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Chap4 Instrumental Variable Estimation and  

Dynamic Panel Data Model 
Recent panel data applications have relied heavily on the methods of instrumental 
variables that we are developing here. We will develop this methodology in detail in 
section 2 where we consider generalized method of moments (GMM) estimation. At this 
point, we can examine two major building blocks in this set of methods, Huasman and 
Taylor’s (1981) estimator for the random effects model and Bhargava and Sargan’s (1983) 
proposals for estimating a dynamic panel data model. These two tools play a significant 
role in the GMM estimators of dynamic panel models. 

4.1 Instrumental variables estimation for ( ), 0it iCov X u ≠ ：the Hausman 

and Taylor estimator 

1）Hausman and Taylor estimator 
Recall the original specification of the linear model for panel data 

it it i itY X uβ ε′= + +                              (4.1) 

The random effects model is based on the assumption that the unobserved person 

specific effects, iu , are uncorrelated with the included variables, itX . This assumption is 

a major shortcoming of the model. However, the random effects treatment does allow the 
model to contain observed time invariant characteristics, such as demographic 
characteristics, while the fixed effects model does not－ if present, they are simply 
absorbed into the fixed effects. Hausman and Taylor’s (1981) estimator for the random 
effects model suggests a way to overcome the first of these while accommodating the 
second. 

Their model is of the form: 

                 1 1 2 2 1 1 2 2it it it i i it iY X X Z Z uβ β α α ε′ ′ ′ ′= + + + + +               (4.2) 

where ( )1 2,β β β ′′ ′= and ( )1 2,α α α ′′ ′= . In this formulation, all individual effects denoted 

iZ  are observed. As before, unobserved individual effects that are contained in iZα′  in 

(4.1) are contained in the individual-specific random term, iu . Hausman and Taylor define 

four sets of observed variables in the model: 

1itX is 1K  variables that are time varying and uncorrelated with iu , 

1iZ is 1L  variables that are time invariant and uncorrelated with iu , 

2itX  is 2K  variables that are time varying and are correlated with iu , 
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2iZ  is 2L  variables that are time invariant and are correlated with iu . 

The assumptions about the random terms in the model are 
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Note the crucial assumption that one can distinguish sets of variables 1X  and 1Z  that 

are uncorrelated with iu  from 2X  and 2Z  which are not. The likely presence of 2X  

and 2Z  is what complicates specification and estimation of the random effects model in 

the first place. 
By construction, any OLS or GLS estimators of this model are inconsistent when the 

model contains variables that are correlated with the random effects. Hausman and Taylor 
have proposed an instrumental variables estimator that uses only the information within 
the model (i.e., as already stated). The strategy for estimation is based on the following 
logic: First, by taking deviations from group means, we find that 

( ) ( ). 1 1 . 1 2 2 . 2 .it i it i it i it iY Y X X X Xβ β ε ε′ ′− = − + − + −             (4.3) 

which implies that β  can be consistently estimated by least squares, in spite of the 

correlation between 2X  and u . Now, in the original model, Hausman and Taylor show 

that the group mean deviations can be used as (K1 + K2) instrumental variables for 

estimation of ( ),β α . That is the implication of (4.3). Because 1Z  is uncorrelated with 

the disturbances, it can likewise serve as a set of L1 instrumental variables. That leaves a 

necessity for L2 instrumental variables. The authors show that the group means for 1X  

can serve as these remaining instruments, and the model will be identified so long as K1 
is greater than or equal to L2. For identification purposes, then, K1 must be at least as 
large as L2.  

The authors propose the following set of steps for consistent and efficient estimation: 

Step 1. Obtain the within estimator of ( )1 2,β β β ′′ ′=  based on 1X  and 2X . The 

residual variance estimator from this step is a consistent estimator of 2
εσ . 

Step 2. Form the within model residuals, ite  , from the within regression at step 1. Stack 



3 

the group means of these residuals in a full sample length data vector. Thus, 

( )( )

1

1 ˆ ,  1, , , 1, ,
T

w
it i it it

t
e e Y X t T i n

T
β∗

=

′= = − = =∑ . (The individual constant term, iα , is 

not included in ite∗ .) These group means are used as the dependent variable in an 

instrumental variable regression on 1Z  and 2Z  with instrumental variables 1Z  and 

1X . (Note the identification requirement that K1, the number of variables in 1X  be at 

least as large as L2, the number of variables in 2Z .) The time invariant variables are each 

repeated T times in the data matrices in this regression. This provides a consistent 
estimator of α . 
Step 3. The residual variance in the regression in step 2 is a consistent estimator of 

2 2 2
u Tεσ σ σ∗∗ = + . From this estimator and the estimator of 2

εσ  in step 1, we deduce an 

estimator of 2 2 2
u Tεσ σ σ∗∗= − . We then form the weight for feasible GLS in this model by 

forming the estimate of  

2

2 21
uT

ε

ε

σθ
σ σ

= −
+

. 

Step 4. The final step is a weighted instrumental variable estimator. Let the full set of 
variables in the model be 

( )1 2 1 2, , ,it it it i iW X X Z Z′ ′ ′ ′ ′= . 

