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Abstract
An emerging direction for authenticating people is the adoption of biometric authentication

systems. Biometric credentials are becoming increasingly popular as a mean of authenticating
people due to the wide rage of advantages that they provide with respect to classical authenti-
cation methods (e.g., password-based authentication). The most characteristic feature of this
authentication method is the naturally strong bond between a user and her biometric cre-
dentials. This very same advantageous property, however, raises serious security and privacy
concerns in case the biometric trait gets compromised. In this article, we present the most
challenging issues that need to be taken into consideration when designing secure and privacy-
preserving biometric authentication protocols. More precisely, we describe the main threats
against privacy-preserving biometric authentication systems and give directions on possible
countermeasures in order to design secure and privacy-preserving biometric authentication
protocols.

1 Introduction

Biometric authentication is a quick, accurate and user-friendly tool that offers an efficient and
reliable solution in multiple access control systems. A typical example of biometric authentication
systems (BAS) are access control systems equipped with sensors (e.g., for iris or fingerprint scans).
In this case, the sensor captures the biometric trait of the person who requests access, while access
is granted only after the person has been recongnised as an authorised user of the system. One of
the main advantages of biometrics is that they do not require to memorise complicated passwords
or carry tokens along since they cannot be forgotten or lost.

While BAS provide important usability advantages, they are susceptible to threats, like any
other security system. For biometric authentication, however, a successful attack can have severe
implications in the users’ lives and privacy. Unlike passwords or tokens, biometric credentials
cannot be kept secret or hidden, and stolen biometrics cannot be revoked as easily [3]. Thus, the risk
of them being compromised (i.e., captured, cloned or forged) is high and may lead to identity theft
or individual profiling and tracking in case the templates are used and cross-matched in different
biometric databases. In addition, stolen biometrics can be used to learn sensitive information about
their owners, such as ethnic group, genetic information [30], medical diseases [7] or even to perform
illegal activities by compromising health records [23]. It is therefore of fundamental importance
to develop privacy-preserving BAS, i.e., biometric authentication systems that can mitigate the
aforementioned privacy and security risks listed.

In this article, we present the main challenges in achieving privacy-preserving biometric authen-
tication and we highlight the main threats associated to privacy issues. Furthermore, we describe
the main countermeasures to prevent the information leakage in biometric authentication as well
as novel possible directions for the design of efficient privacy-preserving biometric authentication
protocols.

Paper Organisation: Section 2 describes how biometric authentication works and the challenges
encountered to achieve accurate biometric authentication. It also explains the main differences
between privacy-preserving and non privacy-preserving systems. The main threats against privacy-
preserving BAS are described in Section 3. A particular emphasis is given to biometric reference
recovery attacks as well as biometric sample recovery attacks. Section 4 collects suggestions for
possible mitigations and countermeasures against the attacks described in Section 3. Eventually,
Section 5 concludes the paper.
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2 Preliminaries on Biometric Authentication Systems

Generally speaking, a biometric authentication system works in the following way. First, a user
(e.g., an employee) registers to the system by providing her identity together with her biometric
template, that becomes her reference template (registration phase). Subsequently, the user can get
authenticated into the system (authentication phase) by submitting an identity and a biometric
template, called fresh template. The system performs a matching process, which aims to check if the
provided fresh template is close enough to the one stored for the given user [24] (in which case the
user is authenticated / accepted) or not (in which case the user is rejected). Standard BAS aim at
authenticating users regardless of what the system may leak about the user’s biometric credentials
to third parties. In contrast, privacy-preserving BAS provide user authentication without revealing
any information about the client’s biometric data, not only to third parties but also to the system
itself.

The base for biometric authentication is the extraction of a biometric trait from the human body
or behaviour. Common biometric traits used nowadays for authentication are: voice, signature,
DNA, fingerprint [37], iris [13], and ear shape [21]. In all cases, the biometric trait is a distinctive
characteristic that is measurable and identifies (almost) uniquely each individual. In practice, the
data collecting process of biometric templates is by itself a challenging task due to the inherent
noise and the natural variability of biometric credentials [22]. For example, two scans of the same
fingerprint can differ because of the variance in finger pressure, orientation, dirt or sweat [14]. To
overcome the presence of noise, which is inherited in biometric credentials and in the collection
process, the comparison between a fresh biometric template and a stored one always takes into
account approximation.

