Exploring Naccache-Stern Knapsack Encryption

Eric Brier!, Rémi Géraud?, and David Naccache?
b bl

! Ingenico Terminals
9 Avenue de la Gare F-26300 Alixan, France
eric.brier@ingenico.com
2 Ecole normale supérieure
45 rue d'Ulm, »-75230 Paris CEDEX 05, France
{remi.geraud, david.naccache}@ens.fr

Abstract. The Naccache-Stern public-key cryptosystem (NS) relies on
the conjectured hardness of the modular multiplicative knapsack problem:
Given p, {v:}, [[v;"* mod p, find the {m;}.

Given this scheme’s algebraic structure it is interesting to systematically
explore its variants and generalizations. In particular it might be useful
to enhance NS with features such as semantic security, re-randomizability
or an extension to higher-residues.

This paper addresses these questions and proposes several such variants.

1 Introduction

In 1997, Naccache and Stern (NS, [15]) presented a public-key cryptosystem based
on the conjectured hardness of the modular multiplicative knapsack problem.
This problem is defined as follows:

Let p be a modulus® and let vg,...,vp_1 € L.
n—1
Given p,vg,...,05_1, and H v;"* mod p, find the {m;}.
i=0

Given this scheme’s algebraic structure it is interesting to determine if vari-
ants and generalizations can add to NS features such as semantic security,
re-randomizability or extend it to operate on higher-residues.

This paper addresses these questions and explores several such variants.

1.1 The Original Naccache—Stern Cryptosystem

The NS cryptosystem uses the following sub-algorithms:

3 p is usually prime but nothing prevents extending the problem to composite RSA
moduli.

eric.brier@ingenico.com
{remi.geraud,david.naccache}@ens.fr

— Setup: Pick a large prime p and a positive integer n.
Let B = {po =2,...,pn_1} be the set of the n first primes, so that

n—1
H pi <p
=0

(We leave aside a one-bit leakage dealt with in [15] — this technique applies
mutatis mutandis to the algorithm presented in this paper).

— KeyGen: Pick a secret integer s < p — 1, such that ged(p — 1,s) = 1. Set

v; = /p; mod p.
The public key is (p,n,vg,...,v,—1). The private key is s.
— Encrypt: To encrypt an n-bit message m, compute the ciphertext c:

n—1

mq
c= H v;,"* mod p
i=0

where m; is the i-th bit of m.

— Decrypt: To decrypt ¢, compute
n—1
m = Z Ql,ui(c, S,p)
i=0

where p;(c, s,p) € {0,1} is the function defined by:

ged(p;, ¢® mod p) — 1
pi(c, s,p) = (pvl) :

To this day, NS has neither been proven secure in the usual models, nor has
it been attacked. Rather, its security relies on the conjectured hardness of a
multiplicative variant of the knapsack problem®:

Definition 1 (Multiplicative Knapsack Problem). Given p, ¢, and a set
{v;i}, find a binary vector x such that

n—1
c= H v;" mod p.
i=0
Just as in additive knapsacks, this problem is NP-hard in general but can be
solved efficiently in some situations; the secret key enabling precisely to transform
the ciphertext into an easily-solvable instance.

Unlike additive knapsacks, this multiplicative knapsack doesn’t lend itself to
lattice reduction attacks, which completely break many additive knapsack-based
cryptosystems [1,3,5,11-13].

Over the past years, several NS variants were published, these notably seek
to either increase efficiency [6] or extend NS to polynomial rings [11]; to the best
of our knowledge, no efficient attacks against the original NS are known.

4 This can also be described as a modular variant of the “subset product” problem.

1.2 Security Notions

A cryptosystem is semantically secure, or equivalently IND-CPA-secure [9], if
there is no adversary A capable of distinguishing between two ciphertexts of
plaintexts of his choosing.

To capture this notion, A starts by creating two messages mgy and m; and
sends them to a challenger C. C randomly selects one of the m; (hereafter my)
and encrypts it into a ciphertext c. A is then challenged with ¢ and has to guess
b with probability significantly higher than 1/2.

Given a public-key cryptosystem PKC = {Setup, KeyGen, Encrypt, Decrypt},
this security notion can be formally defined by the following game:

Definition 2 (IND-CPA-Security). The following game is played:

— C selects a secret random bit b;

— A outputs two messages mgo and my;

— C sends to A the ciphertext ¢ < Encrypt(mp);
— A outputs a guess b'.

