privacy-preserving linear regression protocol has two phases. In the
first phase there are possibly many data-owners that submit their private data to
a third party. In the second phase, the third party is in charge of computing the

2

model with the help of a crypto-service provider. Their solution considers only
the horizontally-partitioned setting for ridge regression and is based on additive
encryption and garbled circuits (Yao’s protocol). Specifically, in the second phase
(model computing phase) of the protocol presented in [NWI+13], the ridge re-
gression model is computed using Yao’s protocol to garble the circuit that solves
a linear system of equations by computing the Cholesky decomposition of the
associated coefficient matrix. Very recently, the system presented in [NWI+13]
is extended to the vertically-partitioned setting by the paper [GSB+16]. Gascón
et al. achieves this result using MPC techniques to allow the data-owners to
compute shares of the merged dataset. Moreover, Gascón et al. also improves
the running time of the second phase of the protocol presented in [NWI+13] by
designing a new conjugate gradient descent algorithm that is used in the place
of Cholesky decomposition. Our paper follows this line of work and presents
a new two-phase system. For the first phase, we extend the approach used by
Nikolaenko et al. to the vertically-partitioned setting using an homomorphic en-
cryption scheme that supports only one multiplication. For the second phase,
we get rid of Yao’s garbling scheme designing an ad-hoc two-party protocol that
computes the desired regression model (ridge or lasso). This protocol exploit
the homomorphic property of the underlying encryption scheme and employs
pseudorandom generators.

Organization of the paper. In Section 2 we start our presentation recalling ridge
and lasso linear regression. In Section 3 we describe the general framework of
our system (e.g. parties involved, security assumptions, security definitions, etc.),
and we also provide the definitions of the cryptographic primitives involved in
the design of our system. Finally, in Section 4 we describes in detail all the
protocols that form our two-phases system.

Standard notations. We use bold notation for vectors and capital letter for ma-
trices (e.g. x ∈ Rn is a column vector, A ∈ Rn×d is matrix with n rows and d
columns, both with real-value entries). We indicate with x(i) the i-th compo-
nent of a vector x and with A(i, j) the i-th component of the j-th column of the
matrix A. The p-norm of a vector x is defined by ‖x‖p = p

√∑n
i=1 |x(i)|p.

2 Linear Regression

A linear regression learning algorithm is a procedure that on input a dataset of n
points D = {(x1, y1), . . . , (xn, yn)} (where xi ∈ Rd and yi ∈ R)1 gives as output
a vector w∗ ∈ Rd such that w∗>xi ≈ yi for all i = 1, . . . , n. One common way to
compute such a model w∗ is to use the squared-loss function and the associated
empirical error function (mean squared error):

fX,y(w) = ‖Xw − y‖22
1 We assume that all the the values xj(i) and yj are rescaled to the same finite real

interval (e.g. [−1, 1]).

3

where X ∈ Rn×d is the matrix with the vector x>i as ith row and y ∈ Rn

is the vector with the value yi as ith component. Specifically, w∗ is computed
by minimizing a linear combination of the aforementioned error function and a
regularization term,

w∗ ∈ argminw{fX,y(w) + λR(w)}

The regularization term is added to avoid overfitting the training dataset and to
compute simpler models. In practice, the most common regularization terms are
the norm-2 (R(w) = ‖w‖1), which grantees a model with overall smaller com-
ponents, and the norm-1 (R(w) = ‖w‖1), which provides a sparse model (i.e. a
model with only few non-zero components). Note that, norm-1 regularization is
often preferred since in practice it performs feature selection.
In the following, we briefly recall these two versions of regularized linear re-
gression, known in the literature with the name of ridge and lasso regression,
respectively. We always assume rk(X) = d.

Ridge Regression: The model w∗ is computed by minimizing the function

Fridge(w) = fX,y(w) + λfI,0(w)

= ‖Xw − y‖22 + λ‖w‖22

where λ ≥ 0 is fixed. Since Fridge is a differentiable function, its minimum point2

can be computed by solving the linear system corresponding to ∇Fridge(w) = 0.

Lasso Regression: The model w∗ is computed by minimizing the function

Flasso(w) = fX,y(w) + λ‖w‖1
= ‖Xw − y‖22 + λ‖w‖1

where λ ≥ 0 is fixed. Unlike ridge regression, lasso-penalized linear regression
does not have a closed form solution, if λ > 0. Moreover, Flasso is not differen-
tiable everywhere, and finding its minimum point cannot even be accomplished
by gradient descent. Nevertheless, it is possible to efficiently find an approxi-
mation of it. Indeed, it is known that finding the minimum point of Flasso is
equivalent to solving the following convex minimization problem [FT07]:{

argminw∈RdfX,y(w)

subject to ‖w‖1 ≤ s
(1)

where s ∈ R is fixed3. And an approximation of the solution4 of (1) can be
found using the conditional gradient descent method. This method, also known
as the Frank-Wolfe (FW) algorithm (see Chapter 3 in [Bub15]), is an iterative

2 If rk(X) = d, then the minimum point of Fridge is unique.
3 If we allow s = +∞, then standard linear regression is also represented by (1).
4 If rk(X) = d, then (1) has a unique solution.

