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Abstract

Private Information Retrieval (PIR) allows a client to obtain data from a public database without
disclosing the locations accessed. Traditionally, the stress is on preserving sublinear work for the
client, while the server’s work is taken to inevitably be at least linear in the database size. Beimel,
Ishai and Malkin (JoC 2004) show PIR schemes where, following a linear-work preprocessing stage,
the server’s work per query is sublinear in the database size. However, that work only addresses
the case of multiple non-colluding servers; the existence of single-server PIR with sublinear server
work remained unaddressed.

We consider single-server PIR schemes where, following a preprocessing stage in which the
server obtains an encoded version of the database and the client obtains a short key, the per-query
work of both server and client is polylogarithmic in the database size. Concentrating on the case
where the client’s key is secret, we show:

• A scheme, based on one-way functions, that works for a bounded number of queries, and
where the server storage is linear in the number of queries plus the database size.

• A scheme for an unbounded number of queries, whose security follows from a new hardness
assumption that is related to the hardness of solving a system of noisy linear equations.

We also show the insufficiency of a natural approach for obtaining doubly efficient PIR in the
setting where the preprocessing is public.

1 Introduction
Enabling clients to query remote databases while preserving privacy of the queries is a basic challenge
in cryptography. With the proliferation of huge databases stored and managed by powerful third parties,
this challenge becomes ever more relevant.

One of the more basic formulations of this multi-faceted problem is the concept of Private In-
formation Retrieval (PIR) [CKGS98]. Here the client is interested in learning the contents of specific
addresses in the database, while preventing the server controlling the database (or, simply, the database)
from learning these addresses. The goal here is to minimize communication and work for the client.
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There are two general types of PIR schemes: Multi-server schemes whose security relies on the
assumption that servers do not collude, but are otherwise information theoretic (see e.g. [BI01]), and
single-server schemes which are based on computational assumptions, often of a structured nature (e.g.,
[KO97, CMS99]). Still, in both cases, the per-query work of the server is traditionally taken to be at
least linear in the database size — else the server can “obviously” somewhat localize the requested
address. Indeed, this is a main bottleneck for deployment (see e.g. [CSP+]).

Is this bottleneck really inevitable? A first indication that this might not be the case is the body of
work on oblivious RAM [GO96, Ajt10, DMN11, SCSL11]: Here a client can indeed access a database
in a privacy preserving manner, with polylogarithmic overhead for both client and database (following
an initial poly-time preprocessing stage). However, oblivious RAM schemes inherently require the
client to (a) keep secret state and (b) be able to update the database. This is so even if the client only
wants to read from the database. Furthermore, if the database is not trusted for correctness then the
client needs to be able to continually update its local state. Consequently, a database cannot serve
multiple clients without having the clients continually coordinate with each other.

An indication that these restrictions might not be necessary either is the work of Beimel, Ishai
and Malkin [BIM04] that present PIR schemes where the client is stateless and, following an initial
preprocessing stage where the involved parties perform work that is polynomial in the database size,
both the client and the servers incur a per-query overhead that is sublinear in the database size. However,
that work considers only the multi-server setting, and furthermore the number of servers is tied to the
“level of sublinearity” of the scheme. This leaves open the following question:

Can we construct a single-server PIR scheme where the client has no updatable state and
where the per-query work of both the client and the server is sublineral in the database size,
potentially with a more expensive preprocessing stage?

Paraphrasing [GR17], we call this primitive doubly efficient PIR (DEPIR).

1.1 Our contributions
We provide some positive answers to this question, along with some cryptanalysis and impossibility
results. Our DEPIR schemes start with an initial preprocessing stage which takes the database as in-
put and hands a preprocessed version of the database to the server and (short) key to the client. We
distinguish between the public preprocessing case, where the random choices made during preprocess-
ing are public, the public client case, where the preprocessing may use secret randomness but client’s
long-term key is public, and the designated client case where the client’s key remains hidden from the
server. In all cases the client maintains no state across queries other than the long-term key, and the
database is read-only.

We have no positive results for first two cases. In fact, we demonstrate that a natural and general
approach towards a public preprocessing solution (which we pursued for some time) is doomed to fail.
We leave progress on this fascinating question to future research. We then concentrate on the designated
client case. Here we show:

1. A designated-client scheme for a bounded number of queries, assuming one way functions. Given
a bound B on the number of client queries, the size of the preprocessed database is Õ(B +
poly(N)), where N is the database size. The client keeps a short secret key of size λ, the security
parameter. The per-query client and server overheads are λ · polylog(N,B) and polylog(N,B),
respectively. (We compare the performance of this scheme to that of the trivial stateful scheme
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where in prepreprocessing the client hands the server B independetly permuted copies of the
database, and then uses a different copy for each query. Here the online work is only logN , but
the size of the preprocessed database is BN . This means that the amortized space overhead in
this scheme is N , whereas in our scheme it is polylog(N).) We then demonstrate the tightness of
the analysis in two ways:

(a) We demonstrate that the scheme fails as soon as the number of queries exceeds the desig-
nated bound B.

(b) We demonstrate the failure of a natural approach to extending the scheme, while preserving
the above proof structure based on one way functions. Along the way, we also show a tight
quantitative extension of the impossibility result from [CKGS98] regarding the communi-
cation complexity in standard single-server PIR, and a tight bound on the size of the key in
an information-theoretic designated-client PIR with preprocessing.

2. An extension of the scheme from (1) to the case of unbounded queries. The extended scheme
provides a natural tradeoff between complexity and potential security, where in the best case the
complexity parameters are comparable to those of the bounded scheme withB = 1. However, we
were unable to prove security of this scheme based on known assumptions. Instead, we reduce
the security of the scheme to the hardness of a new computational problem, which we call the
hidden permutation with noise (HPN) problem. While HPN is a noisy learning problem and
so is superficially similar to Learning Parity with Noise and Learning With Errors, it is a new
assumption which may be of independent interest.

3. We take first steps towards analyzing the hardness of HPN. Security of the candidate scheme
from (2) can be rephrased as the hardness of the adaptive, decision version of HPN. We then
prove that the adaptive decision version is no harder than the static (selective), search version.
This allows future investigation of the hardness of HPN to focus on the latter version, which is
structurally simpler and more basic.

4. We also consider a number of other ways to extend the scheme from (1) to the case of unbounded
queries. However, here we are unable to make significant headways neither towards cryptanaly-
sis, nor towards reducing security to a simpler problem.

In the rest of the introduction we describe our contributions in more detail.

Defining PIR security with preprocessing. We first sketch our notion of security. In our setting a
PIR scheme consists of five algorithms

(
Keygen,Process,Query,Resp,Dec

)
, where Keygen takes the

security parameter λ and database size N , and outputs key k. Process takes k and a database D ∈ ΣN

for some alphabet Σ and outputs a (randomized) preprocessed database D̃ to be handed to the server.
Query takes k and an address i ∈ {1, . . . , N}, and outputs a query q and local state s. Resp computes
the server’s response d given q and random-access to D̃, and Dec outputs the decoded value given k, s,
and d. Giving Resp only oracle access to D̃ enables it to be sublinear in |D̃|. Apart from the long-term
key k, the client keeps only short-term state between sending a query and obtaining its response.

The correctness requirement is obvious. Double efficiency means that |D̃| = poly(N, λ), and Query
and Resp run in time o(N) · poly(λ) (ideally, they should be polylogarithmic in N ). For security, we
consider the following game between an adverary A and a game master: A chooses a database D,
obtains the preprocessed version D̃ where D̃ ← Process(k,D) and k ← Keygen(λ,N). Next, A
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repeatedly and adaptively chooses an address i ∈ {1, . . . , N} and receives Query(k, i). We require that
for every such adversaryA there exists a simulator S such thatA cannot distinguish between the above
interaction and an idealized interaction where A interacts with S, where S has access to D̃ but not to
the locations i. That is, S initially obtains the encoded database D̃; S then generates a sequence of
simulated queries q̃1, q̃2, . . ., where the jth query is given to A in response to the jth address generated.

In the case of public client the adversary is also given k. In the case of public preprocessing, the
adversary obtains also the random inputs of Keygen and Process. In the case of bounded queries the
scheme is given another parameter B, and security holds as long as at most B queries are made. We
define some other variants within.

Candidate constructions and analysis. For simplicity, we restrict attention to DEPIR schemes where
the client’s query consists of a list of addresses in the encoded database D̂, and the server answers with
the contents of D̂ in these addresses. (Since we are shooting for polylogarithmic communication com-
plexity, not much generality is lost by this simplification.)

When viewed this way, the encoding of a database bears resemblance to locally decodable codes:
The ith symbol of D should be decodable by accessing only few locations of the encoded version D̂.
Here however we have the added requirement that the locations queried should be simulatable without
knowing the original addresses i. On the other hand, we do not have any error-correction requirements.

A natural approach, which we follow, is thus to start from an existing locally decodable code and try
to modify it to obtain privacy. Specifically, we start from the following variant of Reed-Muller codes:
In order to encode a database D ∈ {0, 1}N choose a field F of size polylog(N) and a subset H ⊂ F
of size logN . The database is viewed as a function D : Hm → {0, 1}, where m = logN/ log logN
so that |Hm| = N . With this setup in place D̃ is the truth table of the low degree extension of D.
That is, D̃ = {D̂(x) : x ∈ Fm}, where D̂ : Fm → F is the unique m-variate polynomial of degree
at most (|H| − 1) in each variable, such that D̂(i) = D(i) for all i ∈ Hm. The total degree of D̂ is
d = O(log2N). To query the database at i ∈ Hm (i.e., to decode D(i) from D̃), the client chooses a
curve ϕ : F→ Fm of degree at most d′ = polylog(N), such that ϕ(0) = i, and sets q =

(
ϕ(1), ..., ϕ(k)

)
where k > dd′. Upon receiving the server’s response (x1, . . . ,xk), client recovers D(i) = ϕ(0) by
interpolation (note (x1, . . . ,xk) all lie on a curve of degree at most k − 1).

The above scheme is clearly insecure as the server can easily interpolate i = ϕ(0) from the client’s
query

(
ϕ(1), . . . , ϕ(k)

)
. In this work we study three natural and orthogonal alterations to this basic

scheme which attempt to prevent the server from interpolating, while still allowing the client to do so:

1. The client uses random and hidden evaluation points (α1, . . . , αk) instead of (1, . . . , k).

2. The client introduces noise by adding some random points in Fm to the query, at random loca-
tions. (There are a number of different variants here, depending on the noise structure.)

