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Abstract. Due to the vast number of successful related-key attacks
against existing block-ciphers, related-key security has become a common
design goal for such primitives. In these attacks, the adversary is not only
capable of seeing the output of a function on inputs of its choice, but
also on related keys. At Crypto 2010, Bellare and Cash proposed the first
construction of a pseudorandom function that could provably withstand
such attacks based on standard assumptions. Their construction, as well
as several others that appeared more recently, have in common the fact
that they only consider linear or polynomial functions of the secret key
over complex groups. In reality, however, most related-key attacks have
a simpler form, such as the XOR of the key with a known value. To
address this problem, we propose the first construction of RKA-secure
pseudorandom function for XOR relations. Our construction relies on
multilinear maps and, hence, can only be seen as a feasibility result.
Nevertheless, we remark that it can be instantiated under two of the
existing multilinear-map candidates since it does not reveal any encodings
of zero. To achieve this goal, we rely on several techniques that were used
in the context of program obfuscation, but we also introduce new ones to
address challenges that are specific to the related-key-security setting.
Keywords. Pseudorandom Functions, Related-Key Security, Multilinear
Maps, Post-Zeroizing Constructions.

1 Introduction

Context. Most of the security models used to prove the security of cryptographic
schemes usually assume that an adversary has only a black-box access to the
cryptosystem. In particular, the adversary has no information about the secret
key, nor can it modify the latter. Unfortunately, it has been shown that this is
not always true in practice. For instance, an adversary may learn information
from physical measures such as the running time of the protocol or its energy
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consumption, or may also be able to inject faults in the cryptosystem. In the
specific case of fault attacks, in addition of possibly being able to learn partial
information about the key, the adversary may be able to force the cryptosystem
to run with a different, but related, secret key. Then, by observing the outcomes
of the cryptosystem with this new related key, an adversary may be able to break
it. Such an attack is called a related-key attack (RKA) and has often been used
against concrete blockciphers [Knu93,Bih94,BDK05,BDK+10].

Formalization of RKA security. Following the seminal cryptanalytic works
by Biham and Knudsen, theoreticians have defined new security models in order
to capture such attacks. In 2003, Bellare and Kohno formalized the foundations
for RKA security [BK03]. Specifically, let F : K ×D → R be a pseudorandom
function and let Φ ⊆ Fun(K,K) be a set of functions on the key space K, called a
class of related-key deriving (RKD) functions.We say that F is Φ-RKA secure if
it is hard to distinguish an oracle which, on input a pair (φ, x) ∈ Φ×D, outputs
F (φ(K), x), from an oracle which, on the same input pair, outputs G(φ(K), x),
where K ∈ K is a random target key and G: K ×D → R is a random function.

Existing Constructions. Building provably RKA-secure pseudorandom func-
tions in non-idealized modelhas been a long-standing open question until the
work of Bellare and Cash in 2010 [BC10]. Their construction is adapted from
the Naor-Reingold PRF [NR97] and is obtained by applying a generic frame-
work to it. This generic framework has led to other constructions based un-
der different assumptions [LMR14] and been recently extended to circumvent
its limitations [ABPP14,ABP15]. However, despite being simple and elegant,
the existing frameworks crucially rely on the algebraic structure of the pseu-
dorandom functions and thus only allow to build RKA-secure pseudorandom
functions for algebraic classes of RKD functions. More precisely, existing con-
structions use a key whose components are elements in Zp, and are proven
secure against an attacker that is given the capability to perform operations
(additions, multiplications, or even polynomial evaluation) modulo p, with p
super-polynomial in the security parameter for instantiations over cyclic or mul-
tilinear groups [BC10,LMR14,ABPP14,ABP15], or p polynomial but still much
larger than 2, for instantiations based on lattices [LMR14,BP14].

Unfortunately, the algebraic classes of RKD functions above are not very
natural as they seem difficult to implement from the perspective of an attacker.
Moreover, they also do not seem to match attacks against concrete blockciphers
such as AES (e.g., [BDK05,BDK+10]). To address these shortcomings, we focus
in this paper on the XOR class of RKD functions, which seems more relevant
for practice, as suggested by Bellare and Kohno [BK03]. In this class, which
corresponds to the class of functions Φ⊕ = {φs: K ∈ {0, 1}k 7→ K ⊕ s ∈ {0, 1}k |
s ∈ {0, 1}k} with K = {0, 1}k being the keyspace, the adversary is allowed to flip
bits of the secret key.