4

algorithm that works in the following way: given an initial point w1 in Rd with
‖w1‖1 ≤ s, then for any j = 1, 2, . . . compute{

vj ∈ argmin‖v‖1≤s{∇fX,y(wj)
>v}

wj+1 = (1− γj)wj − γjvj

where γj = 2
j+1 . It is known that if there exists a positive constant M such that

||xi||2 ≤M for all i, then it holds that

fX,y(wt)− argminwFlasso(w) ≤ 8M2

t+ 1

Finally, before describing in the next section the cryptographic setting we
consider, we state here two mathematical facts about the mean squared error
function that will be used in the following:

(F1) The function fX,y is differentiable and ∇fX,y(w) = 2X>(Xw − y).
From now on, we indicate A = X>X (d × d matrix) and b = X>y (vector
of d components); note that since rk(X) = d, the matrix A is invertible.

(F2) Given a matrix R ∈ Rd×d and a vector r ∈ Rd, then for any w ∈ Rd we have
that fX,y(Rw − r) = fXR,y+Xr(w).

3 The Privacy-Preserving Setting

We consider the setting where the training dataset is not available in the clear to
the entity that wants to run the linear regression algorithm. Instead, the latter
can access encrypted copies of the data and, for this reason, needs the help of
the party handling the cryptographic keys in order to learn the desired model.
More precisely, protocols in this paper are designed for the following parties (see
Figure 3):

– The Data-Owners: there are m data-owners DO1, . . . ,DOm; each data-owner
DOi has a private dataset Di and is willing to share it only if encrypted.

– The Machine Learning Engine (MLE): this is the party that wants to run a
linear regression algorithm on the dataset D obtained by merging the local
datasets D1, . . . ,Dm, but has access only to the encrypted copies of them.
For this reason, the MLE needs the help of the Crypto Service Provider;

– The Crypto Service Provider (CSP) takes care of initializing the encryption
scheme used in the system and interacts with the MLE to help it in achieving
its task (computing the linear regression model). The CSP manages the
cryptographic keys and is the only entity capable of decrypting.

We assume that the MLE and the CSP do not collude and that all the parties
involved are honest-but-curious. That is, they always follow the instruction of
the protocol but try to learn extra information on the dataset from the messages

5

received during the execution of the protocol (i.e. passive security).
Moreover, we assume that for each pair of parties involved in the protocol there
exists a private and authenticated peer-to-peer channel. In particular, commu-
nications between any two players cannot be eavesdropped5.

Our goals are to ensure that the MLE obtains the regression model (the
vector obtained by running the chosen regression algorithm on D in the clear)
while both the MLE and the CSP learn any other information about the private
datasets Di beyond what is revealed by the model itself.

We achieve this goal by designing a privacy-preserving system for linear re-
gression. The latter is a multi-party protocol run by the m+2 parties mentioned
before and specified by a list of public parameters and a sequence of steps. The
system described in this paper (Section 4) has the following two-phase form (see
Figure 3):

– Phase 1 (merging the local datasets): the CSP generates key pair (sk,pk),
stores sk and makes pk public; each DOi sends to the MLE specific cipher-
texts computed using pk and the values in Di.

– Phase 2 (computing the model): the MLE uses the ciphertexts received and
private random values in order to obtain encryptions of new values that
we call “masked data”; these encryptions are sent to the CSP; the latter
decrypts and runs a given algorithm on the masked data. The output of this
computation (“masked model”) is a vector w̃ that is sent back from the CSP
to the MLE. In the last step of the protocol, the MLE computes w̃∗ from w̃.

Informally, we say that the system is correct if w̃∗ ≈ w∗ (that is, the model com-
puted by the MLE is an approximation of the model computed by the learning
algorithm in the clear). And we say that the system is private if the distribu-
tion of the masked data sent by the MLE to the CSP is independent from the
distribution of the local inputs.

As we will see in section 4, the specific design of the protocol realising
Phase 1 depends on the distributed setting: horizontally- or vertically-partitioned
dataset, while the specific design of the protocol realising Phase 2 depends on
the regularization version chosen for the linear regression: ridge or lasso.

