
Four Round Secure Computation without Setup

Zvika Brakerski∗

Weizmann Institute of Science
Shai Halevi†

IBM
Antigoni Polychroniadou‡

Cornell Tech

Abstract

We construct a 4-round multi-party computation protocol for any functional-
ity, which is secure against a malicious adversary. Our protocol relies on the sub-
exponential hardness of the Learning with Errors (LWE) problem with polynomial
noise ratio, and on the existence of adaptively secure commitments. Our round com-
plexity matches a lower bound of Garg et al. (EUROCRYPT ’16), and outperforms
the state of the art of 6-rounds based on similar assumptions to ours, and 5-rounds
relying on indistinguishability obfuscation.

Our construction takes after the multi-key FHE approach of Mukherjee-Wichs (EU-
ROCRYPT ’16) who constructed a 2-round semi-malicious protocol from LWE in the
common random string (CRS) model. We show how to use a preliminary round of
communication to replace the CRS, thus achieving 3-round semi-malicious security
without setup. Adaptive commitments and zero-knowledge proofs are then used to
compile the protocol into the fully malicious setting.

∗Supported by the Israel Science Foundation (Grant No. 468/14), Alon Young Faculty Fellowship and
Binational Science Foundation (Grant No. 712307).
†Supported by the Defense Advanced Research Projects Agency (DARPA) and Army Research Of-

fice(ARO) under Contract No. W911NF-15-C-0236.
‡Supported by the National Science Foundation under Grant No. 1617676, IBM under Agreement

4915013672, the Packard Foundation under Grant 2015-63124, and the Danish National Research Foun-
dation and the National Science Foundation of China (under the grant 61361136003) for the Sino-Danish
Center for the Theory of Interactive Computation. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
sponsors.

1

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Overview of our Protocol . 3
1.3 A Tale of Malleability and Extraction . 5
1.4 The Resulting Protocol . 7

2 Multi-Key FHE from “Dual” GSW 8
2.1 Multi-Key FHE . 8

2.1.1 A “Dual” LWE-Based Multi-Key FHE 10
2.1.2 Our Interactive Setup Procedure and its Security 12
2.1.3 An ILWE-Hard Protocol Under LWE 13

2.2 A Detour: The Need for Dual GSW . 14

3 Other Preliminiaries 15
3.1 Commitment Schemes . 15
3.2 Interactive Proofs . 16
3.3 Zero-Knowledge . 16
3.4 Witness Indistinguishability . 17
3.5 Proofs (Arguments) of Knowledge . 18
3.6 Feige-Shamir ZK Proof Systems . 19

4 Multi-Party Computation Protocol 20
4.1 Proof of Security . 20

4.1.1 Description of the Simulator . 21
4.1.2 Proof of Indistinguishability . 23

A Secure Computation Definitions 33

1 Introduction

Secure Multi-party Computation (MPC) [Yao82, Yao86, GMW87] allows mutually suspi-
cious parties to evaluate a function on their joint private inputs without revealing these
inputs to each other. One particularly fruitful line of investigation is concerned with the
round complexity of these protocols, more specifically how many rounds of broadcast are
needed.

There are many variants of this question, depending on the exact model. In particular,
the availability (or lack thereof) of a Common Reference String (CRS) plays an important
role in the study of round complexity. It is known that at least two rounds of interaction
are necessary even if such trusted CRS is available (e.g., [HLP11]), and several works in
the literature construct optimal (two) round secure computation protocols both in the
two-party and multi-party settings (see Section 1.1 for related works).

In the plain model without trusted setup, Katz and Ostrovsky [KO04] proved that
five rounds are necessary and sufficient for secure computation in the two-party setting
where both parties rceive output. In the multi-party setting, it is long known that con-
stant round protocols are possible [BMR90, KOS03, Pas04, DI05, DI06, IPS08, PPV08,
Wee10, Goy11, LP11a, GLOV12], however there is no known round optimal multi-party
computation protocol.

In a recent work by Garg et al. [GMPP16], it is shown that when simultaneous messages
are allowed, then the Katz-Ostrovsky lower bound drops to only four rounds (for either
two or many parties). In terms of constructions, [GMPP16] show how to transform any
t-round (parallel) non-malleable commitment into a max(4, t + 1)-round protocol for the
specific coin-flipping functionality in the multi-party setting. Instantiating this protocol
with the non-malleable commitments from [PPV08, COSV16], Garg et al. obtained a
four round protocol for the multi-party coin-flipping functionality. Relying on this coin-
flipping protocol they showed how to transform the two-round multi-party protocol for
general functionalities of Garg et al. [GGHR14] based on indistinguishability Obfuscation
(iO) [GGH+13] in the CRS model to a five-round protocol in the plain model, and the
two-round LWE-based protocol of Mukherjee and Wichs [MW16] to a six-round protocol.

A lot of work has been done on the round complexity of non-malleable commitments
as well. However, the only candidates for parallel non-malleable commitments that run
in less than four rounds are constructed in the works of [PPV08, COSV16]. The two
round parallel non-malleable commitment of [PPV08] is based on adaptive pseudorandom
generators (PRGs) and the three round non-malleable commitment of [COSV16] is based
on one-way permutations with sub-exponential security.

Even under very strong assumptions, prior works leave the following fundamental ques-
tion open:

Can we obtain round-optimal multi-party computation protocols in the plain
model (without setup)?

1

We answer the above question in the affirmative, obtaining a round-optimal multi-party
computation protocol in the plain model for general functionalities in the presence of a ma-
licious adversary. Our starting point is the observation that we can replace the four-round
coin-tossing from [GMPP16] by an extremely simple single round protocol. That protocol
yeilds a common somewhat-random string, which is much weaker than a truly random
string but still “good enough for LWE”. This lets us run (a variant of) the Mukherjee-
Wichs protocol [MW16], yeilding a three-round protocol with “semi-malicious” security,
under the LWE assumption.

To get security in the malicious adversary model, we rely on other strong assumptions.
In particular, we use the two-round adaptively secure commitment scheme of Pandey,
Pass and Vaikuntanathan [PPV08] (which is just Naor’s protocol from [Nao91], when
instantiated with adaptive PRGs). Moreover, we need a sub-exponential version of the
LWE assumption. Hence, we prove the following:

Theorem 1. (Informal) Assuming the existence of adaptive commitments, as well as the
sub-exponential hardness of Learning-with-Errors, there exists a four-round protocol that
securely realizes any multi-party functionality against a malicious adversary in the plain
model without setup.

1.1 Related Work

Related work in the CRS model. The works of Jarecki and Shmatikov [JS07] and
Horvitz and Katz [HK07] present two-party protocols where the former is constant-round
and the latter is optimal (two)-round. Asharov et al. [AJL+12] first show a three-round
multi-party computation protocol in the CRS model and a two-round multi-party compu-
tation protocol in the reusable PKI model, under LWE, by constructing threshold FHE
schemes (based on the FHE schemes from [BV11, BGV12]). The works of [BD10, MSS11]
also present threshold FHE schemes but their protocols required more than two rounds
of interaction. The work of Garg et al. [GGHR14] gives a two-round multi-party proto-
col under strong assumptions, namely, the existence of indistinguishability obfuscation for
polynomial circuits and statistically-sound NIZKs.

More recently, the work of [MW16], and its extensions [BP16, PS16], based on multi-
key FHE [LTV12, CM15], shows how to obtain optimal 2-round constructions based on
LWE and NIZKs in the CRS model.

Related work in the plain model. For the computational setting and the special case
of two party computation, the semi-honest secure protocol of Yao [Yao82, Yao86, LP11b]
consists of only three rounds (see Section 3). An alternative approach using randomized
polynomials was also given by [IK00, AIK05]. For malicious security, the first constant
round protocol based on GMW was presented by Lindell [Lin01]. The work of [IPS08]
presented a different approach which also results in a constant round protocol.

2

The exact round complexity of two party computation was studied in the work of
Katz and Ostrovsky [KO04] who provided a 5 round protocol for computing any two-party
functionality. They also ruled out the possibility of a four round protocol for coin-flipping,
thus completely resolving the case of two party. Recently [ORS15] constructed a 5-round
protocol for the general two-party computation by only relying on black-box usage of the
underlying assumptions.

For the multi-party setting, the exact round complexity has remained open for a long
time. The work of [BMR90] gave the first constant-round non black-box protocol for
honest majority (improved by the black-box protocols of [DI05, DI06]). Katz, Ostro-
vsky, and Smith [KOS03] constructed logarithmic-round protocols for any multi-party
functionality for the dishonest majority case based on polynomial-time assumptions and
constant round protocols based on exponential-time assumptions. Pass [Pas04] constructed
a constant-round protocol based on polynomial-time assumption. The constant-round pro-
tocols of [KOS03, Pas04] relied on non-black-box use of the adversary’s algorithm [Bar01].
Constant-round protocols making black-box use of the adversary were constructed by
[PPV08, LP11a, Goy11], and making black-box use of one-way functions by Wee in ω(1)
rounds [Wee10] and by Goyal in constant rounds [Goy11]. Furthermore, based on the non-
malleable commitment scheme of [Goy11], the work of [GLOV12] constructs a constant-
round multi-party coin-tossing protocol.

The recent work of [GMPP16] examined the exact round complexity of secure com-
putation in the multi-party setting and proved a lower bound of four rounds for general
functionalities. They also constructed six-round protocols based on LWE and adaptive
PRGs and five-round protocols based on iO and adaptive PRGs.

1.2 Overview of our Protocol

The starting point for the current work is the observation that the Mukherjee-Wichs pro-
tocol in [MW16] does not seem to need the full power of the common-random string. The
Mukherjee-Wichs protocol uses a multi-key homomorphic encryption based on GSW en-
cryption [GSW13]. In that scheme, all parties must share the same matrix A before they
can generate their encryption keys, and semantic security relies on A being random. The
six-round protocol of Garg et al. [GMPP16] therefore spends four rounds on a coin-tossing
protocol to generate the matrix A, and then two more rounds running the Mukherjee-Wichs
protocol.

We begin by asking whether we can get semantic security of the encryption even when
A is not completely random. For example, imagine coosing the bits of A using a defective
coin-tossing protocol with a small constant bias. It is plausible that (a) such protocol can
take less than four rounds, and (b) such a biased matrix A is still good enough to serve as
the public matrix for LWE. This may give us a less-than-six-round protocol based on LWE.
Our eventual protocol does not exactly follow this route, but the “philosophy” underlying
it is the same.

3

To get a four-round protocol that build on the two-round Mukherjee-Wichs protocol,
we must choose the public matrix A within the first two rounds. And although two rounds
are not enough for coin tossing, they may still give us a “sufficiently random” public matrix
A that we can use for LWE. In fact, we show that we can use a one-round protocol to get
such a matrix A, which is good enough for (a variant of) the two-round Mukherjee-Wichs
protocol.

