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Chap.8 Autocorrelated Disturbances 

8.1 Fundamental Concepts in Time-series Analysis 
A sequence of random variables (vectors) is called a stochastic process. If 

the index for the random variables is interpreted as representing time, the 

stochastic process is called time series, i.e. ( ){ }, 0, 1, 2,.....Y t t = ± ± , simply notes 

as { }tY . 

8.1.1 Characteristic Indices of a Time Series 

Mean Function : ( )t tE Y μ=  

Variance Function ( ) ( )2
t t t ttVar Y E Y u γ= − =  

Auto covariance Function ( ) ( )( ),t t j t t t j t j tjCov Y Y E Y u Y u γ− − −
⎡ ⎤= − − =⎣ ⎦  

Autocorrelation Function 
( )
( ) ,

,
0, 1, 2,t t j tj

t t j
t tt

Cov Y Y
j

Var Y
γ

ρ
γ

−
−= = = ± ±  

All these indices are functions of time “t”. 

8.1.2 Stationarity 

1) Strictly stationary process 

A  n-dimension stochastic process { }tY  is strictly stationary if, for any given 

finite integer k and for any set of subscripts 1, , nt t , the joint distribution 

equality for { }tY holds: 

( ) ( ) ( )1 1 1 1 .................., , ; , , , ...., ; , , 8.1.........................n n n k n kF Y Y t t F Y Y t t− −=  

The definition implies that the distribution of { }tY  depends only on k, the 

relative position in the sequence, but not on 1, , nt t , the absolute position of 

{ }tY . So the mean variance and other higher moments, if they exist, remain the 

same across 1, , nt t . The definition also implies that if { }tY  is strictly 

stationary, then ( ){ }tf Y  is, where the function ( )f ⋅  needs to be 

“measurable”. 
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2) Weakly (Covariance) stationary process 

A stochastic process { }tY  is weakly (covariance) stationary if 

i) ( )tE Y μ=  

ii) ( ) ( )( ), 0, 1,t t j t t j jCov Y Y E Y Y jμ μ γ− −
⎡ ⎤= − − = = ±⎣ ⎦  

The definition implies that the mean function of  { }tY  is not the function of 

time “t”, and the ( ),t t jCov Y Y −  exists, is finite, and depends only on j but not on 

the “start  point” of time “t”. 
Note: 
i) If a sequence if strictly stationary and if the variance and covariance are finite, 
then the sequence is weakly stationary. 

ii) For a scalar covariance stationary process { }tY , the j-th order 

autocovariance jγ  satisfies 

( )............................................................................................................. 8.2j jγ γ −=  

By covariance stationary, the autocovariance matrix of the process is a band 
spectrum matrix: 

( ) ( )

0 1 1

1 0 2
1 1

1 2 0

..........................................., , , ... .. 8 3

n

n
t t t n

n n

Cov Y Y Y

γ γ γ
γ γ γ

γ γ γ

−

−
+ + −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The j-th order autocorrelation coefficient jρ , is defined as 

( )
( ) ( )

0

............................
,

0, 1 ...., ...............2, 8........ . 3.t t j j
j

t

Cov Y Y
j

Var Y
γ

ρ
γ

− ′= = = ± ±  

For 0, 1; 0, 1j jj jρ ρ= = ≠ < . The plot of { }jρ  against 0,1,j =  is 

called the correlogram. 

For a vector covariance stationary process { }tY , the j-th order autocovariance, 

denoted jΠ , is defined as 

( ), 0, 1, 2,j t t jCov Y Y j−Π = = ± ±  

Also by covariance stationary, jΠ  satisfies 
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j j−′Π = Π  

3) White noise processes 

A covariance stationary process { }tY  is white noise if 

( ) 0tE Y =  and ( ), 0t t jCov Y Y − =  for 0j ≠ . 

Clearly, an i.i.d. sequence with mean zero and finite variance is a special case 
of a white noise process, and it is called an independent white noise process. 

8.1.3 Ergodicity 

1) Ergodic stationary 

A  stationary process { }tY is said to be ergodic, if for any two bound functions 

1 1: , :a bf R R g R R+ +→ →  

( ) ( )

( ) ( ) ( )
1 1

1 1

lim , , , , ,

, , , , .............................................., 8.4

t t t a t n t n t n bn

t t t a t t t b

E f Y Y Y g Y Y Y

E f Y Y Y E g Y Y Y

+ + + + + + +→∞

+ + + +

⎡ ⎤⎣ ⎦

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
 

Note: 
i) A stationary process is ergodic if it is asymptotically independent, that is, if 
any two random variables positioned far apart in the sequence are almost 
independently distributed. 
ii) A stationary process that is ergodic will be called ergodic stationary. 

iii) For any (measurable) function ( )f ⋅ , ( ){ }tf Y  is ergodic stationary 

whenever { }tY is. 

2) Ergodic Theorem 

Let { }tY  be a stationary and ergodic process with ( )tE Y μ= , then 

( ). .

1
......................................................................................1 8.. 5.

n
a s

n t
t

Y Y
n

μ
=

= ⎯⎯→∑

Note: 
i) The Ergodic Theorem is a substantial generalization of Kolmogorov’s LLN. 
Serial dependence, which is ruled out by the i.i.d. assumption in Kolmogorov’s 
LLN, is allowed in the Ergodic Theorem, provided that it disappears in the long 
run. 
ii) This theorem implies that any moment of a stationary and ergodic process (if 
it exists and is finite) is consistently estimated by the sample moment. 

8.1.4 Martingales and Martingale Difference Sequence 



 4

1) Martingales 

Let tX  be an element of tY , the scale process { }tX  is called a Martingale 

with respect to { }tY , if  

( )1 1 1, ,t t tE X Y Y X− −=  for 2t ≥  

The conditioning set ( )1 1 2 1, , ,t t tI Y Y Y− − −=  is often called the information set at 

date t-1. { }tX  is called simply a martingale if the information set is its own 

past values ( )1 2 1, , ,t tX X X− − . If tY  includes tX , then { }tX  is a martingale, 

because 

( )
( )

( ) ( )

1 1

1 1 1 1

1 1 1 1..............................

, ,

, , ,

...........................................

,

, , 8.6..

t t

t t t

t t t

E X X X

E E X Y Y X X

E X X X X

−

− −

− − −

⎡ ⎤= ⎣ ⎦
= =

 

Note: 
i) If the process started in the infinite past so that t runs from −∞  to +∞ , the 

definition of a martingale with respect to { }tY  is ( )1 2 1, ,t t t tE X Y Y X− − −= , and 

the qualifier “ 2t ≥ ” is not need. 

ii) A vector process { }tY  is called a martingale if ( )1 1 1, ,t t tE Y Y Y Y− −=  for 

2t ≥ . 
2) Random Walks 

{ }tY  is a Random Walk If it can be written as 

1 1 2 1 2, ,Y Yε ε ε= = +  

( )1 .................................................................................................. .... . 7. 8t t tY Y ε−= +

Where { }tε  is i.i.d. with mean zero and finite variance. 

3) Martingale Difference Sequence (MDS) 

A vector process { }tε  with ( ) 0tE ε =  is called a martingale difference 

sequence (MDS) or martingale difference, if the expectation conditional on its 
past values is zero: 

( )1 1, , 0t tE ε ε ε− =  for 2t ≥ . 

The process is called martingale difference because 
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1 1t t t tY Y ε ε ε−= + = + +  

Where { }tY  is a martingale. The proof is as follows. 

Proof: 

( )
( )
( )
( )

( )

1 1

1 1

1 1 1

1 1 1 1

1 1

1.........................................................................

, ,

,

................................