3.1 Cryptographic Tools

To design our new privacy-preserving system for linear regression, we employ
homomorphic encryption. An additive encryption scheme is defined by three
algorithms:

1. the key-generation algorithm Gen takes in input the security parameter κ
and outputs the pair of secret and public key, Gen(κ)→ (sk,pk).

5 Using proxy encryption, this requirements could be weakened. We leave this for
future work

6

DO1 DO2
. . . DOm

private data D1 private data D2 private data Dm

MLE CSPCSP

crypto keys

model w̃∗

pkencrypted data

encryption of
masked data

masked model w̃

Fig. 1. Protocols setting overview.

2. the encryption algorithm Enc is a randomized algorithm that uses the public
key to transform an element fromM (finite plaintext space) in a ciphertext,
Encpk(x)→ c ∈ C.

3. the decryption algorithm Dec is a deterministic function that takes in input
a element from the ciphertext space C and the secret key and reveal the
original plaintext (i.e. Decsk(c) = x).

The standard security property (semantic security) says that it is infeasible for
any computationally bounded algorithm to gain extra information about a plain-
text when given only its ciphertext and the public key pk. Moreover, we have
the additive property: we assume that (M, +) is an additive group and that
there exists an operation ⊕ on the ciphertext space C such that for any a-uple
of ciphertexts Encpk(x1) → c1, . . . ,Encpk(xa) → ca (a integer), it holds that
Decsk(c1 ⊕ · · · ⊕ ca) = x1 + · · · + xa. This implies that Decsk(ac) = ax, where
aca means c⊕ · · · ⊕ c a times.

Example 1. (Paillier’s scheme.) Let N = pq and g → ZN2 , we have pk = (N, g)
andM = ZN . To encrypt M , sample r in Z∗N and compute c = gMrN mod N2.
In this case, ⊕ is the standard product of ZN2 , indeed:

7

- c1c2 = (gM1rN1 mod N2)(gM2rN2 mod N2) = Encpk(M1 +M2)
- (c1)a = (gM1rN1 mod N2)a = Encpk(aM1)

A one-time multiplicative encryption scheme is an additive scheme
that also support one multiplication among ciphertext. That is, we assume that
in (M,+, ·) is a ring and that there is a product operation ⊗ defined on the
ciphertext space C such that for any pair of ciphertexts Encpk(x1) → c1 and
Encpk(x2)→ c2, it holds that Decsk(c1 ⊗ c2) = x1 · x2.
An example of one-time multiplicative scheme can be found in [GHV10]6.

Example 2. (GHV scheme [GHV10].) LetN,M be integers and p, q primes (M, q =
poly(N)). We have M = ZM×M

p and

1. Gen(N): run the trapdoor function in [AP09] and obtain a matrix A ∈ ZM×N
q

and an invertible matrix T ∈ ZM×N such that TA = 0 mod q. Define
pk = A and sk = T ;

2. Encpk(M): sample S,X and compute C = AS + pX +M mod q;
3. Decsk(C): let E = TCT> mod q and output T−1E(T>)−1 mod p.

4 Privacy-Preserving Linear Regression

In this section, we describe our two-phases system for training a regression model
(with norm-2 or norm-1 regularization term) in the setting described in Section
3. Specifically, we describe how to implement Phase 1 (merging the datasets)
and Phase 2 (computing the model) in Section 4.1 and 4.2, respectively.

Before, describing in the detail the protocols implementing this idea, we fix
here the notation and the assumptions we have about data representation.

Data representation: We assume that the entries of X and y are real number
from a bounded interval I = [−10r, 10r] and have at most ` decimal digit.
As in previous work [NWI+13,CDNN15,GSB+16], the usage of cryptographic
tools implies that these real values are represented by fixed-point data type.
We call fixed-point representation with resolutions ` of the real number a the
integer [a] =

⌊
a · 10`

⌋
. Since we assume that all the entries stay in the interval

I, there exists a positive integer k such that the fixed-point representations of
the aforementioned values stay in the set Z<`+r> = {x ∈ Z | − 10`+r < x <
10`+r}. This standard method to represent real values is not enough in the
setting considered in this paper. Indeed, in order to prove the privacy property
of the protocols designed in the following, we rely on the fact that some values
are sampled from a finite ring. For this reason, we need to map the set Z<`+r>

to the ring Zq for some large q (q > 10`+r). For this, we use the map x 7→ x
mod q. If no overflow occurred (q large enough), we can compute on fixed-point

6 Similar to the Boneh-Goh-Nassim cryptosystem [BGN05], but with a more efficient
encryption and decryption algorithms.

8

numbers from Z<`+r> using the arithmetic of Zq for a big enough q. In this way,
we obtain a two-steps map from R to Zq that can also be easily inverted:

emb : R −→ Z<`+r> −→ Zq

x 7→
⌊
x10`

⌋
7→

⌊
x10`

⌋
mod q

emb−1 : Zq −→ Z<`+r> −→ R

y 7→ z 7→ z10−`

with z =

{
y if 0 ≤ y ≤ q/2
y − q if q/2 < qy ≤ q − 1

From now on, we assume that the map emb is used to represent all input
values and regression parameters (λ or s) as element in Zq.

