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 Chap.9 Generalized Method of Moments 
(Chap.10 P201-P206; Chap.18 P525-P556, Greene, 5th) 

9.1 Introduction 
9.1.1 Classical Method of Moments (CMM) 

Suppose ( ),f X θ  is the pdf of a univariate random variable X , the CMM 

estimator of θ  can be obtained from following steps: 

i) Compute population moments ( )K
iE X  under the model density ( ),f x θ , for 

example 
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ii) Compute the sample moments from random sample ( )1, , nX X , for 

example 
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iii) Match the sample moments and population moments. 
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iv) Solve for the equations. The solution ( )2ˆ ˆ,μ σ ′  is called the method of 

moment estimator for ( )2,θ μ σ ′= . 

In general, if θ  is a 1K ×  vector, and we have the kth order population 
moment function 
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And its sample counterpart 
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Then the method of moment estimator for θ  can be obtained by solving for 
the system of equations: 
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9.1.2 The Statistical Properties of CMM Estimator 
According to Theorem D.4, the corollary to Theorem D.4 and Slutsky Theorem, 
we have 
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The CMM estimators are consistent, but in most cases, they are not efficient. 
The exception is in random sampling form exponential families of distributions. 
(See P529, Greene 5th) 

9.2 Generalized Method of Moments Estimator 

9.2.1 Why we need GMM estimation? 

Example 1: The pdf of Gamma Distribution 
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It can be shown that 
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       (k is a positive integer) 

So we have 
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The log-likelihood function for (9.4) is 
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Where ( ) ( )( )lnd p
p

dp
Γ

Ψ = . 

So far, with 2 parameters to be estimated, we have 4 moment equations: 
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How can we deal with this system of equations? 
More important, in Econometrics, we need to solve the equation system 

that there are more orthogonal conditions than parameters (L>K). 
Example 2: Hansen and Singleton’s (1982) Asset Pricing Model 

Suppose a representative agent has a constant relative risk aversion utility 
over his lifetime: 

0

1rT
t t

t

cU
r

δ
=

−
=∑  

Where 0δ >  is the agent’s time discount factorr, 0r ≥  is the risk aversion 

parameter and tc  is consumption during period t. Let the information available 

to the agent at time t be represented by the sigma-algebra tI , and let 

1

1 1

1t t t
t

t t

P P PR
P P

−

− −

−
= = +  be the gross return to an asset acquired at time t-1 at the 

price of 1tP− . The agent’s optimization problem is to  

{ }
( )max

tc
E U  

Subject to the budget constraint 

1t t t t t tc p q w p q −+ = +  
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Where tq  is the quantity of the asset purchased at time t and tw  is the 

agent’s income at period t. The marginal rate of inter-temporal substitution is 
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Where ( ), rθ δ ′= . The first order conditions of the agent optimization problem 

are 

( ) 1 1t t tE MRS R Iθ −⎡ ⎤ =⎣ ⎦  

That is, the marginal rate of inter-temporal substitution discounts gross returns 
to unity. 
How to estimate the unknown parameter θ  in an asset pricing model? More 
generally, how to estimate θ  from any linear or nonlinear econometric model 
which can be formulated as a set of moment conditions? From the Euler 
equation, we can induce the following conditional moment restrictions: 
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Therefore, we can consider the 3 1×  sample moments. 
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 can serves as the basis for 

estimation. The elements of vector 
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Are just instrumental variables which are a subset of information set 1tI − . 

9.2.2  A Presentation of GMM 

Suppose that the model involves K parameters ( )1, Kθ θ θ ′= , and that we 

have a set of L orthogonal conditions (or population conditions). 

( ) ( ) ( ) ( ), , , 0, 1, , ..................; 1, , 9... .6.l i i i ilE m Y X Z E m i n l Lθ θ= = = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
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Where ,i iY X  and iZ  are variables that appear in the model and the subscript 

i on ( )ilm θ  indicates the dependence on ( ), ,i i iY X Z . Denote the 

corresponding sample means as 

( ) ( ) ( ) ( ) ( )
1 1

1 1, , , , 1, 9.............................. .7
n n

l l i i i il
i i

m m Y X Z m l L
n n

θ θ θ
= =

= = =∑ ∑

If we denote ( )im θ  as ( ) ( )1 ,i iLm mθ θ ′⎡ ⎤⎣ ⎦ , then 

( )
( )

( )
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⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑

Definition [GMM Estimator]: The GMM estimator is 

( ) ( ) ( ).......................................................ˆ ˆarg min ........... 9.......... .9m Wm
θ

θ θ θ
∈Θ

⎡ ⎤′= ⎢ ⎥⎣ ⎦
 

Where ( ) ( )
1

1 n

i
i

m m
n

θ θ
=

= ∑ , Ŵ  is a L L×  symmetric nonsingular matrix which 

is possibly data-dependent. Here, we assume L>K, i.e., the number of 
moments may be larger than the number of parameters. 

( ) ( ) ( )
ˆ

................................................ˆ. ................. 0 9 1. .. . 0.
m

F O C Wm

θ

θ
θ

θ

′∂⎛ ⎞
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Order condition: L K≥ . 

Rank condition: ( ) ( ) ( ) ( )...................................., 9.1. 1...
m

G rank G K
θ

θ θ
θ

∂
= =⎡ ⎤⎣ ⎦′∂

 

L=K, exactly identified 
L>K, over identified 
L<K, under identified 

9.2.3 Asymptotic Properties of GMM Estimator 
1) Consistency 
Assumptions: 

A9.1 Parameter Space Θ  is compact (closed and bounded) 

A9.2 ( ), ,i i iY X Z  is jointly stationary and ergodic 

A9.3 There exists some parameter 0θ  in Θ  such that ( )0 0m θ =  

A9.4 0θ  is the only solution of ( ) 0 0m
θ

θ =  over Θ  
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A9.5 .ˆ a sW W⎯⎯→ , where W is a non-stochastic symmetric and 

nonsingular matrix 

Suppose Assumptions 9.1-9.5 hold, then . 0ˆ a s
GMMθ θ⎯⎯→ . 

Sketch of proof: 
i) By A9.2 and Ergodic Theorem 

( ) ( ) ( ).