,

, ,

, ,

8.8.........

t t

t t

t t

t t t

t

t

E Y Y Y

E Y

E

E

Y

ε ε

ε ε ε ε

ε ε ε ε ε

ε ε

−

−

−

− −

−

−

=

= + +

= + + +

+ +=

=

The first equality comes from which ( )1 1, ,tY Y−  and ( )1 1, ,tε ε−  have the 

same information, the fourth equality comes from ( )1 1, , 0t tE ε ε ε− = . 

Conversely, if { }tY  is a martingale, { }tε  can be backed out by taking first 

differences: 

( )1 1 2 2 1 1 ................................................, , .9., , 8t t tY Y Y Y Yε ε ε −= = − = −

And { }tε  is a MDS. 

Note: A MDS has no correlation. 
Proof: 

Suppose { }tε  is a  MDS, so for any j>0, we have 

( ) ( )1 1, , 0t t tE Eε ε ε ε− = =  

( )
( ) ( ) ( )

( )
( )

1 2 1

1 1

,

, , ,

, , , ,

0

t t j

t t j t t j

t t j t t

t t t j t j

Cov

E E E

E E

E E

ε ε

ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε

−

− −

− − −

− − −

= −

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

 

The third equality comes from the linearity of conditional expectation. 

8.1.5 ARCH Processes 

A process { }tε  is said to be an ARCH(1) if it can be written as 
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( )
( )2 2

0 1 1 ................................................................................ 8.10
. . . 0

......
,

..
1

t t t

t t

t

u

u i i d

ε σ
σ α α ε −

=⎧
⎪ = +⎨
⎪
⎩ ∼

 

If 1ε  is the initial value of the process, it is then easy to show that ( )2t tε ≥  is 

a function of 1ε  and ( )2 , , tu u , therefore tu  is independent of ( )1 1, , tε ε − . 

Now, we proof that { }tε  is a MDS. 

[ ]

1 2 1

2
0 1 1 1 2 1

2
0 1 1 1 2 1

2
0 1 1

, , ,

, , ,

, , ,

0

t t t

t t t t

t t t t

t t

E

E u

E u

E u

ε ε ε ε

α α ε ε ε ε

α α ε ε ε ε

α α ε

− −

− − −

− − −

−

⎡ ⎤⎣ ⎦
⎡ ⎤= + ⋅⎢ ⎥⎣ ⎦

= + ⎡ ⎤⎣ ⎦

= +

=

 

By a similar argument, it follows that 

( ) ( )2 2
1 1 0 1 1........................................................................, , 8. 1. 1t t tE ε ε ε α α ε− −= +

Since 1 2 1, , , 0t t tE ε ε ε ε− −⎡ ⎤ =⎣ ⎦ , the conditional second moment is just the 

conditional variance, it is a function of its own history of the process. In this 
sense, the process exhibits own conditional heteroscedasticity. It can be 

shown (Engle, 1982) that the process is strictly stationary and ergodic if 1 1α < , 

provide that 1ε  is a draw from an appropriate distribution or provide that the 

process started in the infinite past. 
4) Conclusions 
Now we have three formulations for covariance stationary processes. They are, 
in the order of strength, 

{ }tε  is i.i.d. with zero-mean and finite variance. 

⇒  { }tε  is stationary MDS with finite variance. 

⇒  { }tε  is white noise. 
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8.2 Autocorrelated Disturbances 
8.2.1 General Formulation 
In the usual time-series setting the disturbances are assumed to be: 

i) Homoscedastic but correlated across observations. 
ii) Stationary, i.e. the covariance between observations t and s is a 

function only of t s− . 

So that Y X β ε= +  

( ) ( )2 .......................................................................................... .12. 8.E Xεε σ′ = Ω  

Where 2σ Ω  is a full positive matrix by above two assumptions. 

( ) ( )2 ................................................................................................. 13. 8.t sσ γ −Ω =  

It is just the matrix form of  equation (8.3). 

8.2.2 AR(1) Process 

Suppose 1, ,t t tY X t Tβ ε′= + =  

( )1 ............................................................................................ 8..... .14t t tuε ρε −= +  

1ρ < , { }tu : a white noise series, ( )1, 0t tCov uε − = . 

So 

( ) [ ]

( )

( ) ( )

2
22 2 2 2 2 2

0 1 2

2
1 1

2
1

1

               

u
t t t u

t t

s
s t t s t t t s

E E u

E

E E u

ε ε ε

ε

ε

σγ ε ρε σ ρ σ σ σ
ρ

γ ε ε ρσ

γ ε ε ρε ε ρ σ

−

−

− − −

= = + ⇒ = + ⇒ =
−

= =

= = + =⎡ ⎤⎣ ⎦

 

( )

1

22
2

2

1 2

...................................................

1
1

8. .15
1

1

T

T
u

T T

ρ ρ
ρ ρσσ

ρ
ρ ρ

−

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟∴ Ω =
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

 
8.2.3 MA(1) Process 

1...................................................................................................(8.16)t t tu uε λ −= −  

The assumptions of { }tu  are the same as AR(1) process. 
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( ) ( )
( )( )
( )( )

2 2 2
0 1

2
1 1 1 2

2 1 2 3

1

0

    
0 1

t t u

t t t t u

t t t t

j

E u u

E u u u u

E u u u u

j

γ λ λ σ

γ λ λ λσ

γ λ λ

γ

−

− − −

− − −

= − = +

= − − = −⎡ ⎤⎣ ⎦
= − − =⎡ ⎤⎣ ⎦

= >

 

( )

2

2
2 2

2

................................

1 0 0 0
1 0 0

8.17

0 0 0

....

0

.

1

u

λ λ
λ λ λ

σ σ

λ

⎛ ⎞+ −
⎜ ⎟
− + −⎜ ⎟∴ Ω =

⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

8.3 Reasons for Autocorrelated Disturbances (Leave Out) 

8.4 Testing for Autocorrelation 
8.4.1 The Durbin-Watson Test 
1) DW statistic 
Suppose that in the model (8.14), one suspects that the disturbance follows an 
AR(1), then, we have 

0 : 0H ρ =  

1 : 0H ρ ≠  

The Durbin-Watson test statistic is computed from the vector of OLS residuals 

ˆe Y X β= −  and is defined as 

( )
( )

2
2 21

2 1

2 2

1 1

2 1

T

t t
t T

T T

t t
t t

e e
e ed r

e e

−
=

= =

−
+

= = − −
∑

∑ ∑
, where 

1
2

2

1

ˆ

T

t t
t

T

t
t

e e
r

e
ρ

−
=

=

= =
∑

∑
 

For a large T, then the last term will be negligible, leaving  

( ) ( ).....................................................................................................2 1 8.18.d r−

Because any computed d value depends on the associated X matrix, exact 
critical values of d that will cover all empirical applications cannot be tabulated. 
Dubin and Watson established upper (dU) and lower (dL) bounds for the 
critical values. The testing procedure is as follows: 

i) If d<dL, reject the null hypothesis in favor of the hypothesis of positive 
first-order autocorrelation. 

ii) If d>4-dL, reject the null hypothesis in favor of the hypothesis of 
negative first-order autocorrelation. 

iii) dU<d<4-dU, do not reject the null hypothesis. 
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iv) dL<d<dU, 4-dU<d<4-dL, the test is inconclusive. 
2) The expansions of DW statistic 

i) Savin and White’s extensive tables: 6 200, 10n k≤ ≤ ≤ . 

ii) Farebrother’s table: for no constant model, dL to be replaced by dM. 
iii) Wallis Test: for fourth-order autocorrelation 

( )

4 4

0 4 1 4

2 2
4 4

5 1

: 0 : 0
t t t

T T

t t t
t t

u
H H

d e e e

ε ρ ε
ρ ρ

−

−
= =

= +
= ≠

= −∑ ∑

 

8.4.2 Testing in the Presence of a Lagged Dependent Variable 
There are two important qualifications to the use of DW test. First, it is 
necessary to include a constant term in the model. Second, it is strictly valid 
only for a non-stochastic matrix X. Thus, the DW Test is not likely to be valid 
when there is a lagged dependent variable in the equation. Consider the 
relation 

( )1 1 1 1 ........................................ 8 1. . 9t t s t s s t s k tk tY Y Y X Xβ β β β ε− − + += + + + + + +

with ( )2
1 1 0,t t tu u N Iε ρε ρ σ−= + < ∼ . 