Collect these nT observations in the rows of data matrix W . The transformed variables 
for GLS are, as before when we first fit the random effects model, 

.
ˆ

it it iW W Wθ∗′ ′ ′= −  and ˆ
it it iY Y Yθ∗ = −  

where θ̂  denotes the sample estimate of θ . The transformed data are collected in the 

rows data matrix W ∗  and in column vector Y ∗ . Note in the case of the time invariant 

variables in itW , the group mean is the original variable, and the transformation just 

multiplies the variable by ˆ1 θ− . The instrumental variables are  

( ) ( )1 1 . 2 2 . 1 1, , ,it it i it i i iV X X X X Z X⎡ ⎤′ ′′ ′= − −⎢ ⎥⎣ ⎦
. 

These are stacked in the rows of the nT × (K1 + K2 + L1 + K1) matrix V . Note for the 
third and fourth sets of instruments, the time invariant variables and group means are 
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repeated for each member of the group. The instrumental variable estimator would be 

( ) ( )( ) ( ) ( )( ) ( )
1

1 1ˆ ˆ,
IV

W V V V V W W V V V V Yβ α
−

− −∗ ∗ ∗ ∗′ ⎡ ⎤ ⎡ ⎤′ ′′ ′ ′ ′ ′ ′= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.       (4.4) 

The instrumental variable estimator is consistent if the data are not weighted, that is, if 

W rather than W ∗  is used in the computation. But, this is inefficient, in the same way that 

OLS is consistent but inefficient in estimation of the simpler random effects model. 

2)Amemiya-Macurdy Estimator 

For the instruments to be valid, Hausman and Taylor’s  estimatior requires that 1iX  

and 1iZ  be uncorrelated with the rendon-effects iu .More precisely ,the instruments are 

valid when 1 .
0 1

1lim 0
n

i i
n i

p X u
n→ =

=∑  and 1
0 1

1lim 0
n

i i
n i

p Z u
n→ =

=∑ . Amemiya-Macurdy(1986) 

place stricter requirements on the instruments that vary within groups to obtain a more 

efficient estimator. Specifically , Amemiya-Macurdy(1986) assume that 1itX  is orthogonal 

to iu  in every period; i.e. 1
0 1

1lim 0
n

it i
n i

p X u
n→ =

=∑  for 1, ,t T= .With this restriction, they 

derive the Amemiya-Macurdy estimator as the instrumental-variables regression of (4.2) 

using instruments 1 1 .it iX X− , 1itX ,and 1iZ , where 1 1 1 1 2 1, , ,it i i iTX X X X= . 

 4.2 Instrumental variables estimation for ( ), 0it itCov X ε ≠ ： 2SLS 

Estimator 
Consider an equation of the form 

1it it it i it it i ity Y X u Z uγ β ε δ ε= + + + = + +                (4.5) 

where 

ity is the dependent variable; 

itY is an 21 g× vector of observations on 2g  endogenous variables included as 

covariates, and these variables are followed to be correlated with the itε ; 

1itX is an 11 k× vector of observations on the exogenous variables included as covariates; 

[ ],it it itZ Y X= ; 

γ  is a 2 1g × vector of coefficients; 
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β  is a 1 1k × vector of coefficients; 

δ is a 1K × vector of coefficients, where 2 1K g k= + . 

Assume that there is a 21 k×  vector of observations on the 2k  instruments in 2itX . The 

order condition is satisfied if 2 2k g≥ . Let [ ]1 2,it it itX X X= .Define iT  to be the number 

of observations on individual i , n  to be the number of individuals and N  to be the 

total number of observations; i.e., 
1

n
ii

N T
=

=∑ . 

1）FD2SLS 
As the name implies, this estimator obtains the estimates and conventional VEC from 

an instrumental-variables regression on the first-differenced data. Specifically, first 
differencing the data yields 

                 ( )1 , 1 , 1it it it i t it i ty y Z Z δ ε ε− − −− = − + −                     (4.6) 

With the iu  removed by differencing, we can obtain the estimated coefficients and their 

estimated variance-covariance matrix from a stand two-stage least-squares regression of 

ityΔ on itZΔ with instruments itXΔ . 

2) FE2SLS 
At the heart of this model is the within transformation. The within transform of a 

variable w  { }( ), ,for w y Z ε∈  is 

.it it iw w w w= − +  

where 

.
1

1 1

1

1

i

i

T

i it
ti

Tn

it
i t

w w
T

w w
N

=

= =

=

=

∑

∑∑
 

and n  is the number of groups and N  is the total number of observations on the 
variable. 

The within transform of (4.5) is 

it it ity Z β ε= +  

The within transform has removed the iu . With the iu  gone, the within 2SLS estimator 

can be obtained from a two-stage least-squares regression of ity  on itZ  with 

instruments itX . 
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Suppose that there are K  variables in itZ , including the mandatory constant. 

There are 1K n+ −  parameters estimated in the model, and the conventional VCE for 
the within estimator is 

1 IV
N K V

N n K
−

− − +
 

where IVV is the VCE from the above two-stage least-squares regression. 

From the estimate of δ̂ , estimates ˆiu  of iu  are obtained as ˆˆi i iu y Z δ= − .  