4.1 Phase 1: merging the dataset

Assume that the dataset represented by the matrix X is horizontally-portioned
in m datasets. This means that each DOi holds some rows of the matrix X. We
assume that the correspondence between rows and parties is publicly known and
has this form: the data-owner DOi holds Di and

Di = {(xni−1+1, yni−1+1), . . . , (xni
, yni

)}

for i = 1, . . . ,m (n0 = 1, nm = n). In this case, as already noticed in [NWI+13],
we have the following. Recall that A = X>X, b = X>y and define Ai = xix

>
i ,

bi = yixi for i = 1, . . . n, then

A =

n∑
i=1

Ai and b =

n∑
i=1

bi.

Each Ai and bi can be computed locally by the party DOi; then, if additively
homomorphic encryptions of such values are sent to the MLE, the latter can eas-
ily compute encryptions of A and b. This is captured in protocol Π1

hor (Figure 2).

On the other hand, in the vertically-partitioned setting we assume that each
DOi holds some columns of X. We assume the correspondence between columns
and parties is publicly known and can be represented in the following way. For
i = 1, . . . ,m− 1 (n0 = 1, nm−1 = d), define

Xi =

x1(ni−1 + 1) . . . x1(ni)
...

...
xn(ni−1 + 1 . . . xn(ni)

 and Xm = y

and let Di = {Xi}. The data-owner DOi holds Di. In this case, we have that

A =

 X>1 X1 X>1 X2 . . . X>1 Xm−1
...

...
...

X>m−1X1 X
>
m−1X2 . . . X

>
m−1Xm−1

 and b =

 X>1 Xm

...
X>m−1Xm

 (2)

9

Protocol Π1
hor

– Parties: CSP and MLE with no input
DOi with input Di for all i = 1, . . . ,m.

– Output: MLE gets A′ and b′ encryptions of A and b, respectively.
– Public parameters: number of features d, total numbers of data points d.

Assume that (Gen,Enc,Dec) is an additive encryption scheme with plaintext space
M (and Zq ⊆M) and security parameter κ.

Step 1: the CSP runs Gen(κ)→ (sk,pk) and makes pk public, while it keeps sk
secret.

Step 2: for all k = 1, . . . ,m, DOk does the following
a) (local computation) for all i = nk−1 + 1, . . . , nk, compute Ai = xix

>
i

and bi = yixi;
b) (encryption) for all i = nk−1 + 1, . . . , nk, computea

A′i(k, j) = Encpk(Ai(k, j))

b′i(j) = Encpk(bi(j));

for all k, j = 1, . . . , d;

c) for all i = nk−1 + 1, . . . , nk, send A′i and b′i to the MLE.

Step 3: the MLE does the following
a) (datasets merging) compute the values

A′(i, j) =

n⊕
k=1

A′k(i, j)

b′(i) =

n⊕
k=1

b′k(i)

for all i, j = 1, . . . , d and j ≥ i;
a Batching techniques can be used to improve efficiency of the practical imple-

mentation.

Fig. 2. The protocol Π1
hor implements Phase 1 in the horizontally-distributed setting.

If all values in X are encrypted, computing an encryption of X>i Xj requires
only depth-one multiplication of ciphertexts. Thus an encryption of A and b can
be computed from encryptions of the local datasets, if the underling scheme is
one-time multiplicative. This is what protocol Π1

ver (Figure 3) describes.

10

Protocol Π1
ver

– Parties: CSP and MLE with no input
DOi with input Di for all i = 1, . . . ,m.

– Output: MLE gets A′ and b′ encryptions of A and b, respectively.
– Public parameters: number of features d, total numbers of data points n.

Assume that (Gen,Enc,Dec) is a one-time multiplicative encryption scheme with
plaintext space M (and Zq ⊆M) and security parameter κ.

Step 1: the CSP runs Gen(κ)→ (sk,pk) and makes pk public, while it keeps sk
secret.

Step 2: for all i = 1, . . . ,m, DOi does the following
a) (encryption) computea X ′i(`, j) = Encpk(Xi(`, j)) for all ` = 1, . . . , n

and j = 1, . . . , (ni − ni−1);

b) send X ′i to the MLE.

Step 3: (datasets merging) the MLE does computes all the encryptions of X>i Xj

with j ≥ i and i, j = 1, . . .m as

Encpk(X>i Xj(`, k)) =

n⊕
t=1

X ′i(t, `)⊗X ′j(t, k)

and uses this values to forms encryptions of A and b according to (2).

a Batching techniques can be used to improve efficiency of the practical imple-
mentation.