3. At preprocessing, the client first encrypts all elements of the database using symmetric encryp-
tion. Next it encodes the database to obtain D̃. Finally, it secretly and pseudorandomly permutes
the elements of D̃ before handing it to the server. The client keeps the encryption key, as well as
the key of the pseudorandom permutation.

That is, let π ∈ Perm(Fm) be a pseudorandom permutation. (Since the domain is polynomial
in size, use e.g. [MRS09].) The precomputed database D̃ is now the truth table of the function
D̂ ◦ π−1 : Fm → F. To query address i, client draws ϕ and computes (x1, . . . ,xk) as before,
but sends the query (x′1, . . . ,x

′
k) where x′i = π(xi). The client uses the responses (a1, . . . , ak) to

interpolate the encrypted D(i), and then decrypts to obtain the actual value.
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The various combinations of these three ideas suggest eight possible DEPIR schemes. Note that a
scheme based on either of the first two ideas (or both) but not the third would be public preprocessing.
The third idea produces a designated client scheme. We briefly review how our main results are mapped
to these three ideas.

No Public-Client DEPIR via Linear Codes: In Section 3, we prove that any combination of the first
two ideas alone is insecure. More generally, we show that any scheme where the preprocessed
database D̃ is obtained just by encoding D via some explicit linear code cannot be secure. This
holds regardless of which query and response mechanism is used.

Bounded Security, Unbounded Insecurity via (3): In Section 4, we show that alteration (3) by itself
suffices to obtain our bounded-query result stated above. In fact, we show that security holds
even if, instead of starting from Reed-Muller codes, we start from any locally decodable code in
a rather general class of codes.

On the other hand, we demonstrate an explicit attack on the scheme, for the case of Reed-Muller
codes, if the client asks even slightly more queries than the bound allows.

Candidate Schemes via other combinations: We observe that the previous attack is thwarted by us-
ing either (1) and (3) together, or using (2) and (3) together. In fact, we were unable to break
either one of these two candidates, with any non-trivial level of noise in (2). We thus suggest
them as target for further cryptanalysis. In fact it is reasonable to also propose the scheme that
combines all three ideas.

We note however that, while it is tempting to assume that adding alterations (eg, adding noise or
moving from fixed evaluation points to hidden or random evaluation points) increases security,
or at least does not harm security, we cannot always back this intuition by actual reductions. For
instance we do not currently see a way to argue that, a scheme that uses all three alterations is
always no less secure than a scheme that uses only alterations (2) and (3).

Security reduction: We concentrate on the following “minimal” variant of a scheme that combines
ideas (2) and (3): We choose a random set T of l indices in [k + l]. We then run alteration (3)
with k + l evaluation points, obtain a query q1, ..., qk+l, and then for each j ∈ T we replace
qj with a random point in the domain. In Section 5, we reduce the security of this scheme to
the computational hardness of a search problem that is roughly sketched as follows. As already
mentioned, we call this the hidden permutation with noise (HPN) problem:

In the HPN problem, a random permutation π ∈ Perm(Fm) is chosen, where |F| = polylog(N)
and |Fm| = poly(N). The problem is to compute π given samples chosen as follows: First
a random set T of l indices out of [k + l] is chosen. Next, draw poly(N) samples from the
following distribution Hπ,T : Choose z ← F, a degree-d polynomial ϕ : F → Fm with ϕ(z) =
0. Now, for i ∈ T choose yi randomly from Fm. For i /∈ T , let yi = ϕ(i). The sample is
(π(z), π(y1), . . . , π(yk+l)). The parameters are set so that k ≈ d2; however l can be significantly
larger, so a sample may not uniquely determine ϕ even if π is known.

Note that a sample from Hπ,T directly corresponds to a query in the scheme. In other words,
security of the scheme corresponds directly to a decisional variant of HPN with adaptively chosen
free coefficients for ϕ. In contrast, the HPN problem as formulated above is a search problem
with non-adaptive input.
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One may of couse consider also another variant of this scheme, where the client chooses a new
set T for each query. While this variant indeed appears to be harder to cryptanalyze, we are
not able to argue that it is no less secure than the above, fixed-T variant. Furthermore, we were
unable to extend the decision-to-search reduction to this variant.

Finally, we note that only the first alteration above (namely, using random evaluation points) is
specific to Reed-Muller codes. The other two are generic and apply to any locally decodable code,
opening other potential routes to DEPIR schemes. In fact our bounded-query scheme in Section 4 is
stated (and proved secure) generically in terms of any locally decodable code whose decoding queries
are t-wise uniform for sufficiently large t.

Related Work. Constructing DEPIR schemes is also considered in an independent work by Boyle,
Ishai, Pass and Wooters [BIPW], where a scheme similar to the combination of ideas (1) and (3) is
proposed (among several other contributions).

There are several existing hardness assumptions about polynomials in the literature, which do not
appear to be related to ours. In particular, we point out the “noisy polynomial interpolation” prob-
lem, introduced by Naor and Pinkas [NP06] and (somewhat) cryptanalyzed by Bleichenbacher and
Nguyen [BN00]. Two main differences between this assumption and our HPN assumption are that
(i) we completely hide the algebraic structure of the underlying field by permuting the polynomial’s
domain, and (ii) we work with multivariate polynomials rather than univariate polynomials, which can
sometimes make reconstruction problems much more difficult [GKS10].

Coppersmith and Sudan [CS03] show how to remove noise from codes based on multi-variate
polynomials. However, their techniques do not appear to extend to our case of codes concatenated
with a hidden permutation.

2 Defining Doubly Efficient PIR
We start by defining DEPIR for the case of public client. A public-client doubly efficient PIR (PC-
DEPIR) scheme consists of a preprocessing stage where the server obtains an encoded version D̂ of the
database D and the client obtains a short key K, followed by query stage where the client repeatedly
obtains a database address i, generates a query q to the server, and computes the database value Di

from the server’s response. In addition to keeping K, the client keeps local state between a query and
its answer. No other state is kept by the client. The server keeps no state other than D̂.

The correctness and efficiency requirements are obvious. For privacy, we consider an adversary
that chooses the database, obtains the encoded version as well as the client’s key, and then repeatedly
and adaptively chooses an address to be queried and obtains the corresponding client query. We require
that for any such adversary there exists a simulator, such that the adversary cannot distinguish between
(a) an interaction with the client as described above, and (b) an interaction with the simulator, where
the simulator does not see the addresses generated by the adversary (formally, the simulator sees a ⊥
symbol instead of each address).

In the actual definition we split the preprocessing stage to two parts: A key generation part that
generates the client’s key, and a preprocessing part that uses the client’s key to generate an encoded
version of the database. This gives the added benefit that the client key is generated independently
from the actual database.
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Definition 1 (Public-Client DEPIR). A public-client doubly efficient private information retrieval
scheme is a tuple of polynomial time algorithms Π =

(
Keygen,Process,Query,Resp,Dec

)
, which

satisfy the correctness, efficiency, and security properties below.

Keygen
(
1λ, N

)
: takes a security parameter λ as well as the database size N , and outputs a key K of

size poly(λ).

Process
(
k,DB

)
: takes key K and a database DB ∈ ΣN , for some alphabet Σ and outputs a processed

database D̃B of size poly(λ,N).

Query
(
K, i

)
: takes key K and an index i ∈ [N ], and outputs a query q and state st.

RespD̃B(q): Has random-access to a processed database D̃B, and runs in time o(N).It takes query q and
and outputs an answer a.

Dec
(
st, a

)
: takes state st and answer a, and outputs an symbol in Σ.

Correctness: The correctness error of Π is negligible, where Π has correctness error ε if for all
K ← Keygen(1λ, N), DB ∈ {0, 1}N , D̃B← Process(k,DB) and i ∈ [N ] we have:

Pr
[
(q, st)← Query(k, i), a← RespD̃B(q) : Dec(st, a) 6= DBi

]
≤ ε.

If ε = 0, the scheme is perfectly correct.

Privacy: For any polytime A there exists a polytime simulator S such that REALA,Π ≈ IDEALA,S ,
where REALA,Π is defined as the output of A in the following interaction with a challenger C:

1. C samples K ← Keygen
(
1λ, N) and hands K to A;

2. A outputs a database DB ∈ ΣN , and obtains D̃B← Process
(
K,DB

)
;

3. Repeat until A generates final output:

(a) A generates an index i ∈ [N ], and obtains q ← Query(K, i).

IDEALA,S is defined as the output of A following an interaction with S, where the interaction is
moderated by replacing all the indices i generated by A in Step (3) above by a default value ⊥.

2.1 Variants
We consider the following definitional vaiants:

Statistical DEPIR: If privacy holds even for computationally unbounded adversaries then the scheme
is statistical DEPIR.

Public Preprocessing DEPIR: If in the interaction with the client the adversary obtains also the ran-
dom choices made by the preprocessing algorithm then we say that the scheme is public prepro-
cessing DEPIR.

Designated Client DEPIR: If, in the REAL interaction, the adversary obtains neither the client’s key
K nor the randomness used to generate K and D̃B, then we say that the scheme is Designated-
Client DEPIR.
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Strong Designated Client DEPIR: Consider the following variant of the ideal interaction: Instead of
having A generate a database DB, and then having S generate the simulated encoded database
D̃B, we let D̃B be generated as in the interaction with Π, and then have D̃B be handed to A and
S. In particular S does not see the corresponding client key K. If privacy holds even with this
ideal interaction then we say that the scheme is Strong Designated Client DEPIR. (This notion
is useful when composing protocols where different instances share the same instance of Π, or
even just the same client key.)

Bounded-query Designated Client DEPIR: If the key generation algorithm Keygen obtains an addi-
tional input B, and the privacy requirement is modified so thatA can generate at most B queries,
then we say that the scheme is B-bounded DEPIR. In this case we define the amortized stor-
age overhead of the scheme to be |D̃B|/B.

In all these variants, while the definition only requires sublinear online server work, we actually
strive for |D̃B| = poly(N) and for Resp to run in polylog(N) time.