In the context of pseudorandom functions, there have been a few proposals
for protecting against weak versions of XOR-related-key attacks. In [AW14], for
instance, Applebaum and Widder proposed several schemes that can provably
resist XOR attacks by restricting the capabilities of the adversary. In particular,
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they consider models where the adversary only uses a bounded number of
related keys or where it only performs random XOR operations. In [JW15],
Jafargholi and Wichs proposed constructions of pseudorandom functions based on
continuous non-malleable codes that can resist several forms of related-key attacks,
including XOR-related-key attacks. Their solutions, however, only guarantee
pseudorandomness under the original key and not under both the original and
related keys as in standard notions of related-key security. Another advantage of
our construction compared to theirs is that the key in our case is just a bit string.
Lastly, to the best of our knowledge, building a pseudorandom function that
provably resists XOR-related-key attacks in non-idealized modelsstill remains a
major open problem.

In the random oracle model, there is a straightforward construction of a
pseudorandom function secure against XOR-related-key attacks: F (K,x) =
H(K‖x), with H being a hash function modeled as a random oracle, and ‖ being
the string concatenation operator. However, from a theoretical perspective, having
a construction in the random oracle model does not provide any guarantee that
the primitive can be realized under non-interactive (and falsifiable) assumptions.
Furthermore, we would like to point out that we do not know of any construction
of a pseudorandom function secure against XOR-related-key attacks in the generic
multilinear group model.

Our Contributions. In this paper, we provide the first provably secure con-
struction of an RKA-secure pseudorandom function for XOR relations. To achieve
this goal, our construction departs significantly from previous RKA-secure pseu-
dorandom functions in that the secret key no longer lies in an algebraic group. As
in prior constructions (e.g., [BC10,ABPP14,ABP15,LMR14]), our new scheme
also requires public parameters, such as generators of a cyclic group, which
cannot be tampered with. However, unlike these constructions, the secret key
in our scheme is just a bit string, whose values are used to select a subset of
the common parameters which will be used in the evaluation of the pseudoran-
dom function.5 The evaluation is performed using an asymmetric multilinear
map [GGH13a,CLT13,GGH15].

In particular, we prove our construction under two non-interactive assump-
tions, which do not reveal encodings of zero (in the generic multilinear map model)
and therefore are plausible under some current instantiations of multilinear maps.
To the best of our knowledge, this is the first construction using multilinear maps
with such a level of security. In [BMSZ16], Badrinarayanan et al. were the first to
take into account zeroizing attacks (i.e., attacks using encodings of zero) against
current multilinear maps constructions into their constructions and to propose a
scheme which is proven not to reveal encodings of zero, in the generic multilinear
map model. But, contrary to us, they did not provide a proof of their scheme
under a non-interactive assumption.

5 Please note that these common parameters are public and can therefore be stored
in a non-secure read-only part of the memory which can potentially more easily be
made tamper-proof.
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Overview of our techniques. As mentioned above, our construction is based
on asymmetric multilinear maps [GGH13a,CLT13,GGH15]. Informally speaking,
a multilinear map is a generalization of bilinear maps. It allows to “encode” scalars
a (in some finite field Zp) into some encodings [a]S with respect to an index
set (also called an index) S ⊆ U , where S indicates the level of the encoding
[a]S and U denotes the top-level index set. We can add two elements [a]S and
[b]S belonging to the same index set S to obtain [a+ b]S . We can also multiply
elements [a]S1

and [b]S2
to compute [a · b]S1∪S2

to obtain the encoding of a · b
with respect to the index set S1 ∪ S2, as long as the two index sets are disjoint
(S1 ∩ S2 = ∅). Finally, it is possible to test whether an element at level U is an
encoding of 0.

Let k and n be the lengths of the secret key K and input x, respectively,
and let U = {1, . . . , k + n}. Next, let {ai,b}i∈[k],b∈{0,1} and {cj,b}j∈[n],b∈{0,1} be
random scalars in Zp and let âi,b = [ai,b]{i} be the encoding of ai,b at index
level {i} and ĉj,b = [cj,b]{j+k} be the encoding of cj,b at index level {j + k}. The
starting point of our construction is the function

Fpp(K,x) =

 k∏
i=1

ai,Ki

n∏
j=1

cj,xj


U

,

where the public parameters pp include {âi,b}i∈[k],b∈{0,1} and {ĉj,b}j∈[n],b∈{0,1}
as well as the public parameters of the multilinear map.

Since the encodings of the scalars ai,b and cj,b are included in pp, it is not
hard to see that the user in possession of the secret K can efficiently evaluate this
function at any point x by computing the multilinear map function with the help
of the encodings âi,Ki

and ĉj,xj
. To prove it secure and be able to instantiate the

scheme with existing multilinear map candidates, however, is not straightforward
as one needs to show that the adversary cannot mix too many existing encodings
and create an encoding of zero.