A variant of the Mukherjee-Wichs protocol. The Mukherjee-Wichs protocol uses
the multi-key FHE scheme of Clear and McGoldrick [CM15, MW16], which is based on
GSW encryption [GSW13]: The scheme uses a public random matrix A ∈ Z(n−1)×m (with
m� n), each party i chooses a random vector si ∈ Zn−1

q and a short vector ei ∈ Zmq , then

computing bi = ei − siA and setting its public key as BT
i = (AT |bTi) and its secret key as

ti = (si, 1) (all modulo some modulus q).
In our protocol, we simply let each party choose some of the entries in the matrix A. We

then want to argue that the resulting encryption scheme remains secure under LWE, even
though some of the entries of A are chosen by the adversary. As we explain in Section 2.2,
however, this is not quite true for the Mukherjee-Wichs protocol as is. Roughly, the reason
is that the vector ei − siA may leak too much information about si if A is (partially)
adversarial.

Fortunately, this turns out to be easy to fix: All we need to do is “flip the dimensions”,
making the secret key and m-vector and the public key an m-by-n matrix. This way, the
secret key si is much longer, and we can appeal to the leakage-resilience of LWE-based
encryption to argue that the underlying encryption scheme remains secure even given the
leakage siA. Making this flipped scheme works requires tweaking the ciphertext dimensions
and the magnitude of noise, as we explain in Section 2.1.1. But the algebraic expressions
from [CM15, MW16] (and hence the properties of the multi-key FHE scheme) remain
essentially unchanged.

A skeleton protocol. We use our one-round protocol for choosing A to replace the
expensive preamble coin-flipping protocol of Garg et al., thus obtaining a skeleton protocol
with only three rounds, as follows:

Round 1: CRS. Every player Pi broadcasts a single message αi, and the collection of
αi’s defines the public matrix A needed for (our variant of) the Clear-McGoldrick
multi-key FHE scheme [CM15, MW16].

Round 2: Encryption. Each party generates a public/secret key-pair for the multi-key
FHE, encrypts its input under these keys, and broadcasts the public key and cipher-
text.

Round 3: Decryption. Each party separately evaluates the function on the encrypted
inputs, then use its secret key to compute a decryption share of the resulting evaluated

4

ciphertext and finally broadcasts that share to everyone.

Epilogue: Output. Once all the decryption shares are received, each party can combine
them to get the function value, which is the output of the protocol.

This skeleton protocol can be shows to be secure in the semi-malicious adversary model,
but it is clearly insecure in the presence of a malicious adversary. Although the protocol
can tolerate adversarial choice of the first-round messages αi, the adversary can still violate
privacy by sending invalid ciphertexts in Round 2 and observing the partial decryption that
the honest players send in the next round. It can also violate correctness by sending the
wrong decryption shares in the last round.

These two attacks can be countered by having the parties prove that they behaved
correctly, namely that the public keys and ciphertexts in Round 2 were generated honestly,
and that the decryption shares in Round 3 were obtained by faithful decryption. To be
effective we need the proof of honest encryption to complete before the parties send their
decryption shares (and of course the proof of honest decryption must be completed before
the output phase can be produced). Hence, if we have a k-round proof of honest encryption
(and a (k+1)-round proof of honest decryption) then we get a (k+1)-round protocol overall.
Much of the technical difficulties in the current work are related to using 3-round proofs
of honest encryptions, resulting in a 4-round protocol.

1.3 A Tale of Malleability and Extraction

To get a provable protocol, we must exhibit a simulator that can somehow extract the
inputs of the adversary, so that it can send these inputs to the trusted party in order to get
the function output. To that end we make the three-round proof of honest encryption a
Proof of Knowledge (POK), and let the simulator use the knowledge extractor to get these
adversarial inputs.

At the same time, we must ensure that this proof of knowledge is non-malleable, so
that the extracted adversarial inputs do not change between the real protocol (in which the
honest parties prove knowledge of their true input) and the simulated protocol (in which
the simulator generates proofs for the honest players without knowing their true inputs).
A few subtle technicalities are discussed below.

Two-round commitment with straight-line extraction. The main technical tool
that we use in our proofs is the two-round aCom commitment of Pandey et al. [PPV08]
(i.e., Naor’s scheme [Nao91] with adaptive PRGs), that the parties use to commit to their
inputs and randomness. Commitments in this scheme are marked by tags, and the scheme
has the remarkable property of adaptive security : Namely, commitments with one tag
are secure even in the presence of an oracle that breaks commitments for all other tags.
Some hybrid games in our proof of security are therefore staged in a mental-experiment
game where such a breaking oracle exists, providing us with straight-line (rewinding-free)

5

extraction of the values that the adversary commits to, while keeping the honest-party
commitments secret.

However, we also need our other primitives (MFHE, POK, etc.) to remain secure
in the presence of a breaking oracle, and we use complexity leveraging for that purpose:
We assume that these primitives are sub-exponentially secure, and set their parameters
much larger that those of the commitment scheme. This way, all these primitives remain
secure even against sub-exponential time adversaries that can break the commitment by
brute force. When arguing the indistinguishability of two hybrids, we reduce to the sub-
exponential security of these primitives and use brute force to implement the breaking
oracle in those hybrids.1

Delayed-input proofs. In the three-round proofs for honest encryption and in the four-
round proofs for honest decryption, the statement to be proved is not defined until just
before the last round of the protocols. We therefore need to use delayed-input proofs that
can handle this case.

Fake proofs via Feige-Shamir. The simulator needs to fake the four-round proof of
honest decryption on behalf of the honest parties, as it derives their decryption shares
from the function output that it gets from the trusted party. For this purpose we use a
Feige-Shamir-type four-round proof [FS90], which has a trapdoor that we extract and let
us fake these proofs.

WI-POK with a trapdoor. Some steps in our proof have hybrid games in which the
commitment contains the honest parties’ true inputs while the encryption contains zeros. In
such hybrids, the statement that the values committed to are consistent with the encryption
is not true, so we need to fake that three-round proof as well.

For that purpose we use another Feige-Shamir-type trapdoor: Each party chooses a
random string R, encloses R̂ = f(R) with its first-flow message, encloses R inside the
commitment aCom (together with its input and randomness) and adds the statement R̂ =
f(R) to the list of things that it proves in the three-round POK protocol.

In addition, the parties execute a second commitment protocol bCom (which is normally
used to commit to zero in the real protocol), and we modify the POK statement to say that
either the original statement is true, or the value committed in that second commitment
bCom is a pre-image of the R̂ value sent by the verifier in the first round. Letting the
POK protocol be witness-indistinguishable (WI-POK), we then extract the R value from
the adversary (in some hybrids), let the challenger commit to that value in the second
commitment aCom, and use it as a trapdoor to fake the proof in the POK protocol.

1Technically we “only” need to assume standard security in a world with such a breaking oracle, which
is a weaker assumption than full sub-exponential security.

6

We note that the second commitment bCom need not be non-malleable or adaptive, but
it does need to remain secure in the presence of a breaking oracle for the first commitment.
Since we already assume a 2-round adaptive commitment aCom, then we use the same
scheme also for this second commitment, and appeal to its adaptive security to argue that
the second commitment remains secure in the presence of a breaking oracle for the first
commitment.

Public-coin proofs. In the multi-party setting, the adversary may choose to fail the
proofs with some honest parties and succeed with others. We thus need to specify what
honest parties do in case one of the proofs fail. The easiest solution is to use public-coin
proofs with perfect completeness, and have the parties broadcast their proofs and verify
them all (not only the ones where they chose the challenge). This way we ensure that if
one honest party fails the proof, then all of them do.

We comment that this is not quite needed, and we could get security even if some
honest parties abort while others do not. However, the argument is a little more subtle,
and we forgo this direction in the current preliminary report.

1.4 The Resulting Protocol

As mentioned above, our protocol start from using a multi-key homomorphic encryption
scheme and a one-round protocol for its setup, it also uses two-round adaptive commitments
aCom = (acom1, acom2) and bCom = (bcom1, bcom2), a three-round WIPOK protocol
ΠWIPOK = (p1, p2, p3) and a four-round ZK argument of knowledge ΠFS = (fs1, fs2, fs3, fs4).
In the following, we provide a sketch of our protocol.

Round 1: CRS, commitment & proof. Every party i broadcasts its message αi for
the one-round protocol for choosing the public matrix A. It also broadcasts the first
message acom1 of the adaptive commitment for its randomness and input, the first
message p1 of a public-coin WI-POK for a proof of the committed values (includ-
ing honest encryption), and the first message fs1 of a public-coin proof of honest
decryption.

Round 2: another commitment. Each party broadcasts messages (acom2, p2, fs2). In
addition it broadcasts the first commitment message bcom1 (which will be used to
commit to zero).

Round 3: Encryption & proofs. The parties collects all the first round messages αi
and use them to compute the common matrix A. Then each party runs the key-
generation and encryption procedures of the multi-key FHE, and broadcasts its public
key and encrypted input. In the same round, each party also broadcasts messages
(bcom2, p3, fs3).

7

Round 4: Verification & decryption. Each party runs the verifier algorithm for the
ΠWIPOK proof of honest encryption, verifying all the instances (not just those where
it played the verifier in previous rounds). If all of them passed then it evaluates the
function on the encrypted inputs, then use its secret key to compute a decryption
share of the resulting evaluated ciphertext, and broadcasts that share to everyone.
It also broadcasts the message fs4 of the proof of honest decryption.

Epilogue: Verification & Output. Once all the decryption shares and proofs are re-
ceived, each party runs the verifier algorithm for the ΠFS proof of honest decryption,
again verifying all the instances. If all of them passed then it combines all the de-
cryption shares to get the function value, which is the output of the protocol.

If any of the messages is missing or mal-formed, or if any of the verification algorithms fail,
then the parties are instructed to immediately abort with no output.

2 Multi-Key FHE from “Dual” GSW

Notation. We denote the security parameter by κ. A function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) .

We use the abbreviation PPT to denote probabilistic polynomial-time. We often use [n]
to denote the set {1, ..., n}. d ← D denotes the process sampling d from the distribution
D or, if D is a set, a uniform choice from it. If D1 and D2 are two distributions, then
D1 ≈s D2 denotes that they are statistically close, D1 ≈c D2 denots computationally
indistinguishability, and D1 ≡ D2 denotes identical distributions. For a protocol Π between
two parties Pi and Pj denote by (p1

i,j , . . . , pt
i,j) the view of the messages in all t rounds

where the subscripts (i, j) denote that the first message of the protocol is sent by Pi to Pj .
Likewise, subscripts (j, i) denote that the first message of the protocol is sent by Pj to Pi.