In order to understand how biometric authentication is performed, and subsequently discuss
what attacks and mitigations are possible, we need to formally present the two main phases that
compose a privacy-preserving BAS. Figure 1 depicts the authentication phase for a distributed
architecture [4, 20], i.e., where every entity involved in the authentication process performs only a
single task. More precisely, by adopting a distributed architecture in the biometric authentication
process (e.g., computational server (CS), authentication server AS, database DB), it is possible
to limit the amount of information each entity has at its disposal and thus avoid single point of
failures. Furthermore, a distributed architecture provides higher privacy guarantees since no single
entity has access to all sensitive data (i.e., fresh biometric template, stored biometric template,
user’s identity).

This architecture is adopted as a security countermeasure against internal honest-but-curious
adversaries. In most systems, even if one entity among CS, DB and AS is corrupted, an adversary
(malicious third party) cannot learn anything about the biometric templates unless it behaves
maliciously. In non-distributed architectures the computational server and the authentication
server merge into a single entity, leading to a single point of failure.

The enrolment phase: This phase takes place only once and is performed before the authentica-
tion. A user C (client) registers to a trusted party her biometric template (usually encrypted

in a digital string b̃) along with her identity (possibly a pseudonym ÎD). These two data are
then stored in the database DB of the authentication system. Once enrolled in the system,
the client can authenticate herself an unlimited number of times.

The authentication phase: This phase is depicted in Figure 1. The client provides her fresh
biometric trait (through the sensor S) together with her identity. These two pieces of in-
formation are then elaborated by the sensor, and transmitted to the computational server

CS, as b̃′ (e.g., the encryption of the fresh template) and ÎD (e.g., a pseudonym). The com-

putational server CS queries the database DB for the stored template b̃ linked to ÎD. After
receiving b̃, CS computes the (possibly encrypted) distance d between b′ and b (e.g., d could

be the Euclidean or the Hamming Distance). Let ∆ = d̃(b, b′) be the output that CS sends
to AS. The authentication server uses ∆ to derive the actual distance between b′ and b,
and compares it with τ , the threshold of the system. The threshold τ can be thought as the
accuracy level of the system, indeed, if the templates are close enough (i.e., d(b, b′) < τ), the
user is authenticated, otherwise the user is rejected.
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Figure 1: The authentication phase in a biometric authentication system with a distributed architecture.

In classical authentication systems (i.e., non privacy-preserving), the biometric data is sent

and stored in the clear. In this case, b̃′ = b′, b̃ = b and ĨD = ID. In these systems an eavesdropper
adversary can easily retrieve the biometric templates of any user.

In contrast, privacy-preserving biometric authentication systems aim at protecting the users’
biometric templates against both passive and active adversaries. A common practice is to preserve
the user’s privacy by encrypting the sensitive data. For example, Yasuda et al.’s privacy-preserving
biometric authentication scheme works as follows [36]. The sensor S encrypts the provided fresh

biometric template b′ obtaining b̃′ = Enc(b′) (here the encryption scheme is based on a packing
method for polynomials). For privacy reasons also the reference template b is stored encrypted

as b̃ = Enc(b). The computational server computes ∆, which is the encrypted Hamming Distance
of the two templates, and forwards it to AS. The authentication server decrypts ∆ and checks
whether the distance is less than the predefined threshold τ . In the protocol outlined above, the
biometric templates are always handled in an encrypted way. The only entity in possess of the
decryption key is AS, which never receives an encrypted template, but only encrypted distances.

3 Main Threats against Privacy - Preserving Biometric Au-
thentication Systems

Attacks against privacy-preserving biometric authentication systems aim at learning information
about the user’s biometric trait or identity. What we describe in this section are attack strategies
and goals connected to security and privacy issues that have severe impact in users’ lives, especially
considering the irrevocability of biometrics templates [3]. Below, we list the four main threats that
afflict privacy-preserving biometric authentication systems [34].

1. Biometric sample recovery. In this case, the goal of the adversary is to determine a fresh
biometric template b′ which is accepted by the authentication server. The consequences of
a successful attack are similar to the reference recovery attack, apart from the fact that the
produced matching template may differ from the user’s real one, and so the adversary can re-
cover less information regarding the user’s private information (e.g., physical characteristics,
DNA etc.).

2. Biometric reference recovery. A non-authorised party (usually called the adversary) suc-
ceeds in recovering the (plain-text) reference biometric template b. This is the most harmful
threat since by recovering the reference template the adversary may gain unauthorised access
to any system that uses b as a reference template, and also collect sensitive information about
the user’s physical characteristics and health.