While a proof in the generic multilinear map model [Sho97,GGH+13b,BR14,
BGK+14,Zim15] is possible, we would like to rely on non-interactive complexity
assumptions over multilinear maps which are likely to hold in existing multilinear
map constructions. To achieve this goal, we change the way in which the index
sets are defined using techniques from program obfuscation [GGH+13b,BGK+14,
Zim15]. More precisely, we make use of the notion of strong straddling sets
[BGK+14,MSW14,Zim15,BMSZ16], which informally allows to partition a set
into two disjoint sets of subsets so that they cannot be mixed. As in [MSW14,
Zim15,BMSZ16], we first construct strong straddling set systems over sets Si

of k2 fresh symbols, for i ∈ {0, . . . , k} and use Si for i ≥ 1 to prevent the
adversary from mixing an exponential number of inputs. In addition to that,
and unlike [MSW14, Zim15,BMSZ16], we use S0 in the proof to prevent the
adversary from mixing an internal private representation of the key (used by the
reduction) with the parameters.

As we show in Section 4, the resulting scheme can be proven secure in the
generic multilinear map model. In particular, we are actually able to prove that
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no polynomial-time adversary can construct a (non-trivial) encoding of zero.6 In
addition to that, as we show in Section 5, one benefit of using (strong) straddling
sets is that it allows us to prove the security of our construction under non-
interactive assumptions and avoid the use of idealized models.7 Finally, we also
prove the plausibility of these new assumptions in Appendix C and Appendix D
by showing that they hold in the generic multilinear map model.

We would like to stress that the security proof in Section 5 is a much stronger
result qualitatively than a direct proof in the generic multilinear map model since
the latter model is only used to show that our (non-interactive) assumptions are
plausible.
Concrete Instantiations. The security of our scheme relies on two new non-
interactive assumptions on multilinear maps. However, contrary to most classical
assumptions (such as the Decisional Diffie-Hellman assumption for low-level group
elements) or the multilinear subgroup assumption used to construct witness
encryption and indistinguishable obfuscation in [GLW14,GLSW15], our new
assumptions do not reveal any encoding of zero. More precisely, similarly to what
Badrinarayanan et al. did in [BMSZ16], we show in the ideal multilinear map
model, that given an instance for one of our assumptions, the adversary cannot
construct any encoding of zero (even at the top level). In particular, this implies
that our assumptions holds in the hybrid graded encoding model [GMS16], as
this model just restricts the shape of the encodings of zero that the adversary can
construct, while we prove that the adversary cannot construct any such encoding.

Our assumptions are therefore not broken by most of the attacks against
multilinear maps [GGH13a, CHL+15, CGH+15, HJ16, CLLT16] including the
recent annihilation attacks [MSZ16,CGH17], as these attacks need encodings of
zero at least at the top level. Hence, while the GGH13 and CLT15 multilinear
map candidates [GGH13a,CLT15] might not be used for our construction be-
cause of recent attacks without encodings of zero [CFL+16,ABD16,CJL16], our
assumptions are plausible when implemented with the GGH158 or the CLT13
multilinear map candidates [GGH15,CLT13].
Additional Related Work. In addition to the work mentioned above, a few
other constructions of pseudorandom functions against related-key attacks for
linear and polynomial functions have been proposed in [BLMR13,LMR14]. While
their RKA-secure pseudorandom functions also require multilinear maps, their
security proofs are based on assumptions which reveal encodings of zero and
hence are subject to the multiple attacks mentioned above. Moreover, these works
do not consider XOR-related-key attacks.
6 Note that, to prove that two games are indistinguishable in the generic multilinear
map model, it suffices to prove that the adversary cannot generate encodings of zeros
in either game as it would only obtain random handles which carry no information.

7 The security result in Section 4 is therefore implied by the security result in Section 5.
Section 4 should be seen as a warm-up for Section 5.

8 The GGH15 multilinear map is defined over a graph. In our case as in the case
of indistinguishable obfuscation candidate, a single chain can be used as a graph.
See [GGH15, Section 5.2].
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Related-key security with respect to XOR relations has also been considered
in the context of Even-Mansour ciphers [CS15,FP15,Men16,WLZZ16]. Unlike our
work, which aims to prove security under well specified non-interactive complexity
assumptions, all these works rely on idealized models, which we want to avoid.

In [FX15], the authors proposed efficient constructions of identity-based
encryption and key encapsulation schemes that remain secure against related-key
attacks for a large class of functions, which include XOR relations. While their
results are interesting, we remark that achieving RKA security for randomized
primitives appears to be significantly easier than for deterministic ones, as already
noted by Bellare and Cash [BC10].