2.1 Multi-Key FHE

An encryption scheme is multi-key homomorphic if it can evaluate circuits on ciphertexts
encrypted under different public keys. To decrypt an evaluated ciphertext, the algorithm
uses the secret keys of all parties whose ciphertexts took part in the computation. In more
detail, a multi-key homomorphic encryption scheme consists of five procedures, MFHE =
(FHE.Setup,MFHE.Keygen,MFHE.Encrypt,MFHE.Decrypt,MFHE.Eval):

• Setup params← FHE.Setup(1κ): On input the security parameter κ the setup algo-
rithm outputs the system parameters params.

• Key Generation (pk, sk)← MFHE.Keygen(params): On input params the key gen-
eration algorithm outputs a public/secret key pair (pk, sk).

8

• Encryption c ← MFHE.Encrypt(pk, µ): On input pk and a plaintext message x ∈
{0, 1}∗ output a “fresh ciphertext” c. (We assume for convenience that the ciphertext
includes in it also the respective public key.)

• Evaluation ĉ := MFHE.Eval(params; C; (c1, . . . , c`)): On input a (description of
a) Boolean circuit C and a sequence of ` fresh ciphertexts (c1, . . . , c`), output an
“evaluated ciphertext” ĉ. (Here we assume that the evaluated ciphertext includes
also all the public keys from the ci’s.)

• Decryption x := MFHE.Decrypt((sk1, . . . , skN), ĉ): On input an evaluated cipher-
text c (with N public keys) and a the corresponding N secret keys (sk1, . . . , skN),
output the message x ∈ {0, 1}∗.

The scheme is correct if for every circuit C on N inputs and any input sequence
x1, . . . , xN for C, if we set params← FHE.Setup(1κ) and then generate N key-pairs and N
ciphertexts (pki, ski) ← MFHE.Keygen(params) and ci ← MFHE.Encrypt(pki, xi), then we
get

MFHE.Decrypt
(
(sk1, . . . , skN),MFHE.Eval(params; C; (c1, . . . , cN))

)
= C(x1, . . . , xN)]

except with negligible probability (in κ) taken over the randomness of all these algorithms.
We typically consider a slightly weaker notion of homomorphism, where the Setup algo-
rithm gets also a depth-bound d and correctness is then defined only relative to circuits of
depth upto d.

Local decryption. A special property of the multi-key FHE schemes from [CM15, MW16]
that we need, is that the decryption procedure consists of a “local” partial-decryption proce-
dure evi ← MFHE.PartDec(ĉ, ski) that only takes one of the secret keys and outputs a partial
decryption share, and a public combination procedure µ ← MFHE.FinDec(ev1, . . . , evN , ĉ)
that takes these partial shares and outputs the plaintext.

Simulated decryption shares. Another property of the schemes from [CM15, MW16]
that we need is the ability to simulate the decryption shares. Specifically, there exists a
PPT simulator ST , that gets for input:
– the evaluated ciphertext ĉ,
– the output plaintext x := MFHE.Decrypt((sk1, . . . , skN), ĉ),
– a subset I ⊂ [N], and all secret keys except the one for I, {skj}j∈[N]\I .
The simulator produces as output simulated partial evaluation decryption shares:
{ẽvi}i∈I ← ST (x, ĉ, I, {skj}j∈[N]\I). We need the simulated share be indistinguishable from
the shares produced by the local partial decryption procedures using the keys {ski}i∈I (even
to a distinguisher that sees all the inputs of ST). We say that a scheme is simulatable if it
has local decryption and a simulator as described here.

Security of multikey FHE. Security is defined as the usual notion of semantic security,
but for our purposes we need a special variant of this notion, since we will be using a
partially adversarial setup, see Section 2.1.2.

9

2.1.1 A “Dual” LWE-Based Multi-Key FHE

For our protocol we use a “dual” of the Clear-McGoldrick multi-key FHE scheme from
[CM15, MW16]. Just like the “primal” version, our scheme uses the GSW FHE scheme
[GSW13], and its security is based on the hardness of LWE.

Recall that the LWE problem is parametrized by integers n,m, q (with m > n log q)
and a a distributions χ over Z that produces whp integers much smaller than q. The LWE
assumption says that given a random matrix A ∈ Zn×mq , the distribution sA + e with
random s ∈ Znq and e← χm is indistinguishable from uniform in Zmq .

For the “dual” GSW scheme below, we use parameters n < m < w < q with m > n log q
and w > m log q, and two error distriubtions χ, χ′ with χ′ producing much larger errors
than χ (but still much smaller than q). Specifically, consider the distribution

χ′′ = {a, b← χm, c← χ′, output 〈a, b〉+ c}.

We need the condition that the statistical distance between χ′ and χ′′ is negligible (in
the security parameter n). This condition holds, for example, if χ, χ′ as discrete Gaussian
distributions around zero with parameters p, p′, respectively, such that p′/p2 is super-
polynomial (in n).

Key generation. In the “dual” GSW scheme that we use, the public key of party i is
matrix Bi ∈ Zm×nq , and the corresponding secret key is a random low-norm vector

ti ∈ Zmq , such that tiBi = 0 (mod q). In more detail, for A ∈ Z(m−1)×n and a

low-norm vector si ← χm−1, we set bi = siA mod q and Bi =

(
A
−bi

)
. Denoting

ti = (si, 1), we indeed have tiBi = 0 (mod q).

Just like in the multi-key scheme from [CM15, MW16], to get a multi-key FHE scheme
from the “dual” GSW acheme above, we will need all the parties to share the same
(m− 1)-by-n matrix A for key-generation.

Encryption. To encrypt a bit µ under the public key Bi, choose a random matrix R ∈
Zn×wq and a low-norm error matrix E ∈ Zm×wq , and set C = BiR+E + µG where G
is a fixed m-by-w “gadget matrix” (whose structure is not important for us here).

For our protocol, we use more error for the last row of the error matrix E than for the

top m−1 rows. Namely, we choose Ê ← χ(m−1)×w and e′ ← χ′w and set E =

(
Ê
e′

)
.

Decryption. Just like in the GSW scheme, the invariant satisfied by ciphertexts in this
scheme is that an encryption of a bit µ relative to secret key ti is a matrix C that
satisfies tC = µ · tG + e (mod q) for a low-norm error matrix E, where G is a fixed
m-by-w “gudget matrix” (cf. [MP12]). This invariant holds for freshly encrypted
ciphertexts since tBi = 0 (mod q), and so

ti(BiR+ E + µG) = µ · tiG+ tiE (mod q),

10

where e = tiE has low norm (as both ti and E have low norm).

To decrypt, the secret-key holder computes u = ti ·C mod q, outputting 1 if the result
is closer to tiG or 0 is the result is closer to 0.

Since ciphertexts satisfy the same invariant as in the original GSW scheme, then the
homomorphic operations in GSW work just as well for this “dual” variant. Similarly the
ciphertext-extension technique from [CM15, MW16] works also for this variant exactly as
it does for the “primal” scheme (see below). Hence we get a multi-key FHE scheme.

The ciphertext-expansion procedure. For the ciphertext-extension technique, recall
that the there exists a low-norm vector u such that Gu = (0, 0, . . . , 0, 1), and therefore for
every secret key t = (s|1) we have tGu = 1 (mod q). It follows that if C is an encryption
of µ wrt secret key t = (s|1), then the vector v = Cu satisfies

〈t, v〉 = tCu = (µtG+ e)u = µtGu+ 〈e, u〉 = µ+ ε (mod q)

where ε is a small integer. In other words, given an encryption of µ wrt t we can construct
a vector v such that 〈t, v〉 ≈ µ (mod q).

Next, let t1 = (s1|1), t2 = (s2|1) be two secret keys with corresponding public keys

B1 =

(
A
−s1A

)
and B2 =

(
A
−s2A

)
, then given these two public keys we can compute

the vector δ = (s1 − s2)A mod q.
Let C = B1R+E +µG be fresh encryption of µ wrt t1, and suppose that we also have

en encryption under t1 of the matrix R. Knowing the vector δ, we can apply homomorphic
operations to the encryptiion of R to get an encryption of the entries of the vector ρ = δR,
and then using the technique above we can compute for every entry ρi a vector xi such
that 〈t1, xi〉 ≈ ρi (mod q). Concatenating all these vectors we get a matrix X such that
t1X ≈ ρ = (s1 − s2)AR (mod q).

Finally, consider the matrix C ′ =

(
C X
0 C

)
, we claim that this is an encryption of the

same plaintext µ under the concatenated secret key t′ = (t1|t2). To see this, notice that

t2C = (s2|1)

((
A
−s1A

)
R+ E + µG

)
≈ (s2 − s1)AR+ µt2G (mod q),

and therefore

t′C ′ = (t1C | t1X + t2C) ≈ (µt1G | (s1 − s2)AR+ (s2 − s1)AR+ µt2G)

= µ(t1G | t2G) = µ(t1|t2)

(
G

G

)
,

as needed. As in the schemes from [CM15, MW16], this technique can be generalized to
extend the ciphertext C into an encryption of the same plaintext µ under the concatenation
of any number of keys.

11

A simulatable scheme. Exactly as for the “primal” case, the decryption shares in
this “dual” scheme are only simulatable when all parties but one are corrupted. But the
(generic) solution of Mukherjee-Wichs [MW16, Thm. 6.5] can be used to make this scheme
simulatable for any adversary structure.

2.1.2 Our Interactive Setup Procedure and its Security

Below we prove that this “dual” GSW scheme provides semantic security not only when
the matrix A is random, but even when it is partially adevrsarial. In our setting, the
public matrix A will be constructed in the first round of the protocol. Namely, every party
broadcasts one message, and then everyone locally computes the (same) matrix A from
all these broadcast messages. Below we formulate the security property that we need in
terms of a generic one-round protocol ΠGenSetup for choosing A, and then describe a specific
protocol that realizes this security property under LWE.

Interactive LWE. Fix the number of parties N , LWE parameters n,m,w, q and error
distributions χ, χ′. Let ΠGenSetup = (Gen1,Gen2) be anN -party, one-broadcast-round proto-
col with no inputs. Namely, first each party i computes a message αi ← Gen1(n,m,w, q,N)
(where Gen1 is a randomized procedure), and broadcasts it to everyone. Upon receipt of
all the boradcast messages αi, each party computes a matrix A ← Gen2(α1, . . . , αN) ∈
Z(n−1)×m
q (where Gen2 is deterministic). Since all the parties see the same αi’s and Gen2

is deterministic, then they all output the same matrix A.
Consider now the experiment of executing the protocol ΠGenSetup in the presence of a

rushing adversary rA that controls all the parties but one, and then using the resulting A
in the dual GSW scheme. Specifically, consider the following experiment:

Experiment ILWE(rA):

• The adversary chooses one party i ∈ [N];

• Party Pi computes αi ← Gen1(n,m,w, q,N);

• The adversary sets all the other messages {αj}j 6=i ← rA(αi);

• Pi computes A ← Gen2(α1, . . . , αN) ∈ Z(m−1)×n
q , then chooses a short secret key

si ← χm−1 and sets bi = siA mod q ∈ Znq .