2.2 Alternative formulations
In the cases of public-client and (non-strong) designated client DEPIR, the above simulation-based
privacy definition is equivalent to an indistinguishability-based definition where there is no ideal in-
teraction, and in the index generation stage of the real interaction A generates two indices i0, i1 and
obtains a query qb ← Query(K, ib), b ∈ {0, 1}, for one of the two indices. A should be unable to
distinguish between the case where all queries are evaluated from the first index in each pair, and the
case where all queries are evaluated from the second index in each pair. However in the case of strong
designated-client DEPIR this equivalence no longer holds.

Finally we note that the all the above variants of DEPIR can be formulated as protocols that realize,
within the UC framework, the following ideal functionality that captures the security requirements of
PIR. We omit further details.

Initialization: Upon receiving (sid,DB ∈ {0, 1}N) fromR, Fpir records DB, enters the query phase,
and sends (Init, sid) to A.

Query Phase: Upon receiving i ∈ [N ] fromR, Fpir sends(query, sid) to A; upon receiving
acknowledgement from A, Fpir returns DBi toR, remaining in the query phase.

Figure 1: The Ideal Private Information Retrieval Functionality, Fpir

3 Failure of A Natural Approach for Public-Client DEPIR
We present an approach for constructing public-client DEPIR, and demosntrate its failure. Whether
public-client doubly efficient PIR schemes exist is left as a fascinating open question.

As sketched in the introduction, a natural approach to constructing public-client DEPIR is to view
the database DB ∈ {0, 1}N as a function DB : Hm → {0, 1}, where H ⊂ F with |H| = logN , F is a
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finite field of order polylog(N), and m = logN
log logN

. The encoding of DB is done by extending it to an

m-variate polynomial D̂B : Fm → F of degree |H| − 1, where D̂B(x) = DB(x) for all x ∈ Hm.
One may hope to construct query distributions {Qi}i∈Hm such that

1. (Interpolability) When sampling Q ← Qi, it holds that D̂B|Q determines DB(i). That is, any
m-variate polynomial g of degree |H| − 1 which agrees with D̂B on Q also agrees with D̂B (and
therefore DB) on i.

2. (Privacy) Qi computationally hides i. That is, for any i 6= i′, Qi and Qi′ are computationally
indistinguishable.

Such a construction would immediately give a (public-client) PIR scheme. The server just stores the
truth table of D̂B, and the client makes queries to i by sampling Q ← Qi, asking the server for D̂BQ,
and interpolating the returned values to obtain DB(i).

For example, one may suggest to construct Qi by sampling a uniformly random curve γ : F→ Fm
of degree t = log2 k such that γ(0) = i. That is, Qi is defined as {γ(xi)}di=0, where {xi}di=0 are
uniformly random distinct points in F \ {0}, and d = t · m · (|H| − 1) is the degree of D̂B ◦ γ; A
natural justification here is that interpolating {γ(xi)} to find γ(0) seems to require knowledge of the
evaluation points {xi}. One can also include in the query some number of random points in Fm to make
interpolation look even harder.

This template can be further generalized by replacing D̂B with any locally decodable code (LDC)
encoding of DB, and appropriately adapting the notions of interpolability.

However, we show that even this general template fails, as long as the LDC in use is linear — which
rules out the vast majority of the LDCs studied in the literature. We are inspired by a recent work of
Kalai and Raz [KR17], which shows the insecurity of the Reed-Muller instantiation of this template.

Definition 2. Let C : ΣN → ΣM be a code, and let Q be a subset of [M ]. We say that Q determines
i ∈ [N ] if for every m,m′ ∈ ΣN for which C(m)|Q = C(m)|Q, it holds that mi = m′i.

Proposition 1. Let C : FN → FM be an explicit linear code. Then there is a poly(M)-time algorithm
which takes as input a set of queries Q ⊆ [M ], and outputs all indices i ∈ [N ] which are determined
by Q. Furthermore, there are at most |Q| such indices.

Proof. Let G ∈ FM×N be the generator matrix for C. Then Q determines i iff the ith standard basis
vector ei ∈ FN is spanned by the rows of G which are indexed by Q. This criterion is efficiently
checkable by Gaussian elimination.

To see the “furthermore” part of the proposition, let A denote the set of i ∈ [N ] which are deter-
mined by Q. If |A| were larger than |Q|, then (Gm)Q would be a compressed encoding of mA, which
is impossible since mA was arbitrary.

4 Bounded-Query Designated-Client DEPIR
We consider the case of bounded-query, designated-client DEPIR. We first present a trivial scheme
with minimal online work but with large space overhead for the server which also requires a stateful
client. Next we present our main bounded-query scheme, which is based on any family of locally
decodable codes. When instantiated with the Reed-Muller family of codes (with a generalized decoding
procedure), we obtain the following parameters, for a database of size N and query bound B:
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• The prover and verifier both do polylog(N) online work

• The processed database size and secret key size are both |D̃B| = Õ(B + poly(N)).

We emphasize this holds with a stateless client. Our construction improves significantly on the trivial
scheme, which only supports a single query and cannot be simply scaled up by repetition without
having the client maintain updatable long-term state.

Database encryption. In both schemes the first step in the preprocessing of the database is to encrypt
each entry, using some semantically secure symmetric encryption, with a key that’s part of the clients
secret key. Notice that this step makes the encrypted database computationally independent from the
plaintext database. For simplifity of presentation, we omit the encryption step from the description of
both schemes, and instead assume that the adversary does not see the plaintext database. Instead, it sees
only the preprocessed database and the queries. (It is also possible to obtain statistical independence
between the plaintext databases and the preprocessed one by using perfectly secure encryption such as
one time pad, at the cost of a longer client secret key.)

Organization. The trivial, stateful scheme is presented in Section 4.1). The main scheme is pre-
sented and analyzed in Section 4.2. Optimality of the analysis is demonstrated in Sections 4.3 and 4.4.
Section 4.3 presents an efficient attack that kicks in as soon as the number of queries exceeds |Fm|.
The attack is specific for the Reed-Muller instantiation of the scheme. Section 4.4 provides a more
general bound on the key size and communication complexity of any statistically-secure designated
client DEPIR.

4.1 A trivial scheme
We note that it is trivial to construct a one-round designated-client PIR scheme with perfect correctness
and perfect 1-query security, with server storage Õ(N) and server work O(1):

• Keygen(1λ, N) samples a uniformly random permutation π : [N ]→ [N ], and outputs K = π.

• Process(K,DB) outputs D̃B, where

D̃B : [N ]→ {0, 1}

D̃B(i) = DB(π(i)).

• Query(K, i) outputs (q, st), where q = π(i) and st is the empty string.

• Resp(D̃B, q) outputs D̃B(q).

• Dec(st, a) outputs a.

Extensions and Shortcomings. If the client is allowed to keep long-term state (i.e. remember how
many queries it has made), then one can obtain a B-query scheme by concatenating B single-query
schemes, resulting in server (and client) storage which is Θ̃(BN). With a stateless client however, it
is not even clear how to support 2 queries. Furthermore, the storage cost of Θ̃(BN) leaves much to be
desired.
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4.2 A scheme based on LDCs and random permutations
We show a scheme with a stateless client, parameterized by a query bound B, which achieves B-
bounded security and server storage of B · poly(λ) (for sufficiently large B). By using pseudo-
randomness, the client storage in our schemes can be reduced to poly(λ), where λ is a security pa-
rameter for computational hardness. We present our scheme generally based on a weak type of locally
decodable code, which we now define.1 However, we encourage readers to keep in mind the Reed-
Muller based scheme mentioned in the intro. Several remarks throughout this section are designed to
help in this endeavor.

Definition 3 (Locally Decodable Codes). A locally decodable code is a tuple (Enc,Query,Dec) where

• Enc : ΣN → ΣM is a deterministic “encoding” procedure which maps a message m to a code-
word c. N is called the message length, and M is called the block length.

• Query is a p.p.t. algorithm which on input i ∈ [N ] outputs k indices j1, . . . , jk ∈ [M ] along with
some decoding state st.

• Dec is a p.p.t. algorithm which on input st and cj1 , . . . , cjk outputs mi.

The locally decodable code is said to be t-smooth if when sampling (st, (j1, . . . , jk)) ← Query(i),
(js1 , . . . , jst) is uniformly distributed on [M ]t for every distinct s1, . . . , st.

The secret key is q i.i.d. uniform permutations π1, . . . , πq : [M ]→ [M ], so a lower key size can be
achieved at the cost of computational security by using (small-domain) pseudo-random permutations
[MRS09]. A processed database D̃B is the tuple (Enc(DB)◦π1, . . . ,Enc(DB)◦πq), where composition
of Enc(DB) ∈ ΣM with πi denotes rearrangement of the elements of Enc(DB), as if Enc(DB) were a
function mapping [M ] to Σ and ◦ denoted function composition.

More formally, we define a scheme template as follows.

Keygen
(
1λ, N,B

)
: Pick a t-smooth locally decodable code LDC with message length N and a k-

query decoding procedure, with parameters chosen so that 2Bkt−1
(
B
M

)t/2−1 ≤ 2−λ. See further dis-
cussion below on the choice of parameters.

Sample i.i.d. uniform permutations π1, . . . , πk : [M ] → [M ]. Output sk = (π1, . . . , πk) as the
secret key. (If LDC has additional parameters then they should be included in sk too.)

Process
(
sk,DB

)
: If necessary, encode each entry of DB as an element of Σ, so DB lies in ΣN . Output

D̃B = (D̃B
(1)
, . . . , D̃B

(k)
), where D̃B

(i)
is defined by permuting the coordinates of LDC.Enc(DB) by

πi. That is, D̃B
(i)

πi(j)
= LDC.Enc(DB)j .

Query
(
sk, i

)
: Sample ((j1, . . . , jk), st)← LDC.Query(i). Output ((π1(j1), . . . , πk(jk)), st).

RespD̃B((j̃1, . . . , j̃k)): Output (D̃B
(1)

j̃1
, . . . , D̃B

(k)

j̃k
).

1Our definition differs from the standard definition of locally decodable codes in that it does not require any robustness
against codeword errors, and we assume that the decoding queries are non-adaptive.
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Dec
(
st, (y1, . . . ,yk)

)
: Output LDC.Dec(st, (y1, . . . ,yk))

The perfect correctness of this scheme follows from the correctness of the underlying LDC.