Finally, it is worth mentioning here that, due to the results of Bellare, Cash,
and Miller [BCM11], RKA security for pseudorandom functions can be transferred
to several other primitives, including identity-based encryption, signatures, and
chosen-ciphertext-secure public-key encryption.
Organization. The rest of the paper is organized as follows. Section 2 presents
standard definitions of (related-key) pseudorandom functions and multilinear
maps. It also introduces the generic multilinear map model and the notion
of straddling set system. Section 3 explains our construction of XOR-RKA
PRF. Section 4 provides a first security proof of our new scheme in the generic
multilinear map model. It also shows that is not feasible for an adversary to
generate non-trivial encodings of zero. Finally, Section 5 describes our main
result, which is a proof of security for our new construction under two new
non-interactive assumptions. The formal proof of security, as well as the proofs
of our assumptions are detailed in the appendix. In particular, we prove that
our assumptions are not only secure in the generic multilinear map model, but
also that it is not feasible for an adversary to generate (non-trivial) encodings of
zero. Hence, our assumptions are plausible given some current instantiations of
multilinear maps.

2 Definitions

2.1 Notation and Games

Notation. We denote by κ the security parameter. Let F : K × D → R be a
function that takes a key K ∈ K and an input x ∈ D and returns an output
F (K,x) ∈ R. The set of all functions F : K × D → R is then denoted by
Fun(K,D,R). Likewise, Fun(D,R) denotes the set of all functions mapping D to
R. If S is a set, then we denote by s $← S the operation of picking at random
s in S. If #”x is a vector then we denote by | #”x | its length, so #”x = (x1, . . . , x| #”x |).
For a binary string x, we denote its length by |x|, xi its i-th bit, so x ∈ {0, 1}|x|
and x = x1 ‖ . . . ‖xn.
Games [BR06]. Most of our definitions and proofs use the code-based game-
playing framework, in which a game has an Initialize procedure, procedures
to respond to adversary oracle queries, and a Finalize procedure. To execute a
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game G with an adversary A , we proceed as follows. First, Initialize is executed
and its outputs become the input of A . When A executes, its oracle queries are
answered by the corresponding procedures of G. When A terminates, its outputs
become the input of Finalize. The output of the latter, denoted GA is called
the output of the game, and we let “GA ⇒ 1” denote the event that this game
output takes the value 1. The running time of an adversary by convention is the
worst case time for the execution of the adversary with any of the games defining
its security, so that the time of the called game procedures is included.

2.2 Pseudorandom Functions

Our definitions of pseudorandom functions and related-key secure pseudorandom
functions include a Setup algorithm that is used to generate public parameters.
For classical PRFs, the public parameters could actually just be included in the
key. However, to our knowledge, all the known proven RKA-secure PRFs [BC10,
ABPP14,LMR14,ABP15], use public parameters. Contrary to the key itself, the
public parameters cannot be modified by the related-key deriving function. In
our case, the Setup algorithm is specified explicitly in the construction for clarity.

PRFs [GGM86,BC10]. Consider a pseudorandom function Fpp: K ×D → R
with public parameters pp. The advantage of an adversary A in attacking the
standard PRF security of a function Fpp is defined via

Advprf
Fpp

(A ) = Pr
[

PRFRealAFpp
⇒ 1

]
− Pr

[
PRFRandA

Fpp
⇒ 1

]
.

Game PRFRealFpp first runs the Setup algorithm to generate the public param-
eters pp which it outputs. It then picks K $← K at random, and responds to
oracle query Fn(x) via Fpp(K,x). Game PRFRandFpp runs Setup and outputs
the public parameters pp. It then picks f $← Fun(D,R) and responds to oracle
query Fn(x) via f(x).

RKA-PRFs [BK03,BC10]. Consider a pseudorandom function Fpp: K×D →
R with public parameters pp. Let Φ ⊆ Fun(K,K); the members of Φ are called
RKD (Related-Key Deriving) functions. An adversary is said to be Φ-restricted if
its oracle queries (φ, x) satisfy φ ∈ Φ. The advantage of a Φ-restricted adversary
A in attacking the RKA-PRF security of Fpp is defined via

Advprf-rka
Φ,Fpp

(A ) = Pr
[

RKPRFRealAFpp
⇒ 1

]
− Pr

[
RKPRFRandA

Fpp
⇒ 1

]
.

Game RKPRFRealFpp first runs the Setup algorithm to generate the public
parameters which it outputs. It then picks a key K

$← K at random, and
responds to oracle query RKFn(φ, x) via Fpp(φ(K), x). Game RKPRFRandFpp

runs Setup to generate the public parameters pp and outputs them. It then
picks G $← Fun(K,D,R) and K $← K at random, and responds to oracle query
RKFn(φ, x) via G(φ(K), x). We say that Fpp is a Φ-RKA-secure PRF if for
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any Φ-restricted adversary, its advantage in attacking the RKA-PRF security is
negligible.
XOR-RKA-PRFs. Let Fpp: K × D → R be a pseudorandom function with
public parameters pp and K = {0, 1}k for some integer k ≥ κ. We say that
Fpp is XOR-RKA-secure if it is a Φ⊕-RKA-secure PRF according to the above
definition, where Φ⊕ = {φs: K ∈ {0, 1}k 7→ K ⊕ s ∈ {0, 1}k | s ∈ {0, 1}k}.