Fig. 3. The protocol Π1
ver implements Phase 1 in the vertically-distributed setting.

4.2 Phase 2: computing the model

Before, showing how to implement Phase 2, we state here the lemma that we will
use in the following to prove privacy. Let (Zq)k×kinv = {M ∈ Zk×k

q |M invertible }.

Lemma 1. Fix M ∈ (Zq)k×kinv and v ∈ Zk
q ; assume that R is sampled uniformly

at random from (Zq)k×kinv and r is sampled uniformly at random from Zk
q . Then

for any fixed v ∈ Zd
q , the distribution of (MR,v +Mr,) is the uniform one over

(Zq)k×kinv × Zk
q .

Protocol Π2
ridge

Recall that in ridge regression we compute the model w∗ by finding the minimum
of the function Fridge(w) (Section 2). Now, consider the masked version of it given

11

by:

F̃ridge(w) = fXR,y+Xr(w) + λfR,r(w)

where R is any d× d matrix and r is a vector of d components.

Lemma 2. If R is invertible, w̃ = argminwF̃ridge(w) and w∗ = Rw̃ − r, then
w∗ = argminwFridge(w).

Proof. It follows from (F2) that, for any w,

Fridge(w) = F̃ridge(R
−1(w + r)) ≥ F̃ridge(w̃) = Fridge(w

∗)

Lemma 2 implies that the problem of computing w∗ can be reduced to the
problem of finding the minimum point of the masked function F̃ridge. Since the

latter function is differentiable, w̃ can be computed as solution of ∇F̃ridge(w) =
0. A simple computation shows that

∇F̃ridge(w) = 2[(XR)>(XRw − y −Xr) + λR>(Rw − r)]

= 2R>[(A+ λI)Rw − (b + (A+ λI)r)]

It follows that w̃ = [(A+ λI)R]−1(b + (A+ λI)r).
Given this, we design the protocol Π2

ridge (Figure 4). In this protocol encryptions
of C = (A + λI)R and d = b + (A + λI)r are computed by the MLE (who
has access to the encryption of A and b) and sent by it to the CSP. The latter
decrypts and computes w̃. Notice that we require that MLE samples R uniformly
at random from all invertible d×dmatrices with coefficient in Zq, and r uniformly
at random from Zd

q . In this way, the privacy property follows from Lemma 1 (take
M = A+ λI and v = b): the joint distribution of the matrix C and the vector
d is independent from the input data-points. In the last step, the MLE receives
w̃ and computes Rw̃ − r. The correctness of Π2

ridge follows from Lemma 2.

Protocol Π2
lasso

Recall that in lasso regression we compute the model w∗ by finding an ap-
proximation of the solution of problem (1). Now, consider the following masked
version of (1): {

argminw∈RdfXR,y+Xr(w)

subject to ‖Rw − r‖1 ≤ s
(3)

where R is any d× d matrix and r is a vector of d components.

Lemma 3. Let w̃ be solution of (3). If R is invertible and ŵ = Rw̃−r, then ŵ
is solution of (1). Moreover, if w̃t is such that fXR,y+Xr(w̃t)−fXR,y+Xr(w̃) ≤ ε
and wt = Rw̃t − r, then fX,y(wt)− fX,y(ŵ) ≤ ε.

Proof. It follows from (F2) that, for any u with ‖u‖1 ≤ s we have

fX,y(u) = fX,y(Rw − r) = fXR,y+Xr(w) ≥ fXR,y+Xr(w̃) = fX,y(ŵ)

Moreover, ‖ŵ‖1 = ‖Rw̃ − r‖1 ≤ s

12

Protocol Π2
ridge

The protocol Π1
hor or the protocol Π1

ver has been previously run.

– Parties: CSP knows sk, the MLE knows A′ and b′

– Output: MLE gets w̃∗

– Public parameters: number of features d, total numbers of data points n,
penalty parameter λ.

Step 1: the MLE does the following
a) compute the values

M ′(i, j) =

{
A′(i, j)⊕ Encpk(λ) if i = j

A′(i, j) otherwise

for all i, j = 1, . . . , d;
b) (sampling) samplea R← (Zq)d×d

inv and r← Zd
q ;

c) (masking) computeb the values

C′(i, j) =

d⊕
k=1

R(k, j)M ′(i, k)

d′(i) = b′(i)⊕

(
d⊕

k=1

r(k)M ′(i, k)

)

for all i, j = 1, . . . , d;
d) send the matrix C′ and the vector d′ to the CSP.

