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Abstract. Public key broadcast encryption is a cryptographic method
to securely transmit a message from anyone to a group of receivers such
that only privileged users can decrypt it. A secure multicast system al-
lows a user to send a message to a dynamically changing group of users.
The secure multicast can be realized by the broadcast encryption.
In this paper, we propose a novel combinatorial subset difference (CSD)
public key broadcast encryption algorithm which allows a generalized
subset different representation in which wildcards can be placed at any
position. The proposed CSD is applicable to a secure multicast as well
as minimizes the header size compared with existing public key broad-
cast encryption schemes without sacrificing key storage and encryp-
tion/decryption performance.
Experimental results show that the proposed CSD scheme not only re-
duces the ciphertext header size by 17% and 31% but also improves
encryption performance (per subset) by 6 and 1.3 times, and decryption
performance by 10 and 19 times compared with existing efficient subset
difference (SD) and interval schemes, respectively. Furthermore, espe-
cially for subsets represented in a non-hierarchical manner, the proposed
CSD reduces the number of subsets by a factor of 1000 times compared
with SD and interval approaches.
We prove semantic security of our proposed CSD scheme under l-BDHE
assumption without the random oracle model.

Keywords: Broadcast encryption, secure multicast, wildcard, subset difference,
public key

1 Introduction

Broadcast encryption (BE) is a cryptographic method to securely transmit a
message to a group of receivers such that only privileged users can decrypt
them. Practical applications include Pay-TV and more generally digital rights
management. In IoT infrastructures such as an enterprise control system, BE
can also be used for a secure multicast.
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Numerous BE schemes have been introduced with different features [25, 26,
9, 13, 7, 8, 17, 28, 11, 3, 6, 16, 18, 20, 24, 14, 27, 10, 12]. BE schemes can be
constructed either in a symmetric key setting or a public key setting. For a public
key BE scheme, anyone can broadcast a message to a changeful set of authorized
users by using the public key of the scheme, while for a secret key BE scheme,
only a special center, who knows the system secrets, can broadcast a message.
BE schemes might be stateful or stateless. For a stateful BE scheme, the private
key of a user can be updated from time to time, while the private keys of a user
in a stateless BE scheme remain the same through the lifetime of the system.
The security can be defined against fully or partially colluding adversaries. The
schemes could be integrated with the revocation and traitor-tracing algorithms.
They might support an ID based public key setting and/or forward security. For
the purpose of this paper, we consider a public-key broadcast encryption system
with stateless receivers, which is fully collusion-resistant.

In BE, a message format is generally represented as (S, Hdr,CM ), where
S represents a group of users, Hdr is a header, and CM is a ciphertext of an
original message. A sender generates a ciphertext CM of a message M with a
session key Ks, computes Hdr with S and Ks, and transmits (S,Hdr, CM ). To
decrypt, a privileged user u in S computes Ks from its private key and the
header Hdr, and decrypts the ciphertext. But any revoked user should not be
able to deduce Ks with his/her private information. Furthermore, Ks should not
be computable even if all (revoked) users not in S collude.

The important metrics to estimate BE schemes are the length of the header
(as given by the number of encryptions of the session key), the private/public
key size, and the encryption/decryption time. It is desirable to decrease them
as far as possible, but, in most schemes it turns out that decreasing one in-
creases the other. In broadcast encryption where a message is transmitted to a
huge number of receivers, the main issue is to minimize the header length with
practical computation cost and storage size of a user.

One of the most notable BE schemes is proposed by Naor et al. [24]. Consid-
ering that the method to represent the subset of users affects the transmission
overhead, the scheme in [24] is a pioneer to provide an efficient subset cover algo-
rithm called subset difference (SD). The SD algorithm is effectively applicable to
any BE scheme for the representation of S. In many BE schemes [24, 18, 20, 14]
the subset cover algorithm is crucial since the size of header is proportional to
the number of subsets represented. So far, the SD method has become popular
in most broadcast encryption applications and is already implemented in the
DVD standard [1].

Secure Multicast. A secure multicast can be efficiently realized by BE since
BE can determine any group of legitimate users as its destinations. In particu-
lar, we consider a special multicast setting where an ID is defined according to
meanings (or attributes). In this setting, a certain group can be represented by
simply specifying the corresponding meanings. For instance, in an IP network
IP address can be used to represent an organization, a physical region, and de-
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vice types (or users).3 In this setting, an administrator might need to transmit
a message for firmware updates privately to every router device in a certain or-
ganization a.b.xxx.xxx, where all router devices are assigned as xxx.xxx.xxx.1
(e.g. a.b. ∗ .1, where ”∗” denotes wildcard bits). In a more sophisticated case,
the administrator might need to transmit a secure update message excluding
routers in a certain compromised region R (e.g., a.b. ∗ .1− a.b.R.1). We can take
another example of smart grid where a smart meter is identified by attributes of
(location, model, company). Then a service provider might want to send critical
software update to the smart meters of a certain model located at a certain area
manufactured by a certain company. The smart meter might also want to deliver
its collected date only to collectors in agreement. After the agreement is broken
with certain collectors, the smart meter needs to exclude those collectors. Notice
that each attribute can be mapped to binary bits and similar scenarios can be
applied to a variety of secure multicast applications.

Unfortunately, although it seems intuitively convenient and efficient to ex-
press a group of legitimate users according to meanings or attributes, BE schemes
should reconstruct it into subsets according to their own representation, which
is not as compact as the original expression in general. Moreover, in most BE
schemes, the size of ciphertexts grows in proportion to the number of subsets.
As an illustration, to cover a group of gateway devices denoted as a.b. ∗ .1 (i.e.,
a.b.0.1, · · · , a.b.255.1), the SD method [24] requires 256 subset representations
(i.e., a.b.0.1−null, · · · , a.b.255.1−null) requiring large ciphertexts. This is mainly
because the SD method is restricted in a hierarchical structure. To deal with this
problem, we propose a new BE scheme that can embrace non-hierarchically struc-
tured secure multicast. We discuss more about the limitations of SD method and
contributions of our proposed method in the following subsections.

Combinatorial Subset Difference. We propose a new combinatorial subset
difference (CSD) representation which can express naturally a set of legitimate
users in a non-hierarchical manner. In CSD, a set of users is represented as
boolean expressions additionally with wildcards (”∗”) which can be either 0 or
1.

The CSD subset representation is analogous to SD in the sense that both
denote a subset using a difference of two subsets. Briefly, existing SD algorithm
expresses legitimate users with a subtraction of an inclusion complete subtree
and an exclusion complete subtree. Each leaf node holds the key of co-path
nodes in a tree so that the non-revoked users can decrypt the message unless
they do not belong to the exclusion complete subtree. Similarly, CSD presents
an expression of legitimate users with a subtraction of an inclusion subset and
an exclusion subset. However, CSD represents each inclusion/exclusion subset
using non-hierarchical representation (or label) in {0, 1, ∗}l where the maximum
number of users is n = 2l. Thus, a subset is denoted as (c,d), where labels c
and d show an inclusion set and an exclusion set, respectively.

3 In fact it is also common in real protocols. First and second byte of an IP address
usually represents a group hierarchy, and third and fourth byte usually represents
local regions and device types (or users).
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Fig. 1: Subset construction example in CS, SD, interval and CSD algorithms

In fact, the SD method is a special case of the CSD method. Figure 1 is a
binary tree structure with labeled nodes, showing subsets in CSD, CS (complete
subtree), SD, and interval algorithms. The leaf nodes (17 − 32) indicate users
where red nodes are revoked. A solid line indicates CS subsets, a dotted line
denotes SD subsets, and an arrowed line presents intervals. Note that every node
can be represented with the boolean expression using wilcards (”∗”): node 4 can
be expressed as 01 ∗ ∗∗, and node 11 can be expressed as 0010∗ for example. In
this context, node 10 (0001∗) defines a subtree with nodes 19 (00010) and 20
(00011). In CS and SD labels, no binary bit is followed after the wildcards due
to the hierarchical tree structure. On the contrary, CSD can completely embrace
general representation, meaning that wildcards can be placed anywhere. For
instance, notation ∗ ∗ 00∗ is admitted in CSD, while it is not allowed in SD since
there is no such node in the binary tree. Since the CSD approach employs more
general labeling forms, the number of subsets to cover legitimate users in CSD
is no more than in SD. As shown in Figure 1, consider that four users (nodes)
20, 24, 28, 32 (e.g. 00011, 00111, 01011, 01111) are revoked among all 32 users4.
When using the CS approach, 8 subset labels 9, 19, 11, 23, 13, 27, 15, 31 are
required to cover all non-revoked users. With the SD approach, 4 subset labels
(4, 19), (5, 23), (6, 27), (7, 31) are required to exclude the four revoked users.
In interval algorithm, 4 intervals (equivalent to subsets) (17 − 19), (21 − 23),
(25 − 27), (29 − 31) are required to cover all non-revoked users. However, in
contrast to CS, SD, and interval schemes, CSD approach covers all legitimate
users with only a single subset (0 ∗ ∗ ∗ ∗, 0 ∗ ∗11).

4 Note that there are 16 omitted users which are revoked on the right subtree side.
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Contributions. We design a new public key broadcast encryption scheme that
supports the non-hierarchical CSD representation. The scheme has a short key
size: public key size of O(log n), and secret key size of O(log2 n). The scheme
performs encryption/decryption faster than the existing efficient BE schemes
such as the subset difference scheme [14] and the interval encryption scheme [23].
More importantly, its header size is minimum: the number of subsets is r for r
revoked users, and the number of group elements in a ciphertext (per subset) is
only two.

Table 1: Comparison of public-key based BE schemes. cf. e = point multiplica-
tion, p = pairing, n = the number of total users, and r = the number of revoked
users

CSD SD [14](HIBE [3]) Interval [23]

PK Size 4 logn logn 2 logn

SK Size 3 log2 n log3 n 2 log2 n

Hdr Size 2r 4r 3r
# subsets r 2r r

# group elements 2 2 3

Enc Time 3re 2re logn 4re

Dec Time 2e + 2p e logn + 2p 2e logn + 4p

Assumption l −BDHE l −BDHI l −BDHE

Table 1 summarizes general metrics that affect the efficiency of transmission
time and device storage in the proposed CSD, SD, and interval schemes. In the
table, SD is assumed as public key broadcast encryption [14] implemented with
HIBE [3]. We calculate metrics without Big-O notation, to specify more concrete
difference among the schemes. Note that constant values and point additions are
ignored.

