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Abstract. The Border Gateway Protocol (BGP) computes routes between the organizational
networks that make up today’s Internet. Unfortunately, BGP suffers from deficiencies, including
slow convergence, security problems, a lack of innovation, and the leakage of sensitive information
about domains’ routing preferences. To overcome some of these problems, we revisit the idea of
centralizing and using secure multi-party computation (MPC) for interdomain routing which was
proposed by Gupta et al. (ACM HotNets’12). We implement two algorithms for interdomain routing
with state-of-the-art MPC protocols. On an empirically derived dataset that approximates the
topology of today’s Internet (55809 nodes), our protocols take as little as 6 s of topology-independent
precomputation and only 3s of online time. We show, moreover, that when our MPC approach is
applied at country/region-level scale, runtimes can be as low as 0.17s online time and 0.20s pre-
computation time. Our results motivate the MPC approach for interdomain routing and furthermore
demonstrate that current MPC techniques are capable of efficiently tackling real-world problems at
a large scale.

1 Introduction

Interdomain routing is the task of computing routes between the administrative domains, called “Au-
tonomous Systems” (ASes), which make up the Internet. While there is a variety of intradomain routing
designs (e.g., RIP, OSPF, IS-IS) to compute routes within an organizational network, there is only one
interdomain routing algorithm: the Border Gateway Protocol (BGP). BGP stitches together the many
(over 55000) ASes that the Internet is composed of and can thus be regarded as the glue that holds
together today’s Internet. BGP was specifically designed to meet the particular demands of routing
between Internet domains, allowing each AS the freedom to privately and freely implement arbitrary
routing policies, i.e., the expressiveness to both (i) select a route from the routes learned from its neigh-
boring ASes according to its own local business and operational considerations and (ii) decide whether to
advertise or not advertise this route to each of its neighboring ASes. Importantly, ASes’ routing policies
can leak sensitive information about their business relationships with other ASes and are therefore often
kept private.

BGP achieves the dual goals of policy freedom and policy privacy through an iterative, distributed
route computation. At each stage of the computation, a domain (AS) chooses which routes to use (among
the routes being advertised to it by its neighbors), and then chooses to which neighboring ASes the
resulting routes should be advertised. This process is repeated until convergence, thus allowing each
domain to make its own policy-induced choices, without needing to explicitly reveal these choices to other
domains. However, as pointed out in [MKO06, GZ11] (and the references within), while BGP computation
does not force domains to explicitly reveal policies, much information about routing policies can be
inferred by passively observing routing choices.

While BGP has served the Internet admirably, it has many well-known drawbacks ranging from slow
convergence to inability to deal with planned outages. Thus, we should explore alternative methods for
interdomain routing. As suggested in [GSPT12], the use of secure multi-party computation (MPC) offers
an intriguing possibility: executing the route computation centrally (among a few mutually distrustful
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parties) while using MPC to retain policy privacy. However, while the MPC technology provides ASes
with provable privacy guarantees, scaling this approach to current Internet infrastructure sizes with over
55000 ASes is a significant challenge. Specifically, the computation in [GSPT12] already requires 0.13 s for
a toy example of only 19 ASes and would hence require several hundreds of seconds for today’s Internet,
even when assuming a low number of neighbors per AS. Our paper is devoted to the cryptographic
paradigms, protocols, optimizations, and concrete tools necessary to compute interdomain routes at
Internet scale in a privacy-preserving way.

1.1 Centralizing BGP

The vision of (logically) centralizing interdomain routing can be regarded as the interdomain-level
analogue of the software-defined networking (SDN) approach to routing within an organization (i.e.,
intradomain routing), which is revolutionizing computer networking. SDN intradomain routing decouples
route-computation from the forwarding of data packets. Specifically, route-computation is delegated to
a software-implemented, centralized “controller”, which installs the resulting forwarding rules in the
decentralized switching hardware. Thus, with SDN, altering the routing scheme (e.g., to be more efficient,
more resilient to failures, provide quality-of-service assurances, etc.) only involves changing the controller
software, as opposed to replacing the hardware and software of multiple proprietary network devices
(routers, switches, etc.). However, reaping these benefits in the context of interdomain routing involves
overcoming two grand challenges: (1) preserving privacy of the business-sensitive routing policies of the
many independent organizations that take part in the computation, and (2) computation at very large
scale (outputting a routing configuration spanning tens of thousands of organizations).

To overcome these challenges we combine knowledge of the two research areas of networking and
secure computation. We use a state-of-the-art secure two-party computation framework and outsource
the route computation to two computational parties CP; and CPs, who are managed by two different
operators, which we assume do not collude. To protect the privacy of their business relations, the ASes
secret share their routing preferences with these two computational parties, such that no party gets any
information about the routing preferences between the ASes. The computational parties run our secure
interdomain routing computation protocols to determine the routes for each AS in the network. The
computation results are sent back to each AS, which can then reconstruct the plain text output of the
algorithm. More specifically, the CPs only send a small message to the ASes which contains their next hop
for a specific destination, while the communication- and round-intensive MPC protocol is run between
the CPs. An example setting with 6 ASes is depicted in Fig. 1.

: possibly lo-
e cated in one
data center

Fig. 1: Example setting with 6 ASes that secret share their inputs with 2 computational parties CP; and
CP5. Thin arrows correspond to 1 round of communication with small messages, while the bold arrow
symbolizes the execution of a secure computation protocol with many rounds and high bandwidth.

1.2 Outline and Our Contributions

After motivating a centralized approach and the use of MPC for interdomain routing in §1.3, we provide
an overview of related work for BGP and MPC in §1.4 and §2. Finally, we present our contributions:
Interdomain routing algorithms for MPC (§3). Interdomain routing is a long-standing research
topic for which several efficient algorithms exist. When transferred to the MPC domain, however, the
complexity of the algorithms changes drastically, since data-dependent optimizations of the algorithms



are not possible in MPC. In this paper, we select two interdomain routing algorithms, which provide
different capabilities for setting routing policies: one approach is based on neighbor relations and the
other approach is based on neighbor preferences. The neighbor relations-based routing algorithm is due
to [GSG11] and uses business relations between ASes to perform routing decisions (§3.1). The neighbor
preferences-based routing algorithm was used in the MPC protocol of [GSPT12] and allows ASes to
rank neighbors based on their preferences and give export policies which specify whether a route to a
neighbor ¢ should be disclosed to a neighbor j (§3.2). We implement these algorithms in a centralized
setting, which allows for consistency checks of the ASes’ inputs and thereby prevents malicious ASes from
providing inconsistent input information (cf. §6.3).

Construction and optimization of Boolean circuits for BGP (§4). We convert the neighbor
relation BGP algorithm of [GSG11] and the neighbor preference BGP algorithm of [GSP*12] into a
distributed secure computation protocol between two parties to provide privacy. We explain challenges
facing the implementations of these functionalities as a Boolean circuit, optimized for both low multi-
plicative depth (the number of AND gates on the critical path of the circuit) and low multiplicative size
(the total number of AND gates) for evaluation with the GMW protocol [GMW87] implemented in the
ABY framework [DSZ15]. We provide details on several building blocks, how we optimize them, and the
techniques we use to achieve high performance so as to be able to process real-world data.

Benchmarks and evaluation (§5). We benchmark both implementations on a recent empirically
derived BGP dataset with more than 50 000 ASes with maximal degree 5936 and almost 240 000 connec-
tions between them. We propose to exclude stub nodes from the computation as further optimization
and evaluate complex Boolean circuits with several million AND gates. The neighbor relation algorithm
requires about 6s of topology-independent precomputation time and an online time of about 3s on
two mid-range cloud instances, that are comparable to off-the-shelf desktop computers. The neighbor
preference algorithm takes about 13 s of topology-independent precomputation time and 10s online time.
We argue that while the online runtimes alone are not sufficient to provide adequate response to network
failures, it allows the precomputation of routes for many failure scenarios, which would enable almost
instantaneous failure recovery.

Deployment and future directions (§6). Our aim is to demonstrate the practical feasibility of
using MPC for interdomain routing. However, we view our work only as a first stepping stone that
should serve as a basis for further research. We first explain our assumptions about the network in §6.2.
To spawn interest, we list promising directions for further enhancing robustness and measures against
misconfigurations in §6.3 and discuss security against stronger adversaries in §6.4. Of course, transitioning
to MPC of interdomain routes is an extremely challenging undertaking that involves cooperation of tens of
thousands of independent financial and political entities, alongside significant deployment and operational
challenges. We argue, however, that our approach can also yield significant benefits (e.g., in terms of
privacy, security, and ability to innovate) when applied at a country/region-level scale. In addition, we
show that even when applying our approach to high-density networks in fairly compact areas, namely,
the German interdomain network, runtimes decrease to 0.20s pre-computation time and 0.17 s online
time (cf. Fig. 4). We discuss the possibility of deployment and related issues of our approach in §6.5.

1.3 Why MPC for Interdomain Routing?

In the following section, we list some of the benefits that centralizing BGP via MPC can offer.

Better convergence and resilience to disruption. As opposed to BGP’s inherently decentralized
and distributed computation model, which involves communication between tens of thousands of ASes, in
our scheme interdomain routes are computed by only two computational parties. BGP can take seconds
to minutes to converge [LABJ00, ZMZ04, OZPZ09]. In the interim period, BGP’s path exploration can
have adverse implications for performance. Indeed, a huge fraction of VoIP (e.g., Skype’s) performance
issues are the result of bad BGP convergence behavior [KKKO07]. Worse yet, BGP’s long path exploration
can even lead to intermittent connectivity losses. By centralizing computation and thus avoiding the long
distributed (and asynchronous) path-exploration process, convergence time is reduced significantly. We
demonstrate that our approach, despite harnessing MPC machinery, is much faster to compute global
routing configurations than today’s decentralized convergence process and, consequently, faster to recover
from network failures and to adapt to changes in ASes’ routing policies.