The Reed-Muller Based Scheme The following polynomial-based code is a natural choice for in-
stantiating our scheme. It is t-smooth because of the t-wise independence of degree t polynomials.
Choose a finite field F, integer m and a subset H ⊂ F such that |H|m = N and |F|m = M . For
correctness, we require that |F| ≥ m · t · (|H| − 1) + 1.

Enc: Identify DB ∈ {0, 1}N with a map Hm → {0, 1} and let D̃B : Fm → F be the low degree
extension. Output D̃B ∈ FFm .

Query: Identify i ∈ [N ] with z ∈ Hm and choose a random degree-t curve ϕ : F → Fm such that
ϕ(0) = z. For k at least m · t · (|H| − 1), output the query (x1, . . . ,xk) ∈ Fmk where xi = ϕ(i).

Dec: Given responses (a1, . . . , ak) ∈ Fk, let ϕ̃ : F→ F be the unique univariate polynomial of degree
at most k − 1 such that ϕ̃(i) = ai. Output ϕ̃(0).

Let us see how the LDC constraints are satisfiable by a concrete code, and with what parameters.

Example Parameters: Low Work For (relative) simplicity, assume that N4 ≤ B ≤ 2λ

λ3
. Then one

can set |H| = λ, m = logN
log λ

(≤ λ
4
), and |F| = (2λ6B)1/m. With this choice of parameters M = 2λ6B,

and there is a t-smooth, k-query decoding procedure (via curves) with t = 2(λ + log(2Bk) + 1) and
k = λ3 (as required for correctness of decoding, |F| ≥ B1/m ≥ λ4 ≥ k, and k = λ3 ≥ (λ − 1)4(λ +
1)λ

4
≥ (|H| − 1) ·m · t).

2Bkt−1

(
B

M

)t/2−1

= 2Bk

(
Bk2

M

)t/2−1

= 2Bk2−t/2+1 = 2−λ

Thus we obtain an amortized storage overhead (defined in Section 2), server overhead, and client over-
heads which are all poly(λ) (respectively λ6, λ3, and λ3).

Example Parameters: Low Server Storage. Let ε > 0 be any constant. Let |H| = max(λ,N ε) and
m = logN

log |H| (≤ 1
ε
). Suppose for simplicity that λ ≤ N ε ≤ 2λ and B ≤ 2−λ. Let t and k be such that

t ≥ 2(λ+log(2Bk)+1) and k ≥ m · t · (|H|−1), which can be achieved by setting k = O(λ ·N ε) and
t = O(λ). Let |F| = max

(
k, (2k2B)1/m

)
. With this choice of parameters M = max(N · λ1/ε, 2k2B),

which in particular is N · poly(λ) whenever B = o(N1−2ε). This yields

2Bkt−1

(
B

M

)t/2−1

= 2Bk

(
Bk2

M

)t/2−1

≤ 2−λ

4.2.1 Proving Security

Theorem 1. For any database size, any bound on the number of queries, and any value λ for the
security parameter, the above designated client SSPIR scheme is a bounded-query DEPIR scheme with
statistical 2−λ-security.
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Proof. We show that every query (for at least the first B queries) is statistically close to a distribution
that is simulatable given the adversary’s view thus far. First, by the principle of deferred decision,
we can think of the random permutations π1, . . . , πk as being lazily defined, input-by-input as needed.
Thus the adversary’s view of the `th query (π1(j1), . . . , πk(jk)) only reveals, for every i ∈ [k], the
subset of prior queries which also had πi(ji) as their ith coordinate. Let S1, . . . , Sk ⊆ [` − 1] denote
these subsets.

Next, we observe that S1, . . . , Sk inherit t-wise independence from the underlying t-smooth LDC.
Furthermore, we have for each i that Si = ∅ with probability at least 1 − B

M
. Our main lemma, which

at this point directly implies security of our scheme, says that all such distributions are within a total
variational distance ball of diameter ε = 2kt−1

(
B
M

)t/2−1. The advantage of an unbounded adversary is
then Bε.

Lemma 1. Let X̄ = (X1, . . . , Xk) and Ȳ = (Y1, . . . , Yk) be t-wise independent random variables with
the same marginals, such that for each i ∈ [k], there is a value ? such that Pr[Xi = ?] ≥ 1 − ε. Then
dTV(X̄, Ȳ ) ≤ (kε)t/2 + kt−1εt/2−1 ≤ 2kt−1εt/2−1

Proof. We first show that X̄ and Ȳ each have only t/2 non-? values, except with probability at most
(kε)t/2.

Claim 1. Pr
[
|{i : Xi 6= ?}| ≥ t/2

]
≤
(
kε)t/2, and the same holds with Yi in place of Xi.

Proof. For any I ⊂ [k] with |I| < t, the probability that Xi 6= ? for all i ∈ I is at most ε|I| by t-wise
independence. The number of i for which Xi 6= ? is at least t/2 iff for some I ⊂ [k] with |I| ≥ t/2, it
holds that for every i ∈ I , Xi 6= ?. So by a union bound,

Pr
[
|{i : Xi 6= ?}| ≥ t/2

]
≤
(
k

t/2

)
· εt/2 ≤ (kε)t/2.

With this claim in hand, define G as the set of z1, . . . , zk for which |{i : zi 6= ?}| < t/2. The above
claim then says that Pr[X̄ /∈ G] and Pr[Ȳ /∈ G] are each at most (kε)t/2. We then have

dTV(X̄, Ȳ ) =
1

2

∑
z̄=z1,...,zk

∣∣∣Pr[X̄ = z̄]− Pr[Ȳ = z̄]
∣∣∣

≤ 1

2

Pr[X̄ /∈ G] + Pr[Ȳ /∈ G] +
∑

z̄=(z1,...,zk)∈G

∣∣∣Pr[X̄ = z̄]− Pr[Ȳ = z̄]
∣∣∣


≤ (kε)t/2 +
1

2

∑
z̄∈G

∣∣∣Pr[X̄ = z̄]− Pr[Ȳ = z̄]
∣∣∣. (1)

We now bound the second term of Eq. (1). We begin by rewriting, for any z̄ ∈ G, the event X̄ = z̄
as the conjunction of two not necessarily independent events. Let I denote the set of coordinates where
z̄ is not ?, i.e. I def

= {i : zi 6= ?}. Then X̄ = z̄ iff both

1. X̄ and z̄ agree on their restrictions to I , i.e. X̄I = z̄I .

2. Xi = ? for every i /∈ I . As short-hand, we write this event as X̄∼I = ?.
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We can therefore profitably rewrite Pr[X̄ = z̄] = Pr[X̄I = z̄I ] ·Pr[X̄∼I = ?|X̄I = z̄I ] and similarly
Pr[Ȳ = z̄] = Pr[ȲI = z̄I ] ·Pr[Ȳ∼I = ?|ȲI = z̄I ]. By t-wise independence, the probability that X̄I = z̄I
is exactly the same as the probability that Ȳi = z̄I (since |I| < t/2). Hence the difference of these
probabilities has a common factor X̄I = z̄I = ȲI = z̄I , which can be factored out to yield∣∣∣Pr[X̄ = z̄]− Pr[Ȳ = z̄]

∣∣∣ = Pr[X̄I = z̄I ] ·
∣∣∣Pr[X̄∼I = ?|X̄I = z̄I ]− Pr[Ȳ∼I = ?|ȲI = z̄I ]

∣∣∣ (2)

Claim 2. For all I ⊂ [k] such that |I| < t/2, and all z̄I , it holds that∣∣Pr
[
X∼I = ?|XI = z̄I

]
− Pr

[
Y∼I = ?|YI = z̄I

]∣∣ ≤ 2(k − |I|)t−1εt/2−1 ≤ 2kt−1εt/2−1.

Proof. All we really need about the conditional distributions X∼I |XI = z̄I and Y∼I |YI = z̄I are that
they are t/2-wise independent. This t/2-wise independence follows from the fact that X̄ and Ȳ are
t-wise independent, and the events XI = z̄I and YI = z̄I depend on fewer than t/2 coordinates of X̄
and Ȳ , respectively. We also only need, for each i /∈ I , the single bit of whether or not Xi = ?.

So it suffices for us to prove the following slightly more abstract lemma. This lemma can be viewed
as a special case of a natural generalization of Braverman’s celebrated result that poly-logarithmic
independence fools AC0 [Bra09]. Instead of AC0 our predicate is a single conjunction (with fan-in
n = k−|I|), but the lemma does not follow directly from [Bra09] because any individual X ′i might not
be uniformly distributed on {0, 1}.

Lemma 2. If (X ′1, . . . , X
′
n) are t′-wise independent {0, 1}-valued random variables such that E[X ′i] =

Pr[X ′i = 1] ≥ 1− ε for all i, then∣∣∣∣∣E
[

n∏
i=1

X ′i

]
−

n∏
i=1

E[X ′i]

∣∣∣∣∣ ≤ 2n(n2ε)t
′−1

Proof. For any subset S ⊆ [n], write X ′S to denote the product
∏

i∈S X
′
i. Let εi denote 1− E[X ′i] With

this notation, we want to bound
∣∣∣E[X ′[n]]−

∏n
i=1(1− εi)

∣∣∣. By the principle of inclusion-exclusion, we
have

E[X ′[n]] = 1 +
∑
∅6=S⊆[n]

(−1)|S|E[1−X ′S]

= 1 +
∑

0<|S|≤t′
(−1)|S|E[1−X ′S] +

∑
t′<|S|≤n

(−1)|S|E[1−X ′S]

= 1 +
∑

0<|S|≤t′

∏
i∈S

(−εi) +
∑

t′<|S|≤n

(−1)|S|E[1−X ′S], (3)

where the last equality is by t′-wise independence. Comparing Eq. (3) to the binomial expansion

n∏
i=1

(1− εi) = 1 +
∑

0<|S|≤n

∏
i∈S

(−εi), (4)

we just need to bound the last term of Eq. (3) (If C denotes a bound which holds for any X ′1, . . . , X
′
n,

then it must also apply to
∑

0<|S|≤n
∏

i∈S(−εi). As a result we have |E[X ′[n]] −
∏n

i=1(1 − εi)| ≤ 2C).
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We bound ∣∣∣∣∣∣
∑

t′<|S|≤n

(−1)|S|E[1−X ′S]

∣∣∣∣∣∣ =

∣∣∣∣∣∣E
 ∑
t′<|S|≤n

(−1)|S|(1−X ′S)

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣
∑

t′<|S|≤n

(−1)|S|(1−X ′S)

∣∣∣∣∣∣


= E


∣∣∣∣∣∣∣∣
∑

S⊆{i:X′
i=0}

|S|>t

(−1)|S|

∣∣∣∣∣∣∣∣
 (5)

We bound Eq. (5) via the basic fact that for any B-bounded random variable Z, we have E[Z] ≤
B · Pr[Z > 0]. We apply this fact with

Z =

∣∣∣∣∣∣∣∣
∑

S⊆{i:X′
i=0}

|S|>t

(−1)|S|

∣∣∣∣∣∣∣∣ .
Z is 0 if

∣∣{i : X ′i = 0}
∣∣ ≤ t′, which happens with probability at least 1 − (nε)t

′−1 by Claim 1, so
Pr[Z > 0] ≤ (nε)t

′−1. When this is not the case, we bound Z via the elementary combinatorial identity∑
S⊆[n](−1)|S| =

∑n
i=0(−1)i

(
n
i

)
= 0 (this follows from the binomial expansion of (1−1)n), obtaining

Z =

∣∣∣∣∣∣∣∣
∑

S⊆{i:X′
i=0}

|S|≤t′

(−1)|S|

∣∣∣∣∣∣∣∣ ≤
(
n

t′

)
≤ nt

′
.