2.3 Multilinear Maps

We informally introduced multilinear maps in the introduction. Let us now
introduce formal definitions, following the notations of [Zim15].

Definition 1 [Formal Symbol] A formal symbol is a bitstring in {0, 1}∗. Distinct
variables denote distinct bitstrings, and we call a fresh formal symbol any bitstring
in {0, 1}∗ that has not already been assigned to a formal symbol.

Definition 2 [Index Sets] An index set (also called index)is a set of formal
symbols.

Definition 3 [Multilinear Map] A multilinear map is a tuple of six algorithms
(MM.Setup,MM.Encode,MM.Add,MM.Mult,MM.ZeroTest,MM.Extract) with the
following properties:

– MM.Setup takes as inputs the security parameter κ in unary and an index set
U , termed the top-level index set, and generates public parameters mm.pp,
secret parameters mm.sp, and a prime number p;

– MM.Encode takes as inputs secret parameters mm.sp, a scalar x ∈ Zp, and
an index set S ⊆ U and outputs:

MM.Encode(mm.sp, x,S)→ [x]S ;

For the index set S = ∅, [x]∅ is simply the scalar x ∈ Zp.
– MM.Add takes as inputs public parameters mm.pp and two encodings with

same index set S ⊆ U and outputs:

MM.Add(mm.pp, [x]S , [y]S)→ [x+ y]S ;

– MM.Mult takes as inputs public parameters mm.pp and two encodings with
index sets S1,S2 ⊆ U respectively and outputs:

MM.Mult(mm.pp, [x]S1
, [y]S2

)→
{

[xy]S1∪S2
if S1 ∩ S2 = ∅

⊥ otherwise
;

– MM.ZeroTest takes as inputs public parameters mm.pp and a top-level en-
coding (with index set U ) and outputs:

MM.ZeroTest(mm.pp, [x]S)→
{
“zero” if S = U and x = 0
“non-zero” otherwise

;
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– MM.Extract takes public parameters mm.pp and a top-level encoding [x]U
as inputs and outputs a canonical and randomrepresentation of [x]U .

Remark 4 The MM.Extract algorithm is needed for our pseudorandom func-
tion to be deterministic with all currently known instantiations of multilinear
maps [GGH13a,CLT13,GGH15,CLT15]. Indeed, in these instantiations, the same
group element has many different representations, and the extraction procedure
enables to extract a unique representation from any top-level group element (i.e.,
of index U ).

This extraction is necessary for our proof under non-interactive assumptions
in Section 5 to work. For our proof in the generic multilinear map model, this
is not required. For this reason, our generic multilinear map model does not
support extraction for the sake of simplicity. Actually, this only strengthens the
result, as before extraction, the adversary still has to possibility to add top-level
group elements while extracted values are not necessarily homomorphic.

Conventions. In order to ease the reading, we adopt the following conventions
in the rest of the paper:
– Scalars are noted with lowercase letter, e.g. a, b, . . .
– Encodings are noted either as their encoding at index set S, [a]S or simply

with a hat, when the index set is clear from the context, e.g. â, b̂, . . . In
particular, â is an encoding of the scalar a.

– Index sets as well as formal variables are noted with uppercase letters, e.g.
X,S,S , . . . .

– We denote by S1 · S2 or S1S2 the union of sets S1 and S2. This notation
implicitly assumes that the two sets are disjoint. If S1 is an element, then
S1 · S2 stands for {S1} · S2.

– The top-level index set is refered as U .

We also naturally extend these notations when clear from the context, so for
instance â+ b̂ = MM.Add(mm.pp, â, b̂) and â · b̂ = MM.Mult(mm.pp, â, b̂).

2.4 Generic Multilinear Map Model

Our construction is proven secure under two non-interactive assumptions. One
is very classical and is a variant of DDH. The other is relatively simple but is
not classical and we prove it in the generic multilinear map model to show its
plausibility. That is why we need to introduce the generic multilinear map model,
in addition to the fact that we also prove in this model that our construction
does not enable the adversary to produce encodings of zero.

The generic multilinear map model is similar to the generic group model
[Sho97]. Roughly speaking, the adversary has only the capability to apply opera-
tions (add, multiply, and zero-test) of the multilinear map to encodings. A scheme
is secure in the generic multilinear map model if for any adversary breaking the
real scheme, there is a generic adversary that breaks a modified scheme in which
encodings are replaced by fresh nonces, called handles, that it can supply to a
stateful oracle M , defined as follows:
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Definition 5 [Generic Multilinear Map Oracle] A generic multilinear map oracle
is a stateful oracle M that responds to queries as follows:

– On a query MM.Setup(1κ,U ), M generates a prime number p and parameters
mm.pp,mm.sp as fresh nonces chosen uniformly at random from {0, 1}κ. It
also initializes an internal table T ← [] that it uses to store queries and
handles. It finally returns (mm.pp,mm.sp, p) and set internal state so that
subsequent MM.Setup queries fail.