1

1 n
a s

i i
i

m m E m
n

θ θ θ
=

= ⎯⎯→ ⎡ ⎤⎣ ⎦∑  

ii)Define ( ) ( ) ( ) ( ) ( ) ( )ˆˆ 0, 0q m W m q E m W E mθ θ θ θ θ θ′′= − ⋅ ⋅ ≤ = − ⋅ ⋅ ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

By  A9.5 ,Ergodic Theorem  and Slutsky theorem, 

( ) ( ).ˆ a sq qθ θ⎯⎯→  

iii) To show this theorem, we need the following lemma 

Lemma [extreme estimator]: Let ( )q̂ θ  be a stochastic real-valued function 

of θ ∈Θ , and ( )q θ  be a non-stochastic real-valued function of θ , where Θ  

is a compact parameter space. Suppose that for each θ , ( )q̂ θ  is a 

measurable function of the data, and for each n, ( )q̂ θ  is continuous in θ ∈Θ . 

Suppose  

( )
( )0

ˆ ˆarg max

arg max

q

q
θ

θ

θ θ

θ θ
∈Θ

∈Θ

=

=
 

is the unique maximizer. Where ( )q θ  is continuous in θ ∈Θ . Also suppose 

( ) ( ) .ˆ 0a sq qθ θ− ⎯⎯→ , then 

( ).0 ...........................................................................................ˆ 0 9.1. .. 2. .a sθ θ− ⎯⎯→

2) Asymptotic Normality of GMM 

A9.6 ( )0 intθ ∈ Θ  

A9.7 (i) For each i, ( )im θ  is continuously differentiable with respect to 

θ ∈Θ . 

(ii) ( ) ( ) ( ) ( )0 0

1

..........................................1 0, 9.. .13
n

d
i

i

nm m N
n

θ θ
=

= ⎯⎯→ Φ∑  
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Where ( )0varA nm θ⎡ ⎤Φ = ⎣ ⎦  is finite and positive definite, then 

( )0 0 1ˆ , ,d
GMM GMMN V N

n
θ θ θ⎛ ⎞⎯⎯→ = Ω⎜ ⎟

⎝ ⎠
 

Where ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0 0 0 0 0G WG G W WG G WGθ θ θ θ θ θ
− −

⎡ ⎤ ⎡ ⎤′ ′ ′Ω = Φ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. 

( ) ( ) ( )
0

0

0
1

...............................................1l ..im ................... . 9.1. 4
n

i

i

m
G E

n
θ

θ
θ=

⎡ ⎤∂
⎢ ⎥=

′⎢ ⎥∂⎣ ⎦
∑  

Proof: 
( )
( )

.0 0ˆint
ˆ int

a s
GMMθ θ θ

θ

∈ Θ ⎯⎯→

∴ ∈ Θ

∵
 

By (9.10), we have 

( ) ( ) ( )
ˆ

..............................................................................ˆ 0 9.1... 5. .
m

Wm

θ

θ
θ

θ

′∂⎡ ⎤
=⎢ ⎥′∂⎣ ⎦

Using the Taylor series expansion, we have 

( ) ( ) ( ) ( ) ( )0 0 ...........................................................ˆ 9.16........
m

m m
θ

θ θ θ θ
θ

∂
= + −

′∂

Where ( ) ( )0ˆ 1 , 0,1GMMθ λθ λ θ λ= + − ∈ . 

Substituting (9.16) into (9.15), 

( ) ( ) ( ) ( ) ( )0 0

ˆ ˆ

ˆˆ ˆ 0
m m m

Wm W
θ θ θ

θ θ θ
θ θ θ

θ θ θ

′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂
+ − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

It follows that 

( ) ( ) ( ) ( ) ( ) ( )

1

0 0

ˆ ˆ

ˆ ˆ ˆ 9...... 17GMM

m m m
n W W nm

θ θ θ

θ θ θ
θ θ θ

θ θ θ

−
⎧ ⎫′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎪ ⎪− = − ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬′ ′ ′∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

By . 0ˆ a sθ θ⎯⎯→  and A9.7, we have 
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( ) ( )
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ˆ
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a s
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m
G
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G

θ

θ

θ
θ

θ

θ
θ

θ

∂
⎯⎯→

′∂

∂
⎯⎯→

′∂
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( ) ( ) ( ) ( ) ( ) ( )
1

1
. 0 0 0

ˆ ˆ

........................................................................................................

ˆ ˆ

....

a sm m m
W W G WG G W

θ θ θ

θ θ θ
θ θ θ

θ θ θ

−
−⎧ ⎫′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎪ ⎪ ⎡ ⎤′ ′⎯⎯→⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎢ ⎥′ ′ ′∂ ∂ ∂ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

( )........... 9.18
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0 0 0 0 0 0ˆ 0,dn N G WG G W WG G WGθ θ θ θ θ θ θ θ
− −⎛ ⎞⎡ ⎤ ⎡ ⎤′ ′ ′− ⎯⎯→ Φ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

    i.e. ( )0ˆ ,d
GMMN Vθ θ⎯⎯→ . 

Where  

( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0 0 0 0 01 ,GMMV G WG G W WG G WG
n

θ θ θ θ θ θ
− −

⎡ ⎤ ⎡ ⎤′ ′ ′= Ω Ω = Φ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. 

3）Asymptotic Efficiency 

There are many possible choices of Ŵ , which one is the optimal choice of Ŵ ? 

If we define 

( ) ( ) ( )
1

0 1 0
0 .......................................................................... 0. 9 2. .G Gθ θ

−
−⎡ ⎤′Ω = Φ⎢ ⎥⎣ ⎦

Which is obtained from Ω  by choosing 1W −= Φ . Then 0Ω−Ω  is positive 

semi-definite. 
Proof: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
0 0 0 0 0 0

0

1
0 1 0

1 1
0 0 0 0 1 0 0 1

1
0 0 0 0

.....................................

..........

G WG G W WG G WG

G G

G WG G W G G G

G WG G W G

θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ

θ θ θ θ

− −

−
−

− −
− −

−
−

⎡ ⎤ ⎡ ⎤′ ′ ′Ω −Ω = Φ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤′− Φ⎢ ⎥⎣ ⎦
⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤′ ′ ′ ′= − Φ Φ Φ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

⎡ ⎤′ ′ ′− Φ⎢ ⎥⎣ ⎦
( ) ( )

1
1 0 0 1

0

G Gθ θ
−

−
′⎧ ⎫⎪ ⎪⎡ ⎤ ′ Φ⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

≥

 

4) Two-Stage GMM Estimator 

Step 1: Find a consistent preliminary estimator θ . 