A header size is a main factor that determines the transmission cost, since
transmission consists of header, along with set of groups or revocation list. There
were many efforts to reduce the header size in a broadcast encryption area,
and in the state of the art SD scheme had cut it down to 4r for r revoked
users. Notice that the header size is calculated by multiplying the number of
subsets and the number of group elements. Our proposed CSD scheme requires
a header size of 2r, while SD and interval schemes request 4r and 3r header
size. In addition, the CSD scheme outperforms SD in encryption; the SD has
point multiplications logarithmically proportional to the number of users while
CSD has constant point multiplications. The CSD scheme outperforms both SD
and interval schemes in decryption; the CSD has constant point multiplications
while the SD and interval schemes require point multiplications logarithmically
proportional to the number of users.

According to our experimental results, our scheme minimizes the ciphertext
header size, and improves encryption and decryption performance compared with
existing efficient public key broadcast SD and interval schemes. The proposed
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scheme reduces the header size by 17% and 31%, and accelerates encryption
per subset by 6 and 1.3 times and decryption by 10 and 19 times compared
with SD and interval schemes, respectively. Furthermore, especially for subsets
represented in a non-hierarchical manner, the proposed CSD reduces the number
of subsets by a factor of 1000 times compared with SD and interval approaches.
We prove security of our CSD broadcast encryption scheme based on (decisional)
l-BDHE assumption without the random oracle model.

Section 2 summarizes related works. Section 4 describes preliminaries of the
proposed broadcast encryption scheme. We propose our secure broadcast scheme
in section 5. Section 7 represents experiment results. In section 9 we draw a
conclusion.

2 Related Work

There have been various broadcast encryption schemes with different flavors
[25, 26, 9, 13, 7, 8, 17, 28, 11, 3, 6, 16, 18, 20, 24, 14, 27, 10, 12]. BE schemes
can use either symmetric key cryptography or public key cryptography. They
could be integrated with the revocation and traitor-tracing algorithms. They
have stateful or stateless receivers. They are fully or partially collusion resistant.
They might support an ID based public key setting and/or forward security.
In particular, we focus on fully collusion resistant public key encryption with
stateless receivers using a new subset representation method. In the following,
we briefly describe some notable symmetric key and asymmetric key broadcast
encryption schemes primarily considering this restricted context.

In symmetric key based BE, Fiat and Naor [16] presented the first formal
model of the broadcast encryption in a symmetric key setting. They introduced
the resiliency concept, and defined k-resilience, which means being resilient
against a coalition of up to k revoked users. Their scheme required every re-
ceiver to store O(k log k log n) keys and the center to broadcast O(k2 log2 k log n)
messages where n is the total number of users.

Naor, Naor and Lotspiech proposed two stateless schemes based on a sym-
metric key setting, called complete subtree (CS) and subset difference (SD) [24]
depending on the subset cover method. The CS scheme has a transmission cost
of O(r log(n/r)), r denoting the number of revoked users. The SD scheme de-
creased the transmission overhead to O(r), at the expense of increasing the key
storage to O(log2 n). The SD scheme was the most efficient scheme at the time of
its proposal, and most of the recent schemes proposed since then are still based
on the SD scheme in the matter of covering the subsets.

Variations of SD offering a tradeoff between user storage and bandwidth were
proposed. Layered subset difference [20] and stratified subset difference [18] have
worse bandwidth performance than the original SD scheme, but can decrease the
user storage.

For an asymmetric key setting, Naor and Pinkas [25, 26] first presented a
public key broadcast encryption scheme. Their scheme represented a threshold
secret sharing method, and was not fully collusion resistant.
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Dodis and Fazio [14] proposed a generic method to build subset difference
(SD) public key broadcast encryption from any hierarchical identity based en-
cryption. Their work can be efficiently constructed using HIBE [3] which has
constant-size encryption.

Boneh, Gentry, and Waters (BGW) [6] introduced special and general public
key broadcast encryption schemes which are fully collusion-resistant. Their spe-
cial scheme requires both the broadcast ciphertext and a user storage of constant
size with the cost of an n-sized public key. To provide a tradeoff between the
ciphertext size and the public key size, they constructed a generalized scheme
of the special BGW scheme by dividing a whole set into a number of subsets.
Their general scheme achieves O(

√
n)-sized public key, O(

√
n) transmission cost

and O(1) user storage cost. Since the public key is a part of input in decryption,
additional O(

√
n) overhead should be considered either in the user storage or

the message transmission.
Lee, et al. [22] proposed a revocation scheme based on SD algorithm with

construction from a single revocation encryption scheme to a general public key
revocation encryption scheme. They reduced the key size to O(log2 n), compared
with [14] which is O(log3 n). The security of their scheme is based on a random
oracle model.

Lin, et al. [23] introduced a new context of interval encryption, which can
be constructed from binary tree encryption. The idea was to bind non-revoked
users within intervals that is split by revoked users. Each user in an interval
has two HIBE [3] keys that can make user keys for the left and the right sides,
with a size of O(log2 n). In the interval scheme, a valid user can have all the
necessary keys within the interval, and decrypt incoming broadcast messages.
The interval scheme requires r subsets for r revoked users. However, to present a
subset, it requests three group elements in which one element denotes a random
value, and the other two elements present left and right indices for an interval
representation while the other schemes based on SD have two group elements
for a subset.

Broadcast encryption can be constructed from attribute-based encryption
(ABE) [19] with an access policy that expresses an arbitrary set of privileged
users. However, existing ABE schemes suffer from a large ciphertext size problem
and/or are not compatible with the standard SD method. The authors in [15]
proposed a CP-ABE scheme with constant ciphertext size, but, without support-
ing wildcards in its access policy. Later, the ABE scheme in [29] was upgraded
to support wildcards in its access policy so that it is applicable to a BE scheme
with the CS method. But the CS method itself incurs the header communication
overhead of O(log n/r).

3 Proposed Subset Construction Algorithm

In this section, we propose a heuristic algorithm to construct subsets for com-
binatorial subset difference (CSD). Although the proposed subset construction
algorithm does not minimize the number of subsets optimally, it is guaranteed
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that it generates no more subsets than the existing subset difference (SD) al-
gorithm. In addition, the proposed heuristic algorithm generates no more than
r subsets for r revoked users even in the worst case while 2r − 1 subsets are
generated in the SD algorithm.

Since SD is a special case of CSD, we will first explain how to minimize the
number of subsets in the existing SD algorithm in our frame and then show how
to extend the SD algorithm to the CSD algorithm focusing on the difference
between the SD algorithm and the proposed CSD algorithm.

Recall that a subset in SD is represented as S = (c, d), where label c indicates
the nodes to include, and label d presents the nodes to exclude. For example, in
a tree structure, S includes all descendants of c, except all descendants of d.

Fig. 2: Node types where node O is a legitimate node and node X is a revoked
node.

In the SD (CSD) algorithm, an internal node c is categorized as one of fol-
lowing three types depending on its children nodes, as illustrated in Figure 2.

– Type > : There is no revoked descendant node of c.
– Type ⊥ : Node c should be excluded by its parent node since either it is

already covered by other subsets or its all descendant nodes are revoked.
– Type S : Node c becomes a subset (c, d) where all descendants of node d are

already covered by some other subsets or revoked.

Since the node type is determined by the node types of its children, the inter-
nal node type is determined recursively from the bottom to the top. Considering
the node type definition in Figure 2, combining of two internal nodes identifies
their parent node type as in Figure 3. In particular, the examples in Figure 3
are also valid for CSD as well. However, SD and CSD show difference when they
combine two S type nodes as shown in Figure 4; a parent node of two S nodes is
represented as ⊥ in SD, but CSD represents it as another S. In the SD algorithm,
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Fig. 3: Node type examples in SD (and CSD)

Fig. 4: Category difference between (a) SD and (b) CSD

a set can be bound only if lower level nodes are all > or ⊥. Thus two S type
nodes cannot be merged as a single set and the type of the parent node becomes
⊥ since the two S type nodes should be represented as individual subsets in SD.
However in CSD, the type of the parent node becomes S without generating two
subsets for the two S type nodes by merging them.

Consider an example in which the number of users is 8, and users 1 and 3
are revoked, as illustrated in Figure 5. In a binary format, users 001 and 011
are revoked. Using ∗, we denote parent nodes. For example, node 00∗ becomes a
parent of nodes 000 and 001, and node 01∗ becomes a parent of nodes 010 and
011. Node 000 has type > since nothing is revoked and node 001 has type ⊥ since
it is revoked. Node 00∗ has type S since one children node 000 is included while
the other one 001 is excluded, which requires to build a subset (00∗, 001) to be
covered. Similarly, node 01∗ has type S. Consider node 0** of which children
have type S. Node 0 ∗ ∗ cannot be a inclusion label in a subset since both its
children nodes are labeled as two different subsets, (00∗, 001) and (01∗, 011),
which cannot be merged. Therefore, node 0 ∗ ∗ should be excluded and it has
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Fig. 5: (a) Subset construction in SD, and (b) subset construction in CSD.

type ⊥. The root type is S since the left child node has ⊥ and the right child
node has > as type. Consequently, three subsets of (∗ ∗ ∗, 0 ∗ ∗), (00∗, 001), and
(01∗, 011) are generated.

On the contrary, in the proposed CSD, node 0∗∗ is treated specially. Even if
two children nodes have type S, it is not required to exclude the node in subset
difference presentation like SD. Indeed, if the node is merged with its sibling node
of which type is >, it is possible to represent the node without creating a new
subset. For instance, for the above example, consider node 0 ∗ ∗ which has two
subsets of (00∗, 000) and (01∗, 010), and its sibling node 1 ∗ ∗ of which type is >
meaning that all descendant nodes are included. The merge of subsets (00∗, 000)
and (01∗, 010), and subset (1∗∗, ⊥) generates subsets (∗0∗, 000) and (∗1∗, 010) in
which inclusion labels ∗0∗ and ∗1∗ include all eight users, and exclusion labels
000 and 010 exclude users 000 and 010 since the proposed CSD allows ∗ in
the middle of subset representation. Finally, the CSD algorithm generates two
subsets of (∗0∗, 001) and (∗1∗, 011) while the SD requires three subsets. Indeed,
the proposed CSD algorithm does not create subsets more than the number of
revoked users.

