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Abstract. In the classical world, the XOR of pseudorandom permuta-
tions Ek1 ⊕ · · · ⊕ Ekr for r ≥ 2 is a well-established way to design a
pseudorandom function with “optimal” security: security up to approx-
imately min{|K|, |X|} queries, where K and X are the key and state
space of the block cipher E. We investigate security of this construction
against adversaries who have access to quantum computers. We first
present a key recovery attack in |K|r/(r+1) complexity. The attack re-
lies on a clever application of a claw-finding algorithm and testifies of
a significant gap with the classical setting where 2 pseudorandom per-
mutations already yield optimal security. Next, we perform a quantum
security analysis of the construction, and prove that it achieves secu-
rity up to min{|K|1/2/r, |X|} queries. The analysis relies on a generic
characterization of classical and quantum distinguishers and a universal
transformation of classical security proofs to the quantum setting that
is of general interest.

Keywords: XOR of pseudorandom permutations, classical, quantum,
claw-finding, proof transformation.

1 Introduction

PRP to PRF Conversion. Block ciphers are omnipresent in cryptographic
literature, and their security is usually measured in the degree to which they
approximate a pseudorandom permutation (PRP). However, in many cases, one
prefers to reason with pseudorandom functions instead. A simple example of this
is the counter mode encryption. Using a block cipher E : K ×X → X, counter
mode encrypts a message M = M1 · · ·M` ∈ X` as

Ci = Ek(ctr + i)⊕Mi for i = 1, . . . , ` , (1)

for a carefully selected counter ctr. If Ek behaves like a random permutation, it
is straightforward to observe a bias: an adversary that keeps all message blocks
the same will never see colliding ciphertext blocks. However, if we consider Ek to
behave like a random function, the ciphertext will always be perfectly random,
and distinguishing counter mode from random reduces to distinguishing Ek from



a random function. The trick to view a PRP as a PRF is called the “PRP-PRF-
switch,” and it finds myriad applications in existing symmetric key security
proofs (e.g., [3, 10,18,22,26,36,40,41,46]).

The PRP-PRF-switch only guarantees tight birthday bound security: secu-
rity up to min{|K|, |X|1/2} queries [7, 8, 20, 23]. The same bound applies to
counter mode. Suppose we replace Ek with Ek1 ⊕Ek2 for two secret keys k1, k2
(this is in fact a simplified case of the CENC mode by Iwata [24,25]):

Ci = Ek1(ctr + i)⊕ Ek2(ctr + i)⊕Mi for i = 1, . . . , ` . (2)

In a steady line of research set out in ’99 [6, 16, 33, 39, 43, 44],4 Patarin finally
proved in 2010 [44] that Ek1 ⊕ Ek2 behaves like a random function up to query
complexity min{|K|, |X|}, well beyond the classical min{|K|, |X|1/2} birthday
level of the PRP-PRF-switch. This result almost immediately implies security
up to about min{|K|, |X|} queries for this case of CENC, and more generally
demonstrates well the relevance of beyond birthday level security of the PRP to
PRF conversion.

Quantum Security. Computers exploiting the physical properties of quantum
particles seem to promise dramatic speedups for certain problems. The growing
branch of post-quantum cryptography [9] focuses chiefly on public key cryptosys-
tems and aims to offer immunity to Shor’s quantum algorithm for integer factor-
ization and discrete logarithms [50]. Within this branch it is tacitly assumed that
symmetric cryptographic primitives remain largely unaffected by the advent of
quantum computers: a doubling of the key length will suffice to protect against
Grover’s search algorithm [19]. Among other things we show that this tacit as-
sumption is false: it is possible to outperform Grover in certain circumstances
even without achieving the exponential speedup promised by Shor.

For modes that operate on top of symmetric cryptographic primitives, vari-
ous attacks have been mounted recently [2,28,30,31], but all explicitly require the
attack and the cryptographic algorithm itself to be run on a quantum computer.
In our estimation this model is uninteresting because it requires sophisticated
users in order to be relevant; as opposed to offering simple users protection
against sophisticated attacks.

The current reality is that secret keys are stored in classical hardware and
are hence incapable of sustaining quantum superposition or entanglement. Con-
sequently, while the attacker may have classical query access to keyed primitives,
there can be no quantum interaction with secret key material. Nevertheless, the
attacker is allowed to evaluate offline and in quantum superposition any pub-
licly known circuit, such as block ciphers—as long as it provides its own guess,
in superposition or not, at the secret key.