( ) ( )arg min m Wm
θ

θ θ θ
∈Θ

⎡ ⎤′= ⎢ ⎥⎣ ⎦
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For some pre-specified W . For convenience, we can set W I= . 

Step 2: Find a preliminary consistent estimator Φ  for ( )( )0varA nm θΦ = , 

and choose 1Ŵ −= Φ . 

Case i): If ( ){ }0
im θ  is stationary MDS, then 

( ) ( ) ( )
1

..................................................................................1 . 9.24
n

i i
i

m m
n

θ θ
=

′Φ = ∑

Which will be consistent for 

( ) ( )0 0
i iE m mθ θ⎡ ⎤′Φ = ⎢ ⎥⎣ ⎦

 

Case ii): If ( ){ }0
im θ  is not MDS, then 

( )................................................................................. 9... 25....
n

n

q

j
nj q

jk q
=−

⎛ ⎞Φ = Γ⎜ ⎟
⎝ ⎠∑

( ) ( )
1

1 n

j i i j
i j

m m
n

θ θ−
= +

′Γ = ∑   for 0j ≥   and j j−′Γ = Γ  if  0j <           (9.26) 

The Φ  in  (9.25) is consistent for 

j
j

+∞

=−∞

Φ = Γ∑  

Where ( ) ( ) ( ) ( )0 0 0 0cov ,j i i j i i jm m E m mθ θ θ θ− −
⎡ ⎤′⎡ ⎤Γ = = ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

Finally, find an asymptotically optimal estimator θ̂  

( ) ( )1ˆ arg min m m
θ

θ θ θ−

∈Θ

′= Φ  

This two-stage GMM estimator is asymptotically optimal. And it can be shown 
that 

( ) ( ) ( )
1

.1
0 0...........................................ˆ ˆ ....................ˆ ˆ 9. 7. 2a sG Gθ θ

−

−⎡ ⎤′Ω = Φ ⎯⎯→Ω⎢ ⎥
⎣ ⎦

 Where Φ̂  is calculated from (9.24) ~(9.26) , replacing θ  by θ̂ . 
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9.3 GMM Estimation for Econometric Model 
Suppose we have model 

( ) ( )0 ......................................................................................, 9...... .28i i iY h X β ε= +  
Where it is possible that 

( )0, , 0i iCov h Xε β⎡ ⎤ ≠⎣ ⎦  
Or even 

( ), 0i jCov Xε ≠  for all i and j, 

( ) 2E Xεε σ′ = Ω  

Suppose there are K variables in iX . Now we find out some set of L 

instrumental variables iZ  where L K≥ , and iZ  satisfies 

( ) ( ).........................................................................................0 9.29....i i iE Z Xε =

Thus, we have orthogonality conditions of moment 

( ) 0i iE Z ε =  
The sample moments will be 

( ) ( ) ( )
1

1 1ˆ ˆ ˆ, ,
n

i i i
i

m Z e X Z e X
n n

β β β
=

′= =∑
 

And  

( ) ( ) ( )

( ) ( )2

........................................................................................ˆ ˆˆˆ 9.30

1 ˆ ˆˆ

.

,

.

,

q m Wm

e X Z W Z e X
n

β β

β β

′=

⎡ ⎤′ ⎡ ⎤′= ⎢ ⎥ ⎣ ⎦⎣ ⎦

1）For linear model 0
i i iY X β ε′= + , ( ) ( )1ˆ ˆm Z Y X

n
β β′= −  

( ) ( )2

2 ˆˆ. . 0F O C X Z W Z Y X
n

β⎡ ⎤′ ′− − =⎣ ⎦  

( ) ( ) ( )
1

..........................................................ˆ ˆ ˆ 9........ 31X Z WZ X X Z WZ Yβ
−

⎡ ⎤ ⎡ ⎤′ ′ ′ ′= ⎣ ⎦ ⎣ ⎦

The optimal choice of W for this estimator is 1Ŵ −= Φ , where  

( ) ( )0 .........................................., , , , , , , , , , , , , , , , , ,.........var ... 9.3... 2..A nm β⎡ ⎤Φ = ⎣ ⎦

    ( ) ( )0 0

1

1 n

i
i

m m
n

β β
=

= ∑  
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( ) ( ) ( )0 0

1

..........................1 1........ , , 9................. 3........... 3
n

i i i
i

Z X Z X
n n

ε β ε β
=

′= =∑  

( ) ( )1 1 1 .............................var 9....... 34A n Z E Z Z Z Z
n n n

ε εε⎡ ⎤⎛ ⎞′ ′ ′ ′∴ Φ = = = Σ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Obviously, for spherical disturbances 2
nIσΣ = , the GMM estimator in (9.31) 

( )( ) ( )( )
11 1ˆ X Z Z Z Z X X Z Z Z Z Yβ
−− −⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′= ⎣ ⎦ ⎣ ⎦  is IV estimator，and 

 

( ) ( )

( )

( )( )

0

1
0 1 0

112

112

1

1        

1 1 1        

        

GMMV
n

G G
n

X Z Z Z Z X
n n n n

X Z Z Z Z X

β β

σ

σ

−
−

−−

−−

= Ω

⎛ ⎞′= Φ⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞′ ′ ′= ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

′ ′ ′=
 

If the condition ( ) 0i iE X ε =  is satisfied, we have Z X= , the GMM estimator 

in (9.31) is just OLS estimator. 

In general, 2 2
nIσ σΣ = Ω ≠  

( )

( ) ( )
1 1

0 0

1 1

1 1

1

1   ov ,

1   ov ,

1   

n n

i j i j
i j

n n

i j i i j j
i j

n n

ij i j
i j

Z Z
n

Z Z C
n

Z Z C Y X Y X
n

Z Z
n

ε ε

β β

σ

= =

= =

= =

′Φ = Σ

′=

⎡ ⎤′ ′ ′= − −⎣ ⎦

′=

∑∑

∑∑

∑∑
 

Now, How to estimate 1 Z Z
n

′Σ ? 