Pi also chooses a random bit σ ∈ {0, 1} and proceeds as follows:

– If σ = 0 it chooses a uniform random matrix U ∈ Z(m−1)×w
q and a uniform

vector v ∈ Zwq
– If σ = 1 then Pi chooses also encryption randomness R ∈ Zn×wq , Ê ← χ(m−1)×w

and e′ ← χ′w, and sets U = A×R+ Ê mod q and v = bi ×R+ e′ mod q.

12

In either case, Pi sends to the adversary the tripe (bi, U, v).

• The adversary outputs a guess σ′ for the value of the bit σ.

We write (σ, σ′) ← ILWE(rA) to denote a run of this experiment where Pi chooses σ and
the adversary outputs σ′.

Definition 1 (Interactive-LWE). A protocol Π is said to be ILWE-hard (relative to the
parameters n,m,w, q, χ, χ′ and N) if for any PPT adversary rA we have

Pr[σ = σ′ : (σ, σ′)← ILWE(rA)] ≤ 1/2 + negligible(n).

Π is sub-exponential ILWE-hard if the same holds even for adversaries running in time 2n
ε
,

for some constant ε > 0.

2.1.3 An ILWE-Hard Protocol Under LWE

Our ILWE-hard protocol is very simple: Setting n = N ·n′ for security parameter n′, we let
each party i choose its own (m− 1)× n′ matrix Ai, then concatenate all these matrices to

get A = (A1|A2| . . . |AN) ∈ Z(m−1)×n
q . Denote this simple protocol Πconcat, then we have:

Theorem 1. The protocol Πconcat is ILWE hard under the LWE hardness assumption
with parameters n′, w, q and error χ. Similarly, it is sub-exponential ILWE-hard under the
sub-exponential LWE hardness assumption.

Proof: (sketch) Proving indistinguishability of the cases σ = 0, σ = 1, goes through a few
hybrid games:

Game H0. The first game is the case σ = 1, where we set bi = siA, U = AR + Ê, and
v = biR+ e′ (all modulo q).

Game H1. In the second game we compute v = siU + e′ instead of v = biR+ e′.

By our choise of error distributions χ, χ′, we have that siU + e′ = si(AR+ Ê) + e′ is
statistically close to biR + e′ = siAR + e′ (since siÊ + e′ is statistcally close to e′).
Hence the adversary’s views in the games H0, H1 are statistically close.

Game H2. Next, observe that no matter what the adversary does with its parts of the
matrix A, the resulting U = AR+ Ê is pseudo-random. This is because if we let Rj
be the j’th block of n′ rows in R then

U =
∑
j 6=i

AjRj + (AiRi + Ê).

and (AiRi + Ê) is pseudorandom by LWE and independent of
∑

j 6=iAjRj .

In game H2 we therefore replace the choise U = AR + Ê by a uniformly random

U ∈ Z(m−1)×w
q , and by the above H2 is indistinguishable from H1 under LWE.

13

Game H3. We replace v = siU + e′ by a uniform v ∈ Zwq , thus getting the case σ = 0.

We note that si has a lot of min-entropy left even given bi = siA, since bi leaks at
most n log q bits about si (and we set m much larger than that). By leakage-resilience
of LWE [GKPV10], the vector siU + e′ is pseudorandom when U is random and si
has sufficient min-entropy.2

2.2 A Detour: The Need for Dual GSW

For the interested reader, we explain below why we need to use the “dual” GSW scheme
rather than the “primal” GSW as in [CM15, MW16]. As we explained, the main differece
between the primal and dual schemes is that that the matrix A in “primal” GSW is (n−1)-
by-m, while in our “dual” scheme it is (m − 1)-by-n (in both cases we have m < n log q).
While it is certailny possible that a one-round ILWE-hard protocol exists also for the
“primal” scheme, we were not able to find one that we can prove secure under any standard
assumption. Below we detail some specific failed attempts.

Failed attempt #1, parties choose different columns. Consider a protocol simlar
to the one in Section 2.1.3, in which each party Pi is choosing a random n × m′ matrix
Ai and the matrix A ∈ Zn×m′Nq is just the column-concatenation of all the Ai’s, A =
(A1|A2| . . . |AN).

An adversary (who controls PN without loss of generality), can just set its matrix as
AN = G where G is the GSW “gadget matrix”. That gadget matrix has the property that
given the vector sG + e for a small error vector e, it is easy to find e and s. Now, notice
that the vector sA+e that PN sends to rA has the form (sA1 +e1|sA2 +e2| . . . |sAN +eN),
so in particular the adversary can set the portion sAN + eN = sG + eN to recover the
secret key s. (This is exactly where the “dual” scheme helps: the adversary still sees some
“leakage” sAN + eN , but it cannot recover s since s still has a lot of min-entropy even
given that leakage.)

Failed attempt #2, parties choose different rows. One way to avoid attacks as
above is to ensure that for any fixed matrix that the adversary may put in “its entries”, a
random matrix by the honest user will make sA+ e pseudorandom.

One way to ensure this is to let each party choose a random n′ ×m matrix Ai and set
A ∈ ZNn′×mq as the row-concatenation of the Ai’s, i.e., AT = (AT1 | . . . |ATN). It is now easy
to prove that sA+ e is pseudorandom (under LWE), no matter what the adversary does.
But this arrangement opens another avenue of attack: The adversary (still controlling PN)
set AN = A1, so the bottom few rows in A are equal to the top few rows. Hence, also the

2Note that the instance v = siU + e′ is revealed only after the matrix A (and hence the leakage function
on si) is set, so we do not need to deal with “after-the-fact” leakage.

14

bottom few rows in AR are equal to the top few rows, which lets the adversary distinguish
AR from a uniform random U .

Some other failed attempts. At this point one may hope that if we let the parties
choose different diagonals then neither of the attacks above would apply, but this is not
the case. Here too, an adversary controlling all but one party can force the matrix A to
have many identical rows, which would mean that so does the matrix AR. More generally,
it seems that any arrangement where each party chooses a subset of the entries in A will
let the adversary force A to be low rank, and hence also AR will be of low rank. (Here too
the “dual” scheme works better, since the attacker sees AR+ E rather than AR itself.)

3 Other Preliminiaries

3.1 Commitment Schemes

Commitment schemes allow a committer C to commit itself to a value while keeping it
(temporarily) secret from the receiver R. Later the commitment can be “opened”, allowing
the receiver to see the committed value and check that it is consistent with the earlier
commitment. In this work, we consider commitment schemes with statistically binding.
This means that even an unbounded cheating committer cannot create a commitment that
can be opened in two different ways. We also use tag-based commitment, which means that
in addition to the secret committed value there is also a public tag associated with the
commitment. The notion of hiding that we use is adaptive-security (due to Pandey et al.
[PPV08]): it roughly means that the committed value relative to some tag is hidden, even
in a world that the receiver has access to an oracle that breaks the commitment relative
to any other tag.

Definition 1 (Adaptively-secure Commitment[PPV08]). A tag-based commitment scheme
(C,R) is statistically binding and adaptively hiding if it satisfies the following properties:

Statistical binding: For any (computationally unbounded) cheating committer C∗ and
auxiliary input z, it holds that the probability after the commitment stage that there
exist two executions of the opening stage in which the receiver outputs two different
values (other than ⊥), is negligible.

Adaptive hiding: For every cheating PPT receiver R∗ and every tag value tag, it holds
that the following ensembles are computationally indistinguishable.

• {view
R∗(tag),Btag
bCom (m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

• {view
R∗(tag),Btag
bCom (m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

15

where view
R∗(tag),Btag
bCom (m, z) denotes the random variable describing the output of

R∗(tag) after receiving a commitment to m relative to tag using bCom, while in-
teracting with a commitment-breaking oracle Btag.

The oracle Btag gets as input an alleged view v′ and tag tag′. If tag′ 6= tag and v′ is a
valid transcript of a commitment to some value m′ relative to tag′, then Btag returns
that value m′. (If there is no such value, or if tag = tag′, then B′tag returns ⊥. If
there is more than one possible value m′ then Btag′ returns an arbitrary one.)

To set up some notations, for a two-message commitment we let com1 = bComtag(r) and
com2 = bComtag(m; com1; r′) denote the two messages of the protocol, the first depending
only on the randomness of the receiver and the second depending on the message to be
committed, the first-round message from the receiver, and the randomness of the sender.

Pandey et al. [PPV08] proved that adaptively secure commitments exist if adaptive
PRGs exist. Note that adaptive security implies non-malleability (which is the “intuitive
nontion that we need”), but the other direction is not known. In our proof we rely heavily
on adaptive security, we do not know if similar result can be proven based on any (two-
round) non-malleable commitment.

3.2 Interactive Proofs

Given a pair of interactive Turing machines, P and V , we denote by 〈P (w), V 〉(x) the
random variable representing the (local) output of V , on common input x, when interacting
with machine P with private input w, when the random input to each machine is uniformly
and independently chosen.

Definition 2 (Interactive Proof System). A pair of interactive machines 〈P, V 〉 is called
an interactive proof system for a language L if there is a negligible function µ(·) such that
the following two conditions hold:

• Completeness: For every x ∈ L, and every w ∈ RL(x), Pr[〈P (w), V 〉(x) = 1] = 1.

• Soundness: For every x /∈ L, and every interactive machine P ∗, P r[〈P ∗, V 〉(x) = 1] ≤
µ(κ)

In case the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.

3.3 Zero-Knowledge

We recall the standard definition of ZK proofs. Loosely speaking, an interactive proof is
said to be zero-knowledge (ZK) if a verifier V learns nothing beyond the validity of the
assertion being proved, it could not have generated on its own. As “feasible”computation
in general is defined though the notion of probabilistic polynomial-time, this notion is

16

formalized by requiring that the output of every (possibly malicious) verifier interacting
with the honest prover P can be “simulated” by a probabilistic expected polynomial-time
machine S (a.k.a. the simulator). The idea behind this definition is that whatever V ∗

might have learned from interacting with P , he could have learned by himself by running
the simulator S.

Definition 3 (ZK). . Let L be a language in NP, RL a witness relation for L, (P, V) an
interactive proof (argument) system for L. We say that (P, V) is statistical/computational
ZK, if for every probabilistic polynomial-time interactive machine V there exists a prob-
abilistic algorithm S whose expected running-time is polynomial in the length of its first
input, such that the following ensembles are statistically close/computationally indistin-
guishable over L.

• {〈P (y), V (z)〉(x)}κ∈Nx∈{0,1}κ∩L,y∈RL(x),z∈{0,1}∗

• {S(x, z)}κ∈Nx∈{0,1}κ∩L,y∈RL(x),z∈{0,1}∗

where 〈P (y), V (z)〉(x) denotes the view of V in interaction with P on common input
x and private inputs y and z, respectively.