Step 2: the CSP does the following
a) compute the values

C(i, j) = Decsk(C′(i, j))

d(i) = Decsk(d′(i))

for all i, j = 1, . . . , d;
b) compute w̃ = C−1d;
c) send to the MLE the vector w̃.

Step 3: the MLE computes w̃∗ = Rw̃ − r.

a This can be implemented using efficient PRG [VZ12] and rejection sampling.
b Note that R(k, j)M ′(i, k) means M ′(i, k)⊕· · ·⊕M ′(i, k) with R(k, j) addends.

Fig. 4. The protocol Π2
ridge implements Phase 2 of our system when a norm-2 penal-

ization is chosen in order to compute the regression model.

13

From Lemma 3, it is clear that computing w̃t that is an approximation of the
solution of (3) is sufficient in order to compute the desired model w∗. If we use
the FW algorithm to compute w̃t, we need to solve t− 1 problems of this form{

argminv∈Rd∇fXR,y+Xr(w̃j)
>v

subject to ‖Rv − r‖1 ≤ s

Since R is invertible, we can replace Rv − r with Ru and we obtain{
argminv∈Rd∇fXR,y+Xr(w̃t−1)>u

subject to ‖Ru‖1 ≤ s
(4)

Using (F1), we have:

∇fXR,y+Xr(u) = 2(XR)>(XRw − y −Xr) = 2R>[ARw − (b +Ar)]

Therefore, (4) becomes{
argminv∈Rd [ARw̃t−1 − (b +Ar)]>Rv

subject to ‖Rv‖1 ≤ s

which is equivalent to{
argminv∈Rd [ARw̃t−1 − (b +Ar)]>v

subject to ‖v‖1 ≤ s
(5)

Based on this, we design the protocol Π2
lasso (Figure 5) that realizes Phase 2 of

our system when a norm-1 penalty is chosen. In this protocol, MLE computes
encryptions of S = AR and s = b+Ar where R is sampled uniformly at random
from all invertible d×d matrices and r is an uniformly at random sampled vector
of d components. The encryptions of S and s are sent to the CSP, who decrypts
the values received and computes the vector w̃t via the FW algorithm (using
(5) for each iteration). This vector is sent back to the MLE. Finally, the MLE
computes w̃∗ as Rw̃t−r. The correctness of protocol Π2

lasso follows from Lemma
3. The privacy property follows from Lemma 1 where M = A and v = b.

4.3 Security proof

To formally prove security, we use the standard simulation-based definition
[Gol01]. Consider a public function φ : ({0, 1}k)n → {0, 1}` and let P1, . . . , Pn be
n players modelled as PPT machines. Each player Pi holds the value ai ∈ {0, 1}k
and wants to compute the value φ(a1, . . . ,an) while keeping his input private.
The players can communicate among them using point-to-point secure chan-
nels in the synchronous model. If necessary, we also allow the players to use a
broadcast channel. To achieve their goal, the players jointly run a n-party MPC

14

Protocol Π2
lasso

The protocol Π1
hor or the protocol Π1

ver has been previously run.

– Parties: CSP knows sk, the MLE knows A′ and b′

– Output: MLE gets w̃∗

– Public parameters: number of features d, total numbers of data points n,
penalty parameter s, number of steps t, initial point w1.

Step 1: the MLE does the following
a) (sampling) samplea R← (Zq)d×d

inv and r← Zd
q ;

b) (masking) computeb the values

S′(i, j) =
d⊕

k=1

R(k, j)A′(i, k)

s′(i) = b′(i)⊕

(
d⊕

k=1

r(k)A′(i, k)

)

for all i, j = 1, . . . , d;
c) send the matrix S′ and the vector s′ to the CSP.

Step 2: the CSP does the following
a) compute the values

S(i, j) = Decsk(S′(i, j))

s(i) = Decsk(s′(i))

for all i, j = 1, . . . , d;
b) compute w̃t using the FW algorithm. That is, take w̃1 = w1 and for

any j = 1, 2, . . . , t− 1 compute{
vj ∈ argmin‖v‖1≤s{(Sw̃j − s)>v}
w̃j+1 = (1− γj)w̃j − γjvj

c) send to the MLE the vector w̃t.

Step 3: the MLE computes w̃∗ = Rw̃t − r.

a This can be implemented using efficient PRG [VZ12] and rejection sampling.
b Note that R(k, j)A′(i, k) means M ′(i, k)⊕ · · · ⊕A′(i, k) with R(k, j) addends.