3)BE2SLS  
After passing (4.5)through the between transform, we are left with 

i i i iy Z uα δ ε= + + +                        (4.6) 

where 

{ }
1

1 , ,
iT

i it
ti

w w for w y Z
T

ε
=

= ∈∑  

Similarly, define iX  as the matrix of instruments itX  after they have been passed 

through the between transform. 

Through a two-stage least-squares regression of iy  on iZ  with instruments iX  in 

which each average appears iT  times, we obtain the BE2SLS estimator of (4.6). 

4) G2SLS and EC2SLS 
 Per Baltagi and Chang (2000), let 

it i ituη ε= +  

be the combined errors. Then under the assumptions of the random-effects model, 

( ) 2 1 1
i i i i iT T T i T T

i i

E diag I i i diag w i i
T Tεηη σ

⎡ ⎤ ⎡ ⎤
′ ′ ′= − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

where 

2 2
i i uw T εσ σ= +  

and 
iTi is a vector of ones of dimension of iT . 

Since the variance components are unknown, consistent estimates are required to 
implement feasible GLS.We have two choices. The first choice is a simple extension of 
the Swamy-Arora method for unbalanced panels. 

Let 

ˆw
it it it wy Zη δ= −  
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be the combined residuals from the within estimator. Let itη  be the within-transformed 

itη . Then 

2
2 1 1ˆ

1

in T
iti t

N n Kε

η
σ = ==

− − +
∑ ∑  

Let 

b
it it it by Zη δ= −  

be the combined residual from the between estimator. Let b
iη  be the between residuals 

after they have been passed through the between transform. Then 

( )2 2
2 1 1

ˆ
ˆ

in T
iti t

u

n K
N r

εη σ
σ = =

− −
=

−
∑ ∑  

where 

( ){ }1
i i i u u ir trace Z Z Z Z Z Z

−
′ ′ ′=  

where 

( )i iu T TZ diag i i′=  

From the second choice , we get the consistent estimators that Baltagi and Chang 
(2000) are used. These are given by 

2
2 1 1ˆ

in T
iti t

N nε

η
σ = ==

−
∑ ∑  

and                            
2 2

2 1 1
ˆ

ˆ
in T

iti t
u

n
N

εη σ
σ = =

−
= ∑ ∑  

The Swamy-Arora method contains a degree-of-freedom correction to improve its 
performance in small samples. 

Given estimates of the variance components, 2ˆεσ  and 2ˆuσ  the feasible GLS 

transform of a variable w  is 

.
ˆ

it it i iw w wθ∗ = −                             (4.7) 

where 

.
1

1
2 2

1

ˆˆ 1
ˆ

iT

i it
ti

i
i

w w
T

εσθ
ω

=

−

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

∑
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and 

2 2ˆ ˆ ˆi i uT εω σ σ= +  

Using either estimator of the variance components, there are two GLS estimators of 
the random-effects model. These two estimators differ only in how they construct the GLS 
instruments from the exogenous and instrumental variables contained in 

[ ]1 2,it it itX X X= . The first one method, G2SLS, which is from Balestra and 

Varadharajan-Krishnakumar, uses the exogenous variables after they have been passed 
through the feasible GLS transform. Mathematically, G2SLS uses *X  for the GLS 
instruments, where *X  is constructed by passing each variable in X  through the GLS 
transform in (4.7). The G2SLS estimator obtains in coefficient estimates and conventional 

VCE from an instrumental variable regression of *
ity  on *

itZ  with instruments *
itX . 

For Baltagi’s EC2SLS, the instruments are itX  and itX , where itX  is constructed 

by each of the variables in itX  throughout the GLS transform in (4.7), and itX  is made 

of the group means of each variable in itX . The EC2SLS estimator can be obtained from 

an instrumental variables regression of *
ity  on *

itZ  with instruments itX  and itX . 

Baltagi and Li (1992) show that although the G2SLS instruments are a subset of 
those in EC2SLS, the extra instruments in EC2SLS may be redundant in the sense of 
White (2001).  
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4.2 Dynamic Panel Data Model 
4.2.1 Introduction 

Many economic relationships are dynamic in nature and one of the advantages of 
panel data is that they allow the researcher to better understand the dynamics of 
adjustment. The dynamic relationship of a panel data model is characterized by the 
presence of a lagged dependent variable among the regressors, i.e.                  

      ( ), 1 ,   1, , ; 1, ,it i t it i itY Y X u i n t Tγ β ε− ′= + + + = =                   (4.8) 

where γ  is a scalar, itX ′  is 1× K and β  is K ×1. iu  is the individual effect of ith 

unit, either fixed or random effects. We have assumptions: 

A.4.1.1 ( )2~ 0,it iid εε σ  

A.4.1.2 ( )2~ 0,i uu iid σ  

A.4.1.3 iu and itε  are independent of each other. 

The basic problems introduced by the inclusion of a lagged dependent variable. 
1) For the fixed effects estimator, we have 

( ) ( ), 1 , 1 .it i i t i it i it iY Y Y Y X Xγ β ε ε− −
′− = − + − + −                        (4.9) 

The within transformation wipes out the iu , but ( ), 1 , 1i t iY Y− −− , where 

, 1 , 1
1

T

i i t
t

Y Y T− −
=

= ∑ ( assuming that 0t =  is observed), will be correlated with it iε ε−  

even if the itε  are not serially correlated. This is because , 1iY −  is correlated with iε , the 

latter average contains , 1i tε − , which is obviously correlated with , 1i tY − . 