3. User’s traceability. An unauthorised party (e.g., the adversary) is able to trace a user’s
authentication attempts over different applications. Consequences of a successful traceability
attack are cross-matching, profiling and tracking of individuals.

4. User’s distinguishability. The adversary recovers the link between a biometric template
b, or b′, and a user identity ID. Compromising this relation may lead to the disclosure of
more sensitive information and often breaks the anonymity of the system.
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Figure 2: An intuitive example of what the set-covering problem is. The aim is to cover the largest possible area

in the space Z2
10 using 5 circles. On the left hand side, the centres of the circles are chosen at random (the covered

area is less than 70%), whilst on the right hand side, we provide a better covering of the space (the covered area is

about 85%). Finding the optimal covering corresponds to solving an NP-had problem for large dimensions of the

space.

3.1 Biometric sample recovery attacks

Biometric sample recovery attacks are performed in two main ways: via template spoofing (e.g.,
extracting the fingerprint left on a glass) or via brute-force techniques. The most common way
to bypass a BAS is by using a spoof of a biometric trait. A spoof refers to a fake or an artificial
biometric template that does not correspond to a live person. These include for instance, gummy
fingers, residual fingerprint impressions of legitimate users, photographs of legitimate users or voice
recordings of legitimate users. The only alternative to these practical techniques, is to estimate a
valid biometric sample using brute-force strategies. Below, we list the possible brute-force strategies
that could be adopted in recovering a valid biometric template [29]. Luckily, all the approaches
run in exponential time and thus most of the current biometric authentication systems are secure.

In the following, we assume that the adversary can see the result of the authentication process
OutAS at each trial, and that the templates are binary vectors. Binary representation of biomet-
ric traits is not far from reality since this is the case for biometric authentication based on iris
templates [13].

Blind brute-force. The easiest algorithm to find a matching template from scratch is the blind
brute-force. In this case, the attacker picks biometric traits at random. This corresponds to
randomly selecting and trying biometric templates from the available space (i.e., b′ ←R Zn

q )
until one template gets accepted by the system.

Set-Covering. This attack strategy represents the optimal brute-force solution: pick a random
trial template from the set of potential candidates (which at the beginning is the whole
space Zn

q ). If the trial template is rejected, remove from C all the points that are within
τ distance from it, and pick another point at random from the updated set C. Although
this method possibly eliminates from C some of the matching points (if the trial templates
are picked with a distance of 2τ one from the other) if such an algorithm exists and was
efficient, it would be exponentially fast in finding a matching template. Such an algorithm
could also be used to solve the set-covering problem, which is known to be NP-Hard [11].
An intuition of this geometrical challenge is given in Figure 2. The points on the plane are
biometric templates, the trial samplings are the centres of the green circles. The green circles
delimit the acceptance region around the tried point and have radius equal the threshold τ
of the system. Greedy approximations to the optimal solution of the set-covering problem
are reachable in an efficient way, in which case the number of trials the adversary needs to
perform is only a factor of O(τ ln(n+ 1)) more than the optimal cover.
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3.2 A biometric reference recovery attack

The most successful strategy to perform a biometric reference recovery attack is to use a hill-
climbing technique [34] to perform a centre search attack [34]. The attack can be launched under
three conditions [1, 2, 29]:

1. The adversary is in possess of a matching template (maybe spoofed) for the target biometric
reference.

2. The adversary is able to see the output of the authentication process (OutAS). For instance,
this information could be in an access control system a door that is opening.

3. The matching process between a fresh and a stored template relies on specific distances,
called leaking distances, which include the Euclidean and the Hamming Distance.

Figure 3 provides an intuition of the attack strategy. In the example (Figure 3) the stored
reference template is the point b = (6, 3) and the given matching b′ is in the point (6, 4). The
matching templates are the points in the region delimited by the green circle. The adversary
starts from the first component of the given matching template, the point (6, 4), and increments it
repeatedly by a factor 1. When rejected, on the point (9, 4) denoted by the red bullet with a white
cross, the attacker learns that the previous point is the last one inside the acceptance circle. The
same strategy is repeated starting from the point b′ and decreasing (by a factor 1 each time) the
first component until rejection, and for the other component of the template. After discovering
the coordinates of the four boundary points in the acceptance circle, the attacker can compute the
coordinates of its centre, i.e., find the digital representation of the biometric reference template.
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Figure 3: Example of a recovery template attack for a BAS with biometric traits represented as
vectors in Z2

10 and with threshold τ = 2. The values are chosen ad hoc to be able to picture the
example in an easy and intuitive way and do not reflect the parameters used in real applications
(usually, q is smaller than n and n� τ is in the order of 2048).