Less congestion. BGP permits ASes great expressiveness in specifying local routing policies at the
potential cost of persistent global routing instability. However, as shown in [GR01], under natural economic
assumptions (the so called “Gao-Rexford Conditions”) BGP convergence to a stable routing configuration



is guaranteed. Unfortunately, even under these conditions, convergence might take exponential time (in the
number of ASes) due to the exchange of an exponential number of messages between ASes [FSR11]. Our
scheme, in contrast, guarantees fast convergence to the desired routing outcomes as our communication
overhead is polynomial (linear time in the size of the network).

Enhanced privacy. Many ASes regard their routing policies as private and do not reveal them
voluntarily, as routing policies are strongly correlated to business relationships with neighboring ASes.
BGP seemingly offers policy freedom and policy privacy, as each AS is free to choose which routes
to use and which routes to advertise to others, without having to explicitly reveal its routing policies.
However, BGP’s privacy guarantees are limited, and are even fictitious. Monitoring selected BGP routes,
in particular when done from multiple vantage points, can reveal much information about ASes’ routing
policies, e.g., their local preferences over BGP routes (see, e.g. [MK06, GZ11] and references within). In
addition, AS business relationships can be reconstructed from publicly available datasets [CAI]. We refer
the reader to [GZ11] for an illustration of how monitoring the BGP convergence process can yield much
information about ASes’ routing policies.

Using MPC for interdomain routing can remedy this situation by provably providing strong privacy
guarantees that cannot be achieved under today’s routing on the Internet. Our scheme guarantees that
no information about routing policies and inter-AS business relationships, other than that implied by the
routing outcome, is leaked. In fact, each node (AS) learns only its “next hop” node in the final routing
outcome with respect to a destination, and not even the full route. We also hide the entire convergence
process, which potentially leaks information. As a side note, even with multiple vantage points, inferring
routing policies is no easy task. While our scheme would not completely remove this kind of leakage, it
would definitely decrease it compared to routing using BGP, where the ASes broadcast their full routing
table. Furthermore, it is unclear whether all information about the policy preferences can be gained using
only the next hop as information.

Enhanced security. BGP’s computation model, which is distributed across all ASes, enables ASes
to launch devastating attacks against the protocol, which can result in Internet outages [BFMR10].
By outsourcing BGP computation to a few parties, attacks on BGP that manipulate its decentralized
computation, e.g., propagating bogus AS-level routes to neighboring nodes, are eliminated. We point out
that centralizing interdomain routing is also compatible with the ongoing efforts to deploying the Resource
Public Key Infrastructure (RPKI) — a centralized certification infrastructure for issuing cryptographic
public keys to ASes and for mapping IP addresses to owner ASes, thus preventing ASes from successfully
announcing IP prefixes that do not belong to them (“prefix hijacking”). By outsourcing BGP computation,
verifying routing information through the RPKI can be executed efficiently in a centralized manner.

Freedom to adapt and innovate. The computational parties can easily update to new and more
advanced protocols, thus offering more complex functionality, such as new security solutions, multiple
paths per destination prefix, multicast routing, fast failover in response to network failures, etc.

‘What if’ analysis. Due to our low runtimes, we can precompute paths for cases of failure, i.e.,
simulate the removal of nodes and therefore significantly reduce the recovery times for these cases. This is
possible since the network topology is known publicly and therefore topology changes can be simulated.

1.4 [GSP112] and other Related Works

The innovative idea of using MPC for BGP was first proposed in [GSP112]. The aim of that paper was to
illustrate benefits and challenges of this approach, and to explore generic cryptographic schemes towards
its realization. We take an important step forward, providing a more concrete cryptographic approach
that is tailored to interdomain routing, and thus leads to significant improvements, and show that we
achieve reasonable performance in a real topology of today’s Internet.

Even though [GSP*12] outsources the route computation to few mutually distrustful parties, it does
not utilize this approach to the fullest extent possible. In terms of functionality, the internal protocol
of [GSPT12] that the clusters execute is very close to the BGP protocol. That is, the computational
parties get the secret shares of routing preferences of all ASes, and then simulate an execution of the
BGP protocol on “virtual” ASes with these shared preferences: The clusters run several iterations until
convergence, where in each iteration, each virtual AS (i) selects a route from the routes learned from
neighboring ASes and (ii) decides whether or not to advertise this route to each of its neighbors based on
a set of export policies. These decisions, however, incur a high overhead in cryptographic computations
since, in order to hide the policy that is applied, all policies have to be applied once per iteration. In order



to securely evaluate the routing algorithm, [GSP*12] uses the MPC protocol of [BGW88|, which provides
passive security in the case of a honest majority, i.e., if t < n/2 of the n parties have been corrupted.

In this paper, we follow up on the work of [GSPT12] and suggest the use of a second established
interdomain routing algorithm that avoids these computation-heavy policies using a simpler routing
strategy based on business relations [GSG11], given in §3.1. We compare the performance of this algorithm
to the preference-based algorithm that was used in [GSPT12] and which we outline in §3.2. In addition,
we use the secure computation protocol of Goldreich-Micali-Wigderson [GMW8T7] for secure evaluation of
the algorithms, since it provides security in case of no honest majority. Also, [BLO16] recently showed
that the protocol of [GMWS8T] scales better to a larger number of parties than the protocol of [BGWSS].

Other related works proposed privacy-preserving graph algorithms, but did not consider the more
complex BGP algorithm: [HR13] proposes STRIP, a protocol for vector-based routing that computes
the shortest path based on the Bellman-Ford algorithm. In their protocol the routers forward encrypted
messages along the possible paths that accumulate the costs along the path using additively homomorphic
encryption. This approach requires many messages until it converges and the routers need to implement
costly public-key encryption whereas in our solution all cryptographic operations are outsourced to the
two mutually distrustful computational parties. [BS05] provides privacy-preserving graph algorithms with
security against passive adversaries for all pairs shortest distance and single source shortest distance.
[BSA13] provides data-oblivious graph algorithms for secure computation, such as breadth-first search,
single-source single-destination shortest path, minimum spanning tree, and maximum flow, the asymptotic
complexities of which are close to optimal for dense graphs. [CMTB13] introduces an outsourced secure
computation scheme that is secure against active adversaries and uses it to compute Dijkstra’s shortest
path algorithm. [LWN™15] introduces a framework that compiles high-level descriptions into programs
that combine secure computation and ORAM and gives speed-ups for Dijkstra’s shortest path algorithm.
However, the complexities of these algorithms that hide the topology of the graph are too high to scale to
the size of the Internet consisting of thousands of nodes.

2 Preliminaries

We provide preliminaries on secure multi-party computation (§2.1), modeling the BGP protocol (§2.2),
and detail the input data for our protocols (§2.3) next.

2.1 Secure Multi-Party Computation

Secure multi-party computation was introduced in the 1980s [Yao86, GMWS87]. It was followed by
surprising feasibility results [BGW88, CCD88, RB89] that positioned MPC as a central and extremely
powerful tool in cryptography. These works show that multiple computing devices can carry out a joint
computation of any function on their respective inputs, without revealing any information about the
inputs (except for what is logically learned from the output).

More concretely, consider n parties Py, ..., P, that hold private inputs z1, ..., z, and wish to compute
some arbitrary function (yi,...,yn) = f(21,...,2,), where the output of P; is y;. MPC enables the
parties to compute the function using an interactive protocol, where each party P; learns exactly y;, and
nothing else. Natural applications of MPC include voting, digital auctions, survey computations, set
operations, and many more.

The security of the protocol is preserved even in the presence of some adversarial entity that corrupts
some of the participating parties, combines their transcripts and coordinates their behaviors. Usually,
there are two types of adversaries that are considered. A semi-honest adversary (also known as “honest-
but-curios” or “passive”), follows the protocol specification but may attempt to learn secret information
about the private information of the honest parties from the messages it receives. A malicious adversary
(also known as “active”) may, in addition, deviate from the protocol specification and follow any arbitrary
behavior. In our setting (as well as in [GSPT12]), we assume that the computing parties are semi-honest.
Our basic variant of the protocols assumes that the ASes are semi-honest as well (and may collude with
some of the computing parties). In the more involved variant of our protocols (unlike [GSPT12]), we
tolerate even malicious behavior of the ASes (cf. §6.3).

In this work, we use MPC in an outsourcing scenario, where many ASes secret-share their private
inputs to two computational parties, who run the secure computation on these inputs. The outputs are
then sent back to the ASes, who reconstruct the plaintext output.



Despite the immense potential of MPC, it is a great challenge to implement it in practice. The
aforementioned constructions of MPC are purely theoretical, and protocols for secure computation can
require many rounds of interaction and the transformation of massive data between the computing parties.
A very productive line of research, e.g., [MNPS04, BLW08, HEKM11, MLB12, CHK"12, HFKV12,
KMSB13, CMTB13, DSZ14, DSZ15, LHST14, LWNT15], has been devoted to positioning MPC as a
practical tool and off-the-shelf solution for a wide variety of problems, and to minimize the complexity
of the current schemes. Using these recent breakthroughs, the benefits of MPC can be utilized in some
real-life applications [BCD 09, BTW12, BJSV15]. Still, its deployment is somewhat insufficient and far
beneath its true potential. Our work is a new real-life large-scale application of MPC, which is interesting
in its own right.

An important building block for secure computation is oblivious transfer (OT), where a sender inputs
two £-bit messages (mg, m1) and a receiver inputs a selection bit s € {0,1} and obliviously receives one
message mg. OT guarantees that the sender does not learn the receiver’s choice s, while the receiver only
learns m; and nothing about m;_s. OT can be computed efficiently using OT extension [IKNP03, ALSZ13].