0 : 0H ρ =  

The  statistic  is:  

( ) ( ) ( )
1

........................................................ˆ 0,1 8.20
ˆ

....
1

.
v

........
a

..
r

aTh N
T

ρ
β

=
− ⋅

∼  

Where ρ̂  can be computed from the residuals te  or from (8.18), use the 

approximation ˆ 1
2
dρ = − , when the DW statistic has been computed.The test 

breaks down if ( )1
1ˆvar
T

β ≥ , an alternative is to regress te  on 

1 1 1, , , , , ,t tk t t s tX X Y Y e− − − ; if the coefficient of 1te −  in this regress is significantly 

different from zero by t test, reject the null hypothesis 0 : 0H ρ = . 

Durbin indicates that this last procedUre can be extended to test for AR(p): 

( )1 1 2 2

0 1

.......................................................... 8.21

:

.....

0
t t t p t p t

p

u

H

ε ρ ε ρ ε ρ ε

ρ ρ
− − −= + + + +

= = =
 

Let ( )0 1 1, , , , ,t t t s t tkX Y Y X X− −= , and ( ) 1
0 0 0 0e Y X X X X Y−′ ′= − . 
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Define ( )

1

2 1

1 2

1

1 2

0 0 0
0 0

0
, , ,p p

T T T p

e
e e

E e e e
e

e e e− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

In the second-stage regression, the relevant restricted regression is: 

Regress e  on 0X                                               

The unrestricted regression is: 

Regress e  on pE  0X                                                  

Therefore, if SSEU and SSER are  Error Sum of Squares from the above two 
regressions respectively, we have 

( )
( ) ( ).......................................................................

/
.. 8.22

/
R U

U

SSE SSE p
F

SSE T s K p
−

=
− + −⎡ ⎤⎣ ⎦

Since e  is the residual vector from the original regression (8.19), the 

regressors 0X  in the restricted regression have no explanatory power, so 

0RSSR =  and RSSE e e′= , 

( ) ( ).........................................................................../ 8.23
/

U

U

SSR pF
SSE T s K p

=
− + −⎡ ⎤⎣ ⎦

The SSRU from the unrestricted regression is  

( )

( ) ( )

( )

1
0

0
0 0 0 0

1
0

0 0 0

1
0 0 0 0

........ .................................................0 8.24.......

........

0

p p p p
U p

p

p p p p
p

p

p p p p

E E E X E
SSR e E X e

X E X X X

E E E X E e
e E

X E X X

e E E E E X X X X E

−

−

−

′ ′ ′⎛ ⎞ ⎛ ⎞
′= ⎜ ⎟ ⎜ ⎟′ ′ ′⎝ ⎠⎝ ⎠

′ ′ ′⎛ ⎞ ⎛ ⎞′= ⎜ ⎟ ⎜ ⎟′ ′ ⎝ ⎠⎝ ⎠

′ ′ ′ ′ ′= −
1

p pE e
−

⎡ ⎤ ′⎣ ⎦

 So the F statistic to test the joint significance of the coefficients on the lagged 
residuals is then 

( )
( ) ( )

11
0 0 0 0

.................................
/

8.2........
/

. 5.
p p p p p p

U

e E E E E X X X X E E e p
F

SSE T s K p

−−⎡ ⎤′ ′ ′ ′ ′ ′−⎣ ⎦=
− + −⎡ ⎤⎣ ⎦

This statistic does not have exact, finite sample validity since the regressor 
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matrix in the both restricted and unrestricted regressions is stochastic. As 

T →∞ , p F⋅  tends in distribution to ( )2 pχ . 
8.4.3 The  Breusch-Goldfrey Test (LM Test) 

We first  discuss the Breusch-Goldfrey Test for AR(1)  

Suppose the specified equation is 

( )1 2 ...................................................................................................... 8. 6. 2t t ty xβ β ε= + +

( )1 ......................................................................................................... 8.27.....t t tuε ρε −= +  

Where ( )21, 0,t uu IINρ σ< ∼ . 

Substituting (8.27) in (8.26) gives 

( ) ( ) ( )1 2 1 2 1 1 1 ...............................1 ; , , 8.28y i x y x u F x x y uβ ρ β ρ β ρ β− − − −= − + + − + = +  

Where ( )1 2, ,β β β ρ=  is the true parameter vector. 

We wish to test the hypothesis: 0 : 0H ρ =  (no autocorrelation) 

The log-likelihood function for (8.28) is  

( ) ( )1 1 1 12
2

; , , ; , ,
ln ln 2 ln

2 2 2u
u

y F x x y y F x x yn nL
β β

π σ
σ

− − − −
′⎡ − ⎤ ⎡ − ⎤⎣ ⎦ ⎣ ⎦= − − −     

The information matrix for this type of regression model is block diagonal, so 

the parameter vector β  can be treated separately from 2
uσ . The score vector 

is then 

( ) ( )1 1 1 1
2

2 2

1
2 2

1 1

.........

; , , ; , ,
2

l

1 1.

n

2

u

n

t u n n
t t

t t t
t tu u

y F x x y y F x x y

L

u
uu u w

β β
σ

β β

σ

β σ β σ

− − − −

=

= =

⎧ ⎫′⎡ − ⎤ ⎡ − ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦∂ ⎨ ⎬
⎪ ⎪∂ ⎩ ⎭= −

∂ ∂

⎡ ⎤
∂ ⎢ ⎥ ∂⎣ ⎦= − = − =

∂ ∂

∑
∑ ∑

 

Where t tw u β= −∂ ∂ . The information matrix is 

( ) ( )( )

( )

4

2
4 2.......

ln ln 1

1. . 1

t t t t
u

t t t t s t s t t
t su u

L LI E E u w u w

E u w w u u w w E w w

β
β β σ

σ σ≠

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ′= =⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟′∂ ∂⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
⎡ ⎤⎛ ⎞′ ′ ′= + =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑ ∑
 

Where the last line follows the assumptions about u’s. Asymptotically it makes 
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no difference if ( )t tE w w′∑  replaced by t tw w′∑ . 

Under 0H , 1 2t t ty x uβ β= + + , thus the LM statistic is 

( ) ( ) ( ) ( )

( )

1

2

1
2

................................................................1 8.29...

....... 1

t t t t t t
u

u

LM u w w w u w

u w w w w u

σ

σ

−

−

′ ′=

′ ′ ′=

∑ ∑ ∑

Where 

1

2

i

i

ni

w
w

w

w

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ( )1,2,3i = , and 

1

2

n

u
u

u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

The “∼ ” indicate that all elements in (8.29) are evaluated at the restricted 

estimates β , 2
u u u nσ ′= , so 2LM nR= .Where 2R  is the coefficient of 

determination from the regression of u  on w . 

Under 0H , 1 2t t tu y xβ β= − − , 

1

2 1

1 1 2 1

1t

t t t t

t t t

u
w u x x

u y x

β ρ
β ρ
ρ β β

−

− −

−∂ ∂ −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −∂ ∂ = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−∂ ∂ − −⎝ ⎠ ⎝ ⎠

 

1

1

t t

t

w x
u −

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The test of 0ρ =  is therefore obtained in two steps: 

Step 1: Apply OLS to (8.29) to obtain the residual tu  (labeled te ). 

Step 2: Regress te  on [ ]11, ,t tx e −  to find 2R . 