Table 2 summarizes the resolved type of a node when its children nodes’
types T0 and T1 are given in the first and second columns. The resolved types
in SD and CSD are shown in the third and fourth columns, respectively. The
last column illustrates whether subset generation is required or not where 0 does
not create a subset and 1 does. Note that a new subset is required if one child
node is included and the other one is excluded. The only difference between the
existing SD and the proposed CSD is that when both children nodes have type
S the parent type is ⊥ in SD while it is S in CSD.
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Table 2: Type solution in SD and CSD algorithms
T0 T1 Type in SD Type in CSD subset generation

⊥ ⊥ ⊥ ⊥ 0

⊥ > S S 1

⊥ S ⊥ ⊥ 0

> > > > 0

> S S S 0

S S ⊥ S 0

Algorithm 1 represents how to construct the subsets in both SD algorithm
and CSD algorithm. The only difference exists at line 27. While the algorithm
for CSD executes line 27, it does not for SD. In addition, resolveType(T0, T1)
at line 29 returns different values as shown in table 2.

The subset construction algorithm starts with a revoked user ID set. Function
sd examines the IDs of the revoked users from the most significant bit to the least
significant bit. The current watching index is denoted as i. When index i reaches
the least significant bit(LSB), the user is either revoked or legitimate. Hence it
returns ⊥ or > as shown in lines 2 to 7. Even if index i does not reach LSB, if
there is no revoked user then it returns >. At lines 11 and 12, the revoked users
are divided into two sets depending on user’s ID at index i, and then function
sd is recursively called for each set, which denotes tree traverse at lines 13 and
14. If the types of children nodes are ⊥ and > respectively, a new subset is
created as shown at lines 16 and 19. Function createSubset(prefix, i, b) creates
a subset (c, d) where c is an inclusion label and d is an exclusion label. Label
c covers all nodes with prefix1, . . . , prefixi, ∗, . . . and label d covers all nodes
with prefix1, . . . , prefixi, b, ∗, . . . where prefixk denotes a k− th bit of prefix.
When one child has type S and the other child has type >, each inclusion label in
an unresolved subset is revised to include the child node with > as shown at lines
22 and 24. In the proposed CSD algorithm, the unresolved subsets are preserved
when children types are S since inclusion labels in the unresolved subsets will
be revised if they are required to include a node with > at line 27.

Theorem 1. Algorithm 1 generates r subsets at most for r revoked users in a
combinatorial subset difference algorithm.

Proof. As shown in table 2, a subset is generated when the type of a child node
is ⊥. The resolved type becomes ⊥ only if the type of a child node is ⊥ at least.
A leaf node (user) has type ⊥ only if it is a revoked user. If there are r revoked
nodes, r leaf nodes have type ⊥ at most. Consequently, the number of created
subsets is no more than r.

In the SD algorithm, since the resolved type of a node can be ⊥ even if both
children nodes have type S, the number of subsets can be more than r for r
revoked users.

It is easy to deduce that the number of generated subsets in CSD is no larger
than SD. A subset is generated when a child node has type ⊥ and the other
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Algorithm 1 Subset construction for SD and CSD

1: function sd(Set, Unresolved, i, prefix, revSet)
2: if i = depth then
3: if |revSet| > 0 then
4: return ⊥
5: else
6: return >
7: end if
8: else if |revSet| = 0 then
9: return >

10: end if
11: S0 = {r|r ∈ revSet, bit(r, i + 1) = 0}
12: S1 = {r|r ∈ revSet, bit(r, i + 1) = 1}
13: T0 ← sd(Set, U0, i + 1, prefix||0, S0)
14: T1 ← sd(Set, U1, i + 1, prefix||1, S1)
15: if (T0 = ⊥) ∧ (T1 = >) then
16: s← createSubset(prefix, i, 0)
17: Unresolved← s; Set← Set ∪ s
18: else if (T0 = >) ∧ (T1 = ⊥) then
19: s← createSubset(prefix, i, 1)
20: Unresolved← s; Set← Set ∪ s
21: else if (T0 = S) ∧ (T1 = >) then
22: ∀(c, d) ∈ U0, ci ← ∗; Unresolved← U0

23: else if (T0 = >) ∧ (T1 = S) then
24: ∀(c, d) ∈ U1, ci ← ∗; Unresolved← U1

25: else if Combinatorial ∧ (T0 = S) ∧ (T1 = S) then
26: // Only used for CSD
27: Unresolved← U0 ∪ U1

28: end if
29: return resolveType(T0, T1)
30: end function
31: procedure main
32: revSet← {revoked user IDs′}
33: header ← sd(⊥,⊥, 0,⊥, revSet)
34: end procedure



Title Suppressed Due to Excessive Length 13

child has type > in both SD and CSD. In both schemes, a node can have type
> when its children nodes have type >, and it has type ⊥ when a child has type
⊥ and the other one has type ⊥ or S. Additionally, in SD, a node has type ⊥
when its children have type S. Hence, the number of subsets in CSD is no more
than SD.

4 Preliminaries

4.1 Public Key Broadcast Encryption

A public key broadcast encryption (PKBE) system Π consists of three algo-
rithms:

Setup(l,m) Takes as input user’s ID length l and session key length m. It outputs
a public key PK and 2l private key sets {SKID}ID∈{0,1}l , one for each user
with l-bit ID.

Encrypt(PK,S) Takes as input a subset S ⊆ {0, 1}l, and a public key PK. It
outputs a pair (Hdr,K) where Hdr is called the header and K ∈ K is a
message encryption key. Let M be a message to be broadcast to the set
S and let CM be the encryption of M under the symmetric key K. The
broadcast to users in S is composed of (S,Hdr, CM ). The pair (S,Hdr) is
often called the full header, Hdr is often called a broadcast ciphertext, and
CM is often called the broadcast body.

Decrypt(S, ID, SKID, Hdr) Takes as input a subset S ⊆ {0, 1}l, a user id ID ∈
{0, 1}l, the private key SKID for user ID, and a header Hdr. If ID ∈ S,
then the algorithm outputs the message encryption key K ∈ K. The key K
can then be used to decrypt the broadcast body CM and obtain the message
body M .

The system is correct if all users in S can get the broadcast message M .

Namely, for all S ⊆ {0, 1}l and all ID ∈ S, if (PK, (SKID
0l
, . . . , SKID

1l
))

$←
Setup(l,m) and (Hdr,K)

$← Encrypt(PK,S) then Decrypt(S, ID,SKID,Hdr) = K.

In the following section, we describe selective chosen ciphertext security
against adaptive chosen ciphertext attacks for broadcast encryption as in [6].
Depending on whether the number of the challenged set is represented as a sin-
gle subset or multiple subsets, we separate security notions as single-set security
and multi-set security. Finally, we show the single-set security implies a multi-set
security.

4.2 Security

The single-set security is defined by an adversary A and a challenger C via
following game. Both the C and A are given l and m, the user ID length in bits
and the key length in bits, as an input.
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Init: Algorithm A begins outputting a set S∗ of users that it intends to attack.

Setup: The challenger C runs Setup(l,m) to obtain a public key PK and private
keys SK0l , · · · , SK1l . C gives A the public key PK and all private keys
SKID for ID /∈ S∗.

Query phase1: Attacker A adaptively issues decryption queries q1, . . . , qm where
a decryption query consists of the triple (ID, S,Hdr) with S ⊆ S∗ and
ID ∈ S. C responds with Decrypt(S, ID,SKID,Hdr).

Challenge: C runs algorithm Encrypt(S∗,PK) to obtain (Hdr∗,K) where K ∈ K.
Next, it picks b ∈ {0, 1}. If b = 1, it sets K∗ = K, otherwise it picks a
random R ∈ K and sets K∗ = R. It gives (Hdr∗,K∗) to attacker A.

Query phase2: Attacker A continues to adaptively issue decryption queries qm+1,
. . . , qqD where a decryption query consists of (ID, S,Hdr) with S ⊆ S∗ and
ID ∈ S. The only constraint is that Hdr 6= Hdr∗. C responds as in query
phase 1.

Guess: Attacker A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Let AdvSSBrA,Π(l,m) be the advantage that A wins the above game.

Definition 1. A single-set public key broadcast encryption system Π is (t, ε, l,m, qD)-
CCA secure if for every t-time adversary A′ that makes at most qD decryption
queries, we have that |AdvSSBrA,Π(l,m)− 1/2| < ε.

The multi-set security is defined by an adversary A′ and a challenger C as
in the above the game for the single-set security. Only difference is that the
challenged set is represented with multiple subsets.

Init: Algorithm A′ begins outputting a set S∗ = (S∗1 , · · · , S∗w) of users that it
intends to attack.

Setup: The challenger C runs Setup(l,m) to obtain a public key PK and private
keys SK0l , · · · , SK1l . C gives A′ the public key PK and all private keys
SKID for ID /∈ S∗.

Query phase1: Attacker A′ adaptively issues decryption queries q1, . . . , qm where
a decryption query consists of the triple (ID, S,Hdr) with S ⊆ S∗i for all i
and ID ∈ S. C responds with Decrypt(S, ID,SKID,Hdr).

Challenge: C runs algorithm Encrypt(S∗i ,PK) where i = 1, · · · , w to obtain (Hdr∗i ,Ki)
where K ∈ K. Next, it picks b ∈ {0, 1}. If b = 1, it sets K∗ = (K1, · · · ,Kw),
otherwise it picks a random Ri ∈ K where i = 1, · · · , w and sets K∗ =
(R1, · · · , Rw). It gives (Hdr∗,K∗) to attacker A′.

Query phase2: AttackerA′ continues to adaptively issue decryption queries qm+1,
. . . , qqD where a decryption query consists of (ID, S,Hdr) with S ⊆ S∗i for
all i and ID ∈ S. The only constraint is that Hdr 6= Hdr∗. C responds as in
query phase 1.