Boolean sharing. The MPC techniques we use to implement our protocols rely on Boolean sharing,
where a value is XOR secret-shared and processed using a circuit that operates on bits. The parties
emulate computation of the circuit gate-by-gate, where in each gate the parties compute shares of the
gate’s output wire using the shares of the inputs. The computation of the outputs of an AND gate
requires interaction. Consequently, the round complexity of the protocol depends on the depth of the
circuit, resulting in high latency for circuits with high depth. We use the protocol by Goldreich-Mi-
cali-Wigderson (GMW) [GMWS8T7], which falls into this category. The main advantage of the GMW
protocol is that it allows to precompute all (symmetric) cryptographic operations in a setup phase that is
independent of both the function that is being evaluated and the inputs to the function. Each AND gate
needs as precomputation two Oblivious Transfers (OTs) [IKNP03, ALSZ13] on random inputs, which
are used to precompute a multiplication triple that consists of random bits ag, a1, bg, b1, cg, c1 for which
co®c1 = (ag B ar) A (bp @ by) holds, cf. [ALSZ13]. We heavily utilize this precomputation. In our setting,
the setup phase is independent of the topology of ASes and their routing preferences and hence can be
easily evaluated by multiple machines in parallel. The remainder of the protocol is an online phase that
consists solely of bit operations. Moreover, the GMW protocol allows to efficiently evaluate the same
sub-circuit in parallel, similar to Single Instruction Multiple Data (SIMD) instructions in a CPU. Finally,
the GMW protocol also allows for highly efficient instantiation of multiplexers using vector ANDs [DSZ15],
which reduce the cost for evaluating a ¢-bit multiplexer to the cost of evaluating a single AND gate and,
in our experiments, reduce the number of required OTs by a factor between 3 and 45. We describe how
this optimization is applied to our use case in §4.2.1. More detailed, an ¢-bit vector AND (or multiplexer)
is evaluated using a vector multiplication triple, which consists of two random bits ag,a; € {0,1} and
four random /-bit strings bg, b1, co, c1 € {0, 1} with co[i] © c1[i] = (a0 @ a1) A (bo[i] @ by[i]) for 1 < i < ¢,
where [i] denotes the i-th bit of a string. Similar to a regular multiplication triple, a vector multiplication
triple can be generated using two OTs on random inputs [DSZ15].

2.2 Modeling BGP

We now give an overview on important aspects of modeling BGP, as discussed in [GR01, GSW02,
GSG12] (and references therein). Throughout this work the terms AS, domain, vertex or node are used
interchangeably.

2.2.1 The AS-Level Graph The AS-level topology of the Internet is modeled as a network graph
G = (V, E) where vertices represent ASes and edges represent connections between them. Each edge is
annotated with one of two business relationships: customer-provider, or peering. A customer-provider
edge is directed from customer to provider; the customer pays its provider for transmitting traffic to/from
the customer. A peering edge represents two ASes that agree to transit traffic between their customers at
no cost. We assume that these relationships are symmetric, i.e., if AS a is a peer of AS b, then b is also a
peer of a and if AS ¢ is a customer of AS d, then d is a provider of c. ASes with customers are Internet
Service Providers (ISPs). We call an AS with no customers a “stub AS”.

2.2.2 Routing Policies ASes’ routing polices reflect their local business and performance considera-
tions. Consequently, routing policies are considered sensitive information as revelation of an AS’s routing



policy can potentially leak information about its business relationships with others to its competitors (or
other relevant information). We use the standard model of routing policies from [GR01, GSW02]. Each
AS a computes routes to a given destination AS dest based on a ranking of simple (loop-free) routes
between itself and the destination, and an export policy, which specifies, for any such route, the set of
neighbors to which that route should be announced. We next present a specific model of routing policies
that is often used to simulate BGP routing (see, e.g., [GSHR10, GSG11, GSG12]).

Ranking. AS a selects a route to dest from the set of paths it learns from its neighbors ASes according
to the following ranking of routes:

— Local preference. Prefer outgoing routes where the “next hop” (first) AS is a customer over outgoing
routes where the next hop is a peer over routes where the next hop is a provider. This captures the
intuition that an AS is incentivized to select revenue-generating routes through customers over free
routes through peers over costly routes through providers. Optionally, an AS can have preferences
within each group of neighbors, i.e., it can prefer a certain provider over another one.

— Shortest paths. Break ties between multiple routes with the highest local preference (if exist) in
favor of shorter routes (in terms of number of ASes on them). Intuitively, this implies that an AS
breaks ties between routes that are equally good from a business perspective, in favor of routes that
offer better performance.

— Arbitrary tie breaking. Break ties between multiple remaining routes (if exist) arbitrarily.

Export policies. The following simple export policy captures the idea that an AS is willing to transit
traffic between two other ASes if and only if one of these ASes is a paying customer: AS b announces a
path via AS ¢ to AS a iff at least one of a and ¢ is a customer of b.

2.2.3 BGP Convergence BGP computes routes to each destination independently and so, henceforth,
we consider route computation with respect to a single destination AS dest. In BGP, each AS repeatedly
uses its ranking function to select a single route from the set of routes it learns from its neighbors, and
then announces this route to the set of neighbors dictated by its export policy. This goes on until BGP
computation converges to a stable routing outcome where no AS wishes to change its route. Observe
that as an AS can only select a single route offered to it by a neighbor. The set of selected routes upon
convergence must form a tree rooted in the destination dest, referred to as the routing tree to AS dest.
Under the routing policies specified in §2.2.2, BGP is guaranteed to converge to a unique stable routing
tree [GRO1] given the arbitrary tie-breaking strategy.

2.3 BGP Input Data

It is our goal to simulate the algorithms under realistic conditions and show its practicality on real-world
data. To this end, we use the network topology and AS business relationships provided in the CAIDA
dataset from November 2016 [CAI]. This dataset is empirically generated and provides us with both a
realistic network topology, which we can use as public input, as well as inferred business relationships
between domains, which we use to simulate the private inputs of the ASes. We furthermore compare
properties of the most recent dataset with the available historic data for every month starting from 1998
and depict this information in Fig. 6 in Appendix A. We evaluate our protocols on datasets from the
past 10 years for full topologies and recent subgraphs thereof to show how our implementations scale and
provide detailed results in §5.

A possible way of deploying our solutions could be with the help of a Regional Internet Registry (RIR)
or on smaller, regional scale. Starting from the original CAIDA topology, we created subgraphs using
the GeoLite database [Geo] for each of the 5 RIRs and Germany as an example of a regional topology
(cf. §6.5).

3 Centralized BGP Algorithms

We consider two centralized algorithms for computing interdomain routes: an algorithm based on business
relations (§3.1) and an algorithm that ranks neighbors based on preferences (§3.2). We first outline the
pseudo-code for these algorithms, which can be considered as the “code of the trusted party” in terms of
secure computation and then show how to reduce the complexity of the route computation by removing
stub-nodes (§3.3).



3.1 Centralized Algorithm with Neighbor Relations

We present the algorithm from [GSG11] for computing the BGP routing tree for the routing policies
described in §2.2.2. The algorithm gets as input the AS-topology G = (V, E), where each outgoing edge
(u,v) € E is associated with one of three labels: customer (v is a customer of ), peer (v and v are peers)
or provider (v is a provider of u). The algorithm also receives as input the destination AS dest € V. The
output of the algorithm is, for each AS, the next hop on the routing tree to destination dest. As shown
in [GSG11], the induced routing tree generated by this algorithm agrees with the BGP outcome for the
routing policies described in §2.2.2.

The algorithm computes for each AS its next hop on the routing tree using the following three-stage
breadth-first search (BFS) on the AS graph:

1. Customer routes. A partial routing tree is constructed by performing a BFS “upwards” from root
node dest using only customer edges.

2. Peer paths. Next, single peering edges connect new ASes to the ASes already added to the partial
routing tree from the first stage of the algorithm.

3. Provider paths. The computed partial routing tree is traversed with a BFS, and new ASes are
iteratively added to the tree using provider edges.

We proceed with a detailed pseudo-code of the above algorithm. Implementing this algorithm involved
several decisions that will mitigate the conversion to a secure protocol, and careful selection of data-
structures. E.g., variables with Boolean values are preferred when possible, since these simplify the
conversion to the Boolean circuit. Also, sometimes further optimizations of the algorithm (like breaking a
loop according to some condition), are avoided as to not reveal information about the internal state. Note
that all nodes are processed in parallel, i.e., the state is read once for all nodes and updated at the end of
each iteration.

We distinguish between public and private algorithm inputs. We assume public inputs are global
knowledge and do not reveal sensitive information. Private inputs describe the privacy-sensitive input of
each AS.

A formal description of the algorithm is given in Alg. 1. The state of the algorithm consists of three
vectors, each of size |V|: next, fin and dist. The vector next stores nodes, where for every node v € V,
next[v] stores the next hop in the routing tree to the node dest. The vector fin is a Boolean vector, where
fin[v] stores whether the route from v to dest is already determined. The vector dist is a vector of integers,
where dist[v] stores the number of hops in the current route between v and dest (this helps us to break
ties between multiple routes with the highest local preference, if exist, in favor of shorter routes). It is
easy to see that this pseudo-code is a concrete implementation of the algorithm presented in [GSG11],
and thus we conclude that the routes computed by this algorithm agree with the outcome of BGP (where
the preferences of the ASes are according to §2.2.2).