2) For the random effects GLS estimator, in order to apply GLS, quasi-demeaning is 

performed and ( ), 1 , 1i t iY Yθ− −−  will be correlated with ( )it iε θε− . 

So, for a dynamic panel data model, the estimator is biased and inconsistent, whether 

the effects are treated as fixed or random. This bias is of order 1 T  and disappears only 

if T →∞ . The bias can be serious when T is small. 

4.2.2 The Difference and System GMM Estimators 

   1) The differences of Arellano and Bond (1991)  

Arellano and Bond (1991) argue that additional instruments can be obtained in a 
dynamic panel data model if one utilized the orthogonality conditions that exist between 
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lagged values of itY  and the disturbances itε . 

By first differencing model (4.8) as n →∞  and with T fixed, we have 

( ) ( ), 1 , 1 , 2 , 1 , 1it i t i t i t it i t it i tY Y Y Y X Xγ β ε ε− − − − −
′− = − + − + −          (4.10) 

i.e. 

( ) ( ), 1 , 1, ,i i i iY Y X i n
γ

ε
β−

⎛ ⎞
Δ = Δ Δ + Δ =⎜ ⎟

⎝ ⎠
                     (4.11) 

We note that , 1it i tε ε −−  is MA(1). In Period 2t = , the variable 0iY  is a valid 

instrument, since it is hightly correlated with ( )1 0i iY Y−  and not correlated with 

( )2 1i iε ε−  as long as the itε  are not serially correlated. When 3t = , 1iY  and 0iY  are  

correlated with ( )2 1i iY Y−  while, given the assumption of no serial correlation of the ε ’s, 

they are correlated with ( )3 2i iε ε− . One can continue this fashion, the set of valid 

instruments becomes ( )0 2 , 2i i i TY Y Y − . On the other hand, the GMM estimator 

depends on the exogeneity of itX . 

Case i) ( ) 0it isE X ε =  for all , 0,1, ,t s T=  

In this case, all the itX  are exogenous variables, and they can instrument 

themselves. So We have IV matrix 

0 0

0 1 1

2

0 1 2

0 0
0 , 0
0 0 0

0 0 , , ,

i i

i i i

i i

i i iT iT

Y X
Y Y X

Z X

Y Y Y X−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

                    (4.12) 

In  (4.12), the instruments itX  are in “IV-style”, and the instruments from the second lag 

of Y are in “GMM-style”, we can substitute zeros for missing observations ,for example, 
when 0t =  is not observed, the first row of the matrix corresponds to 0t = . In 
unbalance panel,one also substitute zeros for other missing values. Althous these 
instrument sets are part of what defines difference (and system) GMM, researchers are 
free to incorporate other instruments instead or in addition. According to (4.22), we have 
orthogonality moment conditions 

( ) 0i iE Z ε′Δ =                                             (4.13) 
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Its sample analogue 

1

1 0
n

i i
i

Z
n

ε
=

′Δ =∑                                            (4.14) 

The Criterion function 

1

1 1

1 1ˆ
n n

i i i i
i i

q Z Z
n n

ε ε−

= =

⎛ ⎞ ⎛ ⎞′ ′= Δ Φ Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑                          (4.15) 

( )

1

1

1

....

...

v r

1

.

1a

1

n

i i
i

n

i i i i
i

n

i i ii
i

A Z
n

E Z Z
n

Z E Z
n

ε

ε ε

ε ε

=

=

=

⎛ ⎞′Φ = Δ⎜ ⎟
⎝ ⎠
⎛ ⎞′ ′= Δ Δ⎜ ⎟
⎝ ⎠

′ ′= Δ Δ

∑

∑

∑

                                 (4.16) 

Since ( ), 1it i tε ε −−  is MA(1), we have 

( ) ( )2
i iE Gεε ε σ′Δ Δ =   

Where  

2 1 0 0 0
1 2 1 0 0

0 0 0 2 1
0 0 0 1 2

G

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

                            (4.17) 

Therefore  

2

1

1 n

i i
i

Z GZ
n εσ

=

′Φ = ∑                                          (4.18) 

( )

( )

1

, 1
1 1

, 1
1

...........................

1 1,

1 , 0.

n n

i i i i i
i i

n

i i i i
i

q Y X Z Z GZ
n n

Z Y Y X
n

γ
β

γ
β

−

−
= =

−
=

∂ ⎡ ⎤ ⎡ ⎤′ ′= Δ Δ⎢ ⎥ ⎢ ⎥′ ⎣ ⎦ ⎣ ⎦⎛ ⎞
∂ ⎜ ⎟
⎝ ⎠

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪′ Δ − Δ Δ =⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑

∑

 

( )
11

, 1
, 1

1 1 1

1
, 1

1 1 1

............................