Fig. 5. The protocol Π2
lasso implements Phase 2 of our system when a norm-1 penal-

ization is chosen in order to compute the regression model.

protocol Π. The latter is a protocol for n players that is specified via the next-
message functions: there are several rounds of communication and in each round

15

the player Pi sends to other players a message that is computed as a determin-
istic function of the internal state of Pi (his initial input ai and his random tape
ki) and the messages that Pi has received in the previous rounds of communi-
cations. The view of the player Pj , denoted by ViewPj (a1, . . . ,an), is defined
as the concatenation of the private input aj , the random tape kj and all the
messages received by Pj during the execution of Π. Finally, the output of Π for
the player Pj can be computed from the view ViewPj

. In order to be private, the
protocol Π needs to be designed in such a way that a curious player Pi can not
infer information about aj with j 6= i from his view ViewPi(a1, . . . ,an). More
precisely, we have the following definition.

Definition 1. We say that the protocol Π realizes φ with correctness if for any
input (a1, . . . ,an), it holds7 that Pr[φ(a1, . . . ,an) 6= output of Π for Pi] = 0
for all i ∈ [n]. Let A a subset of at most n− 1 players, the protocol Πf realizes
φ with privacy against A if it is correct and there exists a PPT algorithm Sim
such that (ViewPi

(a1, . . . ,an))Pi∈A and Sim((ai)Pi∈A, φ(a1, . . . ,an)) are com-
putationally indistinguishable for all inputs.

Protocol Π

– Parties: CSP and MLE with no input
DOi with input Di for i = 1, . . . ,m.

– Output: each party gets w̃∗

– Public parameters: number of features d, total numbers of data points n,
regression parameters s, λ, t,w1.

Phase 1: MLE, CSP and DO1, . . . ,DOm jointly run Π1
hor or Π1

ver;

Phase 2: – MLE and CSP jointly run Π2
ridge or Π2

lasso;
– MLE sends to the other parties w̃∗.

Fig. 6. The protocol Π implements our system.

Theorem 1. Let Π be the protocol described in Figure 6 and φ be the function-
ality computing the linear regression model w∗ from the data represented by X ∈
Zn×d
q and y ∈ Zn

q (see Table 1). Let D ⊆ {1, . . . ,m}. Then, Π realizes φ with
correctness and privacy against the adversaries A1 = {MLE} ∪ {DOi | i ∈ D}
and A2 = {CSP} ∪ {DOi | i ∈ D}.

Proof. Correctness can be easily verified from the homomorphic properties of
the underlying encryption scheme, and Lemmas 3 and 2. To prove privacy we
construct two simulators Sim1 and Sim2 which simulate the view of the parties

7 The probability is over the choice of the random tapes ki.

16

Input Parameters Algorithm Output

RIDGE X,y λ Compute w = (A+ λI)−1(b) w

LASSO X,y s, t, w1

For j = 1, . . . , t− 1{
vj ∈ argmin‖v‖1≤s{(Awj − b)>v}
wj+1 = (1− γj)wj − γj(vj)

wt

Table 1. Compact description of the functionality we consider in order to compute a
regression model w∗ from the training set represented by the feature matrix X and
the outcome vector y. Recall that A = X>X and b = X>y.

in A1 and A2, respectively.

Sim1({Di}i∈D,w∗):

1. Run Gen(κ)→ (pk, sk);
2. For any i ∈ {1, . . . ,m} \D, sample Di;
3. Sample R and r as in the protocol;
4. Compute w̃ = R−1(w∗ + r);
5. Output (pk, {Di}i∈D, enc, w̃,w∗) where enc contains the encryptions of the

values xi, yi for all i if we are in the vertically-portioned setting, or the
encryptions of the values xix

>
i , yixi for all i if we are in the horizontally-

portioned setting.

It follows from the semantic security of the encryption scheme that the simula-
tion output has the same distribution of the views of the corrupted parties in
A2 in the protocol Π.

Sim2({Di}i∈D,w∗):

1. Run Gen(κ)→ (pk, sk);
2. Sample R and r as in the protocol;
3. Compute Encpk(R) and Encpk(r);
4. Output ((pk, sk), {Di}i∈D,Encpk(R),Encpk(r),w∗)

It follows from Lemma 1 that the simulation output has the same distribution
of the views of the corrupted parties in A1 in the protocol Π.

Active Security. The protocol Π guarantees privacy when all the parties follow
the instructions given in the protocol (passive security). Here we briefly discuss
the security of Π in the case when the CSP or the MLE are corrupted and
arbitrarily deviate from the protocol. We still assume that they do not collude.

If the CSP is corrupted, during Phase 2 it can send to the MLE a faulty
w̃ causing the computation of a wrong model w̃∗. In this case, if we are in
the horizontally-partitioned setting, the each data-owner DOi can verify on
their local data the received model w̃∗ and catch the cheating CSP. That is,

17

DOi checks that (w̃∗)>xi − yi ∈ [−u, u] for a small u chosen by the parties. If
all data-owners do not complain, the received model is valid. If we are in the
vertically-partitioned setting, then the data-owners can jointly run an m-party
MPC protocol to securely compute the sum of m inputs and again check that
(w̃∗)>xi − yi ∈ [−u, u] for all i.