– On a query MM.Encode(z, x,S), with z ∈ {0, 1}κ and x ∈ Zp, it checks that
z = mm.sp and S ⊆ U and outputs ⊥ if the check fails, otherwise it generates
a fresh handle h $← {0, 1}κ, adds h 7→ (x,S) to T , and returns h.

– On a query MM.Add(z, h1, h2), with z, h1, h2 ∈ {0, 1}κ, it checks that z =
mm.pp, that h1 and h2 are handles in T which are mapped to values (x1,S1)
and (x2,S2) such that S1 = S2 = S ⊆ U , and returns ⊥ if the check fails. If
it passes, it generates a fresh handle h $← {0, 1}κ, adds h 7→ (x1 + x2,S) to
T , and returns h.

– On a query MM.Mult(z, h1, h2), with z, h1, h2 ∈ {0, 1}κ, it checks z = mm.pp,
that h1 and h2 are handles in T which are mapped to values (x1,S1) and
(x2,S2) such that S1∪S2 ⊆ U and S1∩S2 = ∅, and returns ⊥ if the check fails.
If it passes, it generates a fresh handle h $← {0, 1}κ, adds h 7→ (x1x2,S1 ∪S2)
to T , and returns h.

– On a query MM.ZeroTest(z, h), with z, h ∈ {0, 1}κ, it checks z = mm.pp, that
h is a handle in T such that it is mapped to a value (x,U ), and returns
⊥ if the check fails. If it passes, it returns “zero” if x = 0 and “non-zero”
otherwise.

Remark 6 In order to ease the reading, we actually use a slightly different and
more intuitive characterization of the generic multilinear map oracle in our proofs.
Informally, instead of considering encodings as nonces,we consider these as formal
polynomials (that can be computed easily), whose formal variables are substituted
with their join value distribution from the real game. In our construction, formal
variables are âi,b, ĉj,b, ẑi1,i2,b1,b2 —please refer to the construction in Section 3
for details. This variant characterization follows the formalization from [Zim15,
Appendix B], please refer to this section for more formal definitions. =

2.5 Actual Instantiations

While Definition 3 is a very natural definition and is what we actually would
like as a multilinear map, up to now, we still do not know any such construction.
Known constructions [GGH13a, CLT13, GGH15, CLT15] of multilinear maps
are actually “noisy” variants of our formal definition. That is, each encoding
includes a random error term, and similarly to what happens for lattice-based
constructions, this error term grows when performing operations (addition or
multiplication). Eventually, this error term becomes too big and the MM.ZeroTest
can no longer recover the correct answer. This noise implicitly restricts the number
of operations that can be performed. Intuitively, in current constructions, the
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errors are added when performing an addition and multiplied when performing
a multiplication. However, the fact that current instantiations are noisy does
not pose any problem regarding our construction, as the number of operations
for evaluating our pseudorandom function is fixed and independent from the
instantiation of the multilinear map.

2.6 Straddling Sets
Our construction and its proofs use strong straddling sets [BGK+14,MSW14,
Zim15, BMSZ16], in order to prevent the adversary from mixing too many
encodings and creating encodings of zero. We recall their definition below. We
first recall that, for a set S , we say that {S1, . . . , Sk}, for some integer k, is
a partition of S , if and only if ∪ki=1Si = S , Si 6= ∅ and Si ∩ Sj = ∅, for any
1 ≤ i, j ≤ k, i 6= j.

Definition 7 [(Strong) Straddling Set System] For k ∈ N, a k-straddling set
system over a set S consists of two partitions S0 = {S0,1, . . . , S0,k} and S1 =
{S1,1, . . . , S1,k} of S such that the following holds: for any T ⊆ S , if T0, T1
are distinct subsequences of S0,1, . . . , S0,k, S1,1, . . . , S1,k such that T0 and T1 are
partitions of T , then T = S and T0 = Sb and T1 = S1−b for some b ∈ {0, 1}.

Moreover, we say that S0, S1 is a strong k-straddling set system if for any
1 ≤ i, j ≤ k, S0,i ∩ S1,j 6= ∅.

A strong k-straddling set system is clearly also a k-straddling set system.
Intuitively, a k-straddling set system ensures that the only two solutions to build
a partition of S from combining sets in S0 or S1 are to use either every element
in S0 or every element in S1.