Guess: Attacker A′ outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Let AdvMSBrA′,Π(l,m) be the advantage that A′ wins the above game.
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Definition 2. A multi-set public key broadcast encryption system Π ′ is (t, ε′, l,m, qD)
CCA secure if for every t-time adversary A′ that makes at most qD decryption
queries, we have that |AdvMSBrA′,Π′(l,m)− 1/2| < ε.

Finally, we show that the single-set security implies the multi-set security.

Theorem 2. Suppose the single-set public key broadcast encryption system Π is
(t, ε, l,m, qD)-CCA secure. Then multi-set public key broadcast encryption system
Π ′ is (t, ε′, l,m, qD)-CCA secure for arbitrary ε′ < ε ∗w, where w is the number
of subsets [22].

Proof. The basic idea of the proof is to convert the challenge key of the multi-
set scheme from a real key set K∗ to a random key set K

∗
by using hybrid

games that change each key of the single-set scheme from a real key to a random
key. If an adversary cannot distinguish the changes of each key of the single-set
scheme with more than a non-negligible probability, then it also cannot distin-
guish the changes of the challenge key of the multi-set scheme with more than a
non-negligible probability since the number of hybrid games is just polynomial.
Suppose that a challenge set is given as S∗ = (S1, S2, · · · , Sw) for polynomial w
and the corresponding key set is described as K∗ = (K1, · · · ,Kw) s.t. Ki is the
key for Si. The hybrid games G0, · · · , Gh, · · · , Gw for the proof are defined as
follows:

Game G0 In this game, all keys Kj are real key from an encryption on the set
Sj . That is, the challenge key K∗ is a set of real keys.

Game Gh This game is almost identical to the game Gh−1 except the key Kh

since Kh in this game is a random key. Specifically, in this game, the key Kj

for j ≤ h is a random key and the key Kj for h < j is a real key.

Game Gw In this game, all keys Kj are random keys. That is, the challenge
key K∗ is a set of random keys K∗.

Let SGhA be the event that A outputs 1 in Gh. A distinguishes Gh−1 from
Gh by the advantage of the single-set security. Thus, we have that

Pr[SG0

A ]− Pr[SGwA ]

= Pr[SG0

A ] +

w−1∑
h=1

(Pr[SGhA ]− Pr[SGhA ])− Pr[SGwA ]

≤
w∑
h=1

|Pr[SGh−1

A ]− Pr[SGhA ]| ≤ 2w · AdvSSBrA(λ)
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Finally, we obtain the following inequality relation as

AdvMSBrA′(λ) = |Pr[b = 1] · Pr[b = b′|b = 1]

+ Pr[b = 0] · Pr[b = b′|b = 0]− 1

2
|

= |1
2
· Pr[b′ = 1|b = 1] +

1

2
· (1− Pr[b′ = 1|b = 0])− 1

2
]|

=
1

2
· |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|

≤ 1

2
· |Pr[SG0

A ]− Pr[SGwA ]| ≤ w · AdvSSBrA(λ)

The above game can be transformed to define semantic security for a public
key broadcast encryption system if the attacker is not allowed to issue decryption
queries.

Definition 3. A public key broadcast encryption system is (t, ε, l,m) semanti-
cally secure if it is (t, ε, l,m, 0)-CCA secure.

In this paper we first provide a semantically secure scheme and then convert
it to have CCA security.

4.3 Bilinear Groups and Pairings

We briefly review the necessary facts about bilinear maps and bilinear map
groups. We use the following standard notation. [21, 5]

1. G and G1 are (multiplicative) cyclic groups of prime order p.
2. g is a generator of G.
3. e : G×G→ G1 is a bilinear map.

Let G, and G1 be groups as above. A bilinear map is a map e : G×G→ G1

with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

2. Non-degenerate: e(g, g) 6= 1.

We say that G is bilinear group if the group action in G can be computed
efficiently and there exist a group G1 and an efficiently computable bilinear map
e : G×G→ G1 as above.

4.4 Computational Complexity Assumptions

Security of our system is based on a complexity assumption called the bilinear
Diffie-Hellman Exponent assumption (BDHE) used in [3, 6], which is a natural
extension of bilinear-DHI assumption previously used in [2]. Let G be bilinear
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group of prime order p. The l-BDHE problem in G are stated as follows: given
a vector of 2l + 1 elements

(h, g, gα, g(α2), . . . , g(αl), g(αl+2), . . . , g(α2l)) ∈ G2l+1

as input, output e(h, g)α
l+1 ∈ G1. As shorthand, once g and α are specified,

we use yi to denote yi = gα
i ∈ G. An algorithm A has advantage ε in solving

l-BDHE in G if

Pr[A(h, g, y1, . . . , yl, yl+2, . . . , y2l) = e(h, yl+1)] ≥ ε

where the probability is over the random choice of generators h, g ∈ G, the ran-
dom choice of α in Zp, and the random bits used by A. The decisional version of
the l-BDHE problem is defined analogously. Let yg,α,l = (y1, . . . , yl, yl+2, . . . , y2l).
An algorithm B that outputs b ∈ {0, 1} has advantage ε in solving decisional l-
BDHE if

|Pr[B(h, g,yg,α,l,e(ĝ, yl+1)) = 0]− Pr[B(h, g,yg,α,l, T ) = 0]| ≥ ε

where the probability is over the random choice of generators h, g ∈ G, the
random choice of α in Zp, the random choice of T ∈ G1, and the random bits
assumed by B.

Definition 4. We say that the (decisional) (t, ε, l)-BDHE assumption holds in
G if no t-time algorithm has advantage at least ε in solving the (decisional)
l-BDHE problem in G.

Occasionally we omit the t and ε, and refer to the (decisional) l-BDHE in G.

5 Proposed Broadcast Encryption Scheme

In this section, we propose a combinatorial subset difference broadcast encryp-
tion (CSD) scheme which provides a generalized subset difference representation
allowing wildcards in any bit position.

5.1 Main Scheme

Setup(l,m): Let 2l be the maximum number of users, and {0, 1}m the mes-
sage space. Note that it denotes an l-level public key broadcast encryption
system . The generation of a random initial set of keys proceeds as follows.
Select a random integer α, β ∈ Zp, and O(l) random group elements g ∈ G,
g2, g3, h1,0, h1,1, . . . , hl,0, hl,1, k1,0, k1,1, . . . , kl,0, kl,1 ∈ G, and compute g1 = gα ∈
G.

The public key is given by

PK ←(ĝ, ĝ1, g, g2, g3, h1,0, h1,1, . . . , hl,0, hl,1, k1,0, k1,1, . . . , kl,0, kl,1).
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A master secret key is defined as master − key = gα2 .
Next, to generate a private key SKID for an identity ID = b1 · · · bl using the

master secret, pick random r1, . . . , rl ∈ Zp and output SKID = (SKID,1, . . . , SKID,l)
where

SKID,i = (ĝri , gα2 (h1,b1 · · ·hl,blki,b̄ig3)ri , hri
1,b̄1

, . . . , hri
l,b̄l
,

kri1,0, k
ri
1,1, . . . , k

ri
i−1,0, k

ri
i−1,1, k

ri
i,bi
, krii+1,0, k

ri
i+1,1, . . . , k

ri
l,0, k

ri
l,1) ∈ G3l+1

(1)
where b̄i represents a bit NOT of bi or 1− bi.
Example : For a user of which ID = 010,

SK010 = (gr1 , gα2 (h1,0h2,1h3,0k1,1g3)r1 , hr11,1, h
r1
2,0, h

r1
3,1, k

r1
1,0, k

r1
2,0, k

r1
2,1, k

r1
3,0, k

r1
3,1,

gr2 , gα2 (h1,0h2,1h3,0k2,0g3)r2 , hr21,1, h
r2
2,0, h

r2
3,1, k

r2
1,0, k

r2
1,1, k

r2
2,1, k

r2
3,0, k

r2
3,1,

gr3 , gα2 (h1,0h2,1h3,0k3,1g3)r3 , hr31,1, h
r3
2,0, h

r3
3,1, k

r3
1,0, k

r3
1,1, k

r3
2,0, k

r3
2,1, k

r3
3,0)

Encrypt(PK,S): Assume that subset difference sets are computed for the broad-
cast message. In the proposed combinatorial subset difference, a subset is rep-
resented as S = (c, d), where c and d are l bit strings, or c, d ∈ {0, 1, ∗}l. Label
c indicates the covered nodes to include, and label d presents the nodes to be
excluded. Using wildcards (∗), the label can denote the multiple nodes. For in-
stance, for a subset (∗ ∗ 0∗, 0 ∗ 01), ∗ ∗ 0∗ nodes except 0 ∗ 01 are included. Since
label ∗ ∗ 0∗ includes 0000, 0001, 0100, 0101, 1000, 1001, 1100, and 1101, and label
0 ∗ 01 does 0001 and 0101, label (∗ ∗ 0∗, 0 ∗ 01) covers 0000, 0100, 1000, 1001,
1100, and 1101.

For each given S = (c, d) where c = c1 · · · cl, and d1 · · · dl, to generate header
Hdr and encryption key K, pick a random s ∈ Zp and output

Hdr ← (gs, (h1,c1 · · ·hl,clk1,d1
· · · kl,dlg3)s) (2)

K ← e(g1, g2)s (3)

where Hdr ∈ G2 and K ∈ G1, hi,∗ = hi,0hi,1, and ki,∗ = 1.
Example : For the above subset (∗ ∗ 0∗, 0 ∗ 01),

Hdr ← (gs, (h1,0h1,1h2,0h2,1h3,0h4,0h4,1k1,0k3,0k4,1g3)s)

K ← (g1, g2)s

Decrypt(S, ID, SKID, Hdr): Consider an identity ID = b1 · · · bl and a subset
S = (c, d). Let j indicate an index such as dj = 0 and bj = 1, or dj = 1 and
bj = 0. For instance, if d = 0 ∗ 01 and ID = 0000 then j = 4 since d4 = 1 and
b4 = 0.