3.2 Centralized Algorithm with Neighbor Preferences

The algorithm in §3.1 can be extended such that it allows the ASes to specify preferences for each neighbor
route and freely choose an individual export policy. In [GSPT12], such an algorithm was proposed, that
behaves similar to the one in [GSG11], but is computationally more complex due to the added degree of
freedom.

We can emulate the behavior of Alg. 1 by grouping each neighbor relation to a certain range of
preferences: we ensure that customers have a higher preference than all other nodes, and that providers
have lower preference than others. The advantage of this algorithm is, that within each neighbor
relation we can have a preferred node, e.g. a favorite provider. In addition, this algorithm allows a
node to freely specify his export policy, i.e., to choose whether he wants to disclose a certain route to
a neighbor or not. The pseudo-code of the algorithm is given in Alg. 2. We use a preference bit-length
of p = 4 for good expressiveness in practice.

3.3 Removing Stub ASes

To reduce the complexity of the route-computation, our protocols are only run on the subgraph of the
AS-graph that is induced by the non-stub ASes (i.e., by the ISPs). Stubs (by definition) have no customers,
and so should never transit traffic between other ASes. Hence, in our scheme MPC is used to compute
routes between ISPs (that form the core of the Internet). Then, stubs select an ISP through which to
connect to the Internet according to their local routing policies. We point out that:



— Public inputs: (V, dest, dyeptn), where V = {v1,...,v,} represents the set of vertices (ASes), dest € V

is the destination node, and dgepth is a bound on the depth of the customer-provider hierarchy, i.e., the
longest route in the AS-graph in which each edge is from customer to provider. We use 10 as a very
conservative upper bound on this depth. The topology of the AS-graph is assumed to be public knowledge.
That is, for every v € V the list of its neighbors Adj[v] C V is public. We discuss hiding the topology
in §6.6.

Private inputs: Every AS v € V inputs a private list type,, where for every u € Adj[v], type,[u] €
{customer, peer, provider}.

Outputs: Upon completion of the algorithm, every AS v € V' obtains its next hop in the routing tree
next[v].

: Initialize a vector next of size |V, that stores the next hop in the routing tree to node dest, where for

every v € V set next[v] = DUMMY, where DUMMY ¢ V' is an unconnected node. Set next[dest] = dest.

: Initialize a Boolean vector fin of size |V, that indicates if a route to dest was found, and set all the

elements to false. Set fin[dest] = true.

: Initialize a distance vector dist of size |V| that holds the number of hops to dest. Set all elements to oo,

except for dist[dest] = 0.

BFS of customers:

4:
5:
6:
7:

8:
9:
10:

for dyeptn iterations do:
for all v €V do: > in parallel
for all u € Adj[v] do: > for all neighbors of v
if fin[u] = true and fin[v] = false and
type,[u] = customer then
next[v] «— u
dist[v] «— dist[u] + 1
fin[v] «— true

BFS of peers:

11:
12:
13:

14:
15:
16:

for all v € V do: > in parallel
for all u € Adj[v] do: > for all neighbors of v
if fin[u] = true and fin[v] = false and
type, [u] = peer and dist[v] > dist[u] + 1 then
next[v] «— u
dist[v] «— dist[u] +1
fin[v] +— true

BFS of providers:

17:
18:
19:
20:

21:
22:
23:
24:

for dgeptn iterations do:
for all v € V do: > in parallel
for all u € Adj[v] do: > for all neighbors of v
if fin[u] = true and fin[v] = false and
type, [u] = provider and dist[v] > dist[u] 4+ 1 then
next[v] «— u
dist[v] «— dist[u] + 1
finfy] <— true

return next

Algorithm 1: Neighbor Relation Routing [GSG11]




— Public inputs: Same as in Alg. 1.

— Private inputs: Every AS v € V inputs a private list of preferences pref,, where for every u € Adj[v],
pref,[u] corresponds to the preference for u, and a private bit-matrix pub, of size |Adj[v] + 1| x |Adj[v]|
that specifies the export policy, i.e., if a route to a neighbor is published to other neighbors.

— Outputs: Same as in Alg. 1.

1: Initialize a vector next of size |V/|, that stores the next hop in the routing tree to node dest. For every
v € V set next[v] = DUMMY, where DUMMY ¢ V' is an unconnected node. Set next[dest] = dest.

2: Initialize a Boolean vector fin of size |V/|, that indicates if a route to dest was found, and set all the
elements to false. Set fin[dest] = true.

3: for all v € V do: Initialize pub, [DUMMY, u] = true for all u € Adj[v] and pref, [DUMMY] = 0.

BFS:

4: for 2dgepth + 1 iterations do:

5. for all v € V do: > in parallel
6: for all u € Adj[v] do: > for all neighbors of v
T if fin[u] = true and pub,, [next[u], v] = true and

pref, [next[v]] < pref, [u] then
8: next[v] «— u
9: fin[y] <«— true

10: return next

Algorithm 2: Neighbor Preference Routing [GSPT12]

1. As stubs are roughly 85% of ASes, this means that the MPC protocol needs only be run on a fairly
small part of the AS graph. In our experimental evaluation in §5 we show that removing the stubs
improves the runtime of the MPC protocol by a factor of ~ 2.5. For the CAIDA topology from
November 2016, the number of ASes is reduced from almost 56 000 to 8 407 ASes, when excluding
stubs.

2. Whether an AS is a stub (and not an ISP) is not considered confidential information and so our
partition of the AS graph into these two distinct groups of ASes does not leak any sensitive information.

3. Observe that according to the routing policies presented in §2.2.2, to select between ISPs after the
MPC step is complete, a stub needs only to know whether or not the ISP has a route to the destination,
and the length of the route. This information can be announced directly to the stub by its ISP.

4 Circuit Representation

As a first step towards securely computing Alg. 1 and Alg. 2, we show how to construct Boolean circuits
that implement these algorithms. In the following section we detail how to construct a Boolean circuit
from the neighbor relation algorithm given in Alg. 1 (§4.1), describe the optimizations that we apply to
it (§4.2), give a summary of the circuit for the neighbor preference algorithm in Alg. 2 (§4.3), and show
security and privacy of our protocols (§4.4).

4.1 ‘Naive’ Implementation of Alg. 1

We first outline the general structure of the circuit (§4.1.1) and then show how to implement sub-routines
and analyze their complexities (§4.1.2). We provide a circuit structure outline in Fig. 2 and the complete
circuit of our centralized BGP algorithm in Circ. 1.

4.1.1 Structure Inputs. The circuit gets as input from each AS the secret shared relationship
information for its neighbors. For efficiency reasons we have three separate input bit arrays for each AS,
one for each type of AS relation: in®", inP®", and in®"". For a node with n neighbors, we have three
inputs of length n bits each, where the i-th bit corresponds to the relation to the i-th neighbor. Note that
the ASes only need to secret share their inputs among the computational nodes when updating their
relationships since the computational nodes can re-use existing data for multiple executions. (If it should
be hidden that a particular AS changed its relationships, then the secret sharing can be run again by
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Fig. 2: Circuit Structure Overview.
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all ASes. This might happen on a regular basis.) The routing destination dest and network topology are
public inputs and thus not secret-shared.

State. We operate on a secret-shared state where we store for each node: a finish bit fin, a §-bit long
destination id of the next node on the routing tree next, and a o-bit long hop distance to the target
node dist. Initially, fin is set to false and next is set to zero, while dist is set to the maximum value 27 — 1.
This state is then iteratively updated using the methods for each relation. The peer and provider methods
are identical, except for the different iterations and type of AS relation. We have dgeptn iterations of the
customer sub-circuit and 1 + dgepth iterations of a combined peer/provider sub-circuit, where we use the
peer relation as input once, and the provider relation for the remaining iterations.

Outputs. After secure evaluation of the next hop on the route to dest for each AS v € V, the
computational parties send their share next[v] to every v, who can then reconstruct the plaintext output.

Parameters. According to the CAIDA dataset, we set the parameters in the protocol of §3 to
dgepth = 10 and therefore have 10 iterations of the customer routine, a single iteration for the peer routine,
and 10 iterations for the provider routine. Furthermore, we set the id-bit length § = [log, |V|] and the
destination bit-length to o = [log, 21] = 5, since we can at most achieve a distance of 21 hops between
any AS and the destination (1 hop per each of the 10 customer and provider iterations and one peer
iteration).

4.1.2 Operations and Complexities The operations of the pseudo-code in Circ. 1 can be imple-
mented using standard circuit constructions. Apart from the standard bit-wise operations AND (A) and
NOT (!), we use the following operations:

Addition (ADD). We use the Ripple-Carry addition circuit [BPP00] with ¢/ AND gates and a
multiplicative depth of ¢ for addition of ¢-bit values.

Greater-Than (GT). We use the greater-than circuit of [KSS09] which has ¢ AND gates and a
multiplicative depth of ¢ when comparing two ¢-bit values.

if-Condition (MUX). To compute the if-condition securely, both branches must be evaluated to
hide which branch has been chosen. The results are then assigned to the variables depending on the
condition bit sel € {0,1} using a multiplexer MUX. A multiplexer MUX (Ufaise, Utrue, Sel) takes as input
the value vf,se from the false branch, the value vyye from the true branch, and the selection bit sel and
outputs vgse if sel = 0 and vyne if sel = 1. A multiplexer for ¢-bit values requires £ AND gates [KS08] and
its multiplicative depth is 1. There exist optimizations for the GMW protocol that allow the evaluation
of an ¢-bit multiplexer at the cost comparable to a single AND gate [DSZ15], as explained in §4.2.1.