PRP-PRF-Conversion in Quantum Computers. Recently, Zhandry [54]
considered the PRP-PRF-switch in case the adversary has quantum access to the

4 This list omits research on the XOR of public permutations [37,39].
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secret key material, and he proves tight |X|1/3 security. His analysis builds upon
two of his earlier observations from [53]. Zhandry likewise considered transitions
from QPRGs to QPRFs in [53] and QPRPFs to QPRPs [55]. To our knowledge,
this work is the first to generically study the XOR of multiple PRPs in a quantum
setting, online or offline.

We first present a quantum key recovery attack against the XOR of r PRPs
in |K|r/(r+1) complexity. This attack is performed without quantum interaction
with secret key material, and as such, it stands in sharp contrast with the state
of the art in the classical world where optimal min{|K|, |X|} security is achieved
already for r = 2. The attack internally runs the quantum claw-finding algorithm
of Tani [52] in a sophisticated way to recover the key of the r PRPs.5 In order to
eliminate false positives, the algorithm incorporates a threshold τ . We prove that,
if the PRPs are perfect permutations, for τ = O(r) the number of false positives
is 0 with high probability. In case the PRP is instantiated with an off-the-shelf
block cipher (such as AES), a slightly higher threshold may be required.

As a second contribution, we present a quantum security analysis of the
XOR of r PRPs, and prove that the construction achieves security up to around
min{|K|1/2/r, |X|} queries by a quantum distinguisher with only classical access
to the keyed primitives. At the core of the security proof lies a fresh perspective
on (i) how to formalize classical and quantum distinguishers, (ii) how classical
proofs compare with quantum proofs, and (iii) how classical proofs can be used
in a quantum setting. The observations show particularly that a large part of
classical security reductionist proofs can be lifted to the quantum setting almost
verbatim: for our result on the XOR of PRPs we immediately rely on a classical
security proof by Patarin [43, 44], but the techniques carry over to a broader
spectrum of existing security proofs. For example, the techniques can be used in
turn to argue quantum security of counter mode of Eqn. (1), CENC of Eqn. (2),
and many more schemes whose security analysis is in the standard model [1,
4, 5, 18, 22, 26, 29, 32, 34, 41, 46, 47, 49].6 We remark that Hallgren et al. [21] and
Song [51] already considered how to lift classical security proofs to the quantum
world. However, their focus was on adversaries with quantum interaction to
the secret key material, making the conditions stricter and the lifting harder to
verify. We focus on the setting where the secret key material is stored in classical
hardware, and our lifting conditions are easily verified.

Admittedly, the gap between our attack and our security bound is not tight.
Informally, this gap is caused by a specific step in the analysis that upper bounds
the success probability of guessing the secrets key of the r PRPs by r times the
success probability of guessing one of the keys (the step is in fact more technical,
cf., Eqn. (13) in the proof of Theorem 2). While this step is conventional in

5 An earlier, yet unrelated and less profound, application of claw finding to cascaded
encryption appeared by Kaplan [27].

6 The lifting does not apply to ideal-model proofs, such as the ones used for sponge
functions [3, 40], Even-Mansour constructions [11, 14], and some tweakable block
cipher designs [17, 38], which is because in ideal-model proofs the adversary has
quantum query access to idealized primitives.
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classical security proofs as it gives a fairly insignificant loss; for distinguishers
that can make quantum evaluations the loss is more severe. In Section 6 we
discuss various paths towards potentially resolving this step.

2 Preliminaries

For two sets X,Y , by Func(X,Y ) we denote the set of all functions from X to

Y and by Perm(X) the set of all permutations on X. We denote by x
$←− X

the uniformly random drawing of an element x from X. For a positive natural
number r ≥ 1,

(
X
r

)
denotes the set of unordered subsets of X of size r with

no duplicates. For two bit strings x and y of equal length, x ⊕ y denotes their
bitwise exclusive OR (XOR). For two integers m ≥ n ≥ 1, we denote by mn =
m(m− 1) · · · (m− n+ 1) = m!

(m−n)! the falling factorial power.

2.1 Security Notions

PRP Security. A block cipher E : K × X → X is a family of permutations
E(k, ·) indexed by a key k ∈ K. Its security is measured by considering a distin-
guisher D that has forward query access to either Ek(·) := E(k, ·) for a randomly

drawn key k
$←− K, or to a random permutation π

$←− Perm(X). Its goal is to
distinguish both worlds, and after its interaction it outputs 0 or 1, referring to
the guessed oracle.