Among SKID = (SKID,1, . . . , SKID,l), we choose SKID,j such that index
j satisfies the above condition. To regenerate decrypt key K using the given
header Hdr = (A0, A1) and the private key SKID,j = (a0, a1, h

rj
1,b̄1

, . . . , h
rj
l,b̄l
,
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k
rj
1,0, k

rj
1,1, . . . , k

rj
j−1,0, k

rj
j−1,1, k

rj
j,bj

, k
rj
j+1,0, k

rj
j+1,1, . . . , k

rj
l,0, k

rj
l,1), compute B =

a1 ·
∏l
i=1,ci=∗ h

rj
i,b̄i
·
∏l
i=1,i6=j,di 6=∗ k

rj
i,di

and output

e(A0, B)

e(a0, A1)
= K (4)

Indeed, for a valid ciphertext, we have

e(A0, B)

e(a0, A1)
=
e(gs, gα2 (h1,c1 · · ·hl,clk1,d1

· · · kl,dlg3)rj )

e(grj , (h1,c1 · · ·hl,clk1,d1
· · · kl,dlg3)s)

= e(g, g2)sα = e(g1, g2)s

Consider the above example with ID = 0000, (c, d) = (∗ ∗ 0∗, 0 ∗ 01), and
Hdr = (gs, (h1,0h1,1h2,0h2,1h3,0h4,0h4,1 k1,0k3,0k4,1g3)s). Since b4 = 0, d4 = 1,
and j = 4, using SK0000,4 = (gr4 , gα2 (h1,0h2,0h3,0h4,0k4,1g3)r4 , . . . ), we compute
B.

B =a1 · (h1,1h2,1h4,1)r4 · (k1,0k3,0)r4

=gα2 (h1,0h2,0h3,0h4,0k4,1g3)r4 · (h1,1h2,1h4,1)r4 · (k1,0k3,0)r4

=gα2 (h1,0h1,1h2,0h2,1h3,0h4,0h4,1k1,0k3,0k4,1g3)r4 .

e(A0, B)

e(a0, A1)
=
e(gs, gα2 (h1,0h1,1h2,0h2,1h3,0h4,0h4,1k1,0k3,0k4,1g3)r4)

e(gr4 , (h1,0h1,1h2,0h2,1h3,0h4,0h4,1k1,0k3,0k4,1g3)s)

=
e(g, g2)sαe(g, h1,0h1,1h2,0h2,1h3,0h4,0h4,1k1,0k3,0k4,1g3)sr4

e(g, h1,0h1,1h2,0h2,1h3,0h4,0h4,1k1,0k3,0k4,1g3)sr4

= e(g, g2)sα.

Consider an ID = 0010 which is not included by an inclusion label ∗ ∗ 0∗
in subset (∗ ∗ 0∗, 0 ∗ 01). Since SK0010,i = (gri , gα2 (h1,0h2,0h3,1h4,0ki,b̄i)

ri , . . . )
and A1 = (h1,0h1,1h2,0h2,1 h3,0h4,0h4,1 · · · )s, it is necessary to eliminate hri3,1
from SK0010,i, which is not possible. Hence, it is impossible to compute B using
SK0010,i.

Examine an ID = 0001 which is included by an exclusion label 0 ∗ 01 in
subset (∗ ∗ 0∗, 0 ∗ 01). Since SK0001,1 = (gr1 , gα2 (· · · k1,1)r1 , . . . ), SK0001,2 =
(gr2 , gα2 (· · · k2,1)r2 , . . . ), SK0001,3 = (gr3 , gα2 (· · · k3,1)r3 , . . . ), SK0001,4 = (gr4 ,
gα2 (· · · k4,0)r4 , . . . ), and A1 = (· · · k1,0k3,0k4,1)s, it is necessary to eliminate kr11,1

from SK0001,1, kr22,1 from SK0001,2, kr33,1 from SK0001,3, or kr44,0 from SK0001,4,
which is impossible. Hence, it is impossible to compute B from SK0001,i.

Note that Encrypt allows multiple subsets. For each subset S, Encrypt is
applied so that the number of Hdr’s is the number of subsets. When a user
receives a message, it chooses Hdr to which the user belongs and Decrypt is
called for the Hdr.
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5.2 General ID Scheme

Next, we generalize the proposed broadcast encryption to allow each ID to in-
clude ∗ as well as 0 and 1. This general ID scheme becomes a basic building
block to build a CCA secure broadcast encryption scheme in section 6.

For labels x and y, we define x � y to indicate that x is covered by y, and
x 6� y to denote that x is not covered by y. For instance, 0 ∗ 00 � 0 ∗ ∗0 and
0 ∗ 00 6� 1 ∗ ∗0.

Definition 5. x is covered by y, or x � y iff ∀i, xi = yi or yi = ∗ for x =
x1 . . . xl and y = y1 . . . yl.

Definition 6. x is not covered by y, or x 6� y iff ∀a � x, ∃i, ai 6= yi, xi 6= ∗,
and yi 6= ∗.

Setup(l,m): The setup is similar to the main scheme. The public key generation
is equivalent and the private key generation is similar to equation 1, except
that hi,∗ = 1 and h

rj
i,∗̄ populates two values of h

rj
i,0 and h

rj
i,1. Similarly, since

interpretation of ki,∗ covers both ki,0 and ki,1, the secret key SKID,i should be
doubled into SKID,i,0 and SKID,i,1 if bi = ∗. The resulting secret key for ID is
SKID = (SKID,1, . . . , SKID,l) where if bi 6= ∗ then i-th secret key is the same
as the key generation in the main scheme:

SKID,i = (gri , gα2 (h1,b1 · · ·hl,blki,b̄ig3)ri , hri
1,b̄1

, . . . , hri
l,b̄l
,

kri1,0, k
ri
1,1, . . . , k

ri
i−1,0, k

ri
i−1,1, k

ri
i,bi
, krii+1,0, k

ri
i+1,1, . . . , k

ri
l,0, k

ri
l,1) ∈ G3l+1

else if bi = ∗ then i-th secret key duplicated into two elements as follows:
SKID,i = (SKID,i,0, SKID,i,1) with

SKID,i,0 = (gri,0 , gα2 (h1,b1 · · ·hi−1,bi−1
hi+1,bi+1

· · ·hl,blki,0g3)ri,0 ,

h
ri,0
1,b̄1

, . . . , h
ri,0
i,0 , h

ri,0
i,1 , . . . , h

ri,0
l,b̄l

,

k
ri,0
1,0 , k

ri,0
1,1 , . . . , k

ri,0
i−1,0, k

ri,0
i−1,1, k

ri,0
i,1 , k

ri,0
i+1,0, k

ri,0
i+1,1, . . . , k

ri,0
l,0 , k

ri,0
l,1 )

SKID,i,1 = (gri,1 , gα2 (h1,b1 · · ·hi−1,bi−1
hi+1,bi+1

· · ·hl,blki,1g3)ri,1 ,

h
ri,1
1,b̄1

, . . . , h
ri,1
i,0 , h

ri,1
i,1 , . . . , h

ri,1
l,b̄l

,

k
ri,1
1,1 , k

ri,1
1,1 , . . . , k

ri,1
i−1,0, k

ri,1
i−1,1, k

ri,1
i,0 , k

ri,1
i+1,0, k

ri,1
i+1,1, . . . , k

ri,1
l,0 , k

ri,1
l,1 )

(5)

Encrypt(PK,S): Equivalent to equations 2 and 3.

Decrypt(S,ID,SKID,Hdr): Consider an identity ID = b1 . . . bl ∈ {0, 1, ∗}l and a
subset S = (c, d). If ID � c and ID 6� d then ID can decrypt the message. Let
j be an index such that bj = ∗ and dj 6= ∗, bj = 0 and dj = 1, or bj = 1 and
dj = 0. If bj 6= ∗ then the decryption is equivalent to equation 4. Assume that
bj = ∗. From SKID,j , we use SKID,j,dj as private key. To regenerate decrypt
key K using the given header Hdr = (A0, A1) and the private key SKID,j,dj ,
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compute B = a1 ·
∏l
i=1,ci=∗,bi 6=∗ h

rj
i,b̄i

∏l
i=1,ci 6=∗,bi=∗ h

rj
i,ci∏l

i=1,ci=∗,bi=∗ h
rj
i,0h

rj
i,1 ·

∏l
i=1,i6=j,di 6=∗ k

rj
i,di

and output

e(A0, B)

e(a0, A1)
= K

5.3 Security Proof

We prove the security of our scheme under the decisional l-BDHE assumption
without the random oracle model.

Theorem 3. Let G be a bilinear group of prime order p. Suppose the (decision)
(t, ε, 4l)-BDHE assumption holds in G. Then our l-level CSD public key broadcast
encryption system is (t′, ε, l,m) semantically secure for arbitrary l, and t′ <
t−O(el22l), where e is the maximum time for an exponentiation in G.

Proof. Suppose A has advantage ε in attacking the l-level CSD public key broad-
cast encryption system . Using A, we build an algorithm B that solves the (de-
cision) 4l-BDHE problem in G.

For generators h, g ∈ G and α ∈ Z∗p, let yi = gα
i ∈ G. Algorithm B is given

as input a random tuple (h, g, y1, . . . , y4l, y4l+2, . . . , y8l, T ) that is either sampled

from PBDHE (where T = e(h, g)(α4l+1)) or from RBDHE (where T is uniform
and independent in G1 ). Algorithm B’s goal is to output 1 when the input tuple
is sampled from PBDHE and 0 otherwise. Algorithm B works by interacting with
A in a selective subset game as follows:

Init: The game begins with A first outputting a subset S∗ = (c∗, d∗) that it
intends to attack where c∗, d∗ ∈ {0, 1, ∗}l .

Setup: To generate the public key, algorithm B picks a random γ in Zp and sets

g1 = y1 = g′α and g2 = y4lg
γ = gγ+(α4l). Next, B picks random γ1,0, γ1,1, · · · , γl,0, γl,1

and ψ1,0, ψ1,1, · · · , ψl,0, ψl,1 in Zp, and sets hi,0 = gγi,0/yl−i+1, hi,1 = gγi,1/y2l−i+1,
ki,0 = gψi,0/y3l−i+1, ki,1 = gψi,1/y4l−i+1 for i = 1, . . . , l. Algorithm B also picks

a random δ in Zp and sets g3 = gδ
∏l
i=1 y

c∗i,0
l−i+1y

c∗i,1
2l−i+1y

d∗i,0
3l−i+1y

d∗i,1
4l−i+1 such that

c∗i,0 = 0 and c∗i,1 = 1 if c∗i = 1, c∗i,0 = 1 and c∗i,1 = 0 if c∗i = 0, and c∗i,0 = 1 and
c∗i,1 = 1 if c∗i = ∗. d∗i,0 and d∗i,1 are similarly defined by d∗i except that d∗i,0 = 0
and d∗i,1 = 0 if d∗i = ∗.