Under 0H , ( )2 2 1nR χ∼ . 

This procedure easily extends to testing for higher orders of autocorrelation, 

including AR(p) and MA(q). It may be seen that w  in ( 8.29 ) is the ( )0pE X  

matrix in the unrestricted regression in Durbin-h test, and u  is e . Thus, using 
the unrestricted regression ,the LM statistic in ( 8.29 ) is 

( )
( )

11
0 0 0 0 2

0 8.29 '
/

................................
p p p p p pe E E E E X X X X E E e

LM TR
e e T

−−⎡ ⎤′ ′ ′ ′ ′ ′−⎣ ⎦= =
′
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Where 2
0R  is the coefficient  determinant from the regression of e  on 

( )0pE X  . The only difference between the Durbin Statistic in (8.25) and the 

LM test in (8.29’) is in the variance term in the denominator. Breusch shows 
that these terms have the same probability limit and so the two procedures are 
asymptotically equivalent. 

In the concrete, it can be shown that the p F⋅  Statistic in (8.25) is 

asymptotically equivalent to 2
0TR  in (8.29’).  

8.4.4 Box-Pierce-Ljung Statistic 
1) Special case of Theorem 6.7 of Hall and Heyde (1980) 

Suppose { }tZ  can be written as tμ ε+ , where tε  is MDS with “own” 

conditional homoscedasticity: 

( ) ( )2 2 2
1 2 ........................................................, , 0 8.3............ 0t t tE ε ε ε σ σ− − = >

The sample j-th order autocorrelation coefficient ˆ jρ  is defined as 

( )
0

.............................................................................
ˆ

ˆ 1, 2, 8.31
ˆ

...........j
j j

γ
ρ

γ
= =

Where 

( )( ) ( )
1 1

........................................................1 1 .ˆ 8.32
T T

j t T t j T t t j
t j t j

Z Z Z Z e e
T T

γ − −
= + = +

= − − =∑ ∑

1

1 T

T t
t

Z Z
T =

= ∑  

Then ( )4ˆ 0,d
pT N Iγ σ⎯⎯→  and ( )ˆ 0,d

pT N Iρ ⎯⎯→ . 

Where ( ) ( )1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,p pγ γ γ γ ρ ρ ρ ρ′ ′= = . 

Now, we can test whether ( )1 2ˆ ˆ ˆ ˆ, , , pρ ρ ρ ρ ′=  are simultaneously zero. Since 

the elements of ˆT ρ  are asymptotically independent and individually 

distributed as standard normal, the Box-Pierce Q (Box and Pierce, 1970), is 
asymptotically Chi-squared: 

( ) ( ) ( )
22 2

1 1
.....................................ˆ ˆ ................. 33.. 8..

p p
d

j j
j j

Q T T pρ ρ χ
= =

= = ⎯⎯→∑ ∑
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And the modification of Box-Pierce Q, called the Ljung-Box Q’, is 
asymptotically equivalent in that its difference from the Box-Pierce Q vanishes 
in large sample. This statistic is:  

( ) ( ) ( ) ( )
22 2

1 1
...................1 2ˆ ˆ2 8. . .. . . 34.

p p
d

j j
j j

TQ T T T p
T j T j

ρ ρ χ
= =

+′ = + = ⎯⎯→
− −∑ ∑  

The Ljung-Box Q’ often provides a better approximation to the 2χ  

distribution for moderate samples. 
2) Sample autocorrelations calculated from residuals 

Suppose model 

( ).............................................................................................. 8..... .35t t tY X β ε′= +

Satisfying  the following set of assumptions: 

A1. The (K+1)-dimensional vector stochastic process { }t tY X  is jointly 

stationary and ergodic. 
A2. All the regressors are orthogonal to the contemporaneous 

disturbance: 

( ) 0tk tE X ε =  for all t and k (k=1,…,K). 

A3. The matrix ( )t t XXE X X ′ = Σ  is nonsingular and finite. 

A4. { }t tX ε  is a MDS with finite second moments.              

 If the error term tε  were observable, we would calculate the sample 

autocorrelations as 

( )
0

.............................................................................1, 2, 8.31...... . '.. .j
j j

γ
ρ

γ
= =  

Where ( )
1

...............................................................................1 8.32 '
T

j t t j
t jT

γ ε ε −
= +

= ∑  

Now consider the realistic case where we replace tε  in the formula ( )8.32 ' by 

the OLS estimate te  and calculate the sample autocorrelations defined as 

(8.31). Because the regressors include a constant, we have 0e = . So there is 

no need to subtract the sample mean in the calculating of ˆ jγ . Under this 

situation, only if the regressors are strictly exogenous, the residual-based Q 

statistic derived from { }ˆ jρ  is all right for testing serial correlation. Using the 



 9

following relation: ( )ˆ
t t te Xε β β′= − − , we have 

( ) ( )

( ) ( )

( ) ( )

1

1

1

1

....

....

...................... ........................................

1ˆ

1 ˆ ˆ

1 ˆ

1ˆ ˆ 8... .

T

j t t j
t j

T

t t t j t j
t j

T

j t j t t t j
t j

T

t t j
t j

e e
T

X X
T

X X
T

X X
T

γ

ε β β ε β β

γ ε ε β β

β β β β

−
= +

− −
= +

− −
= +

−
= +

=

⎡ ⎤ ⎡ ⎤′ ′= − − − −⎣ ⎦ ⎣ ⎦

′= − + −

⎛ ⎞′ ′+ − −⎜ ⎟
⎝ ⎠

∑

∑

∑

∑ ( )36

Where 
1

1 T

j t t j
t jT

γ ε ε −
= +

= ∑ . 

If ( )t t jE X ε − , ( )t j tE X ε−  and ( )t t jE X X −′  are all finite, then the second and the 

third terms converge to zero in probability because ˆ pβ β⎯⎯→ . Therefore  

( ).........................................................ˆ 0 0,1 .., 2, 8.37..............P
j j jγ γ− ⎯⎯→ =

However T  times the difference does not. Now, by multiplying both sides of 

(8.36) by T , we obtain 

( ) ( )

( ) ( ) ( )

1 1

1

...................... ..........................

1 1 ˆˆ

1ˆ ˆ 8......... 3.. 8

T T

j t t j t j t t t j
t j t j

T

t t j
t j

T T X X T
T T

T X X
T

γ ε ε ε ε β β

β β β β

− − −
= + = +

−
= +

⎛ ⎞ ′= − + −⎜ ⎟
⎝ ⎠

⎛ ⎞′ ′+ − −⎜ ⎟
⎝ ⎠

∑ ∑

∑
 

Where ( )ˆT β β−  converges to a normal random variable, by the Lemma 

" 0, 0"p d p
n n n nX Y Y X Y⎯⎯→ ⎯⎯→ ⇒ ⎯⎯→ ,the third term on the right hand side  

vanishes. Regarding the second term, we have 

( ) ( ) ( ) ( )
1

..................................1 8.. 39.
T

P
t j t t t j t j t t t j

t j
X X E X E X

T
ε ε ε ε− − − −

= +

+ ⎯⎯→ +∑

If the regressors are strictly exogenous in the sense that ( ) 0t sE X ε =  for all t 

and s, then 

( ) ( ) ( ).................................................................0 8.40............t j t t t jE X E Xε ε− −+ =  
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The second term converges to zero in probability, and thus  

ˆ 0P
j jT Tγ γ− ⎯⎯→  

Since 2 2 2 2
0 0

1 1ˆ,P P
t te

T T
γ ε σ γ σ= ⎯⎯→ = ⎯⎯→∑ ∑ , 

( )
0 0

..................................
ˆ

ˆ 0 8.41
ˆ

.......................j j P
j jT T T T

γ γ
ρ ρ

γ γ
− = − ⎯⎯→

(8.41) means that the Q statistic calculated from the regression residuals { }te , 

too, is asymptotically 2χ  distributed, and we can use this residual-based Q to 

test for serial correlation. 