This implies E[Z] ≤ (nε)t
′−1nt

′ ≤ n(n2ε)t
′−1. Substituting into Eq. (5) concludes the proof of

Lemma 2.

Claim 2 follows by applying Lemma 2 with n = k − |I| and t′ = t/2.

Substituting Eq. (2) into Eq. (1) and applying the following claim concludes the proof of Lemma 1.

Theorem 1 follows from the discussion preceding the statement of Lemma 1, and from the fact that we
chose an LDC for which 2Bkt−1

(
B
M

)t/2−1
= 2−λ

4.3 A Linear Attack if Too Many Queries are Asked
In this section we describe a technique for analyzing the query data which arises when the number of
queries exceeds B. Our technique gives an attack which, in some situations, breaks the (unbounded-
query) security of the (bounded-query secure) scheme from Section 4.2. Our attack utilizes extra prop-
erties of the underlying LDC which are not without loss of generality, but are nevertheless natural and
satisfied by the Reed-Muller based LDC, as well as other choices based on polynomials. Roughly
speaking, our attack exploits extra linear structure in the LDC.Query and LDC.Dec procedures. Read-
ers familiar with polynomial-based codes will recognize the properties we use as abstractions of prop-
erties commonly used in those settings.
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4.3.1 Intuition and Overview

Extra Properties of LDC. Recall LDC = (LDC.Enc,LDC.Query,LDC.Dec). The encode and
query procedures are randomized maps

LDC.Enc : {0, 1}N → Σ[M ]; and LDC.Query : [N ]→ [M ]k;

we assume LDC.Dec is a public operation and so LDC.Query outputs no decoding state st. We assume
that [M ] is a vector space over some finite field F, and that [N ] ⊂ [M ] (not necessarily a subspace).
Note in our Reed-Muller example, we had [N ] = Hm ⊂ Fm = [M ]. Moreover, we assume there exists
some subspace V ⊂ [M ]k such that for each i ∈ [N ], LDC.Query(i) outputs a random element from an
affine coset of V, denoted Vi ⊂ [M ]k. In the Reed-Muller case, V is the set of (x1, . . . ,xk) for which
there exists a curve ϕ : F → Fm of degree at most t satisfying ϕ(0) = 0 and such that xs = ϕ(s) for
s = 1, . . . , k. The affine shift Vi for i ∈ Hm is the set of ~x which lie on a low degree curve satisfying
ϕ(0) = i instead of ϕ(0) = 0. We furthermore assume that for any distinct s1, . . . , st+1 ∈ [k]∪{index},
there exists a linear map ψ~s : [M ]t+1 → [M ] such that ψ~s(Vi|~s) = i for all i ∈ [N ], where Vi

∣∣
~s

denotes
the projection of Vi onto the coordinates ~s (if s = index then Vi|s = i). For Reed-Muller, these linear
maps are interpolation. Note this last property implies that LDC.Query : [N ] → [M ]k is an error-
correcting code with good distance since queries to distinct i, i′ ∈ [N ] can agree in at most t places.
This last property also means that dim(V) ≤ t · dim([M ]). Our scheme requires LDC to be t−smooth
so dim(V) ≥ t · dim([M ]), thus dim(V) = t · dim([M ]). Finally, we require that LDC is locally
correctable rather than just decodeable. This means that LDC.Query supports queries to any codeword
symbol, rather than only message symbols i.e., LDC.Query supports any i ∈ [M ] rather than just
i ∈ [N ]. This means that the |M | different affine planes {Vi}i∈[M ], together form a subspace V̂ ⊂ [M ]k

of dimension (t+ 1) · dim([M ]). Note that the following distributions are identical:

1. draw i← [M ], (j1, . . . , jk)← Vi, output (i, j1, . . . , jk);

2. draw (j1, . . . , jk)← V̂ and output (i, j1, . . . , jk) where (j1, . . . , jk) ∈ Vi.

This will be useful moving forward.

Our Attack. Concretely, we describe an attack which, givenB = M1+o(1) queries {(jα,1, . . . , jα,k)}Bα=1

from either: 1) all from Vi for a fixed i ∈ [M ]; or 2) from Viα for random iα ← [M ], distinguishes
between (1) and (2). We emphasize that this is an attack on the LDC but not exactly an attack on the
DEPIR scheme, because the distinguisher in the DEPIR security game only gets to see queries from
Vi for i ∈ [N ] and not i ∈ [M ] − [N ]. This assumption is mainly to simplify the analysis; we show
in Section 5.4 how to analyze the attack (in a different context) without making this assumption (but
using more queries).

Notation. Since we are assuming that the query spaces, Vi, are affine planes, membership in the Vi is
decided by the linear equation: ~v ∈ Vi iff ψ~s(~v) = i for any ~s ⊂ [k]. From now on, however, we will
not be explicit about the ~s or the linear maps ψ~s, we will just talk about the linear equation “~v ∈ Vi”.
(For the specific case of Reed-Muller codes, the coefficients of the linear equation are the Lagrange
coefficients that correspond to the points where ϕ is evaluated.)
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Intuition. The high-level idea of the attack is the following. First, initialize variables {vs,j′s}(s,js)∈[k]×[M ]

which take values in [M ]. The intention is that vs,j′s = js if πs(js) = j′s. For each query (j′α,1, . . . , j
′
α,k),

add the constraint ~vj′α ∈ Vi to a list L of linear constraints on the {vs,js} where ~vj′α is shorthand for
(v1,j′α,1

, . . .vk,j′α,k). After enough constraints have been added to L, we will be in one of two cases
depending on whether the queries (j′α,1, . . . , j

′
α,k) are all to the same index or are to random indices. In

the first case, there will exist non-constant assignments to the vs,j′s which satisfy all constraints in L;
in the second case all satisfying assignments are constant. This distinction allows the two cases to be
efficiently distinguished.

The QueryDist Algorithm. Set B = kλM1+o(1).

Input: {(j′α,1, . . . , j′α,k)}α

1. Initialize variables {vs,j′s}(s,j′s)∈[k]×[M ] taking values in [M ], and a list L of linear constraints on
the vs,j′s to ∅. Also fix i ∈ [N ] arbitrarily.

2. For α ∈ {1, . . . , B}, add ~vj′α ∈ Vi to L, where ~vj′α is shorthand for (v1,j′α,1
, . . . ,vk,j′α,k).

3. Checks whether there is a non-constant assignment to the {vs,j′s} which satisfies the constraints
in L. If so, output fixed, if not output random. An assignment is constant if for all (s, j′s, j

′′
s ),

vs,j′s = vs,j′′s .

Note that QueryDist runs in time poly(λ,B,M). Step 3 involves checking whether the space of satis-
fying assignments is contained in the space of constant assignments; this is possible to do efficiently
using Gaussian elimination. All other steps are clearly polytime.

Lemma 3. Assume k > 2t, |F|−t = 2−Ω(λ), and all of the assumptions mentioned in the previous
paragraph. If QueryDist is given inputs {(jα,1, . . . , jα,k)} which are all queries for the same index, it
outputs fixed with probability 1. If it is given {(jα,1, . . . , jα,k)} which are queries to random indices
then it outputs random with probability 1− 2−Ω(λ) over the queries.

Proof. If the {(jα,1, . . . , jα,k)} are all queries to i, then the assignment vs,j′s = π−1
s (j′s) is non-constant

and satisfies every constraint in L since
(
π−1

1 (j′α,1), . . . , π−1
k (j′α,k)

)
∈ Vi for all α. If they are all queries

to some other i′ 6= i, then L can be satisfied by setting vs,j′s = (π′s)
−1(j′s) where π′s = πs ◦ τs and

the τs are any permutations such that (τ1, . . . , τk)(Vi) = Vi′ . Therefore, QueryDist outputs fixed with
probability 1. We complete the proof by showing that if the {(j′α,1, . . . , j′α,k)} are queries for random
indices then with overwhelming probability, any assignment to the vs,j′s which satisfies all constraints
in L must be constant.

Fix any assignment to the vs,j′s satisfying L and for s = 1, . . . , k let σs : [M ] → [M ] be the
map which sends j′s to the vector assigned to vs,j′s . We will show that each σs is constant. Since the
assignment satisfies L, for every (j′α,1, . . . , j

′
α,k), for all α,

(
σ1(j′α,1), . . . , σk(j

′
α,k)
)
∈ Vi. Recall that

drawing (j′α,1, . . . , j
′
α,k) consists of drawing iα ← [N ] = [M ] and (jα,1, . . . , jα,k) ← Viα . Therefore,

every (jα,1, . . . , jα,k) ← Viα drawn to produce the input to QueryDist satisfies ~σ ◦ ~π(~jα) ∈ Vi, where
~σ ◦ ~π(~j) is shorthand for

(
σ1 ◦ π1(jα,1), . . . , σk ◦ πk(jα,k)

)
.