ⅰ）  If the disturbances are only heteroscedasticity, then white (1982) 
estimator can be use 

( )

2
1

2

............................................
0 0

1 1ˆ 0 0 ......................... 9.35
0 0

...

n

e
Z Z Z Z

n n
e

⎛ ⎞
⎜ ⎟′ ′Σ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

    ⅱ) If the disturbances are heteroscedastic and autocorrelated ,and the 
process is stationary ergodic, then Newey-West (1987) estimator is available 
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( ) ( ) ( )0
1 1

...................................1 1ˆ 9. . .. 3. 6
P n

i i j i i j i j i
j i j

Z Z S w j e e Z Z Z Z
n n − − −

= = +

′ ′ ′Σ = + +∑ ∑

Where ( ) 1
1

jw j
L

= −
+

, the maximum lag length L must be determined in 

advance. 
To state succinctly,  

( ) ( ) ( )
11 1

..........................................ˆ ˆ ˆ 9.37GMM X Z Z Z Z X X Z Z Z Z Yβ
−− −⎡ ⎤ ⎡ ⎤′ ′ ′ ′ ′ ′= Σ Σ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

         

( ) ( )
11
................................................ˆ .ˆ      .......................... 9.38GMMV X Z Z Z Z X

−−⎡ ⎤′ ′ ′= Σ⎢ ⎥⎣ ⎦

2) For nonlinear model ( )0,i i iY h X β ε= + , ( ) ( )0 0

1

1 ,
n

i i i
i

m Z X
n

β ε β
=

= ∑ , 

( ) ( )0 0

0 0 0
1 1

,1 1n n
ii

i i
i i

m h X
Z Z

n n
β βε

β β β= =

⎛ ⎞⎛ ⎞∂ ∂∂ ⎜ ⎟= = −⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∑

 
The derivatives are the pseudo-regressors in the linearized regression model, 
using the notation 

0
i

iXε
β
∂

= −
′∂  

We have 

( ) ( )
0

0 00
1

...................................................................1 1 9.39
n

i i
i

m
Z X Z X

n n
β

β =

∂
′= − = −

′∂
∑

The GMM estimator for β  is  

( ) ( ) ( ) ( ) ( )
1

0 0 0 .....................ˆ ˆ .........................ˆ 9.40.GMM X Z W Z X X Z W Z Yβ
−

⎡ ⎤ ⎡ ⎤′ ′ ′ ′= ⎣ ⎦ ⎣ ⎦

The calculate procedure for weighting matrix Ŵ  is the same as (9.33)-(9.36), 

replacing 0
i i iY Xε β′= −  by ( )0,i i iY h Xε β= − , and ˆ

i i ie Y X β′= −  by    

( )ˆ......... ,i i ie Y h X β= − . 

9.4 Hypothesis Testing 
9.4.1 Model Specification Testing 

How to test whether the model as characterized by ( )0 0iE m θ⎡ ⎤ =⎣ ⎦  for some 
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0θ  is correctly specified? Use the sample moment 

( ) ( )
1

1ˆ ˆ
n

i
i

m m
n

θ θ
=

= ∑
 

And see if it is significantly different from zero. For this purpose, we need to 

know the asymptotic distribution of ( )ˆnm θ , then we can construct statistic as 

following 

( ) ( ) ( ) ( )2 ......., , , , , , ,., ,.......ˆ ˆ ............ˆ .......ˆ 9.41dJ nq nm Wm L Kθ θ χ′= = ⎯⎯→ −
 

Proof: 
Consider the test statistic 

( ) ( ) ( ) ( ) ( )1/ 2 1/ 2 0 1/ 2 0ˆ ˆˆ ˆ ˆ 9.42.....................
m

nm nm n
θ

θ
θ θ θ θ

θ
− − −

⎛ ⎞∂
Φ = Φ +Φ −⎜ ⎟⎜ ⎟′∂⎝ ⎠

Which follows by a Taylor series expansion, and θ  lies between θ̂  and 0θ . 

On the other hand, from F.O.C we have obtained 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

1

1 1 0

ˆ ˆ

1
1 1 0 ...........................................

ˆ

ˆ ˆ

ˆ ˆˆ ˆ 9.4...... 3.

n

m m m
nm

G G G nm

θ θ θ

θ θ

θ θ θ
θ

θ θ θ

θ θ θ θ

−

− −

−

− −

−

⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= − Φ Φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤′ ′= − Φ Φ⎢ ⎥
⎣ ⎦

It follows that 

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1/ 2

1/ 2 0 1/ 2 0

1
1/ 2 0 1/ 2 1 1 0

1/ 2 0

ˆˆ

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆ .............................................................................. .....ˆ .

nm

m
nm n

nm G G G G nm

nm

θ

θ

θ
θ θ θ

θ

θ θ θ θ θ θ

θ

−

− −

−

− − − −

−

Φ

⎛ ⎞∂
= Φ +Φ −⎜ ⎟⎜ ⎟′∂⎝ ⎠

⎡ ⎤′ ′= Φ −Φ Φ Φ⎢ ⎥
⎣ ⎦

⎡ ⎤= Π Φ⎣ ⎦ ( ). 9.44

Where 

( ) ( ) ( ) ( ) ( )
1

1/ 2 1 1/ 2......................................ˆ ˆˆ ...ˆ ˆ ˆ .45. 9I G G G Gθ θ θ θ
−

− − −⎡ ⎤′ ′Π = −Φ Φ Φ⎢ ⎥
⎣ ⎦

By Gordin’s CLT for ( ){ }0
im θ  and Slutsky theorem, we have 
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( ) ( ) ( )
( ) ( )

0

1/ 2 0

.......................................................................0, 9.46........

0

.

,

d

d
L

nm N

nm N I

θ

θ−

⎯⎯→ Φ

Φ ⎯⎯→

   Also, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1/ 2 1 1/ 2

1
. 1/ 2 0 0 1 0 0 1/ 2 ..........