This reference recovery attack is very efficient as it only requires a number of authentica-
tion attempts that is linear in the length of the biometric template [29]. Moreover, it can be
mounted against many biometric authentication systems (privacy-preserving or not), and even
systems that employ secure multi-party computation techniques including somewhat homomor-
phic encryption [2].

Another, strategy to perform biometric reference recovery attacks is to gain access to the
database and try to decrypt the target template. This approach, however, is way less successful
since normally the employed cryptographic techniques used to protect the templates’ privacy are
proven to be secure.
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3.3 User Traceability and Distinguishability

Generally speaking, attacks against the user’s privacy (in the sense of traceability and distin-
guishability) do not aim at gathering information about the user’s biometric credential in itself,
but rather at profiling and identifying the target user among all the users of one or more biometric
systems.

The main attack strategy to trace users in privacy-preserving BAS is the following. The attacker
gets access to different databases (possibly in use by different biometric authentication systems)
and successfully traces a user’s authentication attempts, by checking which record of the database
is queried (as match for the authentication). Note that the above approach does not require the
attacker to know the user’s credential, as long as the databases store the biometric credentials in
the same way (i.e., using the same encryption mechanism and the same secret key). Luckily, in
real life, this is a very strong assumption which happens only seldomly [34].

In simple words, user distinguishability can be considered as user tracing over different au-
thentication attempts in the same or different authentication systems. That is, the attacker can
recognise the target user among the other users present in the the biometric authentication sys-
tem. This attack is always successful if the attacker learns the mapping from the set of identities
to the set of (encrypted) templates. In other words, an attacker can distinguish users if he learns
that to a certain identity ID corresponds a certain (possibly encrypted) template b. A solution
would be to keep the mapping ID 7→ b secret, or to use a (secure) pseudo-random mapping. An-
other possibility is to ensure that the communication channels between the entities involved in the
BAS are secure, or that the information transmitted is encrypted using chosen plaintext attacks
(CPA)-secure systems.

We present more detailed explanations of methods to achieve user privacy in biometric authen-
tication in the next section.

4 Challenges & Countermeasures

The main question that one needs to address when designing a privacy-preserving biometric au-
thentication protocol is: How to guarantee privacy-preservation without downgrading the accuracy
of a biometric authentication system?
Among the most challenging problems in designing efficient and privacy-preserving biometric au-
thentication systems there are: (1) the resistance to impersonation attacks; (2) the irrevocability of
biometric templates; and (3) guaranteeing that personal information remains private. In the follow-
ing, we provide a list of methods that have been used to achieve privacy-preserving authentication,
and we highlight the main advantages and disadvantages of each approach.

4.1 Biometric template protection

Most existing privacy-preserving biometric authentication approaches focus on storing and trans-
mitting a modified version of the original biometric templates in order to avoid the danger of
eavesdropping sensitive data or the case of compromised databases. One direction in order to com-
bat the privacy issues associated with biometric authentication, is the employment of biometric
template protection schemes such as cancellable biometrics and biohashing. Example of cancellable
fingerprints were proposed by Ang and McAven [3], while Kanade and Dorizzi [26] proposed can-
cellable iris biometrics. Different biohashing schemes are presented in [33]. Although biohashing
offers low error rates while guaranteeing a quick authentication phase, biohashing schemes are
vulnerable to several attacks [27, 28].

4.2 Cryptographic Primitives

The direct employment of cryptographic primitives seems the most robust approach so far to
tackle the challenging problem of privacy-preservation. Most of the state-of-the-art cryptographic
protocols, however, were not designed taking into consideration the inherent variability of biometric
data. In fact, cryptography tends to amplify small differences and it is not error-tolerant (e.g.,
hashing, AES, RSA). The main cryptographic tools used to to combat the leakage of private
information during biometric authentication are: secure multi-party computation (SMPC) [36],
Verifiable Computation (VC) and Bloom Filters (see Box 2).
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Secure Multiparty Computation in Biometric Authentication

Cryptographic primitives that are often employed in SMPC include: Homomorphic Encryption,
Obvilious Transfer and Garbled Circuits, which will be presented shortly, and are often combined
to obtain privacy-preserving BAS [18]. From a theoretical point of view, SMPC techniques allow
to maximise the utility of information without compromising the user privacy. A more formal
intuition on how SMPC works is given in Box 1.