Say an assignment to {vs,j′s} is BAD if Pr(j1,...,jk)←V̂

[
~σ ◦ ~π(~j) ∈ Vi

]
<
(
1− 1/|F|

)
. Note,

Pr{~jα}
[
∃ BAD satisfying assignment

]
< MkM ·

(
1− 1

|F|

)B
= 2−Ω(λ),
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when B = kλM1+o(1), so we can assume that the assignment underlying σ is not BAD.
Now, fix (j1, . . . , jt) ∈ [M ]t such that Pr~j←V̂

[
~σ(~j) ∈ Vi

∣∣(j1, . . . , jt)
]
≥
(
1− 1/|F|

)
. Note drawing

~j ← V̂ conditioned on fixed (j1, . . . , jt) requires drawing just one more coordinate, say jt+1, randomly
from [M ] (using the extra property as well as interpolation). Now, having fixed (j1, . . . , jt), for s ∈ [k],
let js = σs ◦ πs(js). Let j∗t+1 ∈ [M ] be the unique value such that (j1, . . . , jt, j

∗
t+1) is consistent with

Vi. It follows that

Prjt+1←[M ]

[
jt+1 = j∗t+1

]
≥ 1− 1

|F|

and so σt+1 ◦ πt+1 (hence σt+1) takes a constant value on a
(
1 − 1/|F|

)
−fraction of its inputs. The

same is true for all of the σs. For each s, let j′s ∈ [M ] be the most likely value of σs. We show that
either σs(js) = j′s with probability 1 for all s, in which case the assignment is constant; or else with
high probability, ~σ ◦ ~π(~jα) /∈ Vi for some α, so the assignment does not satisfy L.

By the t−smoothness of LDC, Claim 1 implies

Pr~j←V̂

[
#{s ∈ [k] : js 6= j′s} > t

]
≤
(
k/|F|

)t
= 2−Ω(λ).

It follows that with high probability, for any α, α′,

∆
(
~σ ◦ ~π(~jα), ~σ ◦ ~π(~jα′)

)
≤ ∆

(
~σ ◦ ~π(~jα), j)

)
+ ∆

(
j, ~σ ◦ ~π(~jα′)

)
≤ 2t,

where ∆ is Hamming distance. Therefore, ~σ ◦ ~π(~jα) and ~σ ◦ ~π(jα′) share at least k − 2t > t of their
coordinates. The interpolation assumption implies ~σ ◦ ~π(~jα) = ~σ ◦ ~π(~jα′) for all α, α′. Therefore, σ is
constant and the result follows.

4.4 Limits on statistical DEPIR
We show that in any B-bounded information-theoretically secure (designated client) PIR, either:

• The server’s responses are almost as long as the database, or

• The length of the secret key is almost B.

The bound holds even for schemes with only imperfect correctness and security. This in particular
implies that the bound holds even for schemes, like the one above, which provides information-theoretic
security except for the use of pseudorandom permutations for permuting the database.

4.4.1 Answer Size in Public Client PIR

First, we show that a public-client PIR cannot achieve both information theoretic security and non-
trivial succinctness. The intuition is that (by statistical security) a single query is indistinguishable
from a query to any other index, so the server’s answer contains almost all the information about the
database. Let |a| denote the size of a server’s response – i.e. the length of an output of Resp.

Proposition 2. In any information theoretically δ-secure public-client PIR with correctness error ε,

|a| ≥ (1−H(ε+ δ))N −O(logN).

In fact, this lower bound holds even if the PIR is only non-adaptively δ-secure.
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Proof. Suppose the PIR is non-adaptively δ-secure. Then

Claim 3. There is an algorithm Reconstruct such that for any database DB,

E [∆(DB′,DB)] ≥ (1− ε− δ)N

in the probability space defined by sampling

(pk, sk)← Keygen(1λ, N)

D̃B← Process(sk,DB)
(q, st)← Query(pk, 0)

a← Resp(q, D̃B)
DB′ ← Reconstruct(pk, q, a).

Proof. Reconstruct is an algorithm which does the following: Given (pk, q, a), it samples st1, . . . , stN ,
where each sti is independently sampled from the distribution of the state st obtained by sampling
(q′, st) ← Query(pk, i) conditioned on q′ = q. Finally Reconstruct outputs DB′ such that for each
i, DB′i = Dec(sti, a). By linearity of expectation, it suffices to show that for a uniformly random i,
Pr [DBi = Dec(sti, a)] ≥ 1− ε− δ.

By the non-adaptive δ-security, if we instead sample (q, st) ← Query(pk, i), this change modifies
the distribution of (D̃B, pk, q) by statistical distance at most δ. Since a is a function of (pk, q), and sti is a
function of (pk, q, a), the distribution of (D̃B, a, sti) and therefore the probability that DBi = Dec(sti, a)

also changes by at most δ. However, the modified experiment induces a distribution of (D̃B, pk, q, sti)
which is exactly as if one had sampled (q, sti) ← Query(pk, i). Thus in the modified experiment,
Pr [DBi = Dec(sti, a)] ≥ 1− ε, which means that in the original experiment Pr [DBi = Dec(sti, a)] ≥
1− ε− δ.

Claim 4. A random variable X ∈ {0, 1}N with expected Hamming weight is at most εN (with ε ≤ 1
2
)

has entropy at most H(ε)N +O(logN).

Proof. We can partition the set of N -bit strings based on their Hamming weight. It is clear that the
maximal entropy of X is achieved only when the distribution of X is uniform within each class. In
other words, an entropy-maximizing distribution takes the form

∑N
i=0wiUi, where Ui is the uniform

distribution on strings with Hamming weight i and {wi} are non-negative weights summing to 1. The
entropy of this distribution is−

∑
iwi logwi+

∑
iwiH(Ui), which is at most

∑
iwiH(Ui)+log(N+1).

So we want to maximize
∑

iwiH(Ui) =
∑

iwi log
(
N
i

)
subject to the constraint that

∑
iwi · i ≤ εN .

We have the bound∑
i

wi log

(
N

i

)
= O(logN) +

∑
i

wiH

(
i

N

)
N by Stirling’s formula

≤ O(logN) +H

(∑
i

wi · i
N

)
N by Jensen’s inequality

≤ O(logN) +H(ε)N because
∑
i

wi · i
N
≤ ε ≤ 1

2
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To prove the proposition, we use the following basic fact. If X and Y are random variables, then

0 ≤ H(X)−H(X|Y ) ≤ H(Y ).

We apply this where X = DB is uniformly random (i.e. has entropy N ), and Y = a. Conditioning
on the value of a can reduce the entropy of DB by at most |a|. The fact that Reconstruct produces
DB′ which agrees in expectation with DB on at least (1 − ε − δ)N locations implies that H(DB|a) ≤
H(ε+ δ)N +O(logN). Thus

|a| ≥ N − (H(ε+ δ)N +O(logN) = (1−H(ε+ δ))N −O(logN).

4.4.2 Key Size for Designated Client PIR

The idea behind our lower bound on key size for a designated client scheme is that releasing the key
turns the scheme into a public client scheme, which by Proposition 2 must be insecure. Since the key
is a piece of information which causes a dramatic change in the entropy of a random variable, it must
be long.

Proposition 3. In any B-query information theoretically δdc-secure (1 − ε)-correct designated-client
PIR, the key size |skdc| satisfies

|skdc| ≥
(

1− 2δdc −H
(

1− δpc
2

))
·B −O(logB)

where δpc is the smallest δ such that H(ε+ δ) ≥ 1− |a|+O(logN)
N

. In particular, if |a| = o(N), ε = o(1),
and δdc = o(1), then |skdc| = Ω(B).

Proof. Given any designated client PIR scheme with correctness error ε, answer size |a|, and B-query
δdc-security, we can turn it into a public-client scheme with the same correctness probability and answer
size |a| by just releasing the secret key. By Proposition 2, this scheme can only be non-adaptively δ-
secure if

H(ε+ δ) ≥ 1− |a|+O(logN)

N

Let δpc denote the minimum such δ. Note that if ε = o(1) and |a| = o(N), then δpc = 1
2
− o(1). By

definition of δpc, there exists a database DB and indices i0 and i1 such that the distributions (pk, D̃B, q0)

and (pk, D̃B, q1) are δpc-far (i.e. distinguishable with probability 1+δpc
2

) in the probability space defined
by sampling

(pkpc, skpc)← Keygen(1λ, N)

D̃B← Process(skpc,DB)
q0 ← Query(pk, i0)
q1 ← Query(pk, i1).

In particular, suppose a uniformly random string M ∈ {0, 1}B is chosen, and an adversary A is
given (pkpc, D̃B, q1, . . . , qB), where qj ← Query(pk, imi). Then it is possible for A to output M ′ such
that in expectation, ∆(m,m′) ≥ 1+δpc

2
·B. In other words,

H(M |(pkpc, D̃B, q1, . . . , qB)) ≤ H

(
1− δpc

2

)
B +O(logB).
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On the other hand, we can use the following lemma, proved implicitly by Bellare et al. [BTV12]
and explicitly restated by Dodis [Dod12] to lower bound the entropy of M given only D̃B, q1, . . . , qB.

Lemma 4 ([BTV12]). For any (possibly correlated) distributions M,C over some spacesM and C,
let

ε = SD((M,C);M × C)

where M × C is the product distribution of the independent marginal distributions M and C. Then,

2ε2 ≤ I(M ;C) ≤ 2ε · log(|M|/ε)

This lemma, together with the B-bounded δdc-security of our designated client PIR, implies that

H(M |D̃B, q1, . . . , qB) ≥ B − 2δdc(B − log δdc) = (1− 2δdc)B + 2δdc log δdc ≥ (1− 2δdc)B − 2.

|pkpc| = |skdc| must be large as the difference between these two entropies, which proves the
proposition.

5 A Candidate Delegated Client Scheme and HPN

In this section we propose a candidate designated-client DEPIR scheme for unbounded number of
queries. We prove the security of the scheme based on the hardness of a new computational problem,
called the hidden permutation with noise problem (HPN).

Our candidate scheme is similar to the bounded secure scheme of Section 4, except that the client
adds noise to each of its queries by overwriting some of the coordinates with random values. This
modification thwarts the linear attack of last section; however, due to the impossibility of statistically
secure designated client DEPIR (see Section 4.4), the security of a scheme that follows these lines
can only be computational even if the client uses perfectly random permutations. Thus, an additional
hardness assumption is necessary.