ˆ ˆˆ ˆ ˆ ˆ

........ 9. 7. 4..a s

I G G G G

I G G G G

θ θ θ θ

θ θ θ θ

−

− − −

−
− − −

⎡ ⎤′ ′Π = −Φ Φ Φ⎢ ⎥
⎣ ⎦

⎡ ⎤′ ′⎯⎯→ −Φ Φ Φ = Π⎢ ⎥⎣ ⎦

Where Π  is a L L×  symmetric matrix which is also idempotent, by the 
following lemma: 

Lemma: If ( )0,dv N I⎯⎯→  and Π  is a L L×  idempotent matrix with rank J, 

then the quadratic form 

( )2dv v Jχ′Π ⎯⎯→  
Now, we have 

( ) ( ) ( ) ( )1/ 2 0 1/ 2 0 2 ................................. 4. 8. 9.dnm nm L Kθ θ χ− −′⎡ ⎤ ⎡ ⎤Φ Π Φ ⎯⎯→ −⎣ ⎦ ⎣ ⎦
By (9.44), 

( ) ( )1/ 2 1/ 2 0ˆˆ ˆ ˆnm nmθ θ− −⎡ ⎤Φ = Π Φ⎣ ⎦  
Since  

( ) ( ) ( ) ( ).1/ 2 0 1/ 2 0 1/ 2 0 1/ 2 0ˆ ˆ ˆ a snm nm nm nmθ θ θ θ− − − −′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ Π Φ ⎯⎯→ Φ Π Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
If follows that  

( ) ( ) ( ) ( )1/ 2 0 1/ 2 0 2 ....................ˆ ˆ ˆ 9.49...........dnm nm L Kθ θ χ− −′⎡ ⎤ ⎡ ⎤Φ Π Φ ⎯⎯→ −⎣ ⎦ ⎣ ⎦  
So 

ˆJ nq=  

  ( )( ) ( )1ˆ ˆˆnm nmθ θ−′
= Φ

 

  ( ) ( )1/ 2 1/ 2ˆ ˆˆ ˆnm nmθ θ− −′⎡ ⎤ ⎡ ⎤= Φ Φ⎣ ⎦ ⎣ ⎦  
  

( ) ( ) ( )1/ 2 0 1/ 2 0 2ˆ ˆ ˆ                         (9.50)dnm nm L Kθ θ χ− −′⎡ ⎤ ⎡ ⎤= Φ Π Φ ⎯⎯→ −⎣ ⎦ ⎣ ⎦  
This statistic is often called J-test, testing for over-identification in the GMM 
literature, in essence, this test is used to check if the model specified as 

( )0 0iE m θ⎡ ⎤ =⎣ ⎦  is correctly specified. 

Note: several papers in the July 1996 issue of the Journal of Business and 
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Economic Statistics report that small samples far exceed the nominal size (i.e. 
the test rejects too often). 

9.4.2 GMM Counterparts to the Wald, LR and LM Tests 

Hypothesis of interest 

( )0
0 :H R θ γ=  

Where ( )R i  is a 1J ×  continuously differentiable vector function, and the 

J K×  matrix 
( ) ( )

0
0

R
R

θ
θ

θ

∂
′=

′∂
 is of full row rank. 

1) Wald Test 

By Taylor series expansion and ( )0R θ γ=  under 0H , we have 

( )( ) ( )( ) ( ) ( )
( ) ( )

0 0

0.................... ˆ...

ˆ ˆn R n R R n

R n

θ γ θ γ θ θ θ

θ θ θ

′− = − + −

′= −
 

Where θ  lies between θ̂  and 0θ . 

Because ( ) ( ). 0a sR Rθ θ′ ′⎯⎯→  given continuity of ( )R′ i , and  

.0 0a sθ θ− ⎯⎯→ ,   

( ) ( )0
0

ˆ 0,dn Nθ θ− ⎯⎯→ Ω
 

We have 

( )( ) ( ) ( )0 0
0

ˆ 0,dn R N R Rθ γ θ θ⎡ ⎤′′ ′− ⎯⎯→ Ω⎢ ⎥⎣ ⎦  
By Slutsky theorem, it follows that 

( ) ( ) ( ) ( ) ( )
1

0 0 2
0

ˆ ˆ dn R R R n R Jθ γ θ θ θ γ χ
−′ ⎡ ⎤′⎡ ⎤ ⎡ ⎤′ ′− Ω − ⎯⎯→⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦  

( ) ( ) ( ) ( ) ( )
1

2
0

ˆ ˆ ˆ ˆˆ dn R R R n R Jθ γ θ θ θ γ χ
−

′ ⎡ ⎤′⎡ ⎤ ⎡ ⎤′ ′− Ω − ⎯⎯→⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦  

Thus, under 0H , we have Wald Test statistic: 

( ) ( ) ( ) ( ) ( ) ( )
1

2
0

ˆ ˆ ˆ ˆˆ 9.......................... 5. 1.dn R R R R Jθ γ θ θ θ γ χ
−

′ ⎡ ⎤′⎡ ⎤ ⎡ ⎤′ ′− Ω − ⎯⎯→⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

2) LR Test 
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( )2 ln lnR uLR L L= − −  

Suppose, under 0H , 

( ) ( ) ( )...................................................................................ˆ ˆˆˆ 9.. 52R R R Rq m W mθ θ′=

And under 1H , 

( ) ( ) ( ).....................................................................................ˆ ˆˆˆ 9.. 53u u u uq m W mθ θ′=

Then 

( ) ( ) ( )2 ................................................................ˆ ˆ 54... 9.d
GMM R uLR n q q Jχ= − ⎯⎯→

Note, it is necessary to use the same weighting matrix W, in both restricted and 
unrestricted estimators. Since the unrestricted estimator is consistent under 

both 0H  and 1H , a consistent unrestricted estimator of θ  is use to compute 

W, that is 

( ) ( )1 ...........................................................ˆˆ ˆ var 9.55...............uW A nm θ− ⎡ ⎤= Φ = ⎣ ⎦
3) LM Test 

Suppose Rqα
θ
∂

=
′∂
, then the counterpart to the LM statistic is equivalent to 

Wald test as below 

0 : 0H α =  

( ) 1
varWald α α α

−
′= ⎡ ⎤⎣ ⎦  

See P550-551, Greene 5th. 
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9.4 Hypothesis Testing 
9.4.1 Model Specification Testing 

How to test whether the model as characterized by ( )0 0iE m θ⎡ ⎤ =⎣ ⎦  for some 

0θ  is correctly specified? Use the sample moment 

( ) ( )
1

1ˆ ˆ
n

i
i

m m
n

θ θ
=

= ∑
 

and see if it is significantly different from zero. For this purpose, we need to 

know the asymptotic distribution of ( )ˆnm θ , then we can construct statistic as 

following 

( ) ( ) ( ) ( )2 ......., , , , , , ,., ,.......ˆ ˆ ............ˆ .......ˆ 9.41dJ nq nm Wm L Kθ θ χ′= = ⎯⎯→ −
 

Proof: 
Consider the test statistic 

( ) ( ) ( ) ( ) ( )1/ 2 1/ 2 0 1/ 2 0ˆ ˆˆ ˆ ˆ 9.42.....................
m

nm nm n
θ

θ
θ θ θ θ

θ
− − −

⎛ ⎞∂
Φ = Φ +Φ −⎜ ⎟⎜ ⎟′∂⎝ ⎠

Which follows by a Taylor series expansion, and θ  lies between θ̂  and 0θ . 