Box 1: The general setting for SMPC is the following. The system is made up of N entities
p1, p2, . . . , pN that jointly compute some public function f based on some individually secret
data d1, d2, . . . , dN , without revealing their private inputs to one another. In other words, SMPC
allows the interactive computation among multiple parties in such a way that at the end of the
process no participant pi can learn more from f and the result D = f(d1, d2, . . . , dN ), than what
pi could learn from her own secret data di, i = 1, 2, . . . , N . It is easy to see that SMPC can be
very useful in privacy-preserving biometric authentication especially in the distributed scenario,
where multiple entities are involved in the authentication process [4] (e.g., a database DB, an
authentication server AS and a matcher CS). In this case, the function f could be the distance
between the fresh and the stored biometric template and the goal would be to guarantee the
secrecy of the biometric templates (fresh and stored).

It is understood that SMPC is an incredibly useful tool for the design of privacy-preserving bio-
metric authentication protocols. Multiple existing schemes, indeed, rely on SMPC [4, 20].

Homomorphic encryption (HE) is perhaps the most suitable cryptographic primitive (inside
the SMPC framework) that can be successfully employed for privacy-preserving biometric authen-
tication [5, 36]. Homomorphic encryption can be applied in a bit-by-bit mode making it possible
to perform the matching process in the encrypted domain directly [36]. More formally, HE al-
lows to translate operations on the encrypted data (ciphertext) to some useful operations on the
corresponding plaintexts. In formulas:

Enck(m1) ◦ Enck(m2) = Enck(m1 ×m2),

where m1, m2 are plaintext messages, and Enck corresponds to an homomorphic encryption func-
tion under a public key k. If we consider that m1 = b′ is the fresh template of a user ID and
m2 = b is the stored template of the same user, then homomorphic encryption gives us the possi-
bility to perform operations on the encrypted templates and compute the distance (e.g., Hamming
distance) between them. While HE protects biometric templates from user traceability attacks1, it
does not directly protect from other privacy attacks. For instance, Abidin et al. [2] exploit exactly
the homomorphic property to show that the claimed privacy-preserving BAS in [36] is actually
vulnerable to the biometric template attack. Another limitation to the employment of HE schemes
is their computational cost, and limitations on the number of multiplications that can be per-
formed between ciphertexts. Nevertheless, some recently-proposed schemes [12, 19] show promise
regarding the efficiency of HE.

Oblivious transfer (OT) (1-out-of-N) [31] enables one party the sender S to send one element
out of N , to a receiver R in such a way that the sender does not know which element is received
by R. Furthermore, R does not find out anything about the other N − 1 elements. If we consider
the elements to be the stored (encrypted) biometric templates, we see that OT essentially allows
one to search in the database, without revealing which item (i.e., biometric template) is selected
for the matching process. This is a very useful tool for privacy-preservation, and assures perfect
resistance against user traceability and distiguishability [20, 9]. Similarly to HE, however, OT alone
cannot prevent some template recovery attacks, since the best known strategy are based solely on
the value returned by the BAS (essentially the acceptance/rejection message) which is not affected
by the OT technique.

Garbled circuits are a cryptographic technique that enables two parties to compute a function
(represented as a binary circuit) and learn only the output of the function and nothing else (e.g., the
other party’s input) [35]. This approach combines OT and SMPC between two entities, and thus
is quite relevant for achieving a privacy-preserving matching process in biometric authentication.
Up to now, garbled circuits constitute the most promising cryptographic tool to prevent template
recovery attacks. A detailed description of OT and garbled circuits in BAS can be found in [10].

1HE prevents user traceability given that different databases store different/independent encryptions of the same
reference template.
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Verifiable Computation in Biometric Authentication

Verifiable Computation (VC) techniques enable a client to outsource computations to a remote
server in a secure way. After performing the calculations, the server returns to the client the
result together with a proof asserting the correctness of the returned result (for the outsourced
computation). The client only needs to check the proof to convince itself of the correctness of
the returned output. At first it might appear that VC has little or no connections to biometric
authentication, however the linking point lies in the need for outsourcing the matching process
to a third party (e.g., the computational server in the distributed architecture depicted in Figure
1). Incorporating VC in a BAS in a secure way, allows to speed-up the matching process, without
introducing additional privacy leakage e.g., it is harder to perform centre search attacks. Recently,
Bringer et al. [8] showed how to apply the recent advances in verifiable computing to the main
algorithms for biometric matching.