Consider a query for the private key corresponding to ID = b1 . . . bl ∈ {0, 1}l.
We now show that we can simulate revoked users with following two cases. Case
1 shows process of simulating users that are not included in an inclusion label
c∗ in subset (c∗, d∗). In case 2, we show that we can also simulate users that are
included in an exclusion label d∗.

Case 1: If ID 6� c∗ there exists k ∈ {1, . . . , l} such that bk 6= c∗k, bk 6= ∗, and
c∗k 6= ∗. We set k such that it is the smallest such index. To generate the private
key SKID,j , B first picks random r̃1, . . . , r̃l in Zp. We pose rj = α(3−bk)l+k + r̃j
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for j = 1, . . . , l. Next, B generates the private key SKID = (SKID,1, . . . , SKID,l)
where

SKID,j = (grj , gα2 (h1,b1 · · ·hl,blkj,b̄jg3)rj , h
rj
1,b̄1

, . . . , h
rj
l,b̄l
,

k
rj
1,0, k

rj
1,1, . . . , k

rj
j−1,0, k

rj
j−1,1, k

rj
j,bj

, k
rj
j+1,0, k

rj
j+1,1, . . . , k

rj
l,0, k

rj
l,1)

which is a properly distributed private key for the identity ID = b1 . . . bl. We
show that B can compute all elements of this private key given the values at its
disposal. We use the fact that yα

j

i = yi+j for any i, j. Note that bi,0 = b̄i and
bi,1 = bi if bi 6= ∗; otherwise, bi,0 = bi,1 = 1. If bj = ∗ and an equation includes
b̄j then two equations are created by replacing b̄j by 0 and 1. To generate the
second component of the private key, first observe that

(h1,b1 · · ·hl,blkj,b̄jg3)rj = (

l∏
i=1

h
bi,0
i,0 h

bi,1
i,1 · kj,b̄j · g3)rj

= (

l∏
i=1

(
gγi,0

yl−i+1
)bi,0(

gγi,1

y2l−i+1
)bi,1 · g

ψj,b̄j

y(3+b̄j)l−j+1

· gδ
l∏
i=1

y
c∗i,0
l−i+1y

c∗i,1
2l−i+1y

d∗i,0
3l−i+1y

d∗i,1
4l−i+1)rj

= (g
δ+ψj,b̄j+

∑l
i=1,i 6=k(bi,0γi,0+bi,1γi,1)

l∏
i=1,i6=k

(y
c∗i,0−bi,0
l−i+1 y

c∗i,1−bi,1
2l−i+1 )·

l∏
i=1

(y
d∗i,0
3l−i+1y

d∗i,1
4l−i+1)y

−bj,0
3l−j+1y

−bj,1
4l−j+1y

c∗k,0−bk,0
l−k+1 y

c∗k,1−bk,1
2l−k+1 )rj

= (g
δ+ψj,b̄j+

∑l
i=1,i 6=k(bi,0γi,0+bi,1γi,1)

l∏
i=1,i6=k

(y
c∗i,0−bi,0
l−i+1 y

c∗i,1−bi,1
2l−i+1 )·

l∏
i=1

(y
d∗i,0
3l−i+1y

d∗i,1
4l−i+1)y

−bj,0
3l−j+1y

−bj,1
4l−j+1y

c∗
k,b̄k

(1+b̄k)l−k+1
y−1

(1+bk)l−k+1)rj

Let Zrj denote the product of y except the last one. That is

Zrj =(g
δ+ψj,b̄j+

∑l
i=1,i 6=k(bi,0γi,0+bi,1γi,1)

l∏
i=1,i6=k

(y
c∗i,0−bi,0
l−i+1 y

c∗i,1−bi,1
2l−i+1 )·

l∏
i=1

(y
d∗i,0
3l−i+1y

d∗i,1
4l−i+1)y

−bj,0
3l−j+1y

−bj,1
4l−j+1y

c∗
k,b̄k

(1+b̄k)l−k+1
)rj

=y
δ+ψj,b̄j+

∑l
i=1,i 6=k(bi,0γi,0+bi,1γi,1)

(3−bk)l+k ·
l∏

i=1,i6=k

(y
c∗i,0−bi,0
(4−bk)l−i+k+1y

c∗i,1−bi,1
(5−bk)l−i+k+1)·

l∏
i=1

(y
d∗i,0
(6−bk)l−i+k+1y

d∗i,1
(7−bk)l−i+k+1) · y−bj,0(6−bk)l−j+1y

−bj,1
(7−bk)l−j+1y

c∗
k,b̄k

(4−bk+b̄k)l+1
Z r̄j

Since (3−bk)l+k < 4l, (4−bk)l−i+k+1 = (4−bk)l+1+(k−i) 6= 4l+1 and
(5−bk)l−i+k+1 6= 4l+1 due to k 6= i, (7−bk)l−i+k+1 > (6−bk)l−i+k+1 ≥
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4l+k+1 > 4l+1, (7−bk)l−j+k+1 > (6−bk)l−j+k+1 ≥ 5l−l+k+1 > 4l+1,
(4− bk + b̄k)l+ 1 = 3l+ 1 or 5l+ 1, and Z is computable, B can compute all the
terms in Zrj given the values at its disposal. Next observe that the last term,
namely y

−rj
(1+bk)l−k+1, is:

y
−rj
(1+bk)l−k+1 = y

−r̃j
(1+bk)l−k+1y

−α(3−bk)l+k

(1+bk)l−k+1 = y
−r̃j
(1+bk)l−k+1y

−1
4l+1

Hence, the first component in the private key is equal to:

gα2 (h1,b1 · · ·hl,blkj,b̄jg3)rj = (y4l+1y
γ
1 )Zrj (y

−r̃j
(1+bk)l−k+1y

−1
4l+1) = yγ1 y

−r̃j
(1+bk)l−k+1Z

rj

Since y4l+1 cancels out, all the terms in this expression are known to B.
Thus, B can compute the first private key component. The first component,
grj , is y(3−bk)l+kg

r̃j which B can compute. Similarly, the remaining elements
h
rj
1,b̄1

, · · · , hrj
l,b̄l
, k
rj
1,0, k

rj
1,1, · · · , k

rj
j−1,0, k

rj
j−1,1k

rj
j,bj

, k
rj
j+1,0,

k
rj
j+1,1, · · · , k

rj
l,0, k

rj
l,1 can be computed by B since they do not involve a y4l+1 term

such that h
rj
i,b̄i

= ( g
γi,b̄i

y(1+b̄i)l−i+1
)rj = (y(3−bk)l+k · gr̃j )γi,b̄i ·

(y(4−bk+b̄i)l−i+k+1y
r̃j
(1+b̄i)l−i+1

)−1 and k
rj
i,t = ( gψi,t

y(3+t)l−i+1
)rj = (y(3−bk)l+k·gr̃j )ψi,t ·

(y(6−bk+t)l−i+k+1 · y
r̃j
(3+t)l−i+1)−1. Thus, B can derive h

rj
i,b̄i

since (4− bk + b̄i)l−
i + k + 1 6= (4 − bk + b̄i)l + 1 when i 6= k and (4 − bk + b̄i)l − i + k + 1 =
3l+ 1 or 5l+ 1 when i = k. Moreover, B can derive k

rj
i,t since (3− bk)l+ k ≤ 4l,

(6− bk + t)l − i+ k + 1 ≥ 5l − i+ k + 1 > 4l + 1, and (3 + t)l − i+ 1 ≤ 4l.

Case 2: If ID � d∗, to generate the private key SKID,j for identity ID =

b1 . . . bl, B first picks a random r̃1, · · · , r̃l in Zp. We pose rj = α(1−b̄j)l+j + r̃j for
j = 1, · · · , l. Next, B generates the private key SKID = (SKID,1, · · · , SKID,l)
The private key parameters are computed similarly. To generate the second
component of the private key, first observe that

(h1,b1 · · ·hl,blkj,b̄jg3)rj =

(g
δ+ψj,b̄j+

∑l
i=1(bi,0γi,0+bi,1γi,1)

l∏
i=1

(y
c∗i,0−bi,0
l−i+1 y

c∗i,1−bi,1
2l−i+1 )

l∏
i=1,i6=j

(y
d∗i,0
3l−i+1y

d∗i,1
4l−i+1) · y

d∗j,bj
(3+bj)l−j+1 · y

−1
(3+b̄j)l−j+1

)rj

Let Zrj denote the product of y except the last one. That is

Zrj = (g
δ+ψj,b̄j+

∑l
i=1(bi,0γi,0+bi,1γi,1)

l∏
i=1

(y
c∗i,0−bi,0
l−i+1 y

c∗i,1−bi,1
2l−i+1 )

l∏
i=1,i6=j

(y
d∗i,0
3l−i+1y

d∗i,1
4l−i+1) · y

d∗j,bj
(3+bj)l−j+1)rj
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B can compute all the terms in Zrj given the values at its disposal since
l− i+ 1 + (1− b̄j)l+ j ≤ (2− b̄j)l− i+ j + 1 ≤ 3l, 2l− i+ 1 + (1− b̄j)l+ j ≤ 4l,
3l− i+ 1 + (1− b̄j)l+ j = (4− b̄j)l− i+ j+ 1 6= 4l+ 1, 4l− i+ 1 + (1− b̄j)l+ j =
(5− b̄j)l− i+ j + 1 6= 4l+ 1 due to i 6= j, and (3 + bj)l− j + 1 + (1− b̄j)l+ j =
(4 + bj − b̄j)l+ 1 = 3l+ 1 or 5l+ 1. Note that if bj = ∗ then d∗j,0 = d∗j,1 = 0, and
each case that bj = 0 or bj = 1 is considered. Next observe that the last term,

namely y
−rj
(3+b̄j)l−j+1

, is:

y
−rj
(3+b̄j)l−j+1

= y
−r̃j
(3+b̄j)l−j+1

y−α
(1−b̄j)l+j

(3+b̄j)l−j+1
= y
−r̃j
(3+b̄j)l−j+1

· y−1
4l+1

Hence, the first component in the private key is equal to:

gα2 (h1,b1 · · ·hl,blkj,b̄jg3)rj =

(y4l+1y
γ
1 )Zrj (y

−r̃j
(3+b̄j)l−j+1

/y4l+1) = yγ1 y
−r̃j
(3+b̄j)l−j+1

Zrj

Since y4l+1 cancels out, all the terms in this expression are known to B. Thus,
B can compute the first private key component. The first component, grj , is
y(1−b̄j)l+jg

r̃j which B can compute. Similarly, the remaining elements h
rj
1,b̄1

, · · · ,
h
rj
l,b̄l
, k
rj
1,0, k

rj
1,1, . . . , k

rj
j−1,0, k

rj
j−1,1, k

rj
j,bj

, k
rj
j+1,0, k

rj
j+1,1, . . . , k

rj
l,0, k

rj
l,1 can be com-

puted by B since they do not involve a y4l+1 term since h
rj
i,b̄i

= ( g
γi,b̄i

y(1+b̄i)l−i+1
)rj =

(y(1−b̄j)l+j · g
r̃j )γi,b̄i · (y(2+b̄i−b̄j)l−i+j+1y

r̃j
(1+b̄i)l−i+1

)−1 and k
rj
i,t = ( gψi,t

y(3+t)l−i+1
)rj

= (y(1−b̄j)l+j · g
r̃j )ψi,t · (y(4+t−b̄j)l−i+j+1 · y

r̃j
(3+t)l−i+1)−1. Thus, B can derive a

valid private key for ID since (4 + t− b̄j)l − i+ j + 1 6= (4 + t− b̄j)l + 1 when
i 6= j and (4− t+ b̄j)l − i+ j + 1 = 3l + 1 or 5l + 1 due to t = bj when i = j.

Thus, B can derive a valid private key for ID. Finally, B gives A pub-
lic key PK = (g, g1, g2, g3, h1,0, h1,1, · · · , hl,0, hl,1, k1,0, k1,1, · · · , kl,0, kl,1) and
SKID such that ID 6� c∗ or ID � d∗. Observe that all these values are dis-
tributed uniformly and independently in G as required. The master key cor-

responding to these system parameters is gα2 = gα(α4l+γ) = y4l+1y
γ
1 , which is

unknown to B since B does not have y4l+1.

To generate the challenge, B computes Hdr∗ as (h,

hδ+
∑l
i=1(γi,0c

∗
i,0+γi,1c

∗
i,1+ψi,0d

∗
i,0+ψi,1d

∗
i,1)). It sets K∗ = T · e(y1, h

γ) and gives
(Hdr∗,K∗) as the challenge to A. We claim that when T = e(g, h)4l+1(i.e.
the input to B is a 4l-BDHE tuple) then (Hdr∗,K∗) is a valid challenge to A as
in real attack. To see this, write h = gc for some (unknown) c ∈ Zp. Then
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hδ+
∑l
i=1(γi,0c

∗
i,0+γi,1c

∗
i,1+ψi,0d

∗
i,0+ψi,1d

∗
i,1)

= (

l∏
i=1

(
gγi,0

yl−i+1
)c
∗
i,0(

gγi,1

y2l−i+1
)c
∗
i,1(

gψi,0

y3l−i+1
)d
∗
i,0(

gψi,1

y4l−i+1
)d
∗
i,1 ·

(gδ
l∏
i=1

y
c∗i,0
l−i+1y

c∗i,1
2l−i+1y

d∗i,0
3l−i+1y

d∗i,1
4l−i+1))c

= (h1,c∗1
· · ·hl,c∗l k1,d∗1

· · · kl,d∗l g3)c

and

e(g, h)(α4l+1) · e(y1, h
γ) = (e(y1, y4l) · e(y1, g

γ))c = e(y1, y4lg
γ)c = e(g1, g2)c.

Therefore, by definition, Hdr∗ is a valid encryption of the key e(y4l+1, g)c.
Furthermore, e(y4l+1, g)c = e(g, h)4l+1 = T = Kb and hence (Hdr,K∗) is a valid
challenge to A. On the other hand, when T is random in G(i.e. the input to B
is a random tuple) then K∗ are just random independent key of K in the A’s
view.

Guess:
Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own game

by outputting the b′. If b′ = 1 then B outputs 1 meaning T = e(g, h)(α4l+1).
Otherwise, it outputs 0 meaning T is random in G1.

When the input tuple is sampled from PBDHE (where T = e(g, h)(α4l+1))
then A’s view is identical to its view in a real attack game and therefore A
satisfies |Pr[b′ = 1] − 1/2| ≥ ε. When the input tuple is sampled from RBDHE
(where T is uniform in G1) then Pr[b′ = 1] = 1/2. Therefore, with g, h uniform
in G, α uniform in Zp, and T uniform in G1 we have that

|Pr[B(g, h,yg,α,4l, e(g, h)(α4l+1)) = 0]

− Pr[B(g, h,yg,α,4l, T ) = 0]| ≥ |(1/2 + ε)− 1/2| = ε
(6)

as required, which completes the proof of the theorem.

6 Chosen Ciphertext Secure Broadcast Encryption

In the following description, a vector V = (v1, · · · , vn) is interchangeably repre-
sented as v1 . . . vn. With two vectors V = (v1, · · · , vn) and V ′ = (v′1, · · · , v′m),
we denote V ||V ′ = (v1, · · · , vn, v′1, · · · , v′m).

We extend our semantically secure broadcast encryption scheme using the
similar technique in [4] to attain chosen ciphertext security. Given a strong one-
time signature scheme (SigKeygen, Sign, V erify) with verification keys which
are mapped to {0, 1}z, we enable construction of an l-level public key broad-
cast encryption system Π = (Setup, Encrypt, Decrypt) secure against chosen-
ciphertext attacks using the (l + z)-level Π ′ = (Setup′,Encrypt′,Decrypt′) se-
mantically secure broadcast encryption scheme. The intuition is that ID =
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(b1, · · · , bl) ∈ {1, 0, ∗}l in Π is mapped to ID′ = ID||∗z = (b1, · · · , bl, ∗, · · · , ∗) ∈
{1, 0, ∗}l+z in Π ′. Thus, the secret key SKID for ID in Π is the secret key SKID′

in Π ′. Recall that SK ′ID||∗z can generate secret keys of all descendants of node

ID||∗z, i.e., SK ′ID||0z , · · · , SK
′
ID||1z . When encrypting a key K ∈ K to ID in

Π, the sender generates a z-bit verification key Vsig = (e1, · · · , ez) ∈ {0, 1}z and
then encrypts K to the ID′ = ID||Vsig using Π ′.

In more details, l-level Π is constructed using (l+z)-level Π ′ and an one-time
signature scheme as follows:

Setup(l,m): Let 2l be the maximum number of users and {0, 1}m be the message
space. Assume that the signature verification key space is {0, 1}z. Run semanti-
cally secure broadcast encryption scheme Π ′ to obtain the public key and master
secret key.

PK,master − key, {SK ′ID′}ID′∈{0,1}l+z ← Setup′(l + z)

To generate private key SKID for an identity ID = b1 . . . bl using the master
secret, encode ID to ID′ = ID|| ∗ ∗ · · · ∗︸ ︷︷ ︸

z

. The secret key SK ′ID′ is generated

from the key generation algorithm in Setup′ of Π ′. Let SKID = SK ′ID′ =
(SK ′ID′,1, . . . , SK

′
ID′,l). and output PK,master − key, {SKID}ID∈{0,1}l

Encrypt(PK,S): Run SigKeyGen(1z) algorithm to obtain a signature signing
key Ksig and a verification key Vsig. Assume that Vsig = e1 . . . ez. For a given
S = (c, d), run Encrypt’ to obtain header Hdr and encryption key K

Hdr,K ← Encrypt′(PK,S)

and output the pair (Hdr,K).

Decrypt(S, ID, SKID, Hdr): Let Hdr = ((C0, C1), σ, Vsig).

1. Verify that σ is the valid signature of (C0, C1) under the key Vsig. If invalid,
output ⊥.

2. Otherwise, encode ID to ID′ = ID|| ∗ ∗ · · · ∗︸ ︷︷ ︸
z

, run Decrypt’(S, ID′, SKID, Hdr)

and output encryption key K.

Similarly, if ID contains ∗ then the extension proposed in section 5.2 is applied.
Correctness can be shown with a similar calculation to the one in section 5.

Note that the user key size increases from O(l2) to O((l + z)l) and the header
size is enlarged by the size of a signature and a verification key.

Theorem 4. Let G be a bilinear group of prime order p. For any positive integer
l, the above public key broadcast encryption system Π is (t, ε1 + ε2, l,m, qD)
CCA-secure assuming the public key broadcast encryption system Π ′ is (t′, ε1, l+
z,m, 0) semantically secure in G and signature scheme is (t′′, ε2, z, 1) strongly
existentially unforgeable. And t < t′ − (2(l + z)a + 2p)qD − ts, where a is point
addition time, p is pairing time, and ts is sum of SigKeyGen, Sign and V erify
computation time.
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Proof. Suppose there exists a t-time adversary, A, such that |AdvBrA,Π−1/2| >
ε1 + ε2. We build an algorithm B, that has advantage |AdvBrB,Π′ − 1/2| > ε1
in G. Algorithm B proceeds as follows.

Init: Algorithm B runs A and receives set S∗ in which users A wishes to be
challenged on. And B runs the SigKeyGen algorithm to obtain a signature
signing key K∗sig and a verification key V ∗sig ∈ {0, 1}z. Let V ∗sig = e1 . . . ez, then
B makes S∗∗ = {U ||V ∗sig | U ∈ S∗} and outputs it.

Setup:(l,m) B gets the public key PK of Π ′ and also gets secret keys SKID′

for revoked ID′ 6∈ S∗∗ from challenger C. Note that ID′ 6∈ S∗∗ iff ∀x such that
x � ID′, x 6∈ S∗∗. In addition, ID ∈ S∗ iff ∀x such that x � ID, x ∈ S∗.