We are only using strong straddling set systems in this paper, for the sake of
simplicity. However, we only rely on the straddling set property in all our proofs,
except the proof of one of our non-interactive assumptions, namely the Sel-Prod
assumption. Let us now recall the construction of strong straddling set systems
from [MSW14]. For the sake of completeness, we also recall the construction of
straddling set systems from [BGK+14] in Appendix A.

Construction 8 [Constructions of Strong Straddling Set Systems [MSW14]].
Let k be a fixed integer and let S = {1, . . . , k2}. Then the following partitions
Sb = (Sb,1, . . . , Sb,k), for b ∈ {0, 1}, form a strong k-straddling set system over
S :

S0,i = {k(i− 1) + 1, k(i− 1) + 2, . . . , ki}
S1,i = {i, k + i, 2k + i, . . . , k(k − 1) + i} .

This construction naturally extends to any set with k2 elements.

Strong straddling set systems also satisfy the following lemma. Please refer
to [BMSZ16] for proofs of constructions and lemma.

Lemma 9 Let S0, S1 be a strong k-straddling set system over a set U . Then for
any T ( U that can be written as a disjoint union of sets from S0, S1, there is a
unique b ∈ {0, 1} such that T = ∪i∈ISb,i for some I ⊆ {1, . . . , k}.
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S S0 S1

Fig. 1. Construction of strong 5-straddling set systems

3 Our Construction

Let us now describe our construction of an XOR-RKA-secure pseudorandom
function, for security parameter κ, key set K = {0, 1}k, with k = 2κ, and domain
D = {0, 1}n for some integer n.

3.1 Intuition

Construction Overview. The starting point of our construction is the Naor-
Reingold pseudorandom function, defined as NR : ( #”a , x) ∈ Z2n

p × {0, 1}n 7→
g
∏n

i=1
ai,xi , where #”a is the secret key. As we are interested in XOR relations, we

want the key to be a bitstring. A simple solution is to tweak this construction by
considering the function f #”a , #”c : (K,x) ∈ {0, 1}k×{0, 1}n 7→ g

∏k

i=1
ai,Ki

·
∏n

j=1
ci,xi ,

with #”a ∈ Zkp and #”c ∈ Znp . It is easy to see that without knowing #”a nor #”c , the
outputs of this function are computationally indistinguishable from random (they
correspond to NR evaluations with key ( #”a , #”c ) and on input (K,x)). However,
given a key K ∈ {0, 1}k, one needs the values #”a , #”c in order to be able to evaluate
this function, so these values need to be made public. Then, it becomes very easy,
even without knowing K, to distinguish this function from a random one.

That is why we use a multilinear map: this allows us to publicly reveal low-
level encodings of elements in #”a and #”c . These encodings let anyone evaluate
the function on any key K and any input x, while keeping the outputs of the
function computationally indistinguishable from random to an adversary that
does not know the secret key K. Formally, we let U = {1, . . . , k+n} be the set of
indices for a multilinear map, (ai,b)i∈{1,...,k},b∈{0,1} and (cj,b)j∈{1,...,n},b∈{0,1} be
random scalars in Zp and âi,b = [ai,b]{i} be an encoding of ai,b at index index i
and ĉj,b = [cj,b]{j+k} be an encoding of cj,b at index level j+k. We then consider
the function:

Fpp(K,x) =

 k∏
i=1

ai,Ki

n∏
j=1

cj,xj


U

=
k∏
i=1

âi,Ki ·
n∏
j=1

ĉj,xj ,

with public parameters pp including the public parameters of the multilinear
map as well as {âi,b}i∈{1,...,k},b∈{0,1} and (ĉj,b)j∈{1,...,n},b∈{0,1}.
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This construction can be easily proven to be an XOR-RKA secure pseudoran-
dom function in the generic multilinear map model, and it is also easy to show
that it does not let an adversary create encodings of zero. However, it seems very
hard to prove that this construction is secure under a non-interactive assumption.
Hence, we modify this construction by using a more complex set of indices
and straddling sets. While this makes the proof in the generic multilinear map
model a bit harder, this allows us to prove the security of our construction under
non-interactive assumptions, whose hardness seems plausible even with current
instantiations of multilinear maps. In particular, we prove in Appendices C and D
that these assumptions are secure in the generic multilinear map model and do
not let an adversary generate (non-trivial) encodings of zero.

Proof Overview. In the proof, we need to show that an oracle (s, x) 7→ Fpp(K⊕
s, x) (where K is chosen secretly uniformly at random) looks indistinguishable
from a random oracle. We first remark that we can write Fpp(K ⊕ s, x) as:

Fpp(K ⊕ s, x) =
k∏
i=1

γ̂i,si
·
n∏
j=1

ĉj,xj
,

where γ̂i,b = [ai,Ki⊕b]{i} is an encoding of ai,Ki⊕b for i ∈ {1, . . . , k} Thus, instead
of using K ∈ {0, 1}k as the key, we can use an alternative private representation:
(γ̂i,b)i∈{1,...,k}.