3) Testing with predetermined, but not strictly exogenous, regressors 

When the regressors are not strictly exogenous, there is no guarantee that 
(8.40) holds. Consequently, we need to modify the Q statistic to restore its 

asymptotical 2χ  distribution. For this purpose, consider two restrictions 

i) ( ) ( )1 2 1 .............................................................., , , , , 0 .... 8.42t t t t tE X Xε ε ε− − − =  

ii) ( ) ( )2 2
1 2 1 ............................................................, , , , , 8.43..t t t t tE X Xε ε ε σ− − − =  

where restriction (i) implies that { }t tX ε  is an MDS and restriction (ii) is 

stronger than the own conditional homoscedasticity assumption because the 
conditioning set includes current and past X as well as past ε . 
Suppose that A.1, A.3, (8.42) and (8.43) are satisfied, the sample 
autocorrelation of the OLS residuals be defined as in (8.31).  

Then 

( )4ˆ 0,d
pT N Iγ σ⎡ ⎤⎯⎯→ −Φ⎣ ⎦   

and  

( )ˆ 0,d
pT N Iρ ⎡ ⎤⎯⎯→ −Φ⎣ ⎦                                    (8.44) 

Where ( ) ( )1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,p pγ γ γ γ ρ ρ ρ ρ′ ′= = , and ( )jkφΦ =  is given by  

( ) ( ) ( )1 2
jk t t j t t t t kE X E X X E Xφ ε ε σ−

− −
′ ′=                       (8.45) 

By the Ergodic Theorem, matrix Φ  is consistently estimated by its sample 
counterpart: 

( ) 1 2ˆ ˆˆ , , , 1, 2, .jk jk j XX kS S j k pφ φ μ μ−′Φ = = =                   (8.46) 
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Where 2 2

1 1

1 1,
T T

t j t t j
t t j

S e X e
T K T

μ −
= = +

= =
− ∑ ∑ . 

It follows from this and (8.44) that: 

Modified ( ) ( )
1 2 ..........................ˆˆ ˆ ....d

pQ T I pρ ρ χ
−

′= −Φ ⎯⎯→               (8.47) 

8.5 Estimation for Autocorrelation Model 
8.5.1 GLS Estimation 

We now assume that the specification t t tY X β ε′= +  is associated 

autocorrelation structure, by far the most common assumption is an AR(1) 
process. So the covariance matrix for ε  is (8.14), where  

( )

1

2

2

1 2

.......................................................

1
11 8.4....... 8

1
1

T

T

T T

ρ ρ
ρ ρ

ρ
ρ ρ

−

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟Ω =
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

 

( )

2

2
1

2

1 0 0 0 0
1 0 0 0

0 1 0 0 0
8.49

0 0 0 1
0 0 0 0 1

.....................................

ρ
ρ ρ ρ

ρ ρ

ρ ρ ρ
ρ

−

−⎛ ⎞
⎜ ⎟− + −⎜ ⎟
⎜ ⎟− +

Ω = ⎜ ⎟
⎜ ⎟
⎜ ⎟− + −
⎜ ⎟⎜ ⎟−⎝ ⎠

 
It can be seen that the matrix 

( )

2

........................

1 0 0 0 0
1 0 0 0 8.50

0

...................................

0 1

...

0

.P

ρ
ρ

ρ

⎛ ⎞−
⎜ ⎟

−⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

 

satisfies the condition 1 P P− ′Ω = . If ρ  be known, there are two equivalent 

ways of deriving GLS estimates of β . One is to substitute ρ  in (8.49) and 

compute ( ) 11 1ˆ
GLS X X X Yβ

−− −′ ′= Ω Ω  directly. The alternative is to transform the 

data by pre-multiplication by the P matrix and then estimate the OLS 

regression of ( )*Y PY=  on ( )*X PX= . For the AR(1) case, data for the 

transformed model are: 



 12

( )

2 2
1 1

2 1 2 1
* *

1 1

......................................................

1 1

, 8.. 51..

T T T T

Y X
Y Y X XY X

Y Y X X

ρ ρ
ρ ρ

ρ ρ− −

⎛ ⎞ ⎛ ⎞′− −
⎜ ⎟ ⎜ ⎟

′ ′− −⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′− −⎝ ⎠ ⎝ ⎠

Where ( )1, ,t t tKX X X ′= . The data transformed model also can be written as: 

( ) ( )
( ) ( )

( )
( )

2 2 2 2 2
1 1 2 12 1 1

1 1 2 2 1,2

1, 1

......

............................

1 1 1 1 1

1 8.52
2,

.
,

..

K K

t t t t

K tK t K t t

Y X X

Y Y X X
t T

X X

ρ ρ β ρ β ρ β ρ ε

ρ β ρ β ρ

β ρ ε ρε
− −

− −

⎧ − = − + − + + − + −
⎪⎪ − = − + − +⎨

=⎪
+ − + −⎪⎩

It is easy to be shown that the disturbances in (8.52): 
2

1

1

1 , 1
, 2, ,

t
t t

tu
t T

ρ ε
ε ρε −

⎧⎪ − == ⎨
− =⎪⎩

 

are spherical disturbances. 
If, however, the first row in P is dropped out, the regression between variables 
would simply be the second formula in (8.52). In small samples dropping the 
first observation can have a marked effect on the coefficient estimate, although 
asymptotically it is of little importance.  
Corresponding results have been derived for higher-order autoregressive 
process, see Green, 5th, P272. 

8.5.2 FGLS Estimation 

In practice, Ω  usually is unknown, we must estimate the ( )ρΩ  along 

with the other parameters of the model; and all that is needed for efficient 

estimation of β  is a consistent estimator of ( )ρΩ . 

For an AR(1) process, the most common procedure is to begin FGLS with a 

natural estimator of ρ . 

(i) 
1

2

2

1

ˆ

T

t t
t

T

t
t

e e
r

e
ρ

−
=

=

= =
∑

∑
             ( te : OLS residual) 

(ii) *ˆ ˆ
1

T K
T

ρ ρ−
=

−
               (Theil Estimator) 

(iii) **ˆ 1
2
dρ = −                  (Durbin-Watson Estimator) 

(iv) The slope on 1tY −  in a regression of tY  on 1tY − , tX  and 1tX − . 
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After ρ  be estimated, there are two procedures of calculating FGLS 

estimates of β . 

(i) The Cochrane-Orcutt (C-O) procedure 

This procedure is to substitute the estimated ρ  in the second formula in 

(8.52), which is equivalent to dropping the first row of the P matrix in (8.50). 
(ii) The Prais and Winsten procedure 

This procedure is to use the full P matrix, so that the first observation receives 
exploit treatment. 
It is possible to iterate any of the estimators to convergence. 