We estimate the number of AND gates and the depth of the primitive operations for the customer,
peer, and provider functionality and provide the resulting total numbers for the CAIDA dataset of
November 2016 in Tab. 4 in the Appendix. We estimate that naively implemented circuits would have
more than one hundred million AND gates, and a multiplicative depth of several hundred thousand.
Furthermore, we estimate that the total number of gates is around 400 million. Since modern secure
computation frameworks are able to evaluate 4-8 million AND gates per second [DSZ15, LWNT15],
securely evaluating the circuit would require nearly 100s, which is arguably too long. Finally, the high
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1: Initialization of next, fin and dist identical to Alg. 1.
BF'S of customers:

2: for dgepth times do:

3: for all veV do: > in parallel
4 for all u € Adj[v] do: > for all neighbors of v
5 sel «— finfu] A Min[v] A ing™*[u]

6: sum  <— ADD(dist[u], 1)

7 next[v] «— MUX(next[v], u, sel)

8: dist[v] +— MUX(dist[v], sum, sel)

9 finfv] +— MUX(fin[v], sel, sel)

BF'S of peers:

10: for all v € V do: > in parallel
11:  for all u € Adj[v] do: > for all neighbors of v
12: sum  <— ADD(dist[u], 1)

13: cmp  +— GT(dist[v],sum)

14: sel «— finfu] A Yin[v] A cmp A in)®[u]

15: next[v] +— MUX(next[v],u, sel)

16: distfv] +— MUX(dist[v],sum, sel)

17: fin[v] <«— MUX(fin[v], sel, sel)

BFS of providers:
18: for dgepth times do:

19: for all v € V do: > in parallel
20: for all u € Adj[v] do: > for all neighbors of v
21: sum  <— ADD(dist[u],1)

22: cmp  +— GT(dist[v],sum)

23: sel «— fin[u] A Min[u] A ecmp A Ind™[y]

24: next[v] «— MUX(next[v], u, sel)

25: dist[v] +— MUX(dist[v], sum, sel)

26: finfv] +— MUX(fin[v], sel, sel)

Circuit 1: Neighbor Relation Routing Circuit

depth translates to a huge number of communication rounds for the GMW protocol. In the next section,
we show how the circuit can be optimized substantially to overcome these limitations.

4.2 Optimized Implementation of Alg. 1

In order to counter the problem of the high number of AND gates, the memory complexity for storing the
circuit, and the high number of communication rounds, we propose to use the following three optimizations:
reduce the complexity for evaluating AND gates by using vector ANDs (§4.2.1), decrease the number of
gates in the circuit description by using SIMD circuits (§4.2.2), and decrease the circuit depth by building
certain parts of the circuits as tournament-like evaluation (§4.2.3). In Tab. 5 in the Appendix we give the
improvements of our optimizations and break down the resulting complexities into the sub-functionalities
in Tab. 6. We describe these optimizations in more detail next.

4.2.1 Vector ANDs The naive circuit in Circ. 1 consists of many multiplexer gates operating on ¢-bit
values, needed to realize if conditions. As outlined in [DSZ15] and summarized in §2.1, these multiplexers
can be instantiated using vector ANDs that reduce the precomputation cost from £ AND gates to the cost
of one AND gate. Overall, the multiplexers constitute to around 75% of the total number of AND gates in
the circuit. By using the vector AND optimization, we can therefore reduce the number of AND gates by
factor 3 for the neighbor relation algorithm in Alg. 1 and by up to factor 45 for the neighbor preference
algorithm in Alg. 2 (as shown in column Total ANDs vs. Vector ANDs in Tab. 2 in the Appendix). Note,
however, that this optimization can only be applied when performing the evaluation with the GMW
protocol, while an evaluation with Yao’s garbled circuits has to process the total number of AND gates(cf.
middle column in Tab. 6 in the Appendix).
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4.2.2 SIMD circuits In order to cope with large circuits, there are two common approaches: pipelining
the circuit construction and evaluation [HEKM11] and building a Single Instruction Multiple Data (SIMD)
circuit. While the approach of pipelining the circuit construction and evaluation is especially suited for
processing circuits of arbitrary size, we decided to pursue a solution based on SIMD techniques. A SIMD
circuit also consists of gates, but instead of operating on single bits, it operates on multiple bits in parallel.
Thereby, the time for the load / process / store operations of a gate amortizes, which drastically speeds
up the evaluation [SZ13]. In contrast, a pipelined construction and evaluation approach would need to
perform a load / process / store operation per bit of evaluation. We will now describe how to build such
a SIMD circuit that evaluates our BGP functionality.

Note that for the customer, peer, and provider functionality, we perform the same operation for each
node v € V in parallel. Using SIMD circuits, we can combine the values for each node into vectors
instead of single bits and thereby only build a single copy of the functionality. Thereby, we can operate
on multiple values in parallel, which allows us to reduce the memory footprint of the circuit as well
as to decrease the time for circuit evaluation. However, applying the SIMD programming style is not
straight-forward since for each node the circuit depends on its degree, i.e., the number of its neighbor
nodes n, which differs drastically between ASes. The obvious solution, that builds the circuit for the
node with the highest degree ny.x and pads the number of neighbor nodes for all other nodes to nyax,
introduces a non-tolerable overhead in terms of AND gates. We solve this problem as described next.

All nodes are divided into groups of similar degree. After each iteration the results from all groups
are merged into a state, that is used as input to the next iteration. The challenge is to find the right
amount and size of groups to partition the nodes. For our experiments, we use the following partitioning:
{1,2,...,6,8,12,20,32,64,128,256, ..., Nmax }, Where ny.y is the highest number of neighboring nodes
that any AS in the topology has. This partitioning was chosen based on the degree distribution shown
in Fig. 5 in the Appendix, and resulted in good overall runtimes for all datasets that we performed our
benchmarks on.

4.2.3 Tournament evaluation The current circuit has a high multiplicative depth, which makes it
inefficient for secure computation protocols which require communication rounds linear in the circuit
depth, e.g., the GMW protocol. The reasons for the high depth of the circuit are the iterative structure
of Alg. 1 and the sequential processing of neighbors, which results in a circuit depth linear in npy,y, i.e.,
the highest number of neighbors of any AS in the graph (for the CAIDA dataset, nmax=>5 936). In order
to reduce the depth for processing the neighbors, we adopt a tournament evaluation style by arranging
operations in form of a tree and thereby achieve a logarithmic depth. We give the selection function for
the customer functionality in Func. 1 and for the peer / provider functionality in Func. 2. Note that we can
compute sel in Func. 1 as well as sum, and sumg in Func. 2 once in the beginning and pass/re-use them
during the tournament evaluation to decrease the number of AND gates. Thereby, the overall number of
AND gates in the circuit remains the same as for the sequential circuit.

cust

Input: v € V, (next[ur], dist[ur], fin[ur], ing™* [u]),
(next[ur], dist[ur], fin[ur], inS"**[ur]) with
ur,ur € Adj[v],ur # ugr

sel «— finfur] A in[v] A in{™*[ur]

next’ +— MUZX(next[ur], next[ur], sel)

dist’ «— MUX(dist[ur], dist[ur], sel)

fin" «— MUX(fin[ur], fin[uz],sel)

in’  +— MUX(@nS"**[ug], inS""[ur], sel)

Output: (next’,dist’, fin’,in’)

Function 1: Selection Function customer

4.3 Implementation of Alg. 2

The structure of the neighbor preference algorithm described in §3.2 is very similar to that of the
peer/provider part of Alg. 1 described in §3.1. Thus, we can use the same structure, ideas and optimizations
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Input: v € V, (next[uz], dist[ur], fin[uz],inS"* [ur]),
(next[ug), dist[ur], fin[ur], inS"** [ug]) with
ur,ur € Adj[v]),ur # ur
¢ distmax =27 — 1
: sump «— MUX(distmax, dist[ur], fin[ur] A ingeer/pmv[uL])
sump +— MUX (distmax, dist[uz], fin[ug] A in5™/P*"[ug])
sel  <— GT(sumg,sumpg)
next’ «— MUX(next[ug], next[ur], sel)
dist’ +— MUX(dist[ug], dist[uz],sel)
fin"  «— MUX(fin[ug],fin[uz],sel)
in'  «— MUX(in5*"/P™" [ug], in2*"/P*V [u], sel)
Output: (next’,dist’, fin’,in’)

P NPT

Function 2: Selection Function peer / provider

as described before to efficiently realize it as a Boolean circuit optimized for the evaluation with the
GMW protocol. The main difference between the neighbor preference and the relation algorithm is the
publish matrix pub, held by each AS. This matrix has dimension |Adj[v]| x |Adj[v]| and hence becomes
very large for ASes with many neighbors. In fact, for the full CAIDA dataset from November 2016, only
the AS with the most neighbors (nm,a.x = 5936) has a matrix with 35236 096 bits. Each bit of this matrix
has to be accessed once for each of the 2dgepth + 1 rounds in order to hide the current next hop, which
costs one AND gate per bit. Overall, the total number of AND gates in the circuit for the full CAIDA
dataset from November 2016 amounts to nearly 8 billion (cf. Tab. 2 in the Appendix). The vector AND
optimization allows us to perform a more efficient access and reduces the cost for processing this matrix
in the setup phase to 130 million AND gates (cf. Tab. 2 in the Appendix). However, during the online
phase we have to evaluate the total number of AND gates, regardless of the vector AND optimization,
which results in a communication of approximately 2 GiB of data which is an order of magnitude higher
than for the relation-based algorithm of §3.1.

Additionally, in the neighbor preference algorithm, the computation parties need to perform lookups
by secret-shared values in Step 7 (i.e., the lookups pub,, [next[u], v] and pref, [next[v]]). We implement these
lookups by updating the values pub,, and pref, for all nodes each time a new next hop is chosen. Note
that updating the values can be done using the vector AND optimization, which greatly reduces the costs.