Definition 1 (PRP Security). Let E : K × X → X be a block cipher. The
PRP (pseudorandom permutation) advantage of a distinguisher D is defined as

AdvprpE (D) =
∣∣P (DEk = 1

)
−P (Dπ = 1)

∣∣ ,
where the probabilities are taken over k

$←− K, π
$←− Perm(X), and the randomness

of D.

For a set of distinguishers D, we define

AdvprpE (D) = sup
D∈D

AdvprpE (D) .

The set of distinguishers D is typically parameterized by certain complexity
parameters, and contains the set of all distinguishers that are bounded by these
complexities. In Section 3 we elaborate on distinguishers and their complexities.

We remark that block ciphers are often considered in a slightly stronger secu-
rity model, namely SPRP (strong pseudorandom permutation) security, where
the distinguisher can query its oracle in forward as well as in inverse direction.
However, for the analysis in this work, SPRP security is inconsequential. We
need only consider the weak security notion, PRP security.
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PRF Security. Let F : K × X → Y be a family of functions F (k, ·) from
X → Y indexed by a key k ∈ K. Its security as a family of random functions
is defined similarly as the SPRP security, with the difference that distinguisher
D now has oracle access to either Fk(·) := F (k, ·) for a randomly drawn key

k
$←− K, or to a random function ρ

$←− Func(X,Y ).

Definition 2 (PRF Security). Let F : K ×X → Y be a family of functions.
The PRF (pseudorandom function) advantage of a distinguisher D is defined as

AdvprfF (D) =
∣∣P (DFk = 1

)
−P (Dρ = 1)

∣∣ ,
where the probabilities are taken over k

$←− K, ρ
$←− Func(X,Y ), and the random-

ness of D.

As before, for a set of distinguishers D, we define

AdvprfF (D) = sup
D∈D

AdvprfF (D) .

We remark that in above definition, the key set can be anything. Typically, K
is a set of bit strings, but in this work we will also apply the analysis to the case
where K is a set of functions. For example, consider F : Perm(X) × X → X,
defined as F (π, x) = π(x) ⊕ x. This definition of F is a family of functions
indexed by “key” π and for every key it represents a Davies-Meyer-like random
function. The probabilities in the PRF security advantage are in this case taken

over π
$←− Perm(X) and ρ

$←− Func(X,X).

2.2 XOR of PRPs

Let E : K×X → X be a block cipher, and let r ≥ 1 be a positive natural number.
The “XOR of r permutations” is the function Fr : Kr ×X → X defined as

Fr(k, x) = Ek1(x)⊕ · · · ⊕ Ekr (x) =: z , (3)

where k = (k1, . . . , kr). The function Fr is visually depicted in Fig. 1.
The terminology is a bit misleading for r = 1 (there is no such thing as

the “XOR of 1 permutation”), but we have opted this naming for the sake of
generality. The case of r = 1 is in fact the “PRP-to-PRF-switch” [7, 8, 20,23].

2.3 Idealized XOR of PRPs

We also consider an idealized version of Fr that is not based on an underlying
block cipher, but is instead keyed via r random permutations. In more detail,
for a positive natural number r ≥ 1 we define F id

r : Perm(X)r ×X → X as

F id
r (π, x) = π1(x)⊕ · · · ⊕ πr(x) =: z , (4)

where π = (π1, . . . , πr).
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Ek1 Ek2
. . .

Ekr

Fig. 1: XOR of r permutations.

2.4 Quantum Claw-Finding

The claw-finding problem centers around the following goal: given two functions
f : X → Z and g : Y → Z, determine whether a tuple (x, y) ∈ X × Y such
that f(x) = g(y) exists, and find this “claw.” Quantum algorithms for solving
the claw-problem are usually a function of M = |X| and N = |Y |, and we
denote the problem by claw(M,N). We follow the work of Tani [52], that uses
quantum walks to solve the problem and that builds upon a list of earlier results
on quantum claw-finding [12,13,35,56]. Tani describes an optimal algorithm for
discovering a claw in the following number of evaluations of f and g:

Q(claw(M,N)) =

{
O
(

(M ·N)
1/3
)

if N ≤M < N2 ,

O
(
M1/2

)
if M ≥ N2 .