(i) The C-O iterated procedure 
The second formula in (8.52) can be rearranged in two equivalent forms as 

( ) ( ) ( ) ( ) ( )1 1 2 2 1,2 1, ....1 8.53t t t t K tK t K tY Y X X X X u aρ β ρ β ρ β ρ− − −− = − + − + + − +

    

( ) ( ) ( )1 2 2 1 1 2 1,2 1, .. 8.53t t K tK t t K t K tY X X Y X X u bβ β β ρ β β β− − −− − − − = − − − − +  

We start the C-O iterative procedure with an estimate of (1)ρ̂  and then 

substitute it in (8.53a) and compute OLS regression, yielding estimated 

coefficients ( )(1)ˆ , 1, ,j j Kβ = . These in turn are used to compute the 

variables in (8.53b); and an OLS regression yields a new estimate (2)ρ̂ . The 

iteration continues until a satisfactory degree of convergence is reached. 
(ii) The Prais and Winsten iterated procedure 

The problem of this iterative procedure is that they may converge to a local 
minimum and not necessarily to the global minimum. A precaution is to fit 

equations like (8.53a) for a grid of ρ  values in steps of 0.1 from, say, -0.9 to 

0.9 and then iterate from the regression with the smallest SSE. 
Note: 

(i) The iterative procedure can be used directly to the following nonlinear 
model: 

( ) ( ) ( ) ( )1 1 2 2 1,2 1, .1 8.54........t t t t K tK t K tY Y X X X X uρ β ρ β ρ β ρ− − −= + − + − + + − +

The nonlinear least squares (NLS) is required for this model. In order to avoid 
the problem exits with Prais-Winsten iterated procedure, it is advisable to start 
the NLS process with several different coefficient vectors to see if convergence 
takes place at the same vector. 

(ii) The iterated FGLS procedure does not yield ML estimates, even with 
special treatment of the first observation. 
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The log-likelihood in (8.14), namely 

( ) ( ) 12 21 1ln ln 2 ln
2 2 2
nL π σ ε σ ε

−
′= − − Ω − Ω  

From the relations already defined in (8.14) and (8.48), it follows that 

( ) ( ) ( )2 2
2 ..........1 1ln ln 2 ln ln 1 8.55

2 2
............................

2
.

2u
u

n nL u uπ σ ρ
σ

′= − − + − −

Maximizing the log-likelihood takes account of term in ( )2ln 1 ρ− , which is 

ignored in the GLS procedure. Beach and Mackinnon drew attention to this 
point and have devised an iterative procedure for maximizing (8.55), see 
Green,5th, P273. 
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8.6 Newey-West Autocorrelation Consistent Covariance Estimator 
8.6.1 The CLT for serial dependence process  

1) Ergodic Stationary Martingale Differences CLT 

Let { }tZ  be a vector MDS that is stationary and ergodic with ( )t tE Z Z ′ = Σ  

and 
1

1 T

T t
t

Z Z
T =

= ∑ , then 

( ) ( )
1

.......................................................1 ........0, 8.5. .... 6. .
T

d
T t

t
T Z Z N

T =

= ⎯⎯→ Σ∑

This CLT, being applicable not just to i.i.d. sequences but also to stationary 
martingale differences such as ARCH(1) processes, is more general than 
Linderg-Levy. 

2) Gordin’s Central Limit Theorem 

We now consider a CLT that is broad enough to include the case that 

interested us at the outset, stochastically dependent observations on tX  and 

autocorrelation in tε . 

Gordin’s conditions for Ergodic Stationary process:  
i) Summability of autocovariances 

With dependent observations, 

( ) ( ) ( )*

0 0
...........................l .......im 8.57......T t s jT t s j

Var T Z Cov Z Z
∞ ∞ +∞

→∞
= = =−∞

′= = Γ = Γ∑∑ ∑  

Where t t tZ X ε= , *Γ  is a finite matrix. If the sum is to be finite, then 0j =  

term must be finite, which gives us a necessary condition ( ) 0t tE Z Z ′ = Γ , a finite 

matrix. 

ii) Asymptotic uncorrelated: . .
1, , 0m s

t t j t jE Z Z Z− − −⎡ ⎤ ⎯⎯→⎣ ⎦  as j →∞ .  

iii) Asymptotic negligibility of innovations 

( )
1/ 2

0
........................................................................................(8.58)tj tj

j
E r r

+∞

=

⎡ ⎤′ < ∞⎣ ⎦∑  

Where  

1 1 2, , , , ...........................................(8.59)tj t t j t j t t j t jr E Z Z Z E Z Z Z− − − − − − −⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦
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It can be shown that 
0

t ts
s

Z r
∞

=

=∑ ： 

{ } { }
{ }

, 1 1 2 1 2 3 4

3 4 5 6 1

, , , , , , ,

, , , , , ,

t t t t t t t t t t t t t

t t t t t t t t j t j

Z E Z Z Z E Z Z Z E Z Z Z E Z Z Z

E Z Z Z E Z Z Z E Z Z Z

− − − − − − −

− − − − − − −

⎡ ⎤= − ⎡ ⎤ + ⎡ ⎤ − ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤+ ⎡ ⎤ − ⎡ ⎤ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 1 2 , 1 1, ,t t t t j t t j t jr r r r E Z Z Z− − − −⎡ ⎤= + + + + + ⎣ ⎦  

. .
1, , 0m s

t t j t jE Z Z Z− − −⎡ ⎤ ⎯⎯→⎣ ⎦  

( ) . .
0 1 2 , 1

0

0m s
t t t t t j

t tj
j

Z r r r r

Z r

−

∞

=

∴ − + + + + ⎯⎯→

=∑
 

The vector tjr  can be viewed as the information in this accumulated sum that 

entered the process at time t－ j. This condition states that information 
eventually becomes negligible as it fades far back in time from the current 
observation. 
Gordin’s Central Limit Theorem: 

If Gordin’s condition holds for vector ergodic stationary process { }tZ ，then 

( ) 0tE Z = , { }jΓ  is absolutely summable ,and ( )*0,d
TT Z N⎯⎯→ Γ . 

8.6.2 Large Sample Theory for Linear Regression under Conditional 
Heterocedasticity and Autocorrelation 

1 ) Assumptions 

A 8.6.1 { },t tY X  is a stationary ergodic process with t t tY X β ε′= + . 

A 8.6.2 ( ) 0t tE Xε =  

A 8.6.3 The K K×  matrix ( )t tQ E X X ′=  is finite and nonsingular. 

A 8.6.4  i) Put ( ) ( ) ( ), ,j t t j t t t j t j t t t j t jCov Z Z Cov X X E X Xε ε ε ε− − − − −′Γ = = = , 

( )* ......................................................................................... 8.60......j
j

+∞

=−∞

Γ = Γ∑  

is finite and positive definite. 

ii) . .
1 1 1, , , , 0m s

t t j t j t t t j t j t j t jE Z Z Z E X X Xε ε ε− − − − − − − − −⎡ ⎤ ⎡ ⎤= ⎯⎯→⎣ ⎦ ⎣ ⎦  as j →∞ . 
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iii) ( ) 1/ 2

0
ij ij

j
E γ γ

∞

=

⎡ ⎤′ < ∞⎣ ⎦∑ , where  

1 1 1 1 2 2, , , ,ij t t t j t j t j t j t t t j t j t j t jE X X X E X X Xγ ε ε ε ε ε ε− − − − − − − − − − − − − −⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦  

Assumption 8.6.4 on { }tε  allows for both conditional heteroscedasticity and 

autocorrelation of unknown form. 

2 ) Long-run Variance Estimation 

 i) Recall OLS Estimator, we have  

( ) 1

1

1ˆ ˆ
T

t t
t

T Q X
T

β β ε−

=

− = ∑  

Suppose ( )
1

1 0,
T

d
t t

t

X N V
T

ε
=

⎯⎯→∑ . 

Where V is the asymptotic variance 

1

1var
T

t t
t

V A X
T

ε
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  

Then we have ( ) ( )1 1ˆ 0,dT N Q VQβ β − −− ⎯⎯→ . 

Now we consider the { }tε under A8.6.1~A8.6.4, it is clear that Gordin’s 

condition is satisfied for { } { }t t tZ X ε= . So we have 

( ) ( )* ................................................................................0, 8...... .61d
TT Z N⎯⎯→ Γ

    ii) How to Estimate *Γ ? 