If the MLE is corrupted, then it can decide to ignore o replace some of
the ciphertexts received during Phase 1. This may be reveal extra information
about some of the private datasets D1, . . . ,Dm. A solution to avoid this threat in
the horizontally-partitioned setting is proposed in [NWI+13]. They use one-time
MACs, Pedersen commitments and standard zero-knowledge proofs. Extending
this solution to the vertically-partitioned using multiplicatively homomorphic
commitments is left for future work.

Discussion. Notice that, as the protocol Π works with arithmetic on a finite
ring, it computes an approximation of the original linear regression functionality
(the one computing a linear regression model directly from real-valued data).
In [FIM+06], Feigenbaum et al. show that the output of an approximation may
reveal more information than the output of the original function. For this reason,
they define the notion of security approximation and give a protocol to make
an approximation satisfy such definition. A detailed study of our system in the
framework proposed by Feigenbaum et al. is left for future work.

References

[AHPW15] Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and Lihua Wang. Fast
and secure linear regression and biometric authentication with security up-
date. Cryptology ePrint Archive, Report 2015/692, 2015.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random
lattices. In 26th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2009, February 26-28, 2009, Freiburg, Germany,
Proceedings, pages 75–86, 2009.

[AS00] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data min-
ing. In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, May 16-18, 2000, Dallas, Texas, USA., pages
439–450, 2000.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas
on ciphertexts. In Theory of Cryptography, Second Theory of Cryptogra-
phy Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005,
Proceedings, pages 325–341, 2005.

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foun-
dations and Trends in Machine Learning, 8(3-4):231–357, 2015.

[C+09] International Warfarin Pharmacogenetics Consortium et al. Estimation of
the warfarin dose with clinical and pharmacogenetic data. N Engl J Med,
2009(360):753–764, 2009.

[CDNN15] Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, and
Stacey C. Newman. Fast, privacy preserving linear regression over dis-
tributed datasets based on pre-distributed data. In Proceedings of the 8th

18

ACM Workshop on Artificial Intelligence and Security, AISec 2015, Den-
ver, Colorado, USA, October 16, 2015, pages 3–14, 2015.

[DHC04] Wenliang Du, Yunghsiang S. Han, and Shigang Chen. Privacy-preserving
multivariate statistical analysis: Linear regression and classification. In
Proceedings of the Fourth SIAM International Conference on Data Mining,
Lake Buena Vista, Florida, USA, April 22-24, 2004, pages 222–233, 2004.

[FIM+06] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J.
Strauss, and Rebecca N. Wright. Secure multiparty computation of ap-
proximations. ACM Trans. Algorithms, 2(3):435–472, 2006.

[FT07] Michael P. Friedlander and Paul Tseng. Exact regularization of convex
programs. SIAM Journal on Optimization, 18(4):1326–1350, 2007.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple BGN-
type cryptosystem from LWE. In Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010.
Proceedings, pages 506–522, 2010.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Tech-
niques. Cambridge University Press, 2001.

[GSB+16] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack
Doerner, Samee Zahur, and David Evans. Privacy-preserving distributed
linear regression on high-dimensional data. Cryptology ePrint Archive,
Report 2016/892, 2016.

[HFN11] Rob Hall, Stephen E Fienberg, and Yuval Nardi. Secure multiple linear
regression based on homomorphic encryption. Journal of Official Statistics,
27(4):669, 2011.

[KLSR04] Alan F. Karr, Xiaodong Lin, Ashish P. Sanil, and Jerome P. Reiter. Re-
gression on distributed databases via secure multi-party computation. In
Proceedings of the 2004 Annual National Conference on Digital Govern-
ment Research, pages 108:1–108:2. Digital Government Society of North
America, 2004.

[KLSR05] Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. Se-
cure regression on distributed databases. Journal of Computational and
Graphical Statistics, 14(2):263–279, 2005.

[KLSR09] Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. Privacy-
preserving analysis of vertically partitioned data using secure matrix prod-
ucts. Journal of Official Statistics, 25(1):125, 2009.

[LP00] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In
Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 2000,
Proceedings, pages 36–54, 2000.

[NWI+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 334–348, 2013.

[SKLR04] Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome P. Reiter. Privacy
preserving regression modelling via distributed computation. In Proceed-
ings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’04, pages 677–682. ACM, 2004.

[VZ12] Salil Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and sim-
plifying pseudorandom generator constructions. In Proceedings of the 44th
symposium on Theory of Computing, pages 817–836. ACM, 2012.

19