A wins the game if b/ = b. The advantage of A in this game is defined as:
Advpye St = ‘Pr b=1b]— ‘
IND-CPA

A public-key cryptosystem PKC is IND-CPA-secure if Advpkc 1 is negligible for
all PPT adversaries A.

IND-CPA-security is a very basic requirement, and in some scenarios it is desirable
to have stronger security notions, capturing stronger adversaries. The strongest
security notion for a public-key cryptosystem is indistinguishability under adap-
tive chosen ciphertext attacks, or IND-CCA2-security. IND-CCAZ2 is also defined
in terms of a game, where A is furthermore given access to an encryption oracle
and a decryption oracle:

Definition 3 (IND-CCA2-Security). An adversary A is given access to an
encryption oracle Og and a decryption oracle Op. The following game is played:

— C selects a secret random bit b;

— A queries Og and Op and outputs two messages mqg and mq;
— C sends to A the ciphertext ¢ < Encrypt(myp);

— A queries O and Op and outputs a guess b'.

A wins the game if b = b and if no query to the oracles concerned mg nor my.
The advantage of A in this game is defined as

1
Advpye S = ‘Pr b=0v]— 2‘

A public-key cryptosystem PKC is IND-CCA2-secure if Advg\'K'%"%Az s negligible

for all PPT adversaries A.

We further remind the syntax of a perfectly re-randomizable encryption scheme [4,
10,16]. A perfectly re-randomizable encryption scheme consists in four polynomial-
time algorithms (polynomial in the implicit security parameter k):

1. KeyGen: a randomized algorithm which outputs a public key pk and a corre-
sponding private key sk.

2. Encrypt: a randomized encryption algorithm which takes a plaintext m (from
a plaintext space) and a public key pk, and outputs a ciphertext c.

3. ReRand: a randomized algorithm which takes a ciphertext ¢ and outputs
another ciphertext ¢’; ¢’ decrypts to the same message m as the original
ciphertext c.

4. Decrypt: a deterministic decryption algorithm which takes a private key sk
and a ciphertext ¢, and outputs either a plaintext m or an error indicator L.

In other words:
{sk, pk} < KeyGen(1%)

Decrypt(ReRand(Encrypt(m, pk), pk), sk) = Decrypt(Encrypt(m, pk),sk) = m

Note that ReRand takes only a ciphertext and a public key as input, and in
particular, does not require sk.

2 Higher-Residues Naccache-Stern

The deterministic nature of NS prevents it from achieving IND-CPA-security:
Indeed, a given message mg will always produce the same ciphertext cg, so A
will always win the game of Definition 2.

We now describe an NS variant that is randomized. We then show how this
modification guarantees semantic security, and even CCA2 security in the ran-
dom oracle model, assuming the hardness of solving the multiplicative knapsack
described earlier. In doing so, we must be very careful not to introduce addi-
tional structure that an adversary could leverage. To make this very visible, we
decomposed the construction into three steps, each step pointing out the flaws
avoided in the final construction.

2.1 Construction Step ©

Because the modified cryptosystem uses special prime moduli, algorithms Setup
and KeyGen are merged into one single Setup + KeyGen algorithm?®.

— Setup + KeyGen: Pick a large prime p such that (p — 1)/2 = as is a factoring-
resistant RSA modulus.

5 Alternatively, we can regard Setup as a pro forma empty algorithm.

Pick a positive integer n. Let P = {pg = 2,...,pn—1} be the set of the n first

primes, so that
n—1
H Pi <P
i=0

Set

v; = ¢/p; mod p

Let g be a generator of F,, and £ = ¢°* mod p.
The public key is (p,n, £, vg,...,v,—1). The private key is s.

— Encrypt: To encrypt m, pick a random integer k € [1,p — 2] and compute:

n—1
_ pk m;
c=/{ H v, mod p
i=0

where m; is the i-th bit of the message m.

— Decrypt: To decrypt ¢ compute
n—1
m = Z 2'u;i(c, s,p).
i=0

To understand why decryption works we first observe that
(%) = ((¢")F)* = g""~V = 1 mod p.
Hence:
n—1 s n—1
¢’ = (Zk H UZ”) :WHPZH mod p.
i=0 i=0
And we are brought back to the original NS decryption process.