ˆ 1 1 1 ,ˆ

1 1 1

n n n
i

i i i i i i
i i iiGMM

n n n
i

i i i i i
i i ii

Y
Z Z GZ Z Y X

Xn n n

Y
Z Z GZ Z Y

Xn n n

γ

β

−−
−

−
= = =

−
−

= = =

⎧ ⎫⎛ ⎞ ⎡ Δ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤⎪ ⎪′ ′= Δ Δ⎜ ⎟ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥Δ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎪ ⎪⎣ ⎦⎝ ⎠ ⎩ ⎭
⎧⎡ Δ ⎤⎛ ⎞ ⎡ ⎤⎪ ′ ′Δ⎨⎢ ⎥⎜ ⎟ ⎢ ⎥Δ ⎣ ⎦⎝ ⎠⎪⎣ ⎦⎩

∑ ∑ ∑

∑ ∑ ∑
⎫⎪
⎬
⎪⎭

(4.19) 
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On the other hand, we write model (4.21) as 

( )1,Y Y X
γ

ε
β−

⎛ ⎞
Δ = Δ Δ + Δ⎜ ⎟

⎝ ⎠
                                        (4.20) 

 

Where     ( )

1, 1 1 1

2, 1 2 2
1

, 1

, ,

n n n

Y X
Y X

Y X

Y X

ε
ε

ε

ε

−

−
−

−

Δ Δ Δ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Δ Δ Δ⎜ ⎟ ⎜ ⎟Δ Δ = Δ =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟Δ Δ Δ⎝ ⎠⎝ ⎠

. 

Then the matrix of instruments is ( )1, , nZ Z Z ′′ ′= , premultiplying the differenced 

equation (4.11) by Z ′ , we get 

( )1,Z Y Z Y X Z
γ

ε
β−

⎛ ⎞′ ′ ′Δ = Δ Δ + Δ⎜ ⎟
⎝ ⎠

                                (4.21) 

The GLS estimators of (4.21) are 

( ) ( ) ( ){ }
( ) ( ){ }

1
1

1 1

,

1
1.......................

ˆ
, ,ˆ

,.

IV GLS

Y X Z Var Z Z Y X

Y X Z Var Z Z Y

γ
ε

β

ε

−
−

− −

−

−

⎛ ⎞ ⎡ ⎤′ ′ ′= Δ Δ Δ Δ Δ⎡ ⎤⎜ ⎟ ⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠

⎡ ⎤′ ′ ′Δ Δ Δ Δ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

        (4.22) 

Where ( ) ( )
2

1

n

i i
i

Var Z E Z Z Z GZ
n
εσε ε ε

=

′ ′ ′ ′Δ = Δ Δ = ∑ , thus (4.19) is equivalent to (4.21). 

Case ii) ( ) 0it isE X ε ≠  for s t< , ( ) 0it isE X ε =  for s t≥                      (4.23) 

In this case, itX  are predetermined rather than strictly exogenous, then only 

[ ]0 1 1, , ,i i isX X X −′ ′ ′  are valid instruments for the differenced equation at period s, the IV 

matrix of (4.12) becomes: 

( )
( )

( )

0 0 1

0 1 0 1 2

0 2 0 1

, , 0 0
0 , , , , 0
0 0 0

0 0 , , , , ,

i i i

i i i i i

i

i iT i iT

Y X X
Y Y X X X

Z

Y Y X X− −

′ ′⎛ ⎞
⎜ ⎟′ ′ ′⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟′ ′⎝ ⎠

  (4.24) 

And GMM estimators are again given by (4.19) with this choice of iZ . 

2) The Orthogonal Deviation Method (Arellano and Bover, 1995) 

Arellano and Bover (1995) developed a unifying GMM framework for looking at 
efficient IV estimator for dynamic panel data models. They did it in the context of the 
Hausman and Taylor (1981) model, which in static form is reproduced here 
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it it i i itY X Z uβ α ε′ ′= + + +                                      (4.25) 

Here assumptions are the same as (4.2).In vector form, (425) can be written as  

i i iY Wδ η= +                                                 (4.26) 

Where ( ), , ,i i T i i i T iW X i Z u i
β

δ η ε
α
⎛ ⎞ ′= = = +⎜ ⎟
⎝ ⎠

, according to the assumptions, we 

have ( ) 2 2
i i i T u T TE W I i iεηη σ σ′ ′Σ = = + . 

Let ( )1 2,X X X= , ( )1 2,Z Z Z= , Z are time-invariant variables, 1X  and 1Z  are 

exogenous of dimension 1nT K×  and 1n L× , 2X  and 2Z  are correlated with the 

individual effects and are of dimension 2nT K×  and 2n L× . 