On the other hand, from F.O.C we have obtained 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

1

1 1 0

ˆ ˆ

1
1 1 0 ...........................................

ˆ

ˆ ˆ

ˆ ˆˆ ˆ 9.4...... 3.

n

m m m
nm

G G G nm

θ θ θ

θ θ

θ θ θ
θ

θ θ θ

θ θ θ θ

−

− −

−

− −

−

⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥= − Φ Φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤′ ′= − Φ Φ⎢ ⎥
⎣ ⎦

It follows that 

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1/ 2

1/ 2 0 1/ 2 0

1
1/ 2 0 1/ 2 1 1 0

1/ 2 0

ˆˆ

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆ .............................................................................. .....ˆ .

nm

m
nm n

nm G G G G nm

nm

θ

θ

θ
θ θ θ

θ

θ θ θ θ θ θ

θ

−

− −

−

− − − −

−

Φ

⎛ ⎞∂
= Φ +Φ −⎜ ⎟⎜ ⎟′∂⎝ ⎠

⎡ ⎤′ ′= Φ −Φ Φ Φ⎢ ⎥
⎣ ⎦

⎡ ⎤= Π Φ⎣ ⎦ ( ). 9.44

Where 
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( ) ( ) ( ) ( ) ( )
1

1/ 2 1 1/ 2......................................ˆ ˆˆ ...ˆ ˆ ˆ .45. 9I G G G Gθ θ θ θ
−

− − −⎡ ⎤′ ′Π = −Φ Φ Φ⎢ ⎥
⎣ ⎦

By Gordin’s CLT for ( ){ }0
im θ  and Slutsky theorem, we have 

( ) ( ) ( )
( ) ( )

0

1/ 2 0

.......................................................................0, 9.46........

0

.

,

d

d
L

nm N

nm N I

θ

θ−

⎯⎯→ Φ

Φ ⎯⎯→

Also, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1/ 2 1 1/ 2

1
. 1/ 2 0 0 1 0 0 1/ 2 ..........

ˆ ˆˆ ˆ ˆ ˆ

........ 9. 7. 4..a s

I G G G G

I G G G G

θ θ θ θ

θ θ θ θ

−

− − −

−
− − −

⎡ ⎤′ ′Π = −Φ Φ Φ⎢ ⎥
⎣ ⎦

⎡ ⎤′ ′⎯⎯→ −Φ Φ Φ = Π⎢ ⎥⎣ ⎦

Where Π  is a L L×  symmetric matrix which is also idempotent with 

( )rank L KΠ = − , by the following lemma: 

Lemma: If ( )0,dv N I⎯⎯→  and Π  is a L L×  idempotent matrix with rank J, 

then the quadratic form 

( )2dv v Jχ′Π ⎯⎯→  
Now, we have 

( ) ( ) ( ) ( )1/ 2 0 1/ 2 0 2 ................................. 4. 8. 9.dnm nm L Kθ θ χ− −′⎡ ⎤ ⎡ ⎤Φ Π Φ ⎯⎯→ −⎣ ⎦ ⎣ ⎦
By (9.44), 

( ) ( )1/ 2 1/ 2 0ˆˆ ˆ ˆnm nmθ θ− −⎡ ⎤Φ = Π Φ⎣ ⎦  
Since  

( ) ( ) ( ) ( ).1/ 2 0 1/ 2 0 1/ 2 0 1/ 2 0ˆ ˆ ˆ a snm nm nm nmθ θ θ θ− − − −′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ Π Φ ⎯⎯→ Φ Π Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
If follows that  

( ) ( ) ( ) ( )1/ 2 0 1/ 2 0 2 ..................................ˆ ˆ ˆ 9.49..dnm nm L Kθ θ χ− −′⎡ ⎤ ⎡ ⎤Φ Π Φ ⎯⎯→ −⎣ ⎦ ⎣ ⎦
So 

ˆJ nq=  

  ( )( ) ( )1ˆ ˆˆnm nmθ θ−′
= Φ

 

  ( ) ( )1/ 2 1/ 2ˆ ˆˆ ˆnm nmθ θ− −′⎡ ⎤ ⎡ ⎤= Φ Φ⎣ ⎦ ⎣ ⎦  
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( ) ( ) ( )1/ 2 0 1/ 2 0 2ˆ ˆ ˆ                         (9.50)dnm nm L Kθ θ χ− −′⎡ ⎤ ⎡ ⎤= Φ Π Φ ⎯⎯→ −⎣ ⎦ ⎣ ⎦  
This statistic is often called J-test, testing for over-identification in the GMM 
literature, in essence, this test is used to check if the model specified as        

( )0 0iE m θ⎡ ⎤ =⎣ ⎦  is correctly specified. 

Note: several papers in the July 1996 issue of the Journal of Business and 
Economic Statistics report that small samples far exceed the nominal size (i.e. 
the test rejects too often). 

9.4.2 Testing Subsets of Orthogonal Conditions 

Suppose we can divide the L  instruments into two groups: the vector 1iZ  of 

1L  variables that are known to satisfy the orthogonal conditions, and the 

vector 2iZ  of remaining 1L-L  variables that are suspect. Since the ordering 

of instruments does not change the numerical values of the estimator and test 

statistics, we can assume without loss of generality that the last 1L-L  

elements of iZ  are the suspect instruments: 

rows LL
rows L

Z
1

1

2

1
i −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

i

i

Z
Z

            (9.51) 

The part of the model we wish to test is  

0)( 2 =iiZE ε  

This restriction is testable if there are at least as many nonsuspect instruments 

as there are coefficients so that KL ≥1 . The basic idea is to compare two J 

statistics from two separate GMM estimators of the same coefficients θ , one 

using only the instruments included in 1iZ , and the other using also the 

suspect instruments 2iZ . In these contexts, we can use a difference-in-Sargan 

test, the C statistic. 