The problem: The (attentive) reader could have noted at this step that because
s is large and because the p; are very few, the odds that a p; is an s-th residue
modulo p are negligible. Hence, unless p is constructed in a very particular way,
key pairs simply... cannot be constructed.®

A solution consisting in using a specific p and is detailed in Section 4. The
alternative consists in proceeding with @ hereafter.

2.2 Construction Step @

The workaround will be the following: Assume that we pick a v; at random, raise
it to the power s and get some integer m:

_ .8
7 =wv; mod p

6 Note that this is obviously not be an issue with the original NS scheme.

Refresh v; until 7 = 0 mod p; where 7 is considered as an element of Z. (In the
worst case this takes p; trials.) Letting y; = 7/p;, we have:

Di xyi:vfmodpépi:yfl X vf =u; X v; mod p
We will now add the u; as auxiliary public keys.

— Setup + KeyGen: Pick a large prime p such that (p — 1)/2 = as is a factoring-
resistant RSA modulus.

Pick a positive integer n. Let P = {pgp = 2,...,pn—1} be the set of the n first

primes, so that
n—1
H pi <p
i=0

Generate the u;, v; pairs as previously described so that:
pi = u; X v§ mod p

Let g be a generator of F,,, and ¢ = ¢** mod p.
The public key is (p,n, ¢, ug, ..., Up-1,0,...,Vy—1). The private key is s.

— Encrypt: To encrypt m, pick a random integer k € [1,p — 2] and compute:

n—1 n—1
co = 0F H v modp and ¢ = H (I
i=0 i=0

where m; is the i-th bit of the message m.
— Decrypt: To decrypt cg, c; compute

n—1

m = Z 2i77i(00, C1, Sap)
=0

Where
ged(ps, e1 X ¢ mod p) — 1
pi—1 '
To understand why decryption works remind that (¢¥)* = 1 mod p and hence

ni(co, c1,8,p) =

n—1 n—1 s n—1 n—1
X ey = H u; (Ek H UZ”) = WH(ulvf)m’ = Hp:” mod p.
j ‘ i=0 i=0
And we are brought back to the original NS decryption process.

The problem: The (very attentive) reader could have noted that the resulting

cryptosystem does not achieve semantic security because the construction process
of ¢1 is deterministic.

2.3 Construction Step @

The workaround is the following: we provide the sender with two extra elements
of Z,, that will allow him to blind cg, c;.

To that end, pick a random « € Zj, let Ba® =1 mod p and add o, 8 to the
public key.

The algorithms Setup + KeyGen and Decrypt remain otherwise unchanged but
Encrypt now becomes:

— Encrypt: To encrypt m, pick a random integer k € [1,p — 2] and compute:

n—1 n—1
co = a” H v modp and ¢ =g~ H uy
i=0 i=0

To understand why decryption works we note that (modulo p):

n—1 n—1 s n—1 n—1
s k m; k mi s\m; __ m;
axce=0 Huil e’ Hvi7 :WH(W%) pri’.
=0 1=0

=0 1=0

And we are brought back to the original NS decryption process.

3 Security

3.1 Semantic Security

The modified scheme’s security essentially relies on blinding an NS ciphertext
using a multiplicative factor £¥ = ¢g®** mod p, which belongs to the subgroup of
Z,, of order b.

Lemma 1. Under the subgroup hiding assumption in Z,, the scheme described
in Section 2.1 is IND-CPA-secure.

Recall that the subgroup-hiding assumption [2] states that the uniform distribu-
tion over Z, is indistinguishable from the uniform distribution over one of its
subgroups.

Proof. Assume that A(pk) wins the IND-CPA game with non-negligible advantage.
Then in particular A(pk) has non-negligible advantage in the “real-or-random”
game

AdVR/R = Pr[A% (pk) = 1] — Pr[A° (pk) = 1]

where & is an encryption oracle and O is a random oracle. We define B(pk,)
as follows:

— Let Eg(m) = v [112y o™ mod p;
— B(pk,v) returns the same result as A5 (pk)

The scenario B(pk,y = g%**) yields g = Epk. The scenario B(pk,y = g*) for
random u gives a ciphertext that is a uniform value, and therefore behaves as
a perfect simulator of a random oracle, i.e. g = O. Hence if A is an efficient
adversary against our scheme, then B is an efficient solver for the subgroup-hiding
problem. a

Note that this part of the argument does not fundamentally rely on the original
NS being secure — indeed, we may consider an encryption scheme that produces
ciphertexts of the form ¢ = z*m. Decryption for such a cryptosystem would be
tricky, as ¢® = m® and there are b possible roots. That is why using NS is useful,
as we do not have decryption ambiguity issues.