(5)

We remark that Tani [52] derives this algorithm as a special case of a generalized
problem that aims at deriving p evaluations of f and q evaluations of g that
satisfy a pre-described relation R. More formally, denote by relationp,q,R(M,N)
the problem of discovering a tuple (x1, . . . , xp, y1, . . . , yq) ∈ Xp × Y q such that
(f(x1), . . . , f(xp), g(y1), . . . , g(yq)) ∈ R.7 Tani’s relation-finding algorithm solves
the problem in the following amount of evaluations of f and g:

Q(relationp,q,R(M,N)) =

{
O
(

(Mp ·Nq)
1/(p+q+1)

)
if N ≤M < N1+1/p ,

O
(
Mp/(p+1)

)
if M ≥ N1+1/p .

(6)

Note that claw(M,N) is equivalent to relation1,1,R(M,N) if we define R as the
equality relation.

3 Modeling Quantum Distinguishers

Consider a security measurement Adv(·) (e.g., AdvprpE (·) or AdvprfF (·)). For a
family of distinguishers D, we define

Adv(D) = sup
D∈D

Adv(D) .

7 Tani [52] uses a slightly different naming: (p, q)-subset(M,N).
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The complexity of a distinguisher is typically bounded in two parameters:
data or online complexity q ≥ 0, and time or offline complexity t ≥ 0.8 Data
complexity measures the number of oracle queries the distinguisher can make to
its oracle. Time complexity bounds the number of other activities that D can
do, and it can use its time for anything it wants: making coffee, solving sudokus,
or, on a more serious note, making evaluations of underlying unkeyed primitives.
For example, if we consider the XOR of PRPs of (3) and a distinguisher that
tries to separate Fr from a random function ρ in terms of Definition 2, the
online complexity measures the number of queries to the oracle O ∈ {Fr, ρ}.
As Fr internally uses a block cipher E, which is a known construction, the
distinguisher can evaluate E offline. These evaluations are counted by the offline
complexity.

Note the small abuse of terminology here: time complexity refers to the num-
ber of time steps that are available to the distinguisher, while offline complexity
refers to the number of evaluations of E that the distinguisher can make offline.
This abuse retains generality, as these numbers only differ by a small constant
factor. For example, assume that one evaluation of E always takes at least tE
time. We simply rescale to tE = 1 and assume that the time spent on other com-
putations is negligible in this number. This makes the time and offline complexity
equivalent.

We have so far bounded the distinguisher to data and time complexities
q and t. Another distinction can be made depending on the type of access the
distinguisher has to its oracle: quantum, printed as q̂ or t̂ (with hat), or classical,
printed as q or t (without hat). In more detail, we will adopt the following
notations:

– D(q, t) is the set of all distinguishers that can make q classical oracle queries
and t classical offline evaluations,

– D(q, t̂) is the set of all distinguishers that can make q classical oracle queries
and t quantum offline evaluations,

– D(q̂, t̂) is the set of all distinguishers that can make q quantum oracle queries
and t quantum offline evaluations.

There is little point in considering the remaining set D(q̂, t), where the distin-
guisher can make quantum oracle queries but only classical offline evaluations.

Note how the difference between D(q̂, t̂) and D(q, t̂) effectively pinpoints the
difference between quantum adversaries with quantum access or with classical
access to the oracle. The former set includes in particular distinguishers based on
Simon’s or Shor’s quantum algorithms and that require quantum oracle access;
whereas the latter set covers distinguishers based on Grover’s algorithm and that
therefore require only classical oracle access. In this work we do not consider the
former set, and instead restrict our focus on quantum adversaries which only have
classical oracle access to the keyed primitives. This models the scenario where

8 Throughout this work, we ignore a third measurement, memory, and assume that
the distinguisher has sufficient memory available at all times.
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the secret key is stored in classical memory but where the adversary employs a
quantum computer to perform its attack.

We will consider a final set of distinguishers:

– D(q,∞), the set of all distinguishers that can make q classical oracle queries
and that have unbounded computational power.