Arellano and Bover transform the system of T equations in (4.26) using the 
nonsingular transformation 

01

T

M
H

i T
⎡ ⎤

= ⎢ ⎥′⎣ ⎦
                                                 (4.27) 

Where 01M  is any ( )1T T− ×  matrix of rank ( )1T −  such that 01 0TM i = , for 

example, by taking 

( )01
1 1

1,0T T TM I i i
T− − ′= −  

01M  could be the first ( )1T −  rows of the within group operator. Premultiplying (4.25) 

by matrix H, we have 

i i iHY HW Hδ η= +                                              (4.28) 

Where  

( )
01

1 1

1 1

Tit ii
i

ii

M
H

η ηη
η

ηη
− ×

×

⎛ ⎞ −⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
                                (4.29) 

Note that the transformed disturbances iHη  have the first ( )1T −  transformed errors 

free of iu , hence all exogenous variables are valid instruments for the first ( )1T −  

equations. Arellano and Bover suggest a GMM estimator and show that efficiency gains 
are available by using a larger set of moment conditions. We now form a matrix of IV. We 

will form a matrix iV  consisting of 1T − rows constructed the same way for 1T −  

observations and a final row that will be different, as discussed latter. The matrix will be of 
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the form 

1

2

 0   0
0     0

       
0   0    

i

i
i

i

v
v

V

a

′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′⎢ ⎥=
⎢ ⎥
⎢ ⎥′ ′ ′⎣ ⎦

                               (4.30) 

The instrumental variable sets contained in itv′  which have been suggested might include 

the following from within the model: 

itX  and , 1i tX −  (i.e., current and one lag of all the time varying variables), 

1, ,i iTX X (i.e., all current, past and future values of all the time varying variables), 

1, ,i itX X (i.e., all current and past values of all the time varying variables). 

The time-invariant variables that are uncorrelated with iu , that is 1iZ , are appended at 

the end of the nonzero part of each of the first 1T −  rows. It may seem that including 

2X  in the instruments would be invalid. However, we will be converting the disturbances 

to deviations from group means which are free of the latent effects. While the variables 

are correlated with iu  by construction, they are not correlated with it iε ε− . The final row 

of iV  is important to the construction. Two possibilities have been suggested: 

1 1  i i ia Z X′ ′⎡ ⎤= ⎣ ⎦ (produces the Hausman and Taylor estimator), 

[ ]1 1 1 1 2 1.. , , ,i i i i iTa Z X X X′ ′ ′ ′ ′= (produces Amemiya and MaCurdy’s estimator). 

Note that the a  variables are exogenous time-invariant variables, 1iZ  and the 

exogenous time-varying variables, either condensed into the single group mean or in the 
raw form, with the full set of T observations. 

The moment conditions are given by 

( ) ......( 1, )0i iE V H i nη =′ =                               (4.31) 

Premultiplying (4.25) by iV ′ , to get 

i i i i i iV HY V HW V Hδ η′ ′ ′= +                                   (4.32) 

Performing GLS on (4.32), we obtain the Arellano and Bover (1995) estimator: 

ˆˆ
ˆ
βδ
α

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

huyi
高亮
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11

1 1 1

1

1 1 1
.................

1 1 1ˆ

1 1 1ˆ

n n n

i i i i i i
i i i

n n n

i i i i i i
i i i i

W H V V H H V V HW
n n n

W H V V H H V V HY
n n n

−−

= = =

−

= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪′ ′ ′ ′ ′= Σ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪′ ′ ′ ′ ′Σ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∑ ∑ ∑

∑ ∑ ∑
     (4.33) 

Where 
1

1ˆ ˆ
n

i i
i

V H H V
n =

′ ′Φ = Σ∑  is the estimator of  

( ) ( )i i i i i i i iE V H H V V HE H V V H H Vηη ηη′ ′ ′ ′ ′ ′ ′ ′= = Σ  

In practice, the covariance matrix of the transformed system H H ′Σ  is replaced by a 
consistent estimator usually. 

1

ˆ ˆ ˆ
n

i i
i

H H nηη
=

′ ′Σ =∑                                              (4.34) 

Where ˆiη  are residuals based on consistent preliminary estimates, the resulting δ̂  

is the optimal GMM estimator of δ  based on the above moment restrictions. 
let us now introduce a lagged dependent variable into the right-hand side of (4.26), to 

get 

, 1it i t it i i itY Y X Z uγ β α ε− ′ ′= + + + +                                  (4.35) 

Assuming that 0t =  is observed, if itε  are not serially correlated, the transformed 

error in the equation for period t is independent of iu  and ( )1 , 1, ,i i tε ε − . So that 

( )0 1 , 1, , ,i i i tY Y Y −  are additional valid instruments for the equation. Therefore, the matrix 

of instruments iV  becomes 

( )
( )

( )

1 0

2 0 1

2 0 , 3

, 0 0 0
0 , , 0 0

0 0 , , , 0

0 0 0

i i

i i i

i

iT i i T

i

V Y
V Y Y

V
V Y Y

a
− −

′⎡ ⎤
⎢ ⎥′⎢ ⎥
⎢ ⎥=
⎢ ⎥′⎢ ⎥
⎢ ⎥′⎣ ⎦

        (4.36) 

Once again, Arellano and Bover (1995) show that the GMM estimator (4.33) that uses 
(4.36) as the matrix is invariant to the choice of H provided H satisfies the above required 
conditions. 

We have first-difference transform in the above GMM estimation, but the first-difference 

transform has a weakness. It magnifies gaps in unbalanced panels. If some itY  is 
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missing, for example, then both itYΔ  and 1itY +Δ  are missing in the transformed data. 