As we pointed out, the construction of Section 2.2 is not semantically secure:
indeed, ¢, is generated deterministically from m. This is addressed in Section 2.3
by introducing two numbers « and S. Using a similar argument as in Lemma 1,
we have

Lemma 2. Under the DDH assumption in Z,, and assuming that factoring
(p —1)/2 is infeasible, the scheme described in Section 2.3 is IND-CPA-secure.

Note that these hypotheses can be simultaneously satisfied.

3.2 CCA2 Security

Even more interesting is the case for security against adaptive chosen-ciphertext
attacks (IND-CCA2) [7,38].

The original NS is naturally not IND-CCA2; nor is in fact the “Step ®”
variant discussed above: indeed it is possible to re-randomise a ciphertext, which
immediately gives a way to win the IND-CCA2 game.

To remedy this, we leverage the fact that upon successful decryption, we can
recover the randomness £¥. The idea is to choose k in some way that depends
on m;. If k is a deterministic function of m; only however, randomisation is lost.
Therefore we suggest the following variant, at the cost of some bandwidth:

— Instead of m, we encrypt a message m||r where r is a random string.

— Let k « H(m||r) where H is a cryptographic hash function, and use this
value of k instead of choosing it randomly in Encrypt.

— Modify Decrypt to recover /% (or a* and ¥). Upon successfully recovering
(m||7), extract r, and check that ¢* (resp. o* and S*) correspond to the
correct value of k — otherwise it ouputs L.

This approach guarantees IND-CCA2 in the random oracle model; this can be
captured as a series of games:

— Game 0: This is the IND-CCA2 game against our scheme (@ or ®), instantiated
with some hash function H.

— Game 1: This game differs from Game 0 in replacing H by a random oracle O.
In the random oracle model, this game is computationally indistinguishable
from Game 0.

— Game 2: This game differs from Game 1 by the fact that the ciphertext is
replaced by an uniformly-sampled random element of the ciphertext space.
The results on IND-CPA security tell us that this game is computationally
indistinguishable from Game 1 (under their respective hypotheses).

4 Generating Strong Pseudo-Primes in Several Bases

We now backtrack and turn our attention to generating specific moduli allowing to
implement securely the “@©” scheme of Section 2.1. This boils down to describing
how to efficiently generate strong pseudo-prime numbers. In this section, we
denote N the sought-after modulus.

Using quadratic reciprocity, we first introduce an algorithm generating num-
bers passing Fermat’s test. Then we leverage quartic reciprocity to generate
numbers passing Miller-Rabin’s test. The pseudoprimes we need must be strong
over several bases, and complexity is polynomial in the size of the product of
these bases.

4.1 Primality Tests

A base-A Fermat primality test consists in checking that A® = A mod B. Every
prime passes this test for all bases A. There are however composite numbers,
known as Carmichael numbers, that also pass this test in all bases. For instance,
1729 = 7-13 - 19 is such a number. There are an infinity of Carmichael numbers.

The Miller-Rabin primality test also relies on Fermat’s little theorem. Let
B —1 = 2°n with m odd. An integer B passes the Miller-Rabin test if A™ =
1 mod B or if there exists an i < e — 1 such that A2™ = —1 mod B.

Definition 4 (Strong pseudo-prime). A number that passes the Miller-Rabin
test is said strongly pseudo-prime in base A.

An interesting theorem [14, Proposition 2| [17] states that a composite number
can only be strongly pseudo-prime for a quarter of the possible bases.

4.2 Constructing Pseudo-Primes

When p and 2p — 1 are prime, Fermat’s test amounts to the computing of a
Jacobi symbol. Indeed,

Theorem 1. Let p be a prime such that ¢ = 2p — 1 is also prime. Let A € QR,.
Then B = pq passes Fermat’s test in base A.

Proof.
AP = (AP)1 = A9 = A2=DF1 = A mod p
AP = (AP = AP = Al4-D/2+1 = » <A> = A mod ¢
q
By the Chinese remainder theorem, we find that A® = A mod B. O

From Gauss’ quadratic reciprocity theorem, if ¢ = 1 mod 4 we can take ¢ =
1 mod A which guarantees that A € QR,,. To make 2 a quadratic residue modulo
q we must have ¢ = £1 mod 8. It is therefore easy to construct numbers that
pass Fermat’s test in a prescribed list of bases.