3.4 Witness Indistinguishability

An interactive proof (or argument) is said to be witness indistinguishable (WI) if the veri-
fier’s output is “computationally” independent of the witness used by the prover for proving
the statement. In this context, we focus on languages L ∈ NP with a corresponding witness
relation RL. Namely, we consider interactions in which, on common input x, the prover
is given a witness in RL(x). By saying that the output is computationally independent
of the witness, we mean that for any two possible NP-witnesses that could be used by
the prover to prove the statement x ∈ L, the corresponding outputs are computationally
indistinguishable.

Definition 4 (Witness-indistinguishability). . Let 〈P, V 〉 be an interactive proof (or ar-
gument) system for a language L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable
for RL, if for every probabilistic polynomial-time interactive machine V ∗ and for every
two sequences {w1

κ,x}κ∈N,x∈L and {w2
κ,x}κ∈N,x∈L, such that w1

κ,x, w
2
κ,x ∈ RL(x) for every

x ∈ L ∩ {0, 1}κ, the following probability ensembles are computationally indistinguishable
over κ ∈ N.

• {〈P (w1
κ,x), V ∗(z)〉(x)}κ∈Nx∈{0,1}κ∩L,z∈{0,1}∗

• {〈P (w2
κ,x), V ∗(z)〉(x)}κ∈Nx∈{0,1}κ∩L,z∈{0,1}∗

17

3.5 Proofs (Arguments) of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover convinces the
verifier that it possesses, or can feasibly compute, a witness for the statement proved. The
notion of a proof of knowledge is essentially formalized as follows: an interactive proof
of x ∈ L is a proof of knowledge if there exists a probabilistic expected polynomial-time
extractor machine E, such that for any prover P , E on input the description of P and any
statement x ∈ L readily outputs a valid witness for x ∈ L if P succeeds in convincing the
Verifier that x ∈ L. Formally,

Definition 5 (Proof of knowledge). Let (P, V) be an interactive proof system for the
language L. We say that (P, V) is a proof of knowledge for the witness relation RL for the
language L it there exists an probabilistic expected polynomial-time machine E, called the
extractor, and a negligible function µ(·) such that for every machine P ∗, every statement
x ∈ {0, 1}κ, every random tape x ∈ {0, 1}∗, and every auxiliary input z ∈ {0, 1}∗,

Pr[〈P ∗r (z), V 〉(x) = 1] ≤ Pr[EP ∗r (x,z)(x) ∈ RL(x)] + µ(κ)

An interactive argument system 〈P, V 〉 is an argument of knowledge if the above con-
dition holds w.r.t. probabilistic polynomial-time provers.

Delayed-Input Witness Indistinguishability. The notion of delayed-input Witness
Indistinguishability formalizes security of the prover with respect to an adversarial verifier
that adaptively chooses the input statement to the proof system in the last round. Once we
consider such adaptive instance selection, we also need to specify where the witnesses come
from; to make the definition as general as possible, we consider an arbitrary (potentially
unbounded) witness selecting machine that receives as input the views of all parties and
outputs a witness w for any statement x requested by the adversary. In particular, this
machine is a (randomized) Turing machine that runs in exponential time, and on input a
statement x and the current view of all parties, picks a witness w ∈ RL(x) as the private
input of the prover.

Let 〈P, V 〉 be a 3-round Witness Indistinguishable proof system for a language L ∈ NP
with witness relation RL. Denote the messages exchanged by (p1, p2, p3) where pi denotes
the message in the i-th round. For a delayed-input 3-round Witness Indistinguishable proof
system, we consider the game ExpAWI between a challenger C and an adversary A in which
the instance x is chosen by A after seeing the first message of the protocol played by the
challenger. Then, the challenger receives as local input two witnesses w0 and w1 for x
chosen adaptively by a witness-selecting machine. The challenger then continues the game
by randomly selecting one of the two witnesses and by computing the third message by
running the prover’s algorithm on input the instance x, the selected witness wb and the
challenge received from the adversary in the second round. The adversary wins the game
if he can guess which of the two witnesses was used by the challenger.

18

Definition 6 (Delayed-Input Witness Indistinguishability). Let ExpAWIA〈P,V 〉 be a delayed-
input WI experiment parameterized by a PPT adversary A and an delayed-input 3-round
Witness Indistinguishable proof system 〈P, V 〉 for a language L ∈ NP with witness relation
RL. The experiment has as input the security parameter κ and auxiliary information aux
for A. The experiment ExpAWI proceeds as follows:

ExpAWIA〈P,V 〉(κ, aux):

Round-1: The challenger C randomly selects coin tosses r and runs P on input
(1κ; r) to obtain the first message p1;

Round-2: A on input p1 and aux chooses an instance x and a challenge p2.
The witness-selecting machine on inputs the statement x and the current view
of all parties outputs witnesses w0 and w1 such that (x,w0), (x,w1) ∈ RL. A
outputs x,w0, w1, p2 and internal state state;

Round-3: C randomly selects b ← {0, 1} and runs P on input (x,wb, p2) to
obtain p3;

b′ ← A((p1, p2, p3), aux, state);

If b = b′ then output 1 else output 0.

A 3-round Witness Indistinguishable proof system for a language L ∈ NP with witness
relation RL is delayed-input if for any PPT adversary A there exists a negligible function
µ(·) such that for any aux ∈ {0, 1}∗ it holds that

|Pr[ExpAWIA〈P,V 〉(κ, aux) = 1]− 1/2| ≤ µ(κ)

The most recent 3-round delayed-input WI proof system appeared in the work of
[COSV16].

3.6 Feige-Shamir ZK Proof Systems

For our construction we use the 3-round, public-coin, input-delayed witness-
indistinguishable proof-of-knowledge ΠWIPOK based on the work of Feige, Lapidot, Shamir
[FLS99], and the 4-round zero-knowledge argument-of-knowledge protocol of Feige and
Shamir ΠFS [FS90].

Recall that the Feige-Shamir protocol consists of two executions of a WIPOK protocol
in reverse directions. The first execution has the verifier prove something about a secret
that it chooses, and the second execution has the prover proving that either the input
statement is true or the prover knows the verifier’s secret. The zero-knowledge simulator
then uses the knowledge extraction to extract the secret of the verifier, making it possible
to complete the proof.

19

4 Multi-Party Computation Protocol

For our protocol we use the following components:

• The “dual”-GSW-based scheme for simulatable threshold multi-key FHE from Sec-
tion 2, MFHE = (FHE.Setup,MFHE.Keygen,MFHE.Encrypt,MFHE.Eval,
MFHE.PartDec,MFHE.FinDec), with its one-round initialization protocol ΠGenSetup =
(Gen1,Gen2) for computing the matrix A.

• Two instances of a two-round adaptively secure commitment scheme, supporting
tags/identities of length κ. We denote the first instance by aCom = (acom1, acom2)
and the second by bCom = (bcom1, bcom2).3

• A one-way function OWF .

• A three-round public coin witness-indistinguishable proof of knowledge ΠWIPOK =
(p1, p2, p3) for the NP-Language LWIPOK

P where party P acts as the Prover, with
dealyed input (where the statement is decided in the last round);

• A four-round zero-knowledge argument of knowledge ΠFS = (fs1, fs2, fs3, fs4) for the
NP-Language LFS

P where party P acts as the Prover, with delayed input.

The protocol. Let F : {0, 1}κ×N → {0, 1}κ be a deterministic function to be computed.
Each party Pi holds input xi ∈ {0, 1}κ and identity idi. (We note that known transfor-
mations yield a protocol for randomized functionalities, without increasing the rounds,
see [Gol04, Section 7.3].) The protocol consists of four broadcast rounds, where messages
(m1

t , . . . ,m
N
t) are exchanged simultaneously in the t-th round for t ∈ [4]. The message flow

is detailed in Figure 1, and Figure 3 depicts the exchanged messages between two parties
Pi and Pj .

4.1 Proof of Security

Theorem 2. Assuming sub-exponential hardness of LWE, and the existence of an
adaptively-secure commitment scheme, there exists a four-broadcast-round protocol for
securely realizing any functionality against malicious adversary in the plain model with no
setup.

To prove Theorem 2, we note that the two assumptions listed suffice for instantiating
all the components of our protocol ΠMPC: The commitment is used directly for aCom and
bCom, and sub-exponential LWE suffices for everything else. Below we prove security of
ΠMPC by describing a simulator and proving that the simulated view is indistinguishable
from the real one.

3Strictly speaking we do not need the second instance to be adaptively secure, but it is convenient to
use the same scheme for both instances.

20

4.1.1 Description of the Simulator

Let A be a malicious, static adversary that interacts with parties running the protocol
ΠMPC from Figure 4 in the plain model. We construct a simulator S (the ideal world
adversary) with access to the ideal functionality F , which simulates a real execution of
ΠMPC with A such that the ideal world experiment with S and F is indistinguishable from
a real execution of ΠMPC with A. Our simulator S proceeds as follows:

Simulating actual protocol messages in Π: Let P = {P1, . . . , PN} be the set of
parties participating in the execution of ΠMPC. Also let P∗ ⊆ P be the set of parties
corrupted by the adversary A. The simulator S only generates messages on behalf of
parties P\P∗.

Round 1 Messages S → A: In the first round S generates messages on behalf of each
honest party Ph /∈ P∗, as follows:

1. Choose randomness rh = (rgenh , rench) for the MFHE protocol and an unrelated κ-bit

randomness value Rh, and set R̂h = OWF (Rh).

2. For every j engage in a two-round commitment protocol with Pj . To this

end, prepare the first message acomh,j
1 corresponding to the execution of

aComidj (xj , r
gen
j , rencj , Rj ;ωj) on behalf of Ph, acting as the receiver of the commit-

ment. Since the commitment aCom is a two-round protocol, the message of the
committer Pj is only sent in the second round.

3. Prepare the first message ph,j1 of ΠWIPOK, where Ph acts as the Prover, for the NP-

Language LWIPOK
Ph

and the first message fsh,j1 of ΠFS where Ph acts as the Verifier for
LFS
Pj

.

4. Honestly generate the message αh of the 1-round protocol ΠGenSetup.

5. It then sends the message mh,j
1 =

(
R̂h, acomh,j

1 , ph,j1 , fsh,j1 , αh

)
to A.

Round 1 Messages A → S: Also in the first round the adversary A generates the

messages mj,h
1 =

(
R̂j , acomj,h

1 , pj,h1 , fsj,h1 , αj

)
on behalf of corrupted parties j ∈ P∗ to

honest parties h /∈ P∗. Messages {acomj,h
1 } correspond to an execution of aComidh(0;ωh).

Round 2 Messages S → A: In the second round S generates messages on behalf of
each honest party Ph ∈ P∗ as follows:

1. Complete the commitment to the zero string generating the second messages acomj,h
2

corresponding to all executions of aComidh(0;ωh).

21

2. Honestly prepare the second message pj,h2 (fsj,h2) of ΠWIPOK(ΠFS) initiated by Pj acting
as the prover (verifier) in the first round.