Note that by definition, we have for any q, t ≥ 0 (see also Fig. 2):

D(q, t) ⊆ D(q, t̂) ⊆ D(q,∞) . (7)

Both D(q, t) and D(q,∞) appear in non-quantum literature frequently. As a
matter of fact, a customary way to perform classical standard-model security
analysis goes along the following lines (see, e.g., [1, 4, 5, 18, 22, 26, 29, 32, 34, 41,
46, 47, 49] for just a few examples): consider a scheme S that internally uses a
primitive P, where the key k to the scheme is fed to the primitive. Consider a
distinguisher with complexities (q, t). As a first step, we replace Pk by its ideal
equivalent I. This step “costs” us the standard-model security of Pk against a
distinguisher with complexities (O(q), O(t)) (the exact complexities depend on
the number of times S invokes P per evaluation). What is left is the scheme S
keyed by ideal secret primitive I, and the only way for a distinguisher to gain
any information about the construction is through queries to the construction.
Therefore, the distinguisher is given unlimited computational power, and security
is solely measured by the number of queries to the online oracle: the scheme is
evaluated against a distinguisher with complexities (q,∞). More formally, we
thus obtain:

AdvSPk (D(q, t)) ≤ AdvPk
(D(O(q), O(t))) + AdvSI (D(q,∞)) ,

where the corresponding security notions depend on the type of scheme S and
type of primitive P, and are omitted from the equation. The security of the
primitive Pk is often not evaluated further, it for instance corresponds to the
PRP security of AES. The other two advantage terms, on the other hand, are
considered.

Equation (7) confirms that many non-quantum research on distinguishers
with unbounded computational power directly covers distinguishers that can
make quantum offline evaluations. We will use this observation in Section 5, but
the observation has many more applications. As a matter of fact, virtually any
standard-model security proof can be lifted to quantum security up to reasonable
assumptions, including recently introduced authenticated encryption schemes [1,
4, 22, 26, 41, 46, 47] and MAC functions [5, 18, 34]. The approach does not apply
to security proofs that are a priori ideal-model, such as the analyses of sponge
functions [40], Even-Mansour [11,14], and others. This is mostly due to the fact
that in ideal-model security analyses, both the construction and the primitive
are idealized and accessible by the distinguishers through queries: q stands for
queries to the construction and t queries to the primitive, and the distinguishers
have unbounded time complexity. Once evaluated in a quantum setting, part of
the queries—namely the primitive queries—should be considered quantum.
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D(∞,∞)

D(q,∞)

D(q, t̂)

D(q, t)

D(q̂, t̂)

Fig. 2: Adversaries categorized by computational power and type of oracle access.
An arrow represents inclusion, i.e., A→ B represents A ⊆ B.

4 Quantum Key-Recovery Attack

We present a generic attack to recover the key of Fr of Section 2.2. The key
recovery is performed by translating the problem to a relationp,q,R problem in
the terminology of Section 2.4, where an evaluation of Fr(k, x) is used to build
the functions f and g and to recover the key k. However, various technicalities
occur in this approach, most importantly as there may, for one test value x, be
multiple keys k 6= k′ that fulfill the relation. These technicalities are resolved
via the use of a threshold τ , which indicates the number of test values to be
considered. The threshold τ provides a trade-off between accuracy (of the key
guessing) and complexity (of the attack). We first state the definition of colliding
key sets for a block cipher in Section 4.1. The generic attack is then given in
Section 4.2.

Without loss of generality, it is fair to consider Fr only for keys k such
that ki 6= kj for all i 6= j. Indeed, if two keys collide, the corresponding keyed
block ciphers cancel each other out and we are effectively considering a scheme
based on r − 2 permutations which is less secure. Furthermore, note that if
σ : {1, . . . , r} → {1, . . . , r} is a permutation and k′ = (kσ(1), . . . , kσ(r)), then

Fr(k, ·) = Fr(k
′, ·) .

In other words, for any key k, there are r! elements of Kr (including k) giving
the exact same function Fr. As such, in our attack we will simply view keys
as unordered sets from

(
K
r

)
rather than ordered lists from Kr, or formally, Fr :(

K
r

)
×X → X.

4.1 Colliding Key Sets

The success of the generic attack depends on the probability that there exist
colliding key sets for the block cipher. Although it is written in terminology of
Fr of Section 2.2, it is merely a standalone combinatorial statement.
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Definition 3. Let E : K ×X → X be a block cipher. Let r ≥ 1 and τ ≥ 1 be
two positive natural numbers. We define by collkeysetE(r, τ) the probability that
there exist two distinct key sets k,k′ ∈

(
K
r

)
such that

Fr(k, 1)‖ · · · ‖Fr(k, τ) = Fr(k
′, 1)‖ · · · ‖Fr(k′, τ) ,

where Fr is defined in Section 2.2.

If E is an ideal cipher, i.e., if E
$←− Block(K,X), the probability collkeysetE(r, τ)

can be straightforwardly computed.