4.3 Constructing Strong Pseudo-primes

In this section we seek to generate numbers that are strongly pseudo-prime in
base n, where 7 is prime. Let p denote a prime number such that ¢ =2p — 1 is
also prime, and N = pq. We have the following equations:

N—-1=0modp—1

N—lEquodq—l

-1 -1
n2 Emeodp—l

n—1
2

From there on, we will use the notation (—) , to denote the quartic residue symbol.

-1
E3quOdQ71

Theorem 2. Let p be a prime such that ¢ = 2p — 1 = 1 mod 8 is also prime.
Let A be an integer such that

(- (@) ()

Then N = pq passes the Miller-Rabin test in base A.

Proof. Note that if AN=1/2 = _1 mod N, then n passes the Miller-Rabin test
in base a. It then suffices to compute this quantity modulo p and ¢ respectively:

AN=-D/2 = fglp-1)/2 = <A> = —1modp
p

3
AWN-1)/2 — p3(a-1)/4 = (A) = —1 mod q.
Py
O

Bases n > 5. Let n > 7 be a prime number. We consider here the case
p=>5mod 8§, i.e. ¢ =9 mod 16. We will leverage the following classical result:

Theorem 3. Let q be a prime number, ¢ = A2 + B2 = 1 mod 8 with B even.
Let n be a prime number such that (p/n) =1, then

n|B or

<2)41¢> 77|Aand(%):1 , or

A = uB where p? +1 = A2 mod 1 and (%):1

10

We will also need the following easy lemmata:

Lemma 3. Let n > 7 be a prime number, there is at least an integer A such that

()¢5

Proof. Let
msfien)5 n)
amfien) (5]
msfoen) (5]
cesfen ()5 -}

Then it is clear that s; + so + s3 + s4 = n — 2. The quantity s; + s2 corresponds
to the number of quadratic residues modulo 7, except maybe 2. Therefore,

S1+ 89 = B)

By symmetry between ¢ and 2 — i, we have sy = s3. We also have

Sy + 83 = #{i €F,, (i(Qni)) = 1}
-sfier, (424
= #{ue]Fn,u;é 1, (2) - —1}

1+ (5)

From that we get the value of sy:

2()-(3)-2

4

Sq4 =

Therefore, for every n > 7, s4 > 0. a

11

Choosing such an %, we denote A the integer such that ¢ = 1+ 1/X mod 7. Then,
(1 + 1//\) _ (1 — 1/)\) _ 1
n U]
(()\—i- 1)/\> _ (()\— 1))\) _ 4
n n
(/\2 — 1) _ (()\+1))\) ((/\— 1)/\) _ L
U] U] U]

Let p be such that u? +1 = A2, We can thus construct A and p so that the third
possibility of Theorem 3 is never satisfied.

Lemma 4. Letn > 7 be a prime number, there is at least an integer x such that

(x/n) = -1 and 2z — 1/n) = +1.

Proof. As for the previous lemma, we show that there are i (77 + 2 (%) — (%) — 2)
such values of z, which strictly positive for n > 7. a
For such an @, we write y = 22 — 1 = 22 mod 7, 4,, = z/A mod n, and B, = A, .
We then have

A%—i—Bi = (1+p2)AEI =)\2/1727 =22 =ymodn

If ¢ = A2 4+ B? = 1 mod 8 is prime, with B even, A = A, mod 7, and B =
B, mod 7, then we see that the conditions of Theorem 3 are not satisfied, hence
(n/q)4 = —1. Furthermore, ¢ = y mod n so that (n/q) = +1. If we assume that
p=(q+1)/2 is prime, and that p = 5 mod 8, then the conditions of Theorem 2
are satisfied. Indeed, p = « mod 7 so that (n/p) = (x/n) = —1. Thus we generated
a pseudo-prime in base 7.

All in all, the results from this section are captured by the following theorem.

Theorem 4. Let n > 7 be a prime number. There are integers A,, Ay, such that
N = pq is strongly pseudo-prime in base n, provided that

=A%+ B?
is even

= A,y mod n
= B,y mod n
=9 mod 16
=(q-1)/2
is prime

is prime

12

Base 1 = 2. In that case the following theorem applies.