In accordance with the partition of iZ , the sample orthogonal conditions ( )ˆm θ  

and Φ  can be written as 

( ) ( )
( )

1

2

ˆ
ˆ

ˆ

m
m

m

θ
θ

θ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

, 11 12

21 22

ˆ ˆ
ˆ

ˆ ˆ
⎡ ⎤Φ Φ

Φ = ⎢ ⎥
Φ Φ⎢ ⎥⎣ ⎦

        (9.52) 
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For a consistent estimator Φ̂  of Φ , the efficient GMM estimator using all L 

instruments and its associated J statistic is (9.50). The efficient GMM estimator 

of the same coefficient vector θ  using only the first 1L  instruments and its 

associated J statistic is: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

11
1 1 1 11 1

1 1 1 11 1
0 02 2 2 22 2

1

1 1
0 02 2

ˆ ˆ ˆ ˆˆ ˆ

....

..

ˆ

..

d

d

J nq n m m n m R R R R m

nm R R R R R R nm

nm nm

θ θ θ θ

θ θ

θ θ

−
−

− −− −

− −

⎡ ⎤ ⎡ ⎤′ ′ ′ ′= = Φ = Φ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤′ ′ ′ ′⎯⎯→ Φ Φ Φ Π Φ Φ Φ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤′⎯⎯→ Φ Μ Φ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Where 1

0
I

R ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, ( ) ( ) ( )
1 111
2 2

1 LI R R R G G R R R R G G R R R
−− − −⎡ ⎤′ ′ ′ ′ ′ ′ ′Π = − Φ Φ Φ⎣ ⎦ , 

( ) ( )
1 11 1
2 22 2

1M R R R R R R− −′ ′ ′= Φ Φ Π Φ Φ . 

Both Π  and Μ  are symmetric and idempotent matrices, and 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 11 1
2 22 2

1

1 1 1 11 11
12 2 2 22 2

1

1 11 1
2 22 2

1

1 11 11
12 22 2

1

.......

.......

..............................

.......

L

R R R R R R

I G G G G R R R R R R

R R R R R R

G G G G R R R R R R

− −

−− − − −−

− −

−− − −−

′ ′ ′ΠΜ = Π ⋅Φ Φ Π Φ Φ

⎡ ⎤′ ′ ′ ′ ′= −Φ Φ Φ Φ Φ Π Φ Φ⎢ ⎥
⎣ ⎦

′ ′ ′= Φ Φ Π Φ Φ

′ ′ ′ ′ ′−Φ Φ Φ Π Φ Φ

= ( ) ( )
1 11 1
2 22 2

1R R R R R R− −′ ′ ′Φ Φ Π Φ Φ =Μ

 

So, Π −Μ  is also a symmetric and idempotent matrix, with 

( ) ( ) ( ) 1rank rank rank L LΠ −Μ = Π − Μ = −  

Thus, we have 
( )

( ) ( ) ( ) ( )

1 1

1 1
0 0 22 2

1...

ˆ ˆ

d d

C J J n q q

nm nm L Lθ θ χ
− −

= − = −

⎡ ⎤ ⎡ ⎤′⎯⎯→ Φ Π−Μ Φ ⎯⎯→ −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (9.53) 

The C statistic is computed as the difference between two J statistics. The first 
is computed from the fully efficient regression using the entire set of 
overidentifying restrictions. The second is that of the inefficient but consistent 
regression using a smaller set of restrictions in which a specified set of 
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instruments are removed from the instrument list. For excluded instruments, 
the step is equivalent to dropping them from the instrument list. For included 
instruments, the C test places them in the list of included endogenous 
variables, treating them as endogenous regressors. The order condition must 
still be satisfied for this form of the equation. 

9.4.3 Identification / IV Relevance Test 

1. Anderson's  Likelihood-ratio Test 
A general approach to the problem of instrument relevance was proposed by 
Anderson (1984) and discussed in Hall, Rudebusch, and Wilcox (1996). 
Anderson's approach considers the canonical correlations of the X and Z 
matrices. These measures, , 1,...,ir i K=  represent the correlations between 
linear combinations of the K columns of X and linear combinations of the L  

columns of Z. If an equation to be estimated by instrumental variables is 
identified from a numerical standpoint, all K of the canonical correlations must 
be significantly different from zero. Anderson's likelihood-ratio test has the null 
hypothesis that the smallest canonical correlation is zero and assumes that the 
regressors are distributed multivariate normal. Under the null, the test statistic 
is distributed 2χ  with ( 1)L K− +  degrees of freedom, so that it may be 
calculated even for an exactly identified equation. A failure to reject the null 
hypothesis calls the identification status of the estimated equation into 
question. The squared canonical correlations may be calculated as the 
eigenvalues of 1 1( ' ) ( ' )( ' ) ( ' )X X X Z Z Z Z X− − ; see Hall, Rudebusch, and Wilcox 
(1996, 287). 

2. Kleibergen-Paap rk statistic (Appendix) 

The Kleibergen-Paap (2005) rk statistic is a generalization of the Anderson 
canonical correlation rank test to the case of a non-Kronecker covariance 
matrix. The implementation in ranktest will calculate rk statistics that are robust 
to various forms of heteroskedasticity, autocorrelation, and clustering. 
We are concerned with testing the rank of the k m×  matrix of parameters Π . 
Under null hypothesis, the rank of the matrix Π  is equal to q with 

( )min ,q k m<  , that is, H0: rank ( )Π =q. Let Π̂  be an estimator of the 

unrestricted value of Π , ( )ˆˆ vecπ = Π  and ( )vecπ = Π . 

Assumption 1. The limiting behavior of the estimator of  the matrix Π  is 
characterized by  

( ) ( )ˆ 0,dT N Vπ π− ⎯⎯→ ,                                  (9.54) 
where T is the sample size and V  is a km km× covariance matrix. 
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Let ˆ ˆG F ′Θ = Π , in which G and F are two non-singular matrices with dimension 

k k× and m m× , and such that ( ) ( )ˆ ˆ ˆvec F Gθ π= Θ = ⊗ , then  

( ) ( )ˆ 0,dT N Wθ θ− ⎯⎯→
,                                  (9.55) 

where ( ) ( )W F G V F G ′= ⊗ ⊗ . 