Lemma 1. If E
$←− Block(K,X), then

collkeysetE(r, τ) ≤
(
|K|
r

)2

/|X|τ . (8)

For α := dlog|X|(|K|)e, assuming that (2α)2r ≤ |X|,

collkeysetE(r, 2αr + 1) ≤ 4

|X| − 2αr
. (9)

Proof. Pick any two distinct sets k,k′ ∈
(
K
r

)
, at most

(|K|
r

) ((|K|
r

)
− 1
)
≤
(|K|
r

)2
choices. As k and k′ both consist of r distinct elements and are no permutation
of each other (by definition of

(
K
r

)
), k contains at least one element that does

not occur in the rest of k or in k′. W.l.o.g., k1 /∈ {k2, . . . , kr, k′1, . . . , k′r}.
The probability that

∀ i = 1, . . . , τ : Ek1(i) =
(
Ek2(i)⊕ · · · ⊕ Ekr (i)

)
⊕
(
Ek′1(i)⊕ · · · ⊕ Ek′r (i)

)
(10)

is at most (|X|−τ)!
|X|! = 1/|X|τ . This completes the proof of (8).

Remains to prove (9). Using that (m−n+ 1)n ≤ mn ≤ mn, we get from (8):

collkeysetE(r, 2αr + 1) ≤
(
|K|
r

)2

/|X|2αr+1
=

(|K|r)2

(r!)2 · |X|2αr+1

≤ |K|2r

(r!)2 · (|X| − 2αr)2αr
· 1

|X| − 2αr

=
|K|2r

(r!)2 · |X|2αr ·
(

1− 2αr
|X|

)2αr · 1

|X| − 2αr

≤ 1

(r!)2 ·
(

1− 2αr
|X|

)2αr · 1

|X| − 2αr
, (11)

where the last step holds as α ≥ log|X|(|K|).
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Note that (
1− 2αr

|X|

)α
≥ 1− 2α2r

|X|
≥ 1

2
,

where the first step holds as (1−x)y ≥ 1−xy and the second step by assumption
that (2α)2r ≤ |X|. We thus obtain for (11):

collkeysetE(r, 2αr + 1) ≤
(

2r

r!

)2

· 1

|X| − 2αr
≤ 4

|X| − 2αr
,

which completes the proof of (9). ut

4.2 Generic Attack

Theorem 1. Let E : K ×X → X be a block cipher, and let r ≥ 1 be a positive
natural number. Consider Fr of Section 2.2. Let τ ≥ 1 be a positive natural
number. There exists a distinguisher D ∈ D(τ, t̂) with t = O

(
τ · |K|r/(r+1)

)
that

recovers the key of Fr with success probability at least 1− collkeysetE(r, τ).

Proof. Let k = (k1, . . . , kr) ∈
(
K
r

)
be the secret key to Fr, i.e.,

Fr(k, x) = Ek1(x)⊕ · · · ⊕ Ekr (x) .

As a first step, the distinguisher queries Fr(k, i) = zi for i = 1, . . . , τ . Then,
define the following two functions:

f : K → Xτ , g : K → Xτ ,

f(l) = El(1)‖ · · · ‖El(τ) , g(m) =
(
Em(1)⊕ z1

)
‖ · · · ‖

(
Em(τ)⊕ zτ

)
.

Next, evaluate the quantum relation-finding algorithm of Section 2.4 for param-
eters p = r− 1, q = 1, and R as the relation that all elements of the tuple XOR
to 0:9

R = {(a1, . . . , ar) | a1 ⊕ · · · ⊕ ar = 0} .

The relation-finding algorithm makes

O
(
τ · |K|r/(r+1)

)
evaluations of E (the factor τ corresponds to the number of evaluations of E per
evaluation of f and g).

Note that by construction, there is at least one set of candidate keys for the
algorithm: k. If this is the only set of candidate keys, then the algorithm will
output the correct key and D succeeds. On the other hand, there exist more
than two sets of solutions with probability at most collkeysetE(r, τ). Therefore,
the attack succeeds with probability at least 1− collkeysetE(r, τ). ut
9 The attack can be simplified by putting z1‖ · · · ‖zτ inside relation R and considering
p = r and q = 0. We follow current approach for intuitiveness.
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From Theorem 1 and Lemma 1 we obtain the following corollary.