Theorem 5. The integer N = pq is strongly pseudo-prime in base 2 provided
that

18 prime

s prime

Proof. From the conditions of Theorem 5, ¢ = 9 mod 16 and ¢ = 5 mod 8, which
proves that 2 is a square modulo ¢ and not modulo p, as it is not of the form
a? + 6452 ad

Bases n = 3 and 17 = 5. In both cases, we cannot find p and ¢ such that the
base is a square modulo ¢ and not modulo p. As we will see in the next section
this is not too much of a problem in practice. We can in any case ensure that
the base is a quartic residue modulo ¢, using for instance the following choices:

A; =1, B3=0,
As=1, Bs=0

4.4 Combining Bases

Consider a set B of prime numbers, which will be used as bases. For each n € 33,
we construct ay, by, as described in the previous section, using either the general
construction (for 7 > 7) or the specific constructions (for n = 2,3,5). Then we
invoke the Chinese remainder theorem, to get three integers asgs, by, and mep
such that N = pgq is strongly pseudo-prime in all bases of P (except maybe 3
and 5), provided that

q =A?2+B?

B is even

A = Ay mod mep

B = By mod msp

q =9 mod16

p =(—-1)/2

q is prime

p is prime

In fact, running the algorithm several times eventually yields an integer N that
is also strongly pseudo-prime in bases 3 and 5.

13

4.5 Numerical Example

Consider B = {p1 = 2,...,p46} the set of all primes smaller than 200. We get:

Agp = 240951046641336683610293989487720938594370
00429131293941260428482600318651864405011

By = 24500136562064551260427880199750830122812
89375458232594038192481071092303905088660

my = 311996881667338462129967964253192555067519
87159614203780372129899474046144658803240

From these we get the following number N, which is strongly pseudo-prime over
all the bases in J:

p = 291618506663979836485075552375425341271029
357276194940349058993812844768339307493938
127646594821817009025241290150371642768597
761443318584692039887707501189335237643121
80942186641722156221

g = 583237013327959672970151104750850682542058
714552389880698117987625689536678614987876
255293189643634018050482580300743285537195
522886637169384079775415002378670475286243
61884373283444312441

N = 170082706857859304601346542040880491869964
786138273235148360264007011659927137093809
425108069173579937879773358221849944506646
598887858361358403197265640650982893052328
560315650882284134206966583670388670205884
474179908395136256310311720485402493890312
415845968563781269490092889866038579183791
395019948173994150959921105615078612739999
5262142244846207324478665807217335845461

This N can hence be used as the missing modulus needed to instantiate a “Step
@” NS variant.

14

5 Extensions

5.1 Using Composite Moduli

In the @/® variants of our scheme, one might be tempted to replace p itself
by an RSA modulus n, where ¢(n) = 2ab. Indeed, the original NS construction
allows for such a choice.

Doing so, however, would immediately leak information about the factorisation
of n: Indeed, ged(g® — 1,n) = p.

There is a workaround: First we choose p and ¢ so that (p—1)/2 and (¢—1)/2
are RSA moduli, i.e. p— 1 = 25182 and ¢ — 1 = 2ryro, with large s1, 52,71, 2.
Then we set n = pgq, a = s1r1, and b = 2s9r9. Therefore ¢(n) = 2ab as before,
but the GCD attack mentioned above does not apply, and the modified @/®
Naccache-Stern cryptosystem works.

5.2 Bandwidth Improvements

The idea described in this paper is fully compatible with the modifications
introduced in [6] to improve encryption bandwidth.

But there is even more: An interesting observation is that, upon decryption,
it is possible to recover both the message m and the whitening *. This is unlike
most randomized encryption schemes, where the random nonce is lost. Thus we
may contemplate storing some information in k, thereby augmenting somewhat
the total information contained in a ciphertext. Alternatively, ¥ may also be
used as key material if NS is used (in a hybrid mode) as a key transfer mechanism.

For instance, given a message m = mj ||msa, we may encrypt m ||k using the
blinding m% with odd k. Upon decryption, one recovers k, and computes the
k-th root of the blinding factor m5 — such a root is unique with overwhelming
probability — thereby reconstructing the whole message.

One nontrivial research direction is to provide, in the message m, hints
that make solving the discrete log modulo p easier and thereby embed directly
information in k.