( ) ( )
( ) ( )

[ ] [ ] [ ]

( ) ( ){ }

1 1 1

0 1 1 1 0 2 1 1 0

0 1 1

1 , ,

1

1 2 1 2 2

T T

T T T

T T T

j T

T Var Z Var T Z

Cov Z Z Z Cov Z Z Z
T

T

T T T j
T

− − −

−

⋅ =

= + + + + + +⎡ ⎤⎣ ⎦

= Γ +Γ + +Γ + Γ +Γ + +Γ + + Γ + +Γ +Γ

= Γ + − Γ + + − Γ + + Γ

 

( )

1

0
1

1

1

2 1
T

j
j

T

j
j T

j
T

−

=

−

=− −

⎛ ⎞= Γ + − Γ⎜ ⎟
⎝ ⎠

≈ Γ

∑

∑
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( )*............................................................................................ 8.62j
j

+∞

=−∞

→ Γ = Γ∑  

where the last equality follows by Assumption A8.6.4. For (8.62), we can 
consider the estimator. 

( )
1

( 1)
....................................................................................ˆ ˆ .. 8.63.......

T

j
j T

−

=− −

Γ = Γ∑  

Where 

( )
( )1

1

1 0,1, , 1
ˆ 8.64

1
................................

1, 2,
....

, 1

T

t t t j t j
t j

j T

t j t t t j
t j

X e X e j T
T

X X e e j T
T

− −
= +

+ +
= −

⎧ ′ = −⎪
⎪Γ = ⎨
⎪ ′ = − − − −
⎪⎩

∑

∑
 

Unfortunately, although ˆ
jΓ  is consistent for jΓ  for each given j, the 

estimator Γ̂  is not consistent for Γ . 

iii) Nonparametric Kernel Estimation 

Definition (Spetral Density Matrix): Suppose t t tZ X ε=  is a 1K ×  weakly 

stationary process with ( ) 0tE Z =  and autocovariance function 

( ),j t t jCov Z Z −Γ =  which is a K K×  matrix. Suppose 

j
j

+∞

=−∞

Γ < ∞∑  

Then the Fourier transform of the autocovariance function jΓ  exists and is 

given by 

( ) ( ) [ ]1 exp , ,
2 j

j
h ijω ω ω π π

π

+∞

=−∞

= Γ − ∈ − +∑  

where 1i = − . The K K×  matrix-valued function ( )h ω  is called the 

spectral density matrix of { }tZ . 

The inverse Fourier transform 

( ) ij
j h e d

π ω

π
ω ω

−
Γ = ∫  

Both ( )h ω  and jΓ  are Fourier transform of each other, they contain the 

same amount of information on serial dependence of { }t tX ε . When 0ω = , 



 5

( ) ( )* .................................................................................ˆ2 0 8.65j
j

hπ
+∞

=−∞

Γ = = Γ∑  

This is an important identity, the long-run variance is 2π  times the spetral 
density matrix at frequency zero. This identity provides an approach to 
estimating *Γ . 
First, we consider 

( ).............................................................................................ˆ . 8.. 66....
q

j
j q=−

Γ = Γ∑  

If q is fixed, then 

( )ˆ 2 0
q

P
j

j q
hπ

=−

Γ⎯⎯→ Γ ≠∑  

We should let q grows to infinity as T →∞ ; that is ( )q q T= →∞ . The largest 

q we can use is 1q T= − : 

( )
( )

1

1

......................................................................................ˆ ˆ .. 8.67.......
T

j
j T

−

=− −

Γ = Γ∑  

But this will not be consistent for *Γ , because we essentially have T-1 

unknown parameters using T data points. To ensure consistency of Γ̂  to *Γ , 

we should use 

( ).........................................................................................ˆ ˆ .. 8....... 6. 8
T

T

q

j
j q=−

Γ = Γ∑  

where , 0T Tq q T→∞ → . 

Although this estimator is consistent for *Γ , it may not be positive-definite for 
all T. To ensure it is positive, we use 

( ) ( ).......................................................................ˆ .......... 9...ˆ 8.6
T

T

q

T j
j q

k j q
=−

Γ = Γ∑  

Where ( )k i  is called a kernel function. When the Bartlett kernel is used: 

( ) ( ) ( )1 1 1k x x x= − <  

We obtain the so-called Newey-West (1987, 1994) Estimator for *Γ . When the 
Quadratic-spectral kernel is used: 

( )
( )

( ) ( )2

sin3 cos
x

k x x
xx
π

π
ππ

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
 

huyi
高亮
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We obtain Andrews’ (1991) Quadratic-spectral estimator for *Γ . Not all kernel 

functions give positive semi-definite matrix  *Γ̂ , but many of them do. 

3.Newey-West Heteroscedasticity Autocorrelation Consistent Covariance 
Estimator 

This is am extension of white estimator. For the OLS estimator β̂ . 

( ) ( )
1 1

21 1ˆ X X X XAvar X X X
T T T T

β σ
− −⎡ ⎤′ ′⎛ ⎞ ⎡ ⎤ ⎛ ⎞′= Ω⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

 

( )2
*

1 1

1

1 T T

ts t s
t s

Q X X
T

X X
T

σ

σ
= =

′= Ω

′= ∑∑
 

Under Assumption A8.6.1~A8.6.4, ( )0ts t sσ ≠ ≠ . The natural 

counterpart for estimating Q∗  would be 
1 1

1ˆ
T T

t s t s
t s

Q e e X X
T∗

= =

′= ∑∑ ,  in order that  

Q̂∗  would be consistent and positive definite , we use Newey-West HAC 

Estimator: 

( ) ( )* * 0
1 1

1ˆ
L T

t t j t t j t j t
j t j

S Q S w j e e X X X X
T − − −

= = +

′ ′ ′= = + +∑ ∑  

( ) 1
1

jw j
L

= −
+

 is Bartlett Kernel 

1 , 0 11
0,T

j j Lj Lk q otherwise

⎧ − ≤ ≤ +⎪⎛ ⎞ +=⎜ ⎟ ⎨⎝ ⎠ ⎪⎩
 

8.7 Another Three Topics about Autocorrelation 
8.7.1 Estimation with a Lagged Dependent Variable 

1) The consequence of OLS estimation 

When the model contains both autocorrelation and lagged dependent 

variables, the OLS estimator β̂  is inconsistent. Suppose 

1 2 3 1t t t tY X Yβ β β ε−= + + +  

Where tX  is non-stochastic, 1 , 1t t tuε ρε ρ−= + < , ( )20,t uu iid σ∼ . We have 

( ) 1ˆ
LS X X Xβ β ε−′ ′= + , where ( )11 t tX X Y −= . 

huyi
高亮
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1

1

ˆlim lim lim

li.............. m.

LS
X X Xp p p
T T

XQ p
T

εβ β

εβ

−

−

′ ′⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

Where lim X XQ p
T
′⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

1

1lim lim
t

t t

t t

Xp p X
T T

Y

ε
ε ε

ε−

⎛ ⎞
′ ⎜ ⎟⎛ ⎞ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠

∑
∑
∑

. 

Using the theorem “consistency of sample mean”, we obtain, 

( )

( ) ( )

( )1 1

1lim 0

1lim 0

1lim

t t

t t t t t t

t t t t

p E
T

p X E X X E
T

p Y E Y
T

ε ε

ε ε ε

ε ε− −

= =

= = =

=

∑

∑

∑

 

and 
( )

( )
( ) ( )
( ) ( )( )
( ) ( )

1

1 1

1 1 1

1 2 1 3 2 1 1 1

2
3 2 1 1

............... 0

t t

t t t

t t t t

t t t t t t

t t t

E Y

E Y u

E Y E Y u

E X Y E Y u

E Y E

ε

ρε

ρ ε

ρ β β β ε ε

ρ β ε ρ ε

−

− −

− − −

− − − − −

− − −

= +⎡ ⎤⎣ ⎦
= +

= + + + =⎡ ⎤⎣ ⎦

= +

 

Since ( ) ( ) ( )
2

2
2 1 1 1 2,

1
u

t t t t tE Y E Y E σε ε ε
ρ− − − −= =

−
. 