This motivates the second common transformation, call “forward orthogonal 

deviations”. Let itw  be a variable then the transform is: 

             1 2
1 ( )it t it it it iTw c w w w w

T t
∗

+ +
⎛ ⎞= − + + +⎜ ⎟−⎝ ⎠

                    

{ }, , ,for w Y X Z ε∈                                      (4.37) 

where the sum is taken over available future observations, T t−  is the number of such 
observations; since lagged observations do not enter the formula, they are valid as 

instruments. And the scale tc  is ( ) ( )1T t T t− − + . 

3) The System-GMM(Blundell and Bond,1998) 
Blundell and Bond(1998) pointed out, if Y is close to a random walk, then Difference 

GMM performs poorly because past levels convey little information about future changes, 
so that untransformed lags are weak instruments for transformed variables. 

To increase efficiency, under an additional assumption: 

( ) 0it iE Z uΔ =  for all i  and t                                   (4.38) 

Blundell and Bond(1998) develop an approach outlined in Arellano and 
Bover(1995).Instead of transforming the regressors to expunge the fixed effects, it 
transforms-differences-the instruments to make them exogenous to the fixed effects. In a 
nutshell, where  Arellano -Bover instruments differences (or orthogonal deviations) with 
levels, Blundell –Bond instruments levels with differences. For random walk-like 
variables ,past changes may indeed be more predictive of current levels than past levels 
are of current changes, so the new instruments are more relevant. Again, validity depends 

on the assumption that the itε  are not  serially correlated. Otherwise 1itZ −  and 

2itZ − correlated with past and contemporary disturbances may correlate with future ones 

as well. In general, if Z  is endogenous, 1itZ −Δ  is available as an instrument since 

1 1 2it it itZ Z Z− − −Δ = −  should not correlated with itε ; earlier realizations of ZΔ  can serve 

as instruments as well. And if Z is predetermined, the contemporaneous 

1it it itZ Z Z −Δ = − is also valid, since ( ) 0it itE Z ε = . 

   In  System GMM, Blundell and Bond build a stacked data set with the observations: in 
each individual’s data, the untransformed observations follow the transformed ones.i.e. 

huyi
高亮

huyi
高亮
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                i
i

i

X
X

X

∗
⊥ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,     i
i

i

Y
Y

Y

∗
⊥ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

where the ∗  superscript indicates data transformed by differencing or orthogonal 
deviations. And the instrument matrix  

                 
0

0
i

i
i

Z
Z

Z

∗
⊥ ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

 For GMM-style instrument, the  Arellano -Bover instruments fot the transformed data 
are set to zero for levels observations, and the new instruments for the levels data are set 
to zero for transformed observations; for IV-style instrument, a strictly exogenous variable 

itZ  with observation vector as a single-column could be transformed and entered like the 

regressors above.  
   In  System GMM, one can include time-invariant regressors, which would disappear 
in Difference GMM. Asymptotically, this does not affect the coefficient estimates for other 
regressors because all instruments for the levels equation are assumed to be orthogonal 
to fixed effects indeed to all time-invariant variables. 

4.3 Dynamic Panel Data Models with Heterogeneous Slopes 

4.3.1 Large Sample Bias of Dynamic Fixed and Random Effects 
Estimators 
Consider the simple dynamic panel data model (ARDL(1,0)): 

, 1it i i i t i it ity y xα γ β ε−= + + + , 1, 2,..., ;i n= 1, 2,..., ,t T=                 (4.39) 

where itε ’s are 2(0, )iiid σ ,the slopes, iγ  and iβ , as well as the intercepts iα , are 

allowed to vary across cross-sectional units(groups). Here itx  is a scalar random 

variable but the analysis can be readily extended to the case of more than one regressor. 

In what follows itx  will be treated as strictly exogenous. 

Let / (1 )i i iδ β γ= −  be the long-run coefficient of itx  for the i-the individual and rewrite 

(4.39) as: 

                     , 1(1 )( )it i i i t i it ity y xα γ δ ε−Δ = − − − +                     (4.40) 

or 

, 1( )it i i i t i it ity y xα φ δ ε−Δ = − − +                          (4.41) 

Consider now the random coefficients model 

1i ivφ φ= +                                             

huyi
高亮

huyi
高亮
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2i ivδ δ= +                                             

Hence 

3i i i ivβ δ φ δφ= = +                                   (4.42) 

where 

3 2 1 1 2i i i i iv v v v vφ δ= + +                                (4.43) 

1 11 12

2 12 22

0
,

0
i

i

v w w
iid

v w w
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

∼                         (4.44) 

and 

( ) ( )33 3 2 1 1 2i i i i iw Var v Var v v v vφ δ= = + +                (4.45) 

Letting 1γ φ= −  and β δφ= , and using the above in (4.46) we have 

, 1it i i t it ity y xα γ β η−= − + +                            (4.46) 

1 , 1 3it it i i t i itv y v xη ε −= − +                              (4.47) 

It is now clear that itη  and , 1i ty −  are correlated and the fixed effects or random effects 

estimators will not be consistent. 
 