References

1. Adleman, L.M.: On breaking the iterated Merkle-Hellman public-key cryptosystem.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology —
CRYPTO’82. pp. 303—308. Plenum Press, New York, USA, Santa Barbara, CA,
USA (1982)

2. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005: 2nd Theory of Cryptography Conference. Lecture
Notes in Computer Science, vol. 3378, pp. 325—-341. Springer, Heidelberg, Germany,
Cambridge, MA, USA (Feb 10-12, 2005)

3. Brickell, E.F.: Breaking iterated knapsacks. In: Blakley, G.R., Chaum, D. (eds.)
Advances in Cryptology — CRYPTO’84. Lecture Notes in Computer Science, vol. 196,
pp. 342-358. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19-23,
1984)

15

10.

11.

12.

13.

14.

15.

16.

17.

. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:

Boneh, D. (ed.) Advances in Cryptology — CRYPTO 2003. Lecture Notes in
Computer Science, vol. 2729, pp. 565-582. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 17-21, 2003)

. Chee, Y.M., Joux, A., Stern, J.: The cryptoanalysis of a new public-key cryptosystem

based on modular Knapsacks. In: Feigenbaum, J. (ed.) Advances in Cryptology —
CRYPTOQO’91. Lecture Notes in Computer Science, vol. 576, pp. 204-212. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 11-15, 1992)

. Chevallier-Mames, B., Naccache, D., Stern, J.: Linear bandwidth Naccache-Stern

encryption. In: Ostrovsky, R., Prisco, R.D., Visconti, I. (eds.) SCN 08: 6th Inter-
national Conference on Security in Communication Networks. Lecture Notes in
Computer Science, vol. 5229, pp. 327-339. Springer, Heidelberg, Germany, Amalfi,
Italy (Sep 10-12, 2008)

. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against

adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) Advances in Cryptology —
CRYPTO’98. Lecture Notes in Computer Science, vol. 1462, pp. 13—25. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 23-27, 1998)

. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under

the RSA assumption. Journal of Cryptology 17(2), 81-104 (Mar 2004)

. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker

keeping secret all partial information. In: Lewis, H.R., Simons, B.B., Burkhard,
W.A., Landweber, L.H. (eds.) Proceedings of the 14th Annual ACM Symposium on
Theory of Computing, May 5-7, 1982, San Francisco, California, USA. pp. 365-377.
ACM (1982)

Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack se-
cure cryptosystems. In: Naor, M. (ed.) TCC 2004: 1st Theory of Cryptography
Conference. Lecture Notes in Computer Science, vol. 2951, pp. 152-170. Springer,
Heidelberg, Germany, Cambridge, MA, USA (Feb 19-21, 2004)

Herold, G., Meurer, A.: New attacks for knapsack based cryptosystems. In: Visconti,
I., Prisco, R.D. (eds.) SCN 12: 8th International Conference on Security in Com-
munication Networks. Lecture Notes in Computer Science, vol. 7485, pp. 326-342.
Springer, Heidelberg, Germany, Amalfi, Italy (Sep 5-7, 2012)

Joux, A., Stern, J.: Cryptanalysis of another knapsack cryptosystem. In: Imai, H.,
Rivest, R.L., Matsumoto, T. (eds.) Advances in Cryptology — ASTACRYPT’91.
Lecture Notes in Computer Science, vol. 739, pp. 470-476. Springer, Heidelberg,
Germany, Fujiyoshida, Japan (Nov 11-14, 1993)

Lenstra Jr., H-W.: On the Chor-Rivest knapsack cryptosystem. Journal of Cryptol-
ogy 3(3), 149-155 (1991)

Monier, L.: Evaluation and comparison of two efficient probabilistic primality testing
algorithms. Theoretical Computer Science 12(1), 97-108 (1980)

Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) Advances
in Cryptology — EUROCRYPT’97. Lecture Notes in Computer Science, vol. 1233,
pp- 27-36. Springer, Heidelberg, Germany, Konstanz, Germany (May 11-15, 1997)
Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes,
A. (ed.) Advances in Cryptology — CRYPTO 2007. Lecture Notes in Computer
Science, vol. 4622, pp. 517-534. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 19-23, 2007)

Rabin, M.O.: Probabilistic algorithm for testing primality. Journal of number theory
12(1), 128-138 (1980)

16

	Exploring Naccache-Stern Knapsack Encryption