3. Generate the second commitment messages bcomh,j
1 for bComidj (0; ζj) where party

Ph acts as the Receiver.

4. Generate the individual key pair by locally computing the matrix A (on input
{αi}i∈[N]), and by computing (pkh, skh) = MFHE.Keygen(params, A; rgenh).

5. It then sends the message mh,j
2 := (acomj,h

2 , bcomh,j
1 , pj,h2 , fsj,h2 , pkh) to A.

Round 2 Messages A → S: In the second round the adversary A generates
the messages mj,h

2 := (acomh,j
2 , bcomj,h

1 , ph,j2 , fsh,j2 , pkj) on behalf of corrupted parties

j ∈ P∗ to honest parties h /∈ P∗. Messages {acomh,j
2 } correspond to an execution

of aComidj (xj , r
gen
j , rencj , Rj ;ωj) and messages {bcomj,h

1 } correspond to an execution of
bComidh(0; ζh)

Round 3 Messages S → A: In the third round S generates messages on behalf of each
honest party Ph /∈ P∗ as follows:

1. Generate the second messages bcomj,h
2 corresponding to all bComidh(0; ζh).

2. Generate an encryption of the zero string using randomness rench , i.e. ch =
MFHE.Encrypt(pkh,0; rench).

3. Honestly prepare the final message ph,j3 (fsh,j3) of ΠWIPOK(ΠFS) initiated by Ph acting
as the prover (verifier) in the first round.

4. It sends the message mh,j
3 = (bcomj,h

2 , ch, p
h,j
3 , fsh,j3) to A.

Round 3 Messages A → S: In the third round A generates mj,h
3 =

(bcomh,j
2 , cj , p

j,h
3 , fsj,h3) where messages {bcomh,j

2 } correspond to an execution of
bComidj (0; ζj). Then, S proceeds to extract the witness corresponding to each proof-
of-knowledge completed in the first three rounds (via rewinding). To this end, S applies
the knowledge extractor of ΠWIPOK to obtain the “witnesses” which consist of the inputs
and secret keys of the corrupted parties (xj , rj)

4 and the zero knowledge simulator of
ΠFS to obtain the “trapdoors” (which for a Feige-Shamir protocol means extracting the
verifier-secret). If extraction fails, S outputs fail. Next S sends {xj}j∈[N]\{h} to the ideal
functionality F which responds by sending back y such that y = F ({xj}j∈[N]).

4For simplicity of exposition, we omit the rest of the witness values.

22

Round 4 Messages S → A: In the fourth round S generates messages on behalf of each
honest party Ph /∈ P∗ as follows:

1. Generate the evaluated ciphertext ĉ := MFHE.Eval(params;F ; (c1, . . . , cN)).

2. Then, S obtains all the secret keys {skj}j∈P∗ reconstructed from the wintesses
{rgenj }j∈P∗ and computes the simulated decryption shares {evh}h/∈P∗ ←
ST (y, ĉ, h, {skj}j∈P∗). (The simulator ST is the one provided by [MW16, Sec-
tion 6.2].)

3. Fake the final message fsj,h4 of ΠFS protocol using the extracted trapdoor. It sends

the message mh,j
4 = (evh, fs

j,h
4) on behalf of Ph.

Round 4 Messages A → S: In the last round the adversary A generates the messages
on behalf of corrupted parties in P∗. For each party j ∈ P∗ our simulator receives messages

mj,h
4 = (evj , f̃s

h,j

4) from A.
This completes the description of the simulator.

4.1.2 Proof of Indistinguishability

We need to prove that for any malicious (static) adversary A, the view generated by the
simulator S above is indistinguishable from the real view, namely:

{IDEALF ,S(κ, ·)}κ
c
≈ {REALΠ,A(κ, ·)}κ

To prove indistinguishability, we consider a sequence of hybrid experiments H0, H1, . . . as
described below. Let H0 be the hybrid describing the real-world execution of the protocol.
We modify this game in steps as follows:

H1 Use the zero-knowledge simulator to generate the proof in the 4-round ΠFS, indistin-
guishability follows by the ZK property of ΠFS.

H2 Starting in this hybrid, the challenger is given access to a breaking oracle Btag (with
tag = (idh, ?) where h is a honest party). Here the challenger uses the breaking

oracle to extract the values committed to by the adversary in acomh,A
2 (in the second

round), then commits to these same values in bcomA,h2 on behalf of the honest party
(in the third round). Indistinguishability follows by the adaptive-hiding of bCom.

H3 Change the proof in ΠWIPOK to use the “OR branch”. Indistinguishability follows by
the WI property of ΠWIPOK (which must hold even in the presence of the breaking-
oracle Btag).

23

H4 Here the challenger also has access to the ideal-world functionality that gives it the
output of the function. Having extracted the secret keys using Btag, the challenger
simulates the decryption shares of the honest parties rather than using the decryption
procedure. Indistinguishability follows since the FHE scheme is simulatable (which
follows from LWE).

H5 Encrypt 0’s rather than the true inputs. Indistinguishability follows due to the se-
mantic security of the encryption scheme (that follows from the ILWE-hardness of
our scheme, under LWE).

H6 Commit to 0’s in acomA,h2 , rather than to the real inputs. Indistinguishable due to
the adaptive-hiding of aCom.

H7 Revert the change in H3, make the proof in ΠWIPOK use the normal branch rather
than the “OR branch”. Indistinguishability follows by the WI property of ΠWIPOK.

H8 Revert the change in H2 and thus commit to zero in bcomA,h2 (instead of committing
to the extracted values). Indistinguishability follows by the adaptive-hiding of bCom.

H9 Here the challenger no longer has access to a breaking oracle, and instead it uses the
POK extractor to get the randomness and inputs (witnesses) from ΠWIPOK. Indis-
tinguishability follows from the extraction property of ΠWIPOK, combined with the
one-wayness of OWF .

As H9 we no longer uses the inputs of the honest parties, the view of this hybrid can be
simulated. (We also note that the simulator does not use a breaking oracle, rather it is a
traditional rewinding simulator.)

Security in the presence of a breaking oracle: Note that some of our indistin-
guishability arguments must holds in worlds with a breaking oracle Btag. In particular, we
require that bCom is still hiding, that LWE still holds, and that ΠWIPOK is still witness-
indistinguishable in the presence of the oracle. The hiding property of bCom follows directly
from its adaptive-hiding property. As for LWE and ΠWIPOK, security in the presence of Btag
follows from sub-exponential hardness and complexity leveraging. Namely, in the relevant
reductions we can implement Btag ourselves in subexponential time, while still relying on
the hardness of LWE or ΠWIPOK.

Another point to note is that using the zero-knowledge simulator (in hybrids H2-H9)
requires rewinding, which may be problematic when doing other reductions. As we explain
below, we are able to handle rewinding by introducing many sub-hybrids, essentially cutting
the distinguishing advantage by a factor equals to the number of rewinding operations.

H0: This hybrid is the real execution. In particular, H0 starts the execution ofA providing
it fresh randomness and input {xj}Pj∈P∗ , and interacts with it honestly by performing

24

all actions of the honest parties with uniform randomness and input. The output
consists of A’s view.

H1: In this hybrid the challenger uses the zero-knowledge simulator of ΠFS to generate
the proofs on behalf of each honest party Ph, rather than the honest prover strategy
as is done in H0. We note that the challenger in this hybrid needs to rewind the
adversary A (up to the second round) as needed for the Feige-Shamir ZK simulator.

Since in these two hybrids the protocol ΠFS is used to prove the same true statement,
then the simulated proofs are indistinguishable from the real ones, so we get:

Lemma 4.1. H0 ≈s H1.

H2: In this “mental-experiment hybrid” the challenger is given access to a breaking oracle
Bidh , with the tag being the identity of an arbitrary honest parties (h /∈ P∗). The
challenger begins as in the real execution for the first two rounds, but then it uses Btag
to extract the values (xj , rj , Rj) of all the adversarial players j ∈ P∗ from acomh,j

2 .

Then the challenger changes the commitments bcomj,h
2 on behalf of the honest party

Ph, committing to the values Rj that were extracted from acomh,j
2 (and thus making

the language Lh,j,2 –the “OR branch”– in ΠWIPOK a true statement).5

Lemma 4.2. H1 ≈c H2.

Proof: Since the only differences between these hybrids are the values committed
to in bcomj,h, then indistinguishability should follow from the adaptive-hiding of the
commitment scheme bCom (as the challenger never queries its breaking oracle with
any tag containing the identity idh of the honest party).

One subtle point here, is that in both H1 and H2 we use the rewinding Feige-Shamir
ZK simulator, so we need to explain how the single value bcomj,h

2 provided by the
committer in the reduction (which is a commitment to either 0 or Rj) is used in all
these transcripts. To that end let M be some polynomial upper bound on the number
of rewinding operations needed by the zero-knowledge simulator. The reduction
to the security of bCom will choose at random t ∈ [1,M] and will only use the
bCom committer that it interacts with to commit to a value in the t’th rewinding,
committing to 0 in all the rewindings i < t and to the value Rj (that it has from the
breaking oracle) in all the rewindings i > t.

By a standard argument, if we can distinguish between H1 ≈c H2 with probabil-
ity ε then the reduction algorithm can distinguish commitments to 0 and Rj with
probability ε/M .

5The commitment Com starts in the second round, but this is a two-round commitment so the committed
value only affects the second message in the commitment, which happens in the third round of the larger
protocol.

25

H3: In this hybrid, we change the witness used in ΠWIPOK on behalf of each honest party
Ph. In particular, all ΠWIPOK executions use the “OR branch” Lh,j,2.

Lemma 4.3. H2 ≈c H3.

Proof: We make sub-hybrids that change one honest party at a time, and show
that a distinguisher D that distinguishes two such sub-hybrids can be used by an-
other distinguisher D′ to distinguish between the two witnesses of ΠWIPOK (as per
Definition 6).

Description of D′: D′ plays the role of both the challenger and the adversary in
the two hybrids, except that the prover messages of ΠWIPOK (on behalf of Ph) are
obtained from the external prover that the WI-distinguisher D′ has access to.

At the third round of the protocol, D′ has the statement that Ph needs to prove, and
it gets the two witnesses for that statement from the witness-selecting machine in
Definition 6. Sending the statement and witnesses to its external prover, D′ obtains
the relevant ΠWIPOK message (for one of them). D′ also uses these witnesses to

complete the other flows of the protocol (e.g., the commitments bcomj,h
2 that include

some of these witnesses). Once the protocol run is finished, it gives the transcript to
D and outputs whatever D outputs.

As above, we still need to support rewinding by the Feige-Shamir ZK simulator, while
having access to only a single interaction with the external prover, and we do it by
sub-sub-hybrids where we embed this interaction in a random rewinding t, producing
all the other proofs by the H2 challenger (for i < t) or the H3 challenger (for i > t).
It is clear that the advantage of D′ is a 1/M fraction of the advantage of D.