Corollary 1. Let E : K×X → X be an ideal cipher, and let r ≥ 1 be a positive
natural number. Consider Fr of Section 2.2. Put α = dlog|X|(|K|)e, assume that

(2α)2r ≤ |X|, and let τ = 2αr+ 1. There exists a distinguisher D ∈ D(τ, t̂) with
t = O

(
τ · |K|r/(r+1)

)
= O

(
|K|r/(r+1)

)
that recovers the key of Fr with success

probability at least 1− 4
|X|−2αr .

The estimation of offline complexity presents an asymptotic relation as a func-
tion of |K| only. In addition to absorbing τ , the big O notation hides various
constant factors that depend on r, deriving from the underlying quantum search
algorithm.

5 Quantum Security Analysis

For our quantum security analysis of Fr we recall a classical result on its idealized
counterpart F id

r due to Patarin for r = 2 [43,44] and its generalization to r ≥ 3
by Mennink and Preneel [39]:

Lemma 2. Let r ≥ 2 be integral. For q ≤ |X|/67, we have

Advprf
F id

r
(D(q,∞)) =

q

|X|
.

The analysis in [39, 43, 44] is performed to cover information-theoretic distin-
guishers. It considers deterministic distinguishers which query their oracle (either
F id
r or ρ) q times adaptively, and which are computationally unbounded.

Using Lemma 2, we can derive the following upper bound on the success
probability of a quantum distinguisher (from D(q, t̂)) in distinguishing Fr for

random keys k = (k1, . . . , kr)
$←− Kr from a random function ρ.

Theorem 2. Let E : K ×X → X be a block cipher, and let r ≥ 2 be integral.
For q ≤ |X|/67, we have

AdvprfFr
(D(q, t̂)) ≤ r · AdvprpE (D(q, t̂)) +

q

|X|
.

Proof. Let k = (k1, . . . , kr)
$←− Kr, π = (π1, . . . , πr)

$←− Perm(X)r, and ρ
$←−

Func(X,X). Consider any distinguisher D ∈ D(q, t̂). We have

AdvprfFr
(D) =

∣∣P (DFr, k = 1
)
−P (Dρ = 1)

∣∣
≤
∣∣∣P (DFr, k = 1

)
−P

(
DF

id
r,π = 1

)∣∣∣+ Advprf
F id

r
(D) . (12)

The first term of (12) satisfies∣∣∣P (DFr, k = 1
)
−P

(
DF

id
r,π = 1

)∣∣∣ ≤ r∑
i=1

∣∣P (EEki = 1
)
−P (Eπi = 1)

∣∣ (13)

≤ r · AdvprpE (E) ,

12



for some distinguisher E with online complexity q and offline complexity at most
t̂. Clearly,

AdvprpE (E) ≤ sup
E∈D(q,t̂)

AdvprpE (E) ≤ AdvprpE (D(q, t̂)) .

Using Lemma 2, the second term of (12) satisfies

Advprf
F id

r
(D) ≤ sup

D∈D(q,t̂)
Advprf

F id
r

(D) ≤ sup
D∈D(q,∞)

Advprf
F id

r
(D) = Advprf

F id
r

(D(q,∞)) ≤ q

|X|
.

We have hence obtained

AdvprfFr
(D) ≤ r · AdvprpE (D(q, t̂)) +

q

|X|
.

As the derivation holds for any D ∈ D(q, t̂), this completes the proof. ut

The step that facilitates the application of Lemma 2 is mainly due to our for-
malization of distinguishers in Section 3. It is interesting to see that the classical
world equivalent of Theorem 2 would read

AdvprfFr
(D(q, t)) ≤ r · AdvprpE (D(q, t)) +

q

|X|
,

and the security analysis is fairly identical. The reduction in the proof of The-
orem 2 therewith clearly demonstrates that the analysis directly generalizes to
many other proofs in symmetric key cryptography and it is therefore of inde-
pendent interest. Rather than writing the direct security proof, we could have
equally well departed from the techniques of Hallgren et al. [21] and Song [51].
However, as pointed out in Section 1, these techniques are stronger and more
involved by design, and we believe that for our case a direct proof is easier to
grasp.

The question as to what level of PRP security a block cipher E offers
is beyond the scope of this work; it strongly depends on the strength of E
against cryptanalysis. For example, in the classical setting, assuming that E is
a strong enough cipher, we have AdvprpE (D(q, t)) ≈ q

|K| . If the distinguisher can

make quantum offline evaluations, we know that, due to Grover’s algorithm,

AdvprpE (D(q, t̂)) = Ω
(

q
|K|1/2

)
. Assuming that E is strong enough and Grover’s

algorithm describes the best possible attack on E, Theorem 2 gives security of Fr
as long as the complexity satisfies q � min{|K|1/2/r, |X|}. Using a block cipher
with a key twice the state size, e.g., AES-256, one obtains optimal security.