4.4.2 Mean Group Estimation of Dynamic Heterogeneous Panels 

Considering the dynamics panel data model (4.39), We estimate iα , iφ  and iδ  for each 

individual separately using the observations 1, 2,...,t T=  on T. It is easily seen that the 

MG estimators are consistent and have asymptotic normal distribution for n and T large. 
The nonparametric variance-covariance matrix of the MG estimator is given by 

( ) ( )( )
( )

1
ˆ ˆˆ ˆ

ˆ
1

n
i iiVar
n n

ψ ψ ψ ψ
ψ =

′− −
=

−
∑

                  (4.48) 

where 

i

i i

i

α
ψ γ

β

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

                                        (4.49) 

Then the Mean Group (MG) estimators are given by 

1 1 1

1 1 1ˆ ˆˆ ˆˆ ˆ,..... ....... .
n n n

i i i
i i in n n

α α γ γ β β
= = =

= = =∑ ∑ ∑         .(4.50) 
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notice that the estimates ˆiα  and îγ  and îβ depend on T. 

In general, writing the regression equations for each individual in matrix notation, we have: 

i i i iy X h ε= +                                     (4.51) 

The OLS estimator of  

( ) 1
î i i i ih X X X y−′ ′=                               . (4.52) 

The MG estimator of h  is given by  

( ) 1

1

1ˆ n

MG i i i i
i

h X X X y
n

−

=

′ ′= ∑                         . (4.53) 

Under the assumption that 

( )0,
i i

i v

h h v
v iid
= +

Ω∼
                                 

we have that 
1

1 1

1 1ˆ n n
i i i i

MG i
i i

X X Xh h v
n n T T

ε−

= =

′ ′⎛ ⎞ ⎛ ⎞= + + ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑            (454) 

and, asymptotically, 

( ) ( )ˆ ˆ0,MGh h N Var h⎡ ⎤− ⎢ ⎥⎣ ⎦
∼ ,                        (4.55) 

as n →∞  and T →∞ , where ( )ˆVar h  can be obtained as above. When the iX ’s 

are independently distributed across i, ( )ˆVar h  can also be derived analytically: 

                      

( ) ( )

1

1 1

1

1 1

1

2
1

1 1ˆ

ˆ ˆ

1 1               

1 1              

            

n n
i i i i

MG i
i i

MG MG

n n
i i i i

i
i i

n
i i i i

v
i

X X Xh h v
n n T T

Var h Var h h

X X XVar v
n n T T

X X XVar
n n T T

ε

ε

ε

−

= =

−

= =

−

=

′ ′⎛ ⎞ ⎛ ⎞= + + ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= −

⎡ ⎤′ ′⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

′ ′⎛ ⎞= Ω + ⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑
1 1

2
2

1

1 1  
n

i i i i i i
v i

i

X X X X X XI
n n T T T T

σ
− −

=

′ ′ ′⎛ ⎞ ⎛ ⎞= Ω + ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

 

( )
1

2
2

1

1 1ˆ n
i i

v i
i

X XVar h
n n T T

σ
−

=

′⎛ ⎞= Ω + ⎜ ⎟
⎝ ⎠

∑              (4.56) 

But this method still required a nonparametric estimation of vΩ . Furthermore, the 
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assumption that iX ’s are distributed independently across i is too restrictive and may not 

hold in practice. We recommend using the variance formula given by (4.48) 

4.3.3 Problem of small sample bias 

When T is small, the MG estimator of the dynamic panel data model is biased and can 
yield misleading results. For finite T, as n →∞  (under the usual panel assumption of 
independence across units), the MG estimator still converges to a normal distribution, but 
with a mean which is not the same as the true value of the parameter underlying 
equations contain lagged dependent variables or nonexogenous regressors. For a finite T 
we have: 

( ) ( ) 1

1

1ˆ n

i i i i
i

E h h E X X X
n

ε−

=

⎡ ⎤′ ′= + ⎣ ⎦∑ ,               (4.57) 

and n →∞will not eliminate the second term. One needs large enough T for the bias to 
disappear. In practice when the model contains lagged dependent variables we have that 

( )
3

1 2iT
i i i i

KE X X X O T
T

ε
−− ⎛ ⎞⎡ ⎤′ ′ = + ⎜ ⎟⎣ ⎦ ⎝ ⎠

,               (4.58) 

where iTK  is bounded in T and a function of the unknown underlying parameters. (See 

Kiviet and Phillips,1994) Hence 

( )
3
2

1

1ˆ n
iT

i

KE h h O T
T n

−

=

⎛ ⎞
= + + ⎜ ⎟

⎝ ⎠
∑ .                   (4.59) 

Alternative methods of dealing with the small sample bias of the MG estimator are 
considered in Hsiao, Pesaran, and Tahmiscioglu (1999) and Pesaran and Zhao (1999). 

4.3.4 Hypothesis Testing with MG estimators 
When using MG estimation in the context of hypothesis testing it is important to note that 
the validity of the tests crucially depends on the relative size of n and T. When the bias of 
individual estimates is of order 1/T, then the necessary condition for the validity of tests 
based on the MG estimator is given by  

0n
T

→                                    (4.60) 

as T →∞  and ( )n T →∞ . When the small T bias in the individual estimates is of order 

1 T , then the above condition becomes 

0n
T
→                                   (4.61) 

as T →∞  and ( )n T →∞ . 
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