Since Π ′ can generate secret keys in a compressed way using ∗, wlog, ID′

can be categorized into the following two formats:

1. ID′ = ID|| ∗ ∗ · · · ∗︸ ︷︷ ︸
z

for ID 6∈ S∗

2. ID′ = ID|| ∗ · · · ∗︸ ︷︷ ︸
k−1

ēk ∗ · · · ∗︸ ︷︷ ︸
z−k

for ID ∈ S∗ and k ∈ {1, . . . , z}.

B responds with PK and secret keys SK ′ID′ of the first type of ID′. (Recall
that the secret key SKID = SK ′ID′ where ID′ = ID|| ∗ ∗ · · · ∗︸ ︷︷ ︸

z

.) The secret keys

SK ′ID′ of the second type of ID′ are used to respond to the decryption queries
of A as described in the below.

Query phase1: Algorithm A issues decryption queries. Let (ID, S,Hdr) be a
decryption query where S ⊆ S∗ and ID ∈ S. Let Hdr = ((C0, C1), σ, Vsig).
Algorithm B responds as follows:

1. Run V erify to check the signature σ on (C0, C1) using verification key Vsig.
If the signature is invalid B responds with ⊥.

2. If Vsig = V ∗sig, a forge event happens, algorithm B outputs a random bit

b
$← {0, 1}, and aborts the simulation.

3. Otherwise, B decrypts the header using the second type of secret keys. Let
V = ∗ · · · ∗︸ ︷︷ ︸

k−1

ē∗k ∗ · · · ∗︸ ︷︷ ︸
z−k

where k ∈ {1, . . . , z}. Since Vsig 6= V ∗sig, Vsig � V .

Hence, B can compute SKID||Vsig from SKID||V . Using SKID||Vsig , B can

regenerate K ← Decrypt′(S, ID, SKID||Vsig , (C0, C1)).

Challenge: B gets the challenge (Hdr,K∗) from C. To generate challenge for A,
B computes Hdr∗ as follows:

σ∗ ← Sign(Hdr,K∗sig)

Hdr∗ ← (Hdr, σ∗, V ∗sig)

B replied with (Hdr∗,K∗) to A.
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Query phase2: Same as in query phase1.

Guess: The A outputs a guess b ∈ {0, 1}. B outputs b.
We see that algorithm B can simulate all queries to run A. B’s success prob-

ability as follows:

|AdvBrB,Π′ −
1

2
| ≥ |AdvBrA,Π −

1

2
| − Pr[forge]

> (ε1 + ε2)− Pr[forge]

To conclude the proof of Theorem 4 it remains to bound the probability
that B aborts the simulation as a result of forge. We claim that Pr[forge] < ε2.
Otherwise one can use A to forge signatures with probability at least ε2. Briefly,
we can construct another simulator that knows the private key, but receives
K∗sig as a challenge in an existential forgery game. In the above experiment, A
causes an abort by submitting a query that includes an existential forgery under
K∗sig on some ciphertexts. Our simulator is able to use this forgery to win the
existential forgery game. Note that during the game the adversary makes only
one chosen message query to generate the signature needed for the challenge
ciphertext. Thus, Pr[forge] < ε2.

It now follows that B’s advantage is at least ε1 as required.

7 Experiment

In this section, we present the implementation of our combinatorial subset differ-
ence (CSD) algorithm which provides organized subsets that can exclude revoked
users with proposed wildcard (*) notation.

We obtain the execution time, power consumption of encryption and decryp-
tion, and the ciphertext header size in the proposed CSD, the existing subset
difference (SD) [14, 3], and the interval algorithm [23].

To measure the execution time and the energy consumption, we have imple-
mented the algorithms based on the PBC (pairing based cryptography) library
with a param and executed them on Intel Edison with a 32-bit Intel Atom pro-
cessor 500 MHz and ublinux 3.10.17.

Table 3 represents the encryption/decryption time in seconds (per subset) in
proposed CSD, SD, and interval schemes. While encryption/decryption of the
CSD scheme and encryption of interval scheme perform point additions only,
encryption/decryption of SD scheme and decryption of interval scheme compute
point multiplications which are much slower than point additions. Therefore,
as the depth increases, encryption/decryption of SD scheme and decryption of
interval scheme become slower. The CSD scheme enhances encryption perfor-
mance per subset by 6 and 1.3 times and decryption performance by 10 and 19
times compared with SD and interval schemes, respectively. While decryption is
performed for a single subset in every scheme, encryption should be applied for
all subsets. Hence the total encryption time is computed as the multiplication
of the number of subsets and the execution time per subset. Since the average



Title Suppressed Due to Excessive Length 29

power consumption to execute every scheme remains as 0.67 W, the total energy
consumption is just proportional to the total execution time.

Table 3: Encryption and decryption time per subset in CSD, SD, and interval
schemes on Atom processor. Average power consumption is 0.67 W.

Depth CSD SD [14, 3] Interval [23]

Enc (s)
10bit 0.20 0.70 0.24
15bit 0.20 0.94 0.25
20bit 0.20 1.18 0.25

Dec (s)
10bit 0.17 1.02 1.67
15bit 0.17 1.37 2.41
20bit 0.17 1.75 3.17

Figure 6 illustrates the number of subsets in CSD, SD, and interval algorithms
by randomly generating 1% ∼ 10% revoked users among 210, 215, and 220 users.
In the graphs, x-axis represents the ratio of revoked users and y-axis denotes
the header size. The header size is proportional to the number of subsets and
the number of group elements per subset. While the number of group elements
per subset is 2 in SD and CSD, it is 3 in the interval algorithm. Therefore, the
interval scheme requires a larger header than SD and CSD even if it generates
fewer subsets than SD and CSD. In the result, the number of subsets and the
total number of group elements are 0.96r and 1.92r in CSD, 1.15r and 2.3r in
SD, and 0.93r and 2.8r in interval scheme on average for r revoked users. It
indicates that the proposed CSD reduces the header size by 16.6% and 31.4%
than SD and interval schemes, respectively.

Figure 7 (a) represents how many subsets are required in SD and interval
scheme formats for a subset represented in CSD format. In the graph, y-axis
represents the number of subsets represented in SD and interval scheme formats,
and x-axis presents the number of wildcards in a single CSD subset, where SD-l
and Interval-l indicate that the number of users is 2l. Generally, more subsets
are required in SD and interval scheme formats as more wildcards are included
in a CSD subset format. For instance, 15 ∼ 20 SD/interval subsets are required
for a single CSD subset including 5 wildcards. Likely, 250 SD/interval subsets
are required for a single CSD subset including 10 wildcards; 1250 SD/interval
subsets are required for a single CSD subset including 15 wildcards.

Figure 7 (b) shows the number of subsets in SD and interval scheme repre-
sentations normalized by the number of CSD subsets where the total numbers
of users are 210, 215, and 220. In the experiment, wildcards are randomly gener-
ated in CSD subsets. Regardless of the number of CSD subsets, SD and interval
schemes generate 18, 120, and 220 times more subsets than CSD scheme on
average for 210, 215, and 220 users, respectively.



30 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

0 2 4 6 8 10
0

50

100

150

The number of revoked users (%)

H
ea

d
er

si
ze

(t
h

e
n
u

m
b

er
o
f

to
ta

l
g
ro

u
p

el
em

en
ts

)

CSD SD Interval

(a) 210 users

0 2 4 6 8 10
0

1,000

2,000

3,000

4,000

5,000

The number of revoked users (%)

(b) 215 users

0 2 4 6 8 10
0

0.5

1

1.5
·105

The number of revoked users (%)

(c) 220 users
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Fig. 7: (a) The number of subsets by varying the number of wildcards in a CSD
subset, and (b) the number of subsets normalized by the number of CSD subsets
in SD and interval schemes

8 Discussion

We discuss about construction of ID based broadcast encryption (IDBE). As-
suming ID is restricted in {0, 1}l, the main CSD scheme becomes IDBE if we
set a public key of CSD as a public parameter of IDBE and generate secret keys
using a master key gα2 . To handle arbitrary identity such as email ID ∈ {0, 1}∗,
we extend the CSD scheme by hashing ID with a collision resistant hash function
H : {0, 1}∗ → {0, 1}l during key generation and encryption. The security of the
extended scheme using H is implied by the security of the original CSD scheme
by a standard argument.

We also examine extension to hierarchical identity based BE (HIDBE). If we
consider single-bit ID ∈ {0, 1, ∗} then the general CSD scheme itself becomes
HIDBE. For example, a higher level ID vector (0, ∗, ∗) can generate secret keys
for its lower ID vectors (0, 0, ∗) and (0, 1, ∗). Although this HIDBE version is
very limited, it gives us intuition for an expandability aspect.
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Finally, HIDBE with general IDs can be constructed by amplifying IDBE.
For k-level l-bit IDs, kl-level IDBE is accounted. (Again, we assume a colli-
sion resistant hash function H : {0, 1}∗ → {0, 1}l during key generation and
encryption.) For irregular identities ID = (I1, · · · , Ik) with Ii ∈ {0, 1}∗ for
i = 1, · · · , k, we hash each Ii with H to convert identities in the format:
(H(I1) = {0, 1}l, · · · , H(Ik) = {0, 1}l). The kl-level IDBE scheme can handle
this format of identities and by allowing ∗ notations we can construct HIDBE
with general IDs.

9 Conclusion

We propose a combinatorial subset difference public key broadcast encryption
(CSD) scheme which provides a generalized subset different representation al-
lowing wildcards in any bit position. The proposed CSD is applicable to a se-
cure multicast as well as minimizes the header size compared with existing BE
schemes. We prove semantic security of our proposed CSD scheme under l-BDHE
assumption without the random oracle model.

Experimental results show that the proposed CSD scheme not only reduces
the ciphertext header size by 17% and 31%, but also improves encryption per-
formance (per subset) by 6 and 1.3 times and decryption performance by 10
and 19 times compared with SD and interval schemes, respectively. In addition,
for subsets represented in a non-hierarchical manner, the proposed CSD reduces
the number of subsets by a factor of 1000 times compared with SD and interval
schemes.
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