4.4 Security and Privacy

Given the above circuit representations, our final protocols apply the GMW protocol [GMWS87, Gol04]
while using these circuits as public input to all computational parties. In a nutshell, all ASes secret share
their inputs to the computational parties. Then, the parties use the GMW protocol to evaluate the circuit
gate-by-gate, while maintaining the invariant that the value on each wire is secret shared among the
computational parties. The parties evaluate the circuit, by securely computing a secret sharing of the
output wire of the gate using its secret shared input wires. At the final stage, the computational parties
send back to each AS its respective shares of the output, and never learn the output by themselves.
Denote by II; the protocol for computing Alg. 1, and by II5 the protocol for computing Alg. 2.

Tt is easy to see that our naive circuits (e.g., Circ. 1) correctly implement our algorithms. These are
direct translations of the algorithms into lower level components, such as AND (A) and NOT (!) gates, as
well as ADD, GT and MUX. We rely on the correctness of the implementations of [BPP00] for ADD-gates,
[KSS09] for GT and [DSZ15] for MUX, to conclude our final circuits, that use only AND and XOR gates.

The correctness of the protocols is derived from correctness of the GMW protocol, and the correctness
of our circuits. The privacy of our protocols is derived from the proof of security [GMWS87, Gol04] of
the GMW protocol for privately computing a given circuit while hiding the intermediate values on its
internal wires. We specify these properties formally in Theorem 1.

Theorem 1: Security and Privacy

Protocol II; (resp. II2) privately computes Alg. 1 (resp. Alg. 2) in the presence of a semi-honest adversary,
corrupting at most n — 1 out of n computational parties in addition to all but one ASes.

14



5 Benchmarks and Evaluation

In this section, we provide benchmark results of our protocols and evaluate the practicality of our solution.

We show that we are capable of securely evaluating the circuit for the full dataset in a reasonable
runtime and further improve it using the algorithmic optimization of excluding stubs from the computation
(cf. §3.3).

We implement our protocols using the ABY framework [DSZ15] which provides the two-party variant
of the secure computation protocol by Goldreich-Micali-Wigderson (GMW) [GMWS87] with security
against passive adversaries. The main reason for the GMW protocol are the optimizations from §4.2,
that are only possible with GMW. Using Yao’s garbled circuits, runtimes would become impractical. We
provide further arguments for choosing the GMW protocol in Appendix B.

To the best of our knowledge, the optimizations described in §4.2 are only implemented in the ABY
framework. We are not aware of automated tools capable of using the same optimizations to the same
extent that we do in our hand-built circuits. We would like to point out, however, that our efficient
circuits are generic Boolean circuits that could be evaluated with any secure computation framework
and could thus be extended to more than 2 parties or even security against malicious adversaries (e.g.
using [NNOB12] or [NST17]), with additional cost in communication and runtime.
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Fig. 3: Median runtimes for setup and online phase, for the CAIDA topology of November of every year,
with and without stub nodes, comparing the neighbor relation algorithm (Alg. 1, §3.1) and the neighbor
preference algorithm (Alg. 2, §3.2).
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Fig. 4: Median runtimes for setup and online phase, for subgraphs of CAIDA’s November 2016 topology,
with and without stubs, comparing the neighbor relation algorithm (Alg. 1, §3.1) and the neighbor
preference algorithm (Alg. 2, §3.2).

Benchmarking Environment. Our MPC benchmarks are run on two Amazon EC2 c4.2xlarge
instances with 8 virtual CPU cores with 2.9 GHz and 15 GiB RAM located in the same region, connected
via a Gigabit network connection. The symmetric security parameter in our experiments is set to 128 bits.
All runtime results are median values of 10 protocol executions and their standard deviation. The
communication numbers provided are the sum of sent and received data for each party.

CAIDA (Fig. 3). A visualization for the evaluation of both protocols (neighbor relationship Alg. 1
and neighbor preference Alg. 2) on CAIDA datasets of the past 10 years is provided in Fig. 3. Detailed
results are given in Tab. 2 in Appendix C. Our results show that both protocols spend most of the time in
the setup phase which takes 15.46 s for the neighbor relation algorithm (35.07 s for the neighbor preference
algorithm) for the full CAIDA November 2016 topology and reduces to 6.41s (12.80s) if we exclude stub
nodes. Note that this part of the computation is less critical than the online phase for two reasons: a) it
is independent of the network topology and input of the ASes and can thus be precomputed at any time
and b) it can be ideally parallelized by adding more machines and thus is just dependent on the available
resources. The online phase is the time required from a secret shared input of the ASes until the resulting
next hop on the routing tree can be provided to them. For the full network, the online runtime is 6.12's
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for the neighbor relation algorithm (29.89s for the neighbor preference algorithm) and decreases to 3.18s
(10.47s) when leaving out stub nodes.

Generally speaking, the algorithmic improvement of removing stub nodes from the network topology
speeds up both protocols by a factor between 2 and 3.

The required bandwidth between the two computational parties in the online phase for the neighbor
relationship algorithm is less than 60 MiB, while the more complex neighbor preference algorithm requires
around 800 MiB for the most recent topology without stub nodes. Our results also show that the online
runtime of the preference algorithm scales worse with a growing topology size. In general, communication
between the two computing parties takes approximately 1/3 of the runtime of the online phase and is
also the part that induces the biggest runtime variations, even on a local network. The remaining 2/3 of
the runtime in the online phase are spent on local computations consisting of simple bit operations and
mMemory accesses.

RIRs (Fig. 4). We show similar measurements for subgraphs of CAIDA’s November 2016 topology
for 5 RIRs and a regional topology for German ASes (RIPE-DE) in Fig. 4 and provide detailed numbers
in Tab. 3 in Appendix C. When considering the smaller RIR topologies, the online time decreases below
10s for both algorithms, even for big sub-topologies such as RIPE or ARIN. For smaller sub-topologies,
the online runtime decreases even further. For instance, on the full RIPE-DE sub-topology, the online
runtime for the neighbor relation algorithm is 0.33s (0.52s for the neighbor preference algorithm) and
decreases to 0.17s (0.26 s), when leaving out stubs. In a similar fashion, the required bandwidth decreases
to 1.0 MiB for the neighbor relation algorithm and to 3.6 MiB for the neighbor preference algorithm
withour stub nodes.

6 Deployment and Future Work

In this section, we explain our network assumptions and propose further enhancing security and privacy
by enforcing input consistency. We discuss how to handle failures and byzantine behavior, and possible
deployment.

6.1 Disadvantages of Centralized Routing

The centralized routing schemes that are discussed in this paper have some disadvantages over decen-
tralized approaches. First, the ASes have to trust that the computational parties do not collude and
the computational parties become a single point of failure. Second, the computation of light-paths for
rapid restoration is more complex compared to a distributed model. Finally, the centralized approach is
contradictory to the decentralized philosophy which has driven the rapid development of the Internet.

6.2 Network Considerations

The connection between the CPs is a critical point in our system and has to be low-latency and high-
throughput. We argue that this is realistic, since reputed entities that run the CPs are often co-located in
the same data centers, yet managed by different authorities. The communication between ASes and CPs
can be an arbitrary Internet connection with no special requirements. Error correction can be applied on
the usual network layers (e.g. within TCP/IP or on application level). Packet loss between ASes and CPs
does not cause severe problems, as old inputs from ASes can be re-used in multiple protocol iterations.
Lost outputs have the same consequences as lost BGP messages nowadays. However, packet loss is covered
by the use of TCP/IP that re-sends lost packets. The ASes have to do one round of communication with
the computational parties that run our protocols. Thus, we have measured the round trip time (RTT)
between our computational parties and other Amazon EC2 regions and observed average RTTs between
90 ms and 311 ms, as depicted in Tab. 1. This time has to be added to the MPC runtime to get the time
an individual AS has to wait for a computation result. The standard deviations of the RTTs and packet
loss were less than 1%.

6.3 Input Consistency

The centralized evaluation gives us the powerful ability to check the ASes’ inputs for consistency. Since
our solutions aim at protecting AS relations and local preferences, the CPs could have an overview of
the announced prefixes and can detect malicious behavior such as prefix hijacking or misconfigurations.
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Table 1: Average round trip times between Amazon EC2 regions measured from EU (Frankfurt) to the
listed regions.

Location o RTT

US East (Northern Virginia)  90.2ms
US West (Northern California) 162.5 ms
South America (Sao Paulo) 193.4ms

Asia Pacific (Mumbai) 112.5ms
Asia Pacific (Tokyo) 228.5 ms
Asia Pacific (Sydney) 311.3ms

One more specific attack that can be prevented by this, is the following: AS a claims that AS b is its
peer, while b claims that a is its provider. Clearly, one of them is lying. To verify the symmetry of input
relations (cf. §2.2), we require only a single layer of AND gates that processes the inputs, adding negligible
complexity to the overall algorithm. This check has to be done only once whenever an AS changes its
inputs. Further, more complex sanity checks of encrypted data can be added on top of that at the expense
of longer runtimes, while validity checks of plaintext inputs can be done rather easily.

When inconsistencies are detected, the CPs can discard these new and inconsistent inputs and fall
back to previous inputs. Involved ASes can be queried to re-send their inputs if we suspect that the
inconsistency happened erroneously or due to faulty transmission. If an AS is detected as malicious or
permanently faulty, the computational parties, can virtually remove this AS from the public topology
and ignore it until recovery. This has the effect that no route will be sent via a faulty or malicious AS.

6.4 Handling Failures and Byzantine Behavior

Our approach preserves the privacy of interdomain route-computation against honest-but-curious attackers.
However, the MPC itself is a single point of failure, as the routing depends on the availability and the
honesty of two computational parties. We propose to add robustness by running multiple, independent
2-party MPC sessions in parallel. Alternatively, one could also use secure multi-party computation
protocols based on t-out-of-n secret sharing that work even if all but ¢ out of the n computing parties fail.
Identifying more efficient schemes is an interesting direction for future research.