We formulate a number of variants of HPN. The strongest variant is essentially a restatement of the
privacy requirement from the scheme, as per Definition 1. It says that no PPT A can distinguish the
queries generated by the scheme from sequences of random values in Fm, even if A has full adaptive
control over which addresses are queried. We then give reductions from the adaptive to static versions
of HPN and from the decision version to a search version where hidden random permutations are
recovered in full. This implies that our scehme is secure as long as the static, search problem remains
hard.

The candidate scheme is presented in Section 5.1, the HPN assumption is defined in Section 5.2,
and the reductions are proved in Sections 5.3 and 5.4.

5.1 Candidate Scheme
Notation. Let P be a family of pseudorandom permutations of with seed length λ. We use the same
algebraic notation as in the Introduction. So let (m, t, r, k,H,F) be such that m < t < r < k < |F|
and H ⊂ F such that |H|m = N and m(t− 1)(|H| − 1) < r. Also, |F|m = poly(n) while |F|t = nω(1).

Keygen
(
1λ, N

)
: Draw permutations τ ← P(Fm+1) and π ← P(Fm) and a subset T ⊂ [k] of size

|T | = r. Output k = (seedπ, seedτ , T ).
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Process
(
k,DB

)
: Interpret DB ∈ {0, 1}N as DB : Hm → {0, 1} using the identification of [N ] with

(a subset of) Hm (DB is zero on any points in Hm not in the image of this identification) and let
D̂B : Fm → F be the low degree extension, so deg(D̂B) ≤ m(|H| − 1). Output

D̃B =
{(

x, τ
(
x, D̂B(π−1(x))

))}
x∈Fm

.

Query
(
k, i
)
: Let z ∈ Hm be the element corresponding to i ∈ [N ]. Choose ~x = (x1, . . . ,xk)← Vz.

Output ~y = (y1, . . . ,yk) where yi = π(xi) if i ∈ T , and yi ← Fm is random otherwise. Set
st = (seedτ , T ).

RespD̃B(q): Upon receiving q = (y1, . . . ,yk), for each i = 1, . . . , k, find the row of D̃B with first
coordinate yi: (yi,y

′
i). Output a = (y′1, . . . ,y

′
k).

Dec
(
st, a

)
: Parse a = (y′1, . . . ,y

′
k) and st = (seedτ , T ). For i ∈ T , set (xi, αi) = τ−1

i (y′i). Let
ψ : F → F be the unique univariate polynomial of degree at most m(t − 1)(|H| − 1) such that
ψ(i) = αi for all i ∈ T . Output ⊥ if no such polynomial exists; otherwise output ψ(0).

5.2 Variants of HPN

All variants of the HPN problem are defined in terms of the the HPN distribution, which is essentially
a noisy version of the distributions D

(
{πi}, z

)
from previous section. Recall this distribution: ~x← Vz

is drawn and ~y is output where yi = πi(xi). In this section we simplify notations and use the same
permutation π for all coordinates i ∈ [k]. We add noise to the samples in the following way: at the
beginning of the experiment a random subset T ⊂ [k] of size r > t is chosen and yi = π(xi) only
if i ∈ T ; otherwise yi is drawn randomly from Fm. Intuitively, HPN says that no PPT adversary
can either distinguish such samples from random (decision form) or recover the hidden permutation π
(search version).

Definition 4 (HPN Distribution). Let (m, t, r, k,F) be such thatm < t < r < k < |F|, |F|m = poly(n)
and |F|t = nω(1). For π ∈ Perm(Fm), z ∈ Fm and T ⊂ [k], let D

(
π, z, T

)
be the distribution which:

draws ~x← Vz and outputs ~y ∈ Fmk where yi = π(xi) if i ∈ T and yi ← Fm otherwise.

The static versions of the HPN assumption are formulated against a PPT adversary who gets polyno-
mially many samples (zα, ~yα) where ~yα ← D

(
π, zα, T

)
for random fixed π ∈ Perm(Fm) and T ⊂ [k]

and random zα ← Fm. In the adaptive versions of the assumption allow the adversary to choose the
zα ∈ Fm adaptively as the experiment progresses. The static versions of HPN imply the adaptive ver-
sions as |F|m = poly(n), and so a static adversary who receives enough random samples, will be able
to provide samples to an adaptive adversary. This idea is utilized in the proof of Claim 5 below. In
the definitions below we write {~yα} ← D

(
π, {zα}, T

)
for the samples; it is to be understood that the

indices {zα} are chosen randomly from Fm and made public to the adversary.

Definition 5 (The HPN Assumption). Let (m, t, r, k,F) be as above.

Search Version: For all PPT algorithms A and non-negligible δ > 0,

Prπ,T,{~yα}

[
A
(
{~yα}

)
= π

]
< δ.
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The probability above is over π ← Perm(Fm), random subset T ⊂ [k] such that |T | = r, and
{zα} ← Fm, {~yα} ← D

(
π, {zα}, T

)
.

Decision Version: For all PPT A and non-negligible δ > 0,

Prπ,T

[∣∣∣Pr{~yα}←D(π,{zα},T )

[
A
(
{~yα}

)
= 1
]
− Pr{~yα}←Fkm

[
A
(
{~yα}

)
= 1
]∣∣∣ > δ

]
< δ,

where the outer probability is over π ← Perm(Fm) and random T ⊂ [k] such that |T | = r.

Claim 5. The candidate scheme is secure assuming decisional HPN.

Proof. The ideal world simulator for the candidate scheme simply sends a random ~yα ∈ Fkm anytime
the adversary A requests a query for some index zα. Note that decisional HPN says that the simulated
transcript is indistinguishable from valid queries to a random sequence of address vectors zα ∈ Fm.
This doesn’t quite prove security since the DEPIR chooses arbitrary addresses in Hm in an adaptive
fashion. However, note that since |F|m = poly(n), arbitrary adaptive address choice does not grant extra
power to the adversary. Indeed, if A requests a query to a particular address z ∈ Hm, a distinguisher
who gets queries corresponding to random zα ∈ Fm simply asks for |F|m ·n such queries and forwards
to A the first one for which zα = z. With high probability, some such α will exist.

5.3 Search to Decision Reduction
Theorem 2. If there exists a PPT A which breaks the decisional HPN−assumption, then there exists
PPT B which breaks search HPN.

Proof. Let A be any PPT algorithm and δ > 0 non-negligible such that

Prπ,T

[∣∣∣Pr{~yα}←D(π,{zα},T )

[
A
(
{~yα}

)
= 1
]
− Pr{~yα}←Fkm

[
A
(
{~yα}

)
= 1
]∣∣∣ > δ

]
≥ δ.

We construct B which recovers π given samples from D
(
π, {zα}, T

)
and oracle access to A. Our

algorithm B will proceed in two steps. First, it will use A to recover a large (size at least t + 1)
subset T ′ ⊂ T . We call this the “cleaning step” since B removes all noise from the queries: given
~y← D

(
π, z, T

)
, (~y)T ′ consists entirely of correct permuted evaluations of a curve. Then, B passes the

cleaned samples to the RecoverPerm algorithm, described and analyzed in Section 5.4. RecoverPerm
outputs π given polynomially many noiseless samples, and is an extension of the distinguishing attack
on the bounded scheme from Section 4.3. We now describe the CLEAN algorithm.

The Distribution DS . For S ⊂ [k], let DS be the distribution which draws {~yα} ← D
(
π, {zα}, T

)
,

and outputs {~y′α} where

y′α,i =

{
yα,i, i ∈ S

y′′ ← Fm, i /∈ S

Remark. We make the following observations about DS .

1. Since B is given samples from D
(
π, {zα}, T

)
, it can efficiently obtain samples from DS for any

S ⊂ [k]. Since B additionally gets oracle access to A, it can approximate

pS := Pr{~yα}←DS
[
A
(
{~yα}

)
= 1
]

to within arbitrary inverse polynomial accuracy in polynomial time with probability 1− 2−n.
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2. For all S ⊂ [k], DS is identically distributed to DS∩T . In particular, if i /∈ T then DS ≡ DS∪{i}.

3. If S = [k] then DS = D
(
π, {zα}, T

)
; if |S| ≤ t then DS is the uniform distribution on Fmk·poly

by t−wise independence of degree t curves.

Intuition. The main idea of CLEAN is the following. It takes samples {~yα} ← D
(
π, {zα}, T

)
,

chooses i ∈ [k] and replaces every yα,i with a random element of Fm. If i /∈ T , then the distribution of
{~yα} has not changed, if i ∈ T , then each ~yα has one fewer correct coordinate. If CLEAN was lucky
in the choice of i, A will change its decision probability, and CLEAN decides that i ∈ T . A hybrid
argument shows that if CLEAN will efficiently be able to find enough “lucky” i ∈ T , to output T ′ ⊂ T
of size at least t+ 1.

The CLEAN Algorithm. For a parameter δ > 0, set M = nk2/δ2 and let c be a universal constant.

1. Use M samples from D[k] and D∅ to compute p̂[k] and p̂∅, approximations of p[k] and p∅.

2. Initialize T ′ = ∅ ; While |T ′| ≤ t:

− Initialize S = T ′, p̂S = p̂∅ ; While S 6= [k]:
∗ Pick i /∈ S. Use M samples from DS∪{i} to compute p̂S∪{i}, an approximation of
pS∪{i}.
∗ If

∣∣p̂S∪{i} − p̂S∣∣ > δ/2k, T ′ = T ′ ∪ {i}.
∗ Redefine S = S ∪ {i}, p̂S = p̂S∪{i}.

3. Output T ′.

4. Time Out Condition: If the total runtime ever reaches 2cn, abort and output T ′.

Lemma 5. Let (m, t, r, k, |F|) be as above. Suppose PPT A, non-negligible δ > 0 and π ∈ Perm(Fm),
T ⊂ [k] of size |T | = r are such that∣∣∣Pr{~yα}←D(π,{zα},T )

[
A
(
{~yα}

)
= 1
]
− Pr{~yα}←Fkm

[
A
(
{~yα}

)
= 1
]∣∣∣ > δ.

Then

Pr{~yα}←D(π,{zα},T )

[
CLEANA({~yα}) = T ′ st T ′ ⊂ T and |T ′| = t+ 1

]
≥ 1− 2−Ω(n).