Box 2: Bloom Filters in Biometric Authentication. This method is the main alternative to
the employment of leaking distances [6, 32]. Intuitively, a Bloom filter FA is an N -bit string
which represents a set A ⊆ D (e.g., A the acceptance area, and D is the space of all biometric
templates). The encoding of A into FA is done using k independent hash functions h1, h2, . . . , hk :
D → [0, N − 1] in the following way. For each element b ∈ A, and for each 1 ≤ i ≤ k, the bits
at positions hi(b) of the Bloom filter FA are set to 1 (the other bits are set to 0). To test if
an element b′ is in A using the bloom filter, it is sufficient to check whether the bits of FA at
positions hi(b

′) are equal to 1, for all 1 ≤ i ≤ k. If this is the case, one can deduce that b′ is in
A with high probability, otherwise it holds b′ /∈ A. It is immediate to see that the employment
of Bloom filters in the matching process directly mitigates any centre-search attack for template
recovery.

4.3 Error Correcting based methods

The use of error correction codes is an attractive mitigation to the inherently noisy nature of
biometric traits. Error correction, indeed, would automatically decode small perturbation of a
template into the template itself, solving the problem of noisy data. In this way, the systems
can get error-free biometric templates and thus successfully use cryptographic primitives that will
not affect the matching biometric process. This is for instance the case for the fuzzy commitment
scheme described by Juels and Wattenberg in [25]. The biometric template is used as a witness
to commit to a secret codeword c. As long as the fresh witness provided by the client is close to
the used one, it will correct to the same codeword c. The decoded codeword will then be used in
the commitment scheme. Typically the witness is used as a key for the encryption/decryption and
the user authentication. Such systems could handle efficiently the noisy nature of biometrics and
subsequently cryptographic primitives (hashing and/or encryption) could be employed. From a
theoretical point of view, these schemes are secure against biometric reference and sample template
attacks. In order to recover either the biometric template or the key, an attacker should indeed
know the user’s biometric data. However, given that the biometric templates are not uniformly
random, and practical error correcting codes do not have high correction capability, the theoretical
security is not achievable in practice. It has been shown, indeed, that fuzzy commitment schemes
leak private information [22].

4.4 Other non-cryptographic Approaches

Given that OT is a well-established countermeasure against user traceability and distinguishablility
attacks, most non-cryptographic tools for privacy-preserving BAS focus to combat template and
sample recovery attacks.

For instance, [29] suggests to combat centre search attacks by using weighted distances to
compare the fresh template with the stored one, and to keep the weights secret and different for
each user. This procedure is adopted by the biometric authentication protocols that employ the
normalised Hamming distance [15] or the weighted Euclidean distance [38]. Even though the centre
search attack might still be feasible also in these scenarios, it will only lead to the recovery of a
subset of the components of the stored biometric template.

Another alternative is to generalise the comparison process to include multiple distances. More
precisely, if the matching process relies on such a mechanism that, at each authentication attempt,
a distance is randomly selected from a pre-defined set of distances. Thus, the attacker could not
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gain any information about the stored template without knowing first which distance has been
used.

Similarly, changing the value of the threshold τ used for the matching process at each authen-
tication attempt, renders harder the implementation of the centre search attack. However, such
approaches may have a negative impact on the accuracy of the biometric authentication and may
increase the false acceptance and/or false rejection rates.

Finally, one could consider to combine Differential Privacy (DP) [17, 16] with biometric authen-
tication, in order to achieve privacy preservation. Intuitively, DP allows users to query a database
and receive noisy answers, so that no information in leaked about the data stored in the database.
Although this combination of DP with biometric authentication could possibly give an end to tem-
plate recovery attacks (i.e., centre search attacks), it could also have an impact on the accuracy
of the authentication process and thus, a more detailed analysis of the achieved utility (accuracy)
and privacy-preservation needs to be performed.

5 Conclusions

This article discusses challenges in biometric authentication, with a particular focus on privacy-
preserving ones. We highlight the main advantages of biometric authentication as well as the risks
that it brings along. We then list the most dangerous threats against privacy-preserving BAS and
discuss possible attack strategies to undermine the privacy of a BAS. Finally, we identify possible
directions to mitigate the highlighted threats, providing both the advantages and the disadvantages
of the proposed methods. The practicality of privacy-preserving biometric authentication systems
is by itself a great motivation for finding solutions to the security and privacy challenges connected
to the employment of biometrics in authentication systems.
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