We note that D′ above still uses the breaking oracle Btag (to extract the ΠFS secrets),
so we need to assume that delayed-input-WI holds even in a world with the breaking
oracle. As explained above, we rely on complexity leveraging for that purpose. That
is, we let D′ run in subexponential time (so it can implement Btag itself), and set
the parameters of ΠWIPOK large enough so we can assume witness-indistinguishability
even for such a strong D′. (We can implement subexponential WI protocol from
subexponential LWE.)

H4: The difference from H3 is that in H4 we simulate the decryption shares of the
honest parties. More specifically, the challenger in H4 has access also to the ideal
functionality, and it proceeds as follows:

1. It completes the first three broadcast rounds exactly as in H3.

2. Having extracted the input of all the corrupted parties, the challenger sends
all these inputs to the ideal functionality F and receives back the output y =
F ({xj}j∈[N]).

26

3. Having extracted also all the secret keys of the corrupted parties, the challenger
has everything that it needs to compute the simulated decryption shares of the
honest parties, {evh}h/∈P∗ ← ST (y, ĉ, h, {skj}j∈P∗).

4. The challenger computes also the last message of ΠFS (using the simulator as
before), and sends it together with decryption shares {evh}h in the last round.

Lemma 4.4. H3 ≈s H4.

Proof: The only change between these two experiments is that the partial decryp-
tion shares of the honest parties are not generated by partial decryption. Instead
they are generated via the the threshold simulator ST of the MFHE scheme. By the
simulatability of threshold decryption, the partial decryptions shares are statistically
indistinguishable.

H5: We change H4 by making S broadcast encryptions of 0 on behalf of the honest parties
in the third round, instead of encrypting the real inputs.

Lemma 4.5. H4 ≈c H5.

Proof: The proof follows directly from semantic security, which in our case follows
from LWE. As in the previous hybrid, here too we need this assumption to hold even
in the presence of a breaking oracle, and we lose a factor of M in the distinguishing
probability due to rewinding.

H6: In this hybrid, we get rid of the honest partys’ inputs {(xh, rh)}h (that are present in

the values of acomj,h
2). Formally, H6 is identical to H5 except that in the first round

it sets xh = 0 for all h /∈ P∗.

Lemma 4.6. H5 ≈c H6.

Proof: This proof is very similar to the the proof of H1 ≈c H2, and indistin-
guishability follows from adaptive-hiding of aCom. Since the challenger never asks
its breaking oracle Btag to break commitments relative to the honest party’s tags
(and since these committed values are no longer used by the challenger for anything
else), then having the honest parties commit to xh is indistinguishable from having
it commit to 0.

H7: In this hybrid we essentially reverse the change that was made in going from H2 to
H3. Namely, since now both the encryption and the commitment at each honest party
are for the value 0 then there is no need to use the “OR branch” in ΠWIPOK. Hence
we return in using the honest prover strategy there, relative to the input xh = 0. As
in Lemma 4.3 indistinguishability follows by the WI property of ΠWIPOK.

27

H8: Revert the change that was made in going from H1 to H2 and thus commit to a
random value sh in bcomj,h

2 . Indistinguishability follows by the computational hiding
of bCom, just like in Lemma 4.2.

H9: In this hybrid the challenger no longer has access to the breaking oracle Btag. Instead,
it uses the knowledge extractor of ΠWIPOK to get the input and secret keys of the
corrupted parties, and the “standard” zero-knowledge simulator to get the proof in
ΠFS.

Lemma 4.7. H8 ≈s H9.

Proof: The only difference between these hybrids is the method used by the chal-
lenger to extract the adversary secrets. Two technical points needs to be addressed
here:

• This hybrid requires rewinding by both the FS ZK simulator and the FLS knowl-
edge extractor, so we need to argue that after polynomially many trials they will
both succeed on the same transcript. This is a rather standard argument (which
essentially boils down to looking at the knowledge-extractor inside ΠFS and the
one used explicitly in ΠWIPOK as extracting knowledge for and AND language.)

• We also need to argue that the value extracted from the adversary by the ΠWIPOK

extractor in H9 is a witness for Li,j,1 and not for Li,j,2. This is done by appealing
to the one-wayness of OWF , if there is a noticeable probability to extract an
Li,j,2 witness in H9 then we get an inverter for this one-way function.

We conclude that in both H8 and H9 we succeed in extraction with about the same
probability, and moreover extract the very same thing, and (statistical) indistin-
guishability follows.

We conclude the proof by observing that the hybrid H9 is identical to the ideal-world game
with the simulator.

References

[AIK05] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally pri-
vate randomizing polynomials and their applications. In 20th Annual IEEE
Conference on Computational Complexity (CCC 2005), 11-15 June 2005, San
Jose, CA, USA, pages 260–274, 2005.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low commu-
nication, computation and interaction via threshold FHE. In David Pointcheval

28

and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 483–501. Springer, Heidelberg, April 2012.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd
FOCS, pages 106–115. IEEE Computer Society Press, October 2001.

[BD10] Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-knowledge
proofs for lattice-based cryptosystems. In Daniele Micciancio, editor,
TCC 2010, volume 5978 of LNCS, pages 201–218. Springer, Heidelberg, Febru-
ary 2010.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, editor,
ITCS 2012, pages 309–325. ACM, January 2012.

[BL04] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and
extraction. SIAM J. Comput., 33(4):738–818, 2004.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513.
ACM Press, May 1990.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key
FHE with short ciphertexts. In Matthew Robshaw and Jonathan Katz, edi-
tors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 190–213. Springer,
Heidelberg, August 2016.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic en-
cryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages
97–106. IEEE Computer Society Press, October 2011.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled
FHE from learning with errors. In Rosario Gennaro and Matthew J. B. Rob-
shaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 630–656.
Springer, Heidelberg, August 2015.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concur-
rent non-malleable commitments (and more) in 3 rounds. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 270–299. Springer, Heidelberg, August 2016.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using
a black-box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 378–394. Springer, Heidelberg, August 2005.

29

[DI06] Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 501–520.
Springer, Heidelberg, August 2006.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowl-
edge proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In 22nd ACM STOC, pages 416–426. ACM Press, May 1990.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round
secure MPC from indistinguishability obfuscation. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 74–94. Springer, Heidelberg, February
2014.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Robustness of the learning with errors assumption. In ICS, pages
230–240. Tsinghua University Press, 2010.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing
non-malleable commitments: A black-box approach. In 53rd FOCS, pages 51–
60. IEEE Computer Society Press, October 2012.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroni-
adou. The exact round complexity of secure computation. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666
of LNCS, pages 448–476. Springer, Heidelberg, May 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In STOC,
pages 218–229, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2.
Cambridge University Press, Cambridge, UK, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions.
In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 695–
704. ACM Press, June 2011.

30

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party compu-
tation in two rounds. In Alfred Menezes, editor, CRYPTO 2007, volume 4622
of LNCS, pages 111–129. Springer, Heidelberg, August 2007.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the
web: Computing without simultaneous interaction. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 132–150. Springer, Heidelberg,
August 2011.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new represen-
tation with applications to round-efficient secure computation. In 41st FOCS,
pages 294–304. IEEE Computer Society Press, November 2000.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 572–591. Springer, Heidelberg, August 2008.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computa-
tion on committed inputs. In Moni Naor, editor, EUROCRYPT 2007, volume
4515 of LNCS, pages 97–114. Springer, Heidelberg, May 2007.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party compu-
tation. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 335–354. Springer, Heidelberg, August 2004.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-
party computation with a dishonest majority. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 578–595. Springer, Heidelberg,
May 2003.

[Lin01] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party com-
putation. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
171–189. Springer, Heidelberg, August 2001.

[LP11a] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from
any one-way function. In Lance Fortnow and Salil P. Vadhan, editors, 43rd
ACM STOC, pages 705–714. ACM Press, June 2011.

31

[LP11b] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-
choose oblivious transfer. In Yuval Ishai, editor, TCC 2011, volume 6597 of
LNCS, pages 329–346. Springer, Heidelberg, March 2011.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic encryption.
In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages
1219–1234. ACM Press, May 2012.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT, volume 7237 of Lecture Notes in Computer
Science, pages 700–718. Springer, 2012. Full version at http://ia.cr/2011/

501.

[MSS11] Steven Myers, Mona Sergi, and Abhi Shelat. Threshold fully homomorphic en-
cryption and secure computation. Cryptology ePrint Archive, Report 2011/454,
2011. http://eprint.iacr.org/2011/454.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In EUROCRYPT (2), volume 9666 of Lecture Notes in
Computer Science, pages 735–763. Springer, 2016. Full version at http://ia.
cr/2015/345.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal
black-box two-party computation. In Rosario Gennaro and Matthew J. B. Rob-
shaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 339–358.
Springer, Heidelberg, August 2015.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dis-
honest majority. In László Babai, editor, 36th ACM STOC, pages 232–241.
ACM Press, June 2004.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way
functions and applications. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 57–74. Springer, Heidelberg, August 2008.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986
of LNCS, pages 217–238. Springer, Heidelberg, October / November 2016.

32

http://ia.cr/2011/501
http://ia.cr/2011/501
http://eprint.iacr.org/2011/454
http://ia.cr/2015/345
http://ia.cr/2015/345

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability amplification. In 51st FOCS, pages 531–540. IEEE Computer So-
ciety Press, October 2010.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 23rd FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th FOCS, pages 162–167. IEEE Computer Society Press, October
1986.

A Secure Computation Definitions

For completeness, we recall the definition of secure computation based on [Gol04, Chapter
7] here. We only recall the two party case as it is most relevant to our proofs. The
description naturally extends to multi-party case as well (details can be found in [Gol04]).

Two-party computation. A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to such
a process as a functionality and denote it F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where
F = (F1, F2). That is, for every pair of inputs (x, y), the output-pair is a random variable
(F1(x, y), F2(x, y)) ranging over pairs of strings. The first party (with input x) wishes to
obtain F1(x, y) and the second party (with input y) wishes to obtain F2(x, y).

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to
protect an honest party against dishonest behavior by the other party. In this paper, we
consider malicious adversaries who may arbitrarily deviate from the specified protocol.
When considering malicious adversaries, there are certain undesirable actions that cannot
be prevented. Specifically, a party may refuse to participate in the protocol, may substitute
its local input (and use instead a different input) and may abort the protocol prematurely.
One ramification of the adversary’s ability to abort, is that it is impossible to achieve
fairness. That is, the adversary may obtain its output while the honest party does not.
In this work we consider a static corruption model, where one of the parties is adversarial
and the other is honest, and this is fixed before the execution begins.