To test H0: ( )rank qΠ = , which is equivalent to H0: ( )rank qΘ = . The 

matrix Θ  can be decomposed as  

, ,q q q q qA B A B⊥ ⊥Θ = + Λ ,                                     (9.56) 

with qA  a k q×  matrix, qB  a q m×  matrix, qΛ  a ( ) ( )k q m q− × − matrix, 

,qA ⊥  a ( )k k q× − matrix, ,qB ⊥  a ( )m q m− ×  matrix, and where 

, , , , , ,0, 0, ,q q q q q q k q q q m qA A B B A A I B B I⊥ ⊥ ⊥ ⊥ − ⊥ ⊥ −′ ′ ′ ′= = = = . Under H0, the matrix qΛ  is 

identical to zero. The null hypothesis H0: ( )rank qΘ =  is identical to H0: 

0qΛ = . 

Assumption2. The ( )( ) ( )( )k q m q k q m q− − × − − covariance matrix 

( ) ( ), , , ,q q q q qB A W B A⊥ ⊥ ⊥ ⊥
′′ ′Ω = ⊗ ⊗                              (9.57) 

is non-singular. 

Decomposition (9.56) is also applied to the estimator Θ̂ , 

, ,
ˆ ˆˆ ˆ ˆ ˆ

q q q q qA B A B⊥ ⊥Θ = + Λ .                                        (9.58) 

Theorem1. Under H0 and Assumptions 1-2, the limiting behavior of the 

elements of Θ̂  in (9.60) is such that ˆ ˆ
q qA B  resulting from the singular value 

decomposition of Θ̂  is a T  consistent estimator of q qA B  and  

( )ˆ 0,d
q qT Nλ ⎯⎯→ Ω                                       (9.59) 

where ( )ˆ ˆ
q qvecλ = Λ and , ,

ˆˆ ˆ ˆ
q q qA B⊥ ⊥′ ′Λ = Θ . 

Kleibergen-Paap rk statistic. Under Assumption 1-2, the statistic 

( ) ˆ
q q qrk q Tλ λ′= Ω                                     (9.60) 
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converges under H0: rank ( )Θ =q in distribution to a ( )( )( )2 k q m qχ − − random 

variable. 

Proposition 1.: When ( ) ( )( )1 1V F F G G− −′ ′= ⊗  and Π̂  is a least squares 

estimator, the rank statistic ( )rk q  is identical to the canonical correlation rank 

statistic of Anderson (1951). When k m> , it is equal to the sum of the m q−  

smallest eigenvalues of ˆ ˆ′Θ Θ divided by T, and when m k> , it is equal to the 

sum of the k q−  smallest eigenvalues of ˆ ˆ ′ΘΘ divided by T. The smallest 

eigenvalues of ˆ ˆ′Θ Θ  and ˆ ˆ ′ΘΘ  represent the smallest canonical correlations 

when Π̂  is a least squares estimator. 

In many econometric models, the rank of a matrix governs the 
identification of the parameters. The limiting distribution of estimators of these 
parameters are only valid if this matrix has full rank. For example, in order to 
obtain the limiting distributions of GMM estimators, it is assumed that a matrix 
of derivatives has full rank. In such case, rank statistics can be used to test for 
the identification of the parameters. 
 
9.4.4 GMM Counterparts to the Wald, LR and LM Tests 
Hypothesis of interest 

( )0
0 :H R θ γ=  

Where ( )R i  is a 1J ×  continuously differentiable vector function, and the 

J K×  matrix 
( ) ( )

0
0

R
R

θ
θ

θ

∂
′=

′∂
 is of full row rank. 

1) Wald Test 

By Taylor series expansion and ( )0R θ γ=  under 0H , we have 

( )( ) ( )( ) ( ) ( )
( ) ( )

0 0

0.................... ˆ...

ˆ ˆn R n R R n

R n

θ γ θ γ θ θ θ

θ θ θ

′− = − + −

′= −
 

Where θ  lies between θ̂  and 0θ . 

Because ( ) ( ). 0a sR Rθ θ′ ′⎯⎯→  given continuity of ( )R′ i , and  
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.0 0a sθ θ− ⎯⎯→ ,   

( ) ( )0
0

ˆ 0,dn Nθ θ− ⎯⎯→ Ω
 

We have 

( )( ) ( ) ( )0 0
0

ˆ 0,dn R N R Rθ γ θ θ⎡ ⎤′′ ′− ⎯⎯→ Ω⎢ ⎥⎣ ⎦  
By Slutsky theorem, it follows that 

( ) ( ) ( ) ( ) ( )
1

0 0 2
0

ˆ ˆ dn R R R n R Jθ γ θ θ θ γ χ
−′ ⎡ ⎤′⎡ ⎤ ⎡ ⎤′ ′− Ω − ⎯⎯→⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦  

( ) ( ) ( ) ( ) ( )
1

2
0

ˆ ˆ ˆ ˆˆ dn R R R n R Jθ γ θ θ θ γ χ
−

′ ⎡ ⎤′⎡ ⎤ ⎡ ⎤′ ′− Ω − ⎯⎯→⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦  

Thus, under 0H , we have Wald Test statistic: 

( ) ( ) ( ) ( ) ( ) ( )
1

2
0

ˆ ˆ ˆ ˆˆ 9.......................... 6. 1.dn R R R R Jθ γ θ θ θ γ χ
−

′ ⎡ ⎤′⎡ ⎤ ⎡ ⎤′ ′− Ω − ⎯⎯→⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

2) LR Test 

( )2 ln lnR uLR L L= − −  

Suppose, under 0H , 

( ) ( ) ( )...................................................................................ˆ ˆˆˆ 9.. 62R R R Rq m W mθ θ′=

And under 1H , 

( ) ( ) ( ).....................................................................................ˆ ˆˆˆ 9.. 63u u u uq m W mθ θ′=

Then 

( ) ( ) ( )2 ................................................................ˆ ˆ 64... 9.d
GMM R uLR n q q Jχ= − ⎯⎯→

Note, it is necessary to use the same weighting matrix W, in both restricted and 
unrestricted estimators. Since the unrestricted estimator is consistent under 

both 0H  and 1H , a consistent unrestricted estimator of θ  is use to compute 

W, that is 

( ) ( )1 ...........................................................ˆˆ ˆ var 9.65...............uW A nm θ− ⎡ ⎤= Φ = ⎣ ⎦
3) LM Test 

Suppose Rqα
θ
∂

=
′∂
, then the counterpart to the LM statistic is equivalent to 
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Wald test as below 

0 : 0H α =  

( ) 1
varWald α α α

−
′= ⎡ ⎤⎣ ⎦  

See P550-551, Greene 5th. 
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