( )
( )( )

2

1 2
3

0
1 1

u
t tE Y ρσε

ρβ ρ− = ≠
− −

 

( )( )

( )
1 1

1
2 2

2
3 3

2
3

...........................................
0

ˆlim 0 8.70

1 1
u

p Q
β β

β β β
β βρσ

ρβ ρ

−

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟= + ≠⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

⎜ ⎟⎜ ⎟− −⎝ ⎠

Therefore, Least Squares is inconsistent unless ρ  equals zero. Since ˆ
LSβ  is 

inconsistent, the residuals on which an estimator of ρ  would be based are 

likewise inconsistent. The results is, both ρ̂  and d statistic are inconsistent, 
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and the FGLS cannot proceed. 

2) Hatanaka (1974, 1976) method: an efficient two-step estimation 

We consider estimation of the model 

1

1

t t t t

t t t

Y X Y
u

β γ ε
ε ρε

−

−

′= + +
= +

 

Step i): Find out the IV for 1tY −  

An appropriate instrument variable can be obtained by using the fitted values 

in the regression of tY  on tX  and 1tX − , the residuals from the IV regression 

are then used to construct 

( )
1

3

2
1

3

.................................................................................................
ˆ ˆ

ˆ 8.71
ˆ

..

T

t t
t

T

t
t

ε ε
ρ

ε

−
=

−
=

=
∑

∑

Where 1
ˆˆ ˆt t t IV IV tY X Yε β γ −′= − − . 

Step ii): Compute FGLS estimates 

( ) ( )* *
1 1 1 1 2 1

ˆˆˆ ˆ ˆ ˆ ˆt t t t t t t tY Y X X Y Y d uρ ρ β γ ρ ε− − − − − −
′− = − + − + +              (8.72) 

The efficient estimator of ρ  is 

( )....................................................................................................ˆ ˆˆ ˆ 8.73....dρ ρ= +  

Appropriate asymptotic standard errors for the estimators, including ˆ̂ρ , are 

obtained from the ( ) 12
* *S X X −′  computed at the second step, where X ∗  is 

the expplaining variables data matrix in (8.72). Hatanaka shows that these 
estimators are asymptotically equivalent to MLE. 
8.7.2 Common Factors 

See Chap 12.10, Green 5th  

8.7.3 Forecasting in the Presence of Autocorrelation 

1) The best linear unbiased prediction formula of T nY +  

Suppose in the GR model Y XB ε= + , ( ) ( )V,,~ 00 2 =Ωσε , the value of 

regressor at time T n+  is n 2,T n K,T n(1, X , , X )TX + + + ′= , while the actual value 

of Y  at the same time is 
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nTTY +++ +′= εβnTn X                                 (8.74) 

Since the disturbance nTε +  satisfies assumption conditions of the GR model, 

we have 

2~ (0, )T n T nNε σ+ + , and 
1

( )
T n

T n

T n T

E W
ε ε

ε ε
ε ε

+

+

+

⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎝ ⎠

              (8.75) 

Suppose P is the best linear unbiased estimate of T nY + , then P need to satisfiy 

YCP ′=                                                 （8.76a） 

β′=β′=′= +nTXXCYCEEP                                （8.76b） 

MinYPE nT =− +
2)(                                       （8.76c） 

where C is a 1T ×  scalar vector. So solving P is equivaentl to solving C, which 

satisfies equation （8.76a） ~ （8.76c）. That is to say, minimize 2( )T nE P Y +−  

under constrained condition ( ) 0T nE P Y +− = . 

From （8.76b）, we have, (C X-X ) 0T n β+′ ′ = . 

From （8.76a）, we have  

p-Y (C X-X ) (C - )
C -

T n T n T n

T n

β ε ε
ε ε

+ + +

+

′ ′ ′= +
′=

 

So 

[ ]
[ ]

2

2

2

E(P-Y ) (P-Y )(P-Y )

(C - )(C - )

(C -2C )

-2C

T n T n T n

T n T n

T n T n

T n

E

E

E C

C VC W

ε ε ε ε

εε ε εε

σ

+ + +

+ +

+ +

+

′=

′ ′ ′=

′ ′ ′= +

′ ′= +

 

Using Lagrange multiplier vector 1 k( , , )λ λ λ ′=  to construct object function 

λσ )X-XC(22 nT
2

++ ′′−′−+′=Φ WCVCC nT  
Then C is the solution of equations  as below: 

⎪
⎩

⎪
⎨

⎧

=′−′=
∂
Φ∂

=−−=
∂
Φ∂

+==

==

0)(2

0222

nTˆ,ĈC

ˆ,ĈC

XXĈ

ˆXWĈV
C

λλ

λλ

λ

λ
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That is 
ˆ ˆ

ˆ
T n

VC X W

X C X

λ

+

⎧ − =⎪
⎨

′ =⎪⎩
. 

And  we can obtain  

WWXXX

WWXX
WˆXˆ

WXˆ
n

1111
nT

111

11
nT

111

11

1
T

-1-1

V]VX)VX(X)VX[(V

V)]VX(X)VX[(V
VVC

)VX-(X)VX(

−−−−
+

−−−

−−
+

−−−

−−

−
+

+′′−′=

+′−′=

+=

′′=

λ

λ

 
So, 

ˆP C Y′=  

-1 -1 1 1 1 -1 -1 -1
T n

1 1
T n

1
T n

1
T n

X (X V ) X V V V (X V ) X V
ˆ ˆX V V
ˆ ˆX V ( )
ˆX V

GLS GLS

GLS GLS

GLS

X Y W Y W X X Y

W Y W X

W Y X

W e

β β

β β

β

− − −
+

− −
+

−
+

−
+

′ ′ ′ ′ ′ ′ ′= + −

′ ′ ′= + −

′ ′= + −

′ ′= +

      (8.77) 

When 1t t tuε ρε −= +  and tu  is a white noise series, we have 

ˆˆ n
T n T n GLS TY X eβ ρ+ +′= +                                        (8.78)                  

It is easy to see, the BLUP of n TY +  including a modified factor, which calculate 

from the information of autocorrelated disturbance structure V. 

2) An Alternative Explanation  

An alternative explanation of (8.78) will be given at following. Since 
heteroscedasticity doesn’t affect forecasting alone in GR model, only the 
existence of autocorrelation will affect BLUP, we just consider the simple case 
of AR(1), and the same idea can be expanded to solute more complicate case. 

Suppose in GR model: Y X β ε= + , 1t t tuε ρε −= + , where tu  is a white noise 

series. From GLS estimation, we can get T,,t,eˆY tGLStt 1X =+′= β , then the 

forecasting of 1TY +  is: 

( ) ( )
( )

1 1 1

1

1

..................

...............

ˆ| |

ˆ |

... ˆ

T T T GLS T T

T GLS T T

T GLS T

E Y F X E F

X E F

X e

β ε

β ρ ε

β ρ

+ + +

+

+

′= +

′= +

′= +

 

Where TF  denotes all information from period 1 to T. 
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Similarly, the forecasting of 2TY +  is: 

( ) ( )
( )
( )

2 2 2

2 1

2
2

2
2

..................

..................

..................

ˆ| |

ˆ |

ˆ |

ˆ

T T T GLS T T

T GLS T T

T GLS T T

T GLS T

E Y F X E F

X E F

X E F

X e

β ε

β ρ ε

β ρ ε

β ρ

+ + +

+ +

+

+

′= +

′= +

′= +

′= +

 

It can be easy to show, the forecasting of T nY +  is: 

( ) ˆ| n
T n T T n GLS TE Y F X eβ ρ+ +

′= +  

Apparently, the conclusion is the same to (8.78). 
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