In §6.3 we showed that our approach can be adapted efficiently to the case of malicious ASes, but
where the computational parties are still semi-honest. Another future direction is to protect against
malicious computational parties, while keeping runtimes practical, at least at country- or region-level
scales. Another possible approach is to obtain security in a slightly weaker adversarial model, which is
the covert security model [ALO7]. By small adaptations of our protocol we can obtain a semi-honest
version of GMW for the multi-party case (instead of two-party as we considered). Assuming honest
majority, such a protocol can be transformed easily (and in a black-box way) to efficient protocols in
the more robust setting of covert adversaries [AL07], at the expense of just running the protocol several
times (in parallel) [DGN10]. In this setting, the corrupted party might not follow the protocol, and by
doing so it can also sometimes break the security of the protocol. Nevertheless, the security guarantee
is that any cheating attempt can be recognized by the honest party with some high probability (say,
50%). Furthermore, by some additional (cheap) adaptations of the protocol, any cheating attempt can
also be publicly verified [AO12, KM14], which enables the honest party to persuade other third parties
(e.g., a “judge”) about the cheating attempt. Since the computational parties in our settings are reputed
authorities such as IANA/NANOG/RIPE, etc., we believe that the fear of being caught, the public
humiliation or even the legal consequences is enough of a deterrent to prevent any cheating attempt.

6.5 Deployment

Our approach is primarily intended as a broad vision for the future of interdomain routing. Of course,
transitioning to MPC of interdomain routes is an extremely challenging undertaking that involves
cooperation of tens of thousands of independent financial and political entities, alongside significant
deployment and operational challenges. We believe, however, that our approach can also yield significant
benefits (e.g., in terms of privacy, security, and ability to innovate) when applied at a smaller scale, while
alleviating many of the challenges a global transition entails. Often, for performance and security reasons,
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traffic within a geographic/political region is expected to not leave the boundaries of that region. One
example for this is that many end-users retrieve content from servers in their geographic region due to
the popularity of content delivery networks (& la Akamai). Thus, a natural deployment scenario for MPC
of interdomain routes is focusing on a specific region and executing MPC only for routes between the
ASes in that region, while all other routes will be computed via traditional (decentralized) BGP routing.

This would also offer very natural instantiations of the MPC parties: The computation could be done
by the RIR as well as a local IXP, such as DE-CIX. While being independent entities, they typically share
a fast and low latency network connection, which is required for our protocols. We give the runtimes
for such subgraphs for the RIRs in Fig. 4 and observe that such a regional execution also drastically
decreases the runtime of our algorithms (e.g., 0.20s setup time and 0.17s online time for the German
RIR RIPE-DE). We point out that such a scheme, beyond MPC’s inherent privacy guarantees and the
other benefits listed in §1.3, can provide the guarantees that all routes between ASes in the region will
indeed only traverse other ASes in that region. This should be contrasted with today’s insecure routing
with BGP, which allows a remote AS to manipulate the routing protocol so as to attract traffic to its
network. Our evaluations show that, beyond the above guarantees, it also yields better running times due
to the smaller size of the “input”. We believe that a region/country-level implementation of such MPC of
routes is a tangible and beneficial first step en route to larger-scale deployment scenarios.

6.6 Hiding the Network Topology

Currently, we exploit the fact that the network topology is public for many implementation optimizations
in the circuit. However, we could also keep the topology private, which comes at an overhead of O(n?),
where n is the number of ASes [ACM™13]. For country-level ASes, especially when excluding stub-nodes,
this overhead seems tolerable. E.g., the RIPE-DE country-level AS has 250 non-stub ASes, which would
result in a circuit with 30 million AND gates for the neighbor relations algorithm of §3.1 and around 200
million gates for the neighbor preference algorithm of §3.2.
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Appendix
A BGP Network

In the following, we provide insight into the development and growth of the BGP network in the past
years. With the historic data collected by CAIDA [CAI], we can assess how the number of ASes, the
number of connections between them, and the maximum degree of ASes develops over time. In Fig. 6,
we show these values for both the full CAIDA dataset, as well as the set with the stub nodes removed.
In Fig. 5, we depict the count of ASes with a given number of neighbors. We show that ASes are only
sparsely connected and most nodes only have a small number of neighbors. Note that both axes are in a
logarithmic scale. 91% of the nodes have at most 8 neighbors in the full topology, while in the no-stub
topology the average degree is higher and the number of nodes with degree 8 and less is 69%.

B GMW vs. Yao

We decided to rely on the MPC framework ABY [DSZ15] for implementing our protocols, since it is
publically available and implements many recent optimizations. ABY provides two different approaches
for secure two-party computation on Boolean Circuits: the GMW protocol [GMWS87] or Yao’s garbled
circuits [Yao86]. In the following, we justify our decision to choose GMW for our implementation.
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Fig. 5: Distribution of node degree for the full 20161101 CAIDA dataset compared to the set without
stub nodes.
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B.1 Generic Protocol Differences

The features of each protocol make it advantageous for use in different scenarios. Typically, the main
factors to decide which protocol to use are the network latency and the multiplicative depth of the
function that is evaluated, since GMW requires a number of communication rounds that is linear in the
depth while Yao’s garbled circuits has a constant number of rounds.

For our evaluation, however, we use GMW, even though our circuit has a high multiplicative depth.
Our decision is due to the following reasons:

Precomputation. GMW allows precomputation of all symmetric cryptographic operations and
communication independently of the circuit (in our case independent of the AS topology) and its inputs.
Additionally, this setup phase can be heavily parallelized and easily computed by multiple machines.

Multi-Party. GMW allows for easy extension to multiple computing parties, which is good for our
setting where we might want to use more parties for better trust assumptions.

Balanced Workload. Unlike Yao’s protocol, GMW balances the workload equally between all
computational parties.

Lower Memory Consumption. The memory consumption for circuit evaluation is much lower
for GMW, since GMW only needs to process single bits while Yao’s garbled circuits needs to process
symmetric keys of length 128 bits.

SIMD Evaluation. Only GMW allows more efficient parallel evaluation of gates by processing
multiple bits per register, which is especially important for large circuits (cf. §4.2.2).

Vector ANDs. Only GMW supports vector ANDs, that reduce the number of OTs that have to
be evaluated and allows the construction of very efficient MUX gates that allow for highly efficient
instantiation of multiplexers which occur frequently in the circuit (cf. §4.2.1). For our circuit, this reduces
the required number of OTs by a factor between 3 and 45. The total number of AND gates and vector
ANDs is given in Tab. 2.

Note, however, that the Boolean circuit we designed for computing the routing tree of BGP is
independent of the underlying secure computation scheme. Hence, for networks with high latency, one
could simply use an implementation of Yao’s protocol [Yao86] with pipelining [HEKM11] for evaluation
instead of GMW.

B.2 Why Yao’s Protocol Won’t Work

In the following, we argue why we cannot achieve reasonable runtimes when evaluating the BGP circuits
with Yao’s protocol.

Communication. When evaluating the BGP circuit with Yao’s Garbled Circuits protocol, we will
have higher bandwidth requirements, since we cannot use the optimized vector MUX gates and thus have
to evaluate between 3 to 45 times more AND gates(cf. Total AND Gates vs. Vector ANDs in Tab. 2).
Today’s most communication-efficient method for garbled circuits [ZRE15] requires 2 - 128 = 256 bit of
communication per AND gate. We also have to consider the problem, that we cannot precompute the setup
phase independently of the AS topology and hence have to use circuit pipelining [HEKM11], i.e., generate
and transmit the garbled circuit in the online phase. Assuming an ideal Gigabit network connection the
resulting runtime for communication alone will be 380-10% AND gates-256 bit per AND gate / 1 Gbps ~
100's for the full topology and ~ 35s without stubs(using values from Tab. 2). We emphasize that these
ideal runtimes are already higher than our combined setup and online time.

Computation. The fastest available Yao’s garbled circuits implementation is JustGarble [BHKR13]
that requires 48.4 cycles for evaluating and 101.3 cycles for garbling gates in “larger” circuits [BHKR13, Fig.
10]. Using a 3.5 GHz CPU we need (380-10° AND gates+797-10° XOR gates)-101.3 cycles per gate / (3.5
10° cycles per second) ~ 34s for the full topology and ~ 12s without stubs for garbling the circuit
(evaluation can be done in parallel when using pipelining).

Summary. Overall, the runtime for Yao’s garbled circuits, even with the fastest available implemen-
tation, most recent optimizations, and an ideal network, would be significantly slower than the runtimes
we achieve with the GMW protocol.

C Benchmark Results

Here, we provide detailed numbers for our performance evaluation, which we describe in §5.
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In Tab. 2, we give detailed evaluation results for both of our protocols on the CAIDA datasets of the
past 10 years, where the most recent results for the topology of November 2016 are marked in bold. We
list the number of ASes, the connections between them, and the maximum degree for each benchmarked
topology. Furthermore, we list the circuit sizes as total number of AND gates (that one would have to
evaluate without using the vector gate optimization of the GMW protocol respectively when using Yao’s
protocol), the number of gates when using the vector gate optimization for GMW, and the depth of the
circuit, i.e. the number of communication rounds between the two computational parties.

In Tab. 3, we list the same values for subgraphs of the CAIDA dataset from November 2016 that
correspond to the RIR networks and a local topology as described in §6.5.

Table 2: Comparison of topology, circuit and MPC runtimes of both algorithms from §3, using CAIDA
datasets from past years, comparing the full dataset with the topology without stubs. The depicted
communication happens solely between the CPs. We used the November dataset from every respective
year. Most recent values are marked in bold.