Communication channel. In our results we consider a secure simultaneous message
exchange channel in which all parties can simultaneously send messages over the channel
at the same communication round. Moreover, we assume an asynchronous network6 where

6The fact that the network is asynchronous means that the messages are not necessarily delivered in the
order which they are sent.

33

the communication is open (i.e. all the communication between the parties is seen by the
adversary) and delivery of messages is not guaranteed. For simplicity, we assume that the
delivered messages are authenticated. This can be achieved using standard methods.

Security of protocols (informal). The security of a protocol is analyzed by comparing
what an adversary can do in the protocol to what it can do in an ideal scenario that is
secure by definition. This is formalized by considering an ideal computation involving an
incorruptible trusted third party to whom the parties send their inputs. The trusted party
computes the functionality on the inputs and returns to each party its respective output.
Loosely speaking, a protocol is secure if any adversary interacting in the real protocol
(where no trusted third party exists) can do no more harm than if it was involved in the
above-described ideal computation.

Execution in the ideal model. As we have mentioned, some malicious behavior
cannot be prevented (for example, early aborting). This behavior is therefore incorporated
into the ideal model. An ideal execution proceeds as follows:

Inputs: Each party obtains an input, denoted w (w = x for Pi, and w = y for Pj).

Send inputs to trusted party: An honest party always sends w to the trusted party.
A malicious party may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to
the trusted party.

Trusted party answers first party: In case it has obtained an input pair (x, y), the
trusted party first replies to the first party with F1(x, y). Otherwise (i.e., in case it
receives only one valid input), the trusted party replies to both parties with a special
symbol ⊥.

Trusted party answers second party: In case the first party is malicious it may,
depending on its input and the trusted party’s answer, decide to stop the trusted
party by sending it ⊥ after receiving its output. In this case the trusted party sends
⊥ to the second party. Otherwise (i.e., if not stopped), the trusted party sends
F2(x, y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary (probabilistic polynomial-time
computable) function of its initial input and the message obtained from the trusted
party.

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality where F = (F1, F2) and
let S = (S1,S2) be a pair of non-uniform probabilistic expected polynomial-time machines
(representing parties in the ideal model). Such a pair is admissible if for at least one

34

i ∈ {1, 2} we have that Si is honest (i.e., follows the honest party instructions in the above-
described ideal execution). Then, the joint execution of F under S in the ideal model (on
input pair (x, y) and security parameter κ), denoted IDEALF ,S(κ, x, y) is defined as the
output pair of S1 and S2 from the above ideal execution.

Execution in the real model. We next consider the real model in which a real (two-
party) protocol is executed (and there exists no trusted third party). In this case, a mali-
cious party may follow an arbitrary feasible strategy; that is, any strategy implementable
by non-uniform probabilistic polynomial-time machines. In particular, the malicious party
may abort the execution at any point in time (and when this happens prematurely, the
other party is left with no output). Let F be as above and let Π be a two-party protocol
for computing F . Furthermore, let A = (A1,A2) be a pair of non-uniform probabilistic
polynomial-time machines (representing parties in the real model). Such a pair is admissible
if for at least one i ∈ {1, 2} we have that Ai is honest (i.e., follows the strategy specified by
Π). Then, the joint execution of Π under A in the real model, denoted REALΠ,A(κ, x, y),
is defined as the output pair of A1 and A2 resulting from the protocol interaction.

Security as emulation of a real execution in the ideal model. Having defined
the ideal and real models, we can now define security of protocols. Loosely speaking, the
definition asserts that a secure two-party protocol (in the real model) emulates the ideal
model (in which a trusted party exists). This is formulated by saying that admissible
pairs in the ideal model are able to simulate admissible pairs in an execution of a secure
real-model protocol.

Definition 7 (secure two-party computation). Let F and Π be as above. Protocol Π is
said to securely compute F (in the malicious model) if for every pair of admissible non-
uniform probabilistic polynomial-time machines A = (A1,A2) for the real model, there
exists a pair of admissible non-uniform probabilistic expected polynomial-time machines
S = (S1,S2) for the ideal model, such that:

{IDEALF ,S(κ, x, y)}κ∈N,x,y s.t. |x|=|y|
c
≈ {REALΠ,A(κ, x, y)}κ∈N,x,y s.t. |x|=|y|

We note that the above definition assumes that the parties know the input lengths (this
can be seen from the requirement that |x| = |y|). Some restriction on the input lengths
is unavoidable, see [Gol04, Section 7.1] for discussion. We also note that we allow the
ideal adversary/simulator to run in expected (rather than strict) polynomial-time. This is
essential for constant-round protocols [BL04].

35

Protocol ΠMPC

Private Inputs: For i ∈ [N], party Pi has input xi.
Round 1: For i ∈ [N] each party Pi proceeds as follows:

1. Choose randomness ri = (rgeni , renci) for the MFHE protocol.

2. Choose an unrelated κ-bit randomness value Ri, and set R̂i = OWF (Ri).

3. For every j, engage in a two-round commitment protocol with Pj for the values (xi, ri, Ri), using an
instance of aCom with tag idi. Note that the first message in this protocol is sent by Pj (so Pi sends
the first message to all the Pj ’s for their respective commitments). Denote the message send from Pi

to Pj by acomi,j
1 .

4. For every j, prepare the first message pi,j
1 of ΠWIPOK (acting as the Prover) for the NP-Language

LWIPOK

Pi
= Li,j,1 ∨ Li,j,2 for j ∈ [N] \ {i} and the first message fsi,j1 of ΠFS (acting as the Verifier) for

LFS

Pi
= (Li,j,1 ∧ Li,j,3) where the NP-Languages Li,j,1,Li,j,2,Li,j,3 are defined in Figure 4.

5. Generate the message αi of the 1-round ΠGenSetup protocol.

6. For all j broadcast the message mi,j
1 :=

(
R̂i, acomi,j

1 , pi,j
1 , fsi,j1 , αi

)
to party Pj .

Round 2: For i ∈ [N] each party Pi proceeds as follows:

1. Generate the second commitment messages acomj,i
2 for aComidi(xi, ri, Ri), the second message pj,i

2 of

the ΠWIPOK proof system, and the second message fsj,i2 of the ΠFS proof system.

2. For every j, engage in a two-round commitment protocol with Pj for the value 0, using an instance of
bCom with tag idi. As before, Pi sends the first message to all the Pj ’s for their respective commit-

ments, and we denote the message send from Pi to Pj by bcomi,j
1 .

3. For all j broadcast the messages mi,j
2 := (acomj,i

2 , bcomi,j
1 , pj,i

2 , fs
j,i
2 , pki).

Round 3: For i ∈ [N] each party Pi proceeds as follows:

1. Generate the second messages bcomj,i
2 corresponding to all bComidi(0), the final message pi,j

3 of the

ΠWIPOK protocol, and the third message fsi,j3 of ΠFS.

2. Compute the public matrix A from all the αi’s sent in the first round. Use randomness rgeni , renci

to generate a key pair (pki, ski) relative to A, and an encryption of the private input xi, ci =
MFHE.Encrypt(pki, xi).

3. For j broadcast the message mi,j
3 := (bcomj,i

2 , ci, p
i,j
3 , fsi,j3).

Round 4: If any pj,i does not pass verification then abort. Otherwise each party Pi:

1. Compute the evaluated ciphertext ĉ := MFHE.Eval(params;F ; (c1, . . . , cN)), and the decryption shares
evi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN), i, ski).

2. Prepare the final message fsj,i4 of ΠFS protocol.

3. For all j, broadcast the message mi,j
4 := (evi, fs

j,i
4).

Output phase: If any fsj,i does not pass verification then abort. Else run the combining algorithm on the
decryption shares, and output y ← MFHE.FinDec(ev1, . . . , evN , ĉ).

Figure 1: Protocol ΠMPC with respect to party Pi.

36

NP-Language LWIPOK

Pi
and LFS

Pi
for ΠFS and ΠWIPOK proof systems:

Fix the identities idi, and then for all i, j define:

Li,j,1 =


(
R̂i, R̂j , A, acomj,i

1 , bcomj,i
1

pki, ci, ĉ, acomj,i
2 , bcomj,i

2

)
∣∣∣∣∣∣∣∣∣∣∣∣

∃ (xi, r
gen
i , renci , ski, Ri, ωi) :

acomj,i
2 = aComidi(xi, r

gen
i , renci , Ri; acomj,i

1 ;ωi)

∧ R̂i = OWF (Ri)

∧ (ski, pki) = MFHE.Keygen(A; rgeni)

∧ ci = MFHE.Encrypt(pki, xi; r
enc
i)


Li,j,2 =

{(
R̂i, R̂j , A, acomj,i

1 , bcomj,i
1

pki, ci, ĉ, acomj,i
2 , bcomj,i

2

) ∣∣∣∣∣∃ (R′, ζ) : R̂j = OWF (R′)

∧ bcomj,i
2 = bComidi(R

′; bcomj,i
2 ; ζi)

}

Li,j,3 =


(
R̂i, R̂j , A, acomj,i

1 , bcomj,i
1

pki, ci, ĉ, acomj,i
2 , bcomj,i

2

) ∣∣∣∣∣∣∣∣∣∣
∃ (xi, r

gen
i , renci , ski, Ri, ωi) :

acomj,i
2 = aComidi(xi, r

gen
i , renci , Ri; acomj,i

1 ;ωi)

∧ (ski, pki) = MFHE.Keygen(A; rgeni)

∧ evi = MFHE.PartDec(ĉ, i, ski)


We define LWIPOK

Pi
= {Li,j,1 ∨ Li,j,2}j and LFS

Pi
= {Li,j,3}j .

Figure 2: NP-Language Li,j,1,Li,j,2,Li,j,3 for ΠFS and ΠWIPOK proof systems.

Figure 3: Messages exchanged between party Pi and Pj in ΠMPC. (acom1, acom2)
and (bcom1, bcom2) are commitments, (p1, p2, p3) belong to the 3-round ΠWIPOK,
(fs1, fs2, fs3, fs4) belong to the 4-round ΠFS, and (α, pk, c, ev) denote the MFHE messages.
Blue messages are sub-protocols where party Pi is the prover/committer and party Pj is
the verifier/receiver, red messages are the opposite.

37

	Introduction
	Related Work
	Overview of our Protocol
	A Tale of Malleability and Extraction
	The Resulting Protocol

	Multi-Key FHE from ``Dual'' GSW
	Multi-Key FHE
	A ``Dual'' LWE-Based Multi-Key FHE
	Our Interactive Setup Procedure and its Security
	An ILWE-Hard Protocol Under LWE

	A Detour: The Need for Dual GSW

	Other Preliminiaries
	Commitment Schemes
	Interactive Proofs
	Zero-Knowledge
	Witness Indistinguishability
	Proofs (Arguments) of Knowledge
	Feige-Shamir ZK Proof Systems

	Multi-Party Computation Protocol
	Proof of Security
	Description of the Simulator
	Proof of Indistinguishability

	Secure Computation Definitions