Moreover, the expected running time of CLEAN is O(nk3t/δ2).

Proof. We show that if all approximations p̂ computed by CLEAN are within δ/4k of the true expec-
tations p (in this case we say that the approximations are good) then CLEAN runs in O(Mkt) time
and outputs T ′ ⊂ T of size at least t + 1. This completes the proof since by the Chernoff-Hoeffding
inequality, all of CLEAN’s approximations are good with probability 1− 2−Ω(n); the maximum runtime
is 2cn because of the time-out condition, so events which occur with probability 2−Ω(n) may be safely
ignored. Note that when CLEAN’s approximations are good, the output T ′ is a subset of T . Indeed, the
only way i gets added to T ′ is if |p̂S∪{i} − p̂S| > δ/2k; if i /∈ T and approximations are good:

|p̂S∪{i} − p̂S| ≤ |p̂S∪{i} − pS∪{i}|+ |pS∪{i} − pS|+ |p̂S − pS| ≤
δ

2k
+ |pS∪{i} − pS| =

δ

2k
,
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by Observation 2. We show that if approximations are good then each time through the outer while
loop at least one i is added to T ′. This completes the proof since the time to run the inner while loop
is O(Mk). The key point is that throughout the course of the inner loop S goes from |S| ≤ t (so
that pS = p∅ by Observation 3) to S = [k]. Since A distinguishes D

(
{πi}, {zα}, T

)
from uniform

with probability at least δ > 0, |p[k] − p∅| ≥ δ. By a hybrid argument, there must exist some (S, i)
encountered during the course of the inner loop so that |pS∪{i} − pS| ≥ δ/k. Since approximations are
good, |p̂S∪{i} − p̂S| ≥ δ/2k and so i is added to T ′.

5.4 Recovering the Permutations
In this section we describe a protocol which is given samples fromD

(
π, {zα}

)
and recovers the permu-

tation π used to produce the samples. This attack extends to the case of many permutations {πi} instead
of just one, and so constitutes a strong break of the unbounded variant of the scheme from Section 4.
We use the same notation as in that section. This algorithm requires more samples than the one in the
previous section (poly(|F|m) versus |F|m(1+o(1))).

The RecoverPerm Algorithm. Let (m, t, k, |F|) be such that m < t < k < |F| and |F|m = poly(λ).
Set B = mλ|F|3m+3. Let {zα} be any sequence of addresses such that every z ∈ Hm appears at least
B times in {zα}.

Input: {~yα} drawn from D
(
π, {zα}

)
.

1. Initialize variables {vy}y∈×Fm taking values in Fm, and a list L of linear constraints to ∅.

2. For all α, add the constraint ~v~yα ∈ Vzα to L, where ~v~yα is shorthand for (vyα,1 , . . . ,vyα,k).

3. If the constraints in L are inconsistent (i.e. no assignment to the vy satisfies all constraints), abort
and output ⊥. Otherwise, choose an arbitrary assignment satisfying all constraints in L and let
σ : Fm → Fm be the map which sends y to the vector assigned to vy. If σ is not a permutation,
abort and output ⊥. Otherwise, output π′ ∈ Perm(Fm) where π′ = σ−1.

Note that RecoverPerm runs in time poly(B, |F|m, λ) since Step 3 involves solving a system of
linear equations and checking whether a functions with polysized domain is a permutation; all other
steps are efficient. The next Lemma states RecoverPerm recovers the correct π used to generate the
samples with high probability.

Lemma 6. Set B = mλ|F|3m+3 and let {zα} be any sequence of addresses such that each z ∈ Hm

appears at least B times in {zα}. Let π ∈ Perm(Fm) be the permutation used to generate the input
samples, and let π′ ∈ Perm(Fm) the output. Then with overwhelming probability: π′ = π.

Proof. The first failure event in Step 3, that the linear constraints in L are inconsistent, never occurs
as by definition vy = π−1(y) satisfies every constraint. Fix any assignment to the vy satisfying
the constraints in L, let σ : Fm → Fm be the map which sends y to the vector assigned to vy.
Since the assignment satisfies L, for every ~yα, we have σ(~yα) ∈ Vzα , where σ(~yα) is shorthand for(
σ(yα,1), . . . , σ(yα,k)

)
. Recall that drawing ~yα ← D

(
π, zα

)
consists of drawing ~xα ← Vzα and then

setting ~yα = π(~xα). Therefore, for every ~xα ← Vzα drawn to produce the input of RecoverPerm:
σ ◦ π(~xα) ∈ Vzα .
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We say that an assignment to the vy is BAD if Pr~x←Vz

[
σ ◦ π(~x) ∈ Vz

]
< 1− |F|−(2m+2), for some

z ∈ Hm. Note,

Pr
[
∃ BAD satisfying asst

]
< |F|m|F|m ·

(
1− 1

|F|2m+2

)B
= 2−Ω(λ),

when B = mλ|F|3m+3. Therefore, it suffices to assume that the assignment is not BAD. Lemma 7
below shows that in this case, σ ◦ π = 11. The result follows.

Lemma 7. Suppose f1, . . . , fk : Fm → Fm are such that Pr~x←Vz

[
~f(~x) ∈ Vz

]
≥ 1 − |F|−(2m+2) for

all z ∈ Hm. Then there exists a curve ϕ : F → Fm of degree at most t satisfying ϕ(0) = 0 such that
fi(xi) = xi + ϕ(i) for all i = 1, . . . , k. In particular, if all fi are equal then each fi is the identity
function.

Proof. The second statement follows from the first since if ϕ(i) takes the same value for i = 1, . . . , k
then ϕ must be constant, hence identically zero.

The proof of the first statement consists of three steps, described momentarily. First however we
define the following random variables. Let ~f be functions that satisfy the lemma hypotheses. For any
~c ∈ V0, define ~f~c(~x) := ~f(~x + ~c) − ~f(~c). Choose ~c ∈ V0 so that ~f~c(0) = 0 and Pr~x←Vz

[
~f~c(~x) ∈

Vz

∣∣x4 = · · · = xt+1 = 0
]
≥ 1− 1/(2|F|2m) for all z ∈ Hm (random ~c← V0 satisfies these properties

with probability at least 1− |F|−1).
In the first step we show that fc1,1 is linear, so fc1,1(x1) = A1x1 for a matrix A1 ∈ Fm×m; similarly,

we have fc2,2(x2) = A2x2.
In the second step we show that A1 and A2 are equal (so drop the subscripts). In particular, it

follows that f1 and f2 are affine with the same linear component: fi(xi) = fci,i(xi − ci) + fi(ci) =
Axi −

(
fci,i(ci) − fi(ci)

)
for i = 1, 2. This argument extends to all i ∈ [k]: there exists A ∈ Fm×m

and b1, . . . ,bk ∈ Fm such that ~f(~x) =
(
Ax1 + b1, . . . ,Axk + bk

)
.

Finally, we complete the proof by showing that A = 11 and ~b ∈ V0.
To see that fc1,1 is linear, let us first set some notation. Write (x1,x2,x3) ∈ V′0 if there exists ~x′ ∈

V0 such that (x′1,x
′
2,x

′
3) = (x1,x2,x3) and x′4 = · · · = x′t+1 = 0. Clearly (x1,x2,x3), (x′1,x2,x3) ∈

V′0 implies x′1 = x1 because of agreement considerations. Note that V′0 ⊂ F3m is a (2m)−dimensional
subspace so is closed under addition. By our choice of ~c ∈ V0,

(
fc1,1(x1), fc2,2(x2), fc3,3(x3)

)
∈ V′0

whenever (x1,x2,x3) ∈ V′0. Now, choose arbitrary x1,x
′
1 ∈ Fm, we will show fc1,1(x1+x′1) = x1+x′1,

where x1 = fc1,1(x1), x′1 = fc1,1(x′1). Let x2,x3 ∈ Fm be so that (x1,x2,0), (x′1,0,x3) ∈ V′0 (such
x2,x3 exist by interpolation). Let xi = fci,i(xi) for i = 2, 3. We have (x1,x2,0), (x′1,0,x3) ∈ V′0
(using ~f~c(0) = 0), and so (x1 + x′1,x2,x3) ∈ V′0. On the other hand, if we first add then apply ~f we
get
(
fc1,1(x1 + x′1),x2,x3

)
∈ V′0; fc1,1(x1 + x′1) = x1 + x′1 follows.

Let A1 ∈ Fm×m be the matrix form of fc1,1. As mentioned before, the above argument also shows
that fc2,2 is linear with matrix A2 ∈ Fm×m. We show here that A1 = A2. To see this, consider the
linear map Φ : Fm → Fm which sends x1 to x2 such that (x1,x2,0) ∈ V′0. Note that Φ is actually
just multiplication by some non-zero scalar β ∈ F (this can be seen by writing Φ explicitly in terms of
Lagrange interpolation coefficients). For any x1 ∈ Fm, (x1, β · x1,0) ∈ V′0; the properties of ~f~c imply
that (A1x1, β ·A2x1,0) ∈ V′0; this means βA2x1 = βA1x1; A1 = A2 follows.

We have shown so far that f1 and f2 are affine with the same linear component. This argument
extends to any fi, fj for i, j ∈ [k] so, as mentioned above, there exists a single matrix A ∈ Fm×m and
vectors b1, . . . ,bk ∈ Fm such that fi(xi) = Axi +bi for all i ∈ [k]. We show that A = 11 and ~b ∈ V0,
which completes the proof. For any z ∈ Hm, the affine map ~f : Fmk → Fmk maps the affine plane
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Vz ⊂ Fmk to an affine plane in Fmk. It follows that either ~f(Vz) ⊂ Vz, or Pr~x←Vz

[
~f(~x) ∈ Vz

]
≤ |F|−1

since affine planes intersect in at most 1/|F| fraction of their points unless there is containment. We are
given that Pr~x←Vz

[
~f(~x) ∈ Vz

]
≥ 1 − |F|−(2m+2), so it must be that ~f(Vz) ⊂ Vz for all z ∈ Hm. In

particular, ~b = ~f(0) ∈ V0. Finally, note that ~x 7→ (Ax1, . . . ,Axk) + ~b maps Vz to VAz. Therefore,
we must have Az = z for all z ∈ Hm. As Hm spans Fm, this forces A = 11 as desired.
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