+1%
+1%
+1%

+2%
+1%
+0%

687 2.05
1255 4.34
2283 10.47

111
296
785

2008 4550 29275 764| 434 22 1220| 3.65
Alg. 2

§3.2

No Stubs

2012
2016

6483 52661 1384| 1173 41 1325| 6.77
8407 95157 2913| 3142 75 1430(12.80

Topology Circuit Benchmarks
max. | Total Vector AND Setup Phase Online Phase
CAIDA ASes Edges Degree| ANDs ANDs Depth| Runtime  Comm. Runtime  Comm.
Dataset [[10%] [-10°] [s] [MiB] [s] [MiB]
% 2008 Ale. 1 30018 82630 2632| 123 37 1042| 525 (£1%) 1136 2.96 (£ 1 %) 47
9 2012 §3g.1 42847 138306 3703 217 63 1042] 891 (£1%) 1921 4.20 (£ 0 %) 82
a 2016 7155809239064 5936/ 380 110 1118|15.46 (=0 %) 3344 6.12 (=1 %) 143
]
E 2008 Ale. 2 30018 82630 2632| 2074 58 1430f 952 (£1%) 1767 7.99 (£2 %) 520
E‘ 2012 §3g2 42847 138306 3703| 4428 99 1430| 18.09 (= 0 %) 3028 14.98 (£ 2 %) 1105
2016 " 155809 239064 5936| 6603 184 1535|35.07 (=0 %) 4577 29.89 (0 %) 2130
2008 Ale. 1 4550 29275 764 43 14 890| 2.05 (£ 3 %) 418 0.87 (£ 1 %) 16
2012 §§'1 6483 52661 1384 78 25 966| 3.55 (£ 2 %) 760 1.55 (£ 0 %) 30
2016 ’ 8407 95157 2913| 147 45 1042 6.41 (1 %) 1374 3.18 (1 %) 55
( ) )
( ) )
( ) )

o~~~ |~~~

C.1 Estimating Circuit Gate Counts

In §4.1 we described how to construct a ‘naive’ circuit for the neighbor relation algorithm Alg. 1. Here we
give detailed results of the gate counts that we estimated.

From the results in Tab. 5 we can observe that rewriting the circuit as SIMD circuit increases the
total number of AND gates by factor 3, and by factor 1.4 when using GMW with vector ANDs. However,
at the same time the total number of gates (AND plus XOR) that have to be held in memory is reduced
by a factor of 130 from 400 000 000 to 3 000 000. This allows us to hold the complete circuit in memory,
which greatly improves the online runtime.

The tournament evaluation method (cf. §4.2.3) allows us to construct a tree of all neighbor nodes
that has a worst-case depth logarithmic in the highest number of neighbors log,(nmax). Thereby we are
able to reduce the multiplicative depth of the circuit by two orders of magnitude, as depicted in Tab. 5.
From Tab. 6 we can observe that most of the multiplicative depth of the optimized circuit is due to the
peer and provider functionalities. This can be explained by the comparisons that need to be done between
each pair of neighbor distances for the peer and provider iterations. During a customer iteration, if a
node that has no route to the target has a neighbor with a route to the target (i.e., its finish bit is set to
1), this route is automatically the shortest path to the target AS. If there was a closer neighbor, it would
have been found in an earlier iteration of the customer circuit. If there are multiple neighbor nodes who
have a route, it is not required to determine the node with the minimal distance, since all are equally far
away from the destination node dest.
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Table 3: Comparison of topology, circuit and MPC runtimes of both algorithms from §3, using subgraphs
of the CAIDA datasets from November 2016, comparing the full dataset with the sub-topology, with and
without stub nodes. The depicted communication happens solely between the CPs.

Topology Circuit Benchmarks
max. | Total Vector AND Setup Phase Online Phase

ASes Edges Degree|] ANDs ANDs Depth| Runtime  Comm. Runtime  Comm.

Dataset [10°] [-10°] [s] [MiB] [s] [MiB]
CAIDA 2016 55809 239064 5936/ 380 110 1118|15.46 (=0 %) 3344 6.12 (£ 1 %) 143
RIPE 21723 95909 1769 149 44 966 6.35 (£ 1%) 1358 2.45(£1 %) 56
ARIN Ale. 1 16942 39563 3047 56 17 1042 2.53 (£ 3 %) 518 2.38 (£ 1 %) 21
APNIC §3g.1 7505 18802 727 25 8.1 890| 1.23 (+4 %) 249 0.68 (=1 %) 9.5

% LACNIC ’ 5283 28374 1066 39 125 966 1.77 (+ 3 %) 381 1.09 (1 %) 15
© RIPE-DE 1328 5375 372 6.8 2.4 814| 0.35 (11 %) 72 033 (£1%) 2.6
é"AFRINIC 916 1644 199 1.8 0.7 738| 0.12 (+16 %) 21 017 (£ 2 %) 0.7
= CAIDA 2016 55809 239064 5936| 6603 184 1535|35.07 (= 0 %) 4577 29.89 (£ 0 %) 2130
é RIPE 21723 95909 1769 2844 71 1325/ 13.07 (£ 1%) 2185 9.55 (2 %) 711
ARIN Ale. 2 16942 39563 3047| 1325 26 1430| 5.25 (£ 1 %) 789 6.14 (£ 1 %) 330
APNIC §3g2 7505 18802 727 200 12.5 1220 2.04 (+ 4 %) 386 1.36 (=1 %) 52
LACNIC ’ 5283 28374 1066| 693 20 1325| 3.42 (£ 3 %) 622 2.82 (+2 %) 174
RIPE-DE 1328 5375 372 44 3.8 1115 0.77 (£ 8 %) 118 0.52 (£ 2 %) 12
AFRINIC 916 1644 199| 6.3 1.0 1010| 0.27 (£14 %) 33 0.24 (3 %) 1.8
CAIDA 2016 8407 95157 2913| 147 45 1042| 6.41 (=1 %) 1374 3.18 (£ 1 %) 55
RIPE 3646 41274 918 58 19 890 2.75 (£ 2 %) 583 1.02 (=1 %) 22
ARIN Ale. 1 1849 8501 665 11 3.7 890| 0.61 (+ 7 %) 112 0.51 (£ 1 %) 4.0
APNIC §3g.1 1140 5398 338| 6.7 2.3 814| 0.37 (11 %) 71 031 (1 %) 2.5
LACNIC ’ 1012 8367 484 9.9 3.6 814| 0.52 (£ 9 %) 109 0.37 (£ 1 %) 3.8
2 RIPE-DE 250 2219 167| 2.5 1.0 738] 0.20 (£16 %) 31 017 (2 %) 1.0
% AFRINIC 178 371 77| 04 02 662 0.04(£12%) 51 0.10(£3%) 0.2
o CAIDA 2016 8407 95157 2913| 3142 75 1430|12.80 (£ 0 %) 2283 10.47 (=1 %) 785
Z RIPE 3646 41274  918| 884 32 1220 567 (£2%) 971 332 (£3%) 223
ARIN Ale. 2 1849 8501 665 86 6 1220 1.02 (£ 6 %) 182 091 (£1 %) 23
APNIC §3g2 1140 5398 338 36 3.7 1115 0.71 (£ 9 %) 117 0.50 (£ 2 %) 9.7
LACNIC : 1012 8367 484 109 5.8 1115| 1.16 (+ 6 %) 182  0.79 (£ 2 %) 28
RIPE-DE 250 2219 167 13 1.6 1010 0.31 (£14 %) 53 0.26 (+ 2 %) 3.6
AFRINIC 178 371 770 1.0 0.2 905| 0.08 (£10 %) 9.2 013 (4 %) 0.3

Table 4: Estimated number of AND gates per edge and AND depth for the sub-routines of the circuit
for Alg. 1 for dgepth = 10,0 = 16,0 = 5, nmax = 5 936 for CAIDA 2016 full and nmax = 2 913 for CAIDA
2016 withour stubs.

Asymptotic CAIDA 2016 full |CAIDA 2016 no stubs
Sub-Function #AND gates AND depth|#AND gates AND depth|#AND gates AND depth
customer | daepth (20 + 6 4 3) daepthnmax (0 +1)| 69328560 356 160| 27 595 530 174780
peer 30 4+6+3 Nmax(0+3)| 8128176 47488 3235338 23 304
provider | depth (30 + 6 + 3) daepthTmax (0 + 3)| 81281 760 474 880| 32353380 233 040
Total \ | 158738496 878528 63184248 431124
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Table 5: Total number of AND gates (as required by Yao’s garbled circuits), number of AND gates that
need to be evaluated with the vector AND functionality of GMW, and multiplicative (AND) depth for
each of our optimizations.

CAIDA 2016 full CAIDA 2016 no stubs
#AND gates #Vector ANDs AND depth|#AND gates # Vector ANDs AND depth
Original ‘ 158 738 496 — 878 528‘ 63 184 248 — 431124
Vector AND‘ 158 738 496 55940 976 878 528‘ 63 184 248 22 266 738 431124
SIMD ‘ 380481 105 109 540 680 878 528‘ 147251 331 44997018 431124
Tournament | 380481105 109 540 680 1118| 147251 331 44997018 1042

Table 6: Number of AND Gates (Total and Vector) and Depth for 1 iteration of each sub-circuit.

Total Vector AND
Dataset Sub-Circuit AND Gates ANDs Depth

2016 No Stubs customer 5399507 530254 16
2016 No Stubs peer/provider 8463 319 3 594 066 81
2016 Full Topology customer 14479 639 1 365 866 17
2016 Full Topology peer/provider 21 893 495 8 779 722 87
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