6 Discussion

Theorem 2 suggests that Fr achieves security up to min{|K|1/2/r, |X|} queries,
provided that Grover’s algorithm is the best way of breaking the underlying
block cipher. On the other hand, the attack of Section 4 only reaches |K|r/(r+1),

13



indicating a gap between the best attack and best security bound. The tightness
appears to be lost in equation (13) of the proof of Theorem 2, which upper bounds
the advantage of guessing a key k ∈ Kr by the advantage of guessing one of its
elements ki ∈ K. While this step is a conventional and reasonably harmless
proof technique in countless works on non-quantum symmetric key security, for
analysis against quantum distinguishers this step entails a significant loss.

Recall that the bound of Lemma 2 holds for any r ≥ 2. Now, consider Fr, and
assume that the adversary is able to recover r − 2 keys. This effectively reduces
Fr to F2, which, as suggested by Lemma 2, should not have an influence on the
bound. Instead, if one recovers r−1 out of r keys, the lemma cannot be applied,
and the problem of breaking Fr reduces to the problem of recovering r−1 keys. In
other words, intuition tells that security up to at least min{|K|(r−1)/r, |X|} could
be attainable. Well hidden in this intuition are, however, various conceptual
difficulties. Most importantly, it requires the formalization of “block ciphers
being secure conditioned on the absence of key recovery.” Additionally, it requires
a mechanism to verify whether a distinguisher has recovered a key of Ek1⊕· · ·⊕
Ekr , without having access to Ek1 , . . . , Ekr separately.

Acknowledgments. This work was supported in part by the Research Council
KU Leuven: GOA TENSE (GOA/11/007). In addition, this work was supported
by the European Commission through the Horizon 2020 research and innovation
programme under grant agreement No H2020-ICT-2014-645622 PQCRYPTO
and grant agreement No H2020-MSCA-ITN-2014-643161 ECRYPT-NET. Bart
Mennink is supported by a postdoctoral fellowship from the Netherlands Or-
ganisation for Scientific Research (NWO) under Veni grant 016.Veni.173.017.
Alan Szepieniec is supported by a Ph.D. Fellowship from the Institute for the
Promotion of Innovation through Science and Technology in Flanders (VLAIO,
formerly IWT). The authors would like to thank Stacey Jeffery and the anony-
mous reviewers of PQCrypto 2017 for their useful suggestions.

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: RIV for robust authenticated
encryption. In: Peyrin [45], pp. 23–42

2. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the
CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.) Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka,
Japan, February 24-26, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9606, pp. 44–63. Springer (2016)

3. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Ya-
suda, K.: APE: authenticated permutation-based encryption for lightweight cryp-
tography. In: Cid and Rechberger [15], pp. 168–186

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference on
the Theory and Application of Cryptology and Information Security, Bengaluru,

14



India, December 1-5, 2013, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 8269, pp. 424–443. Springer (2013)

5. Andreeva, E., Daemen, J., Mennink, B., Assche, G.V.: Security of keyed sponge
constructions using a modular proof approach. In: Leander, G. (ed.) Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-
11, 2015, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9054,
pp. 364–384. Springer (2015)

6. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to PRP to PRF conver-
sion. Cryptology ePrint Archive, Report 1999/024 (1999)

7. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y. (ed.) Advances in Cryptology - CRYPTO ’94, 14th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 21-25,
1994, Proceedings. Lecture Notes in Computer Science, vol. 839, pp. 341–358.
Springer (1994)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June
1, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4004, pp. 409–426.
Springer (2006)

9. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-quantum cryptography.
Springer Science & Business Media (2009)

10. Bhaumik, R., Nandi, M.: OleF: An inverse-free online cipher. IACR Transactions
on Symmetric Cryptology 1(2), 30–51 (2016)

11. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F., Steinberger, J.P., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: Encryption using a
small number of public permutations - (extended abstract). In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Cambridge, UK, April 15-19, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7237, pp. 45–62. Springer (2012)

12. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN ’98: Theoretical Infor-
matics, Third Latin American Symposium, Campinas, Brazil, April, 20-24, 1998,
Proceedings. Lecture Notes in Computer Science, vol. 1380, pp. 163–169. Springer
(1998)
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