The main idea of our reduction is to be able to replace this private repre-
sentation of the key, by completely random group elements, independent of the
public parameters. We remark that the function

((γ̂i,b)i∈{1,...,k}, s) 7→
k∏
i=1

γ̂i,si
,

is a slight variant of the Naor-Reingold pseudorandom function with (γ̂i,b)i∈{1,...,k}
being the key and s ∈ {0, 1}k the input. It is actually possible to prove it is a
pseudorandom function under a DDH-like assumption, and from that to prove
that our construction is XOR-RKA-secure.

Unfortunately, it is obviously not true that given the public parameters
(âi,b)i∈{1,...,k},b∈{0,1} (which are encodings of ai,b), the real group elements
(γ̂i,b)i∈{1,...,k} (which are encodings ai,Ki⊕b) are indistinguishable from encodings
of independent uniform values: it is straightforward to check that âi,b corresponds
to the same scalar as ˆγi,b or ˆγi,1−b (depending whether Ki = 0 or 1), using
MM.ZeroTest (and after multiplying these group elements by the same group
elements to get a top-level encodings). Our solution is to use more complex index
sets based on strong straddling sets to solve this issue.

The first step consists in using a first strong k-straddling set S0: we use the
indices of the first partition for âi,0 and âi,1 (for each i, âi,0 and âi,1 get the same
index), and the indices of the second partition for γ̂i,0 and γ̂i,1. This prevents
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the adversary from comparing one group element âi,b with a group element γ̂i,b′
directly. But this is not sufficient, as the adversary still could check whether:

k∏
i=1

(âi,0 + âi,1) =
k∏
i=1

(γ̂i,0 + γ̂i,1) ,

for example. When (γ̂i,b)i∈{1,...,k} are correctly generated, the equality is satisfied,
while otherwise, it is not with overwhelming probability. More generally, the
adversary can generate expression which contains an exponential number of
monomials when expanded. We do not know how to prove anything reasonable
on these expressions, so instead, we are using k additional strong k-straddling
sets to prevent this from happening, in a similar way as they are used in [Zim15].

3.2 Actual Construction

Index set. First, similarly to [Zim15], for each i ∈ {0, . . . , k}, we construct a
strong k-straddling set system over a set Si of 2k − 1 fresh formal symbols. We
denote by Si,b the two partitions forming each of this straddling set, for b ∈ {0, 1},
and by Si,b,j their elements, for 1 ≤ j ≤ k. We also define:

BitCommiti,b = Si,b,i BitFilli1,i2,b1,b2 = Si1,b1,i2 · Si2,b2,i1

for any i, i1, i2 ∈ {1, . . . , k} and b, b1, b2 ∈ {0, 1}. Intuitively, the straddling set
systems Si for i ≥ 1 play the same role as in [Zim15] (preventing the adversary
from mixing an exponential number of inputs), while S0 is used in the proof to
prevent the adversary from mixing the private representation of the key with the
public parameters.

Let Xj be fresh formal symbols for j ∈ {1, . . . , n}. We then define the top-level
index set as follows:

U =
k∏
i=0

Si

n∏
j=1

Xj .

Setup. The algorithm Setup first generates the parameters (mm.pp,mm.sp, p)
for the multilinear map by running MM.Setup(1κ,U ). Then it generates the
following elements:

ai,b
$← Zp for i ∈ {1, . . . , k} and b ∈ {0, 1}

âi,b ← [ai,b]S0,0,iBitCommiti,b
for i ∈ {1, . . . , k} and b ∈ {0, 1}

cj,b
$← Zp for j ∈ {1, . . . , n} and b ∈ {0, 1}

ĉj,b ← [cj,b]Xj
for j ∈ {1, . . . , n} and b ∈ {0, 1}

ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2
for i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
with i1 < i2 ,
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and outputs the following parameters:

pp =
(

mm.pp, (âi,b)i,b, (ĉj,b)j,b, (ẑi1,i2,b1,b2)i1,i2,b1,b2

)
.

Intuitively, BitCommiti,b = Si,b,i is associated to the (public) encoding used to
evaluate the function if the i-th bit of the key is b. By definition of a straddling set,
the only way to reach the top-level U , which contains Si, once we have used an
encoding with index Si,b,i is to use every index Si,b,j with j 6= i. These is done by
multiplying the terms ẑi,j,Ki,Kj

. Therefore, using Ki = b is like “committing” to
the partition Si,b of Si, and terms ẑi,j,Ki,Kj

are then used to “fill” this partition.

Remark 10 For the sake of simplicity, we set ẑi1,i2,b1,b2 to be encodings of 1,
but one could also simply set it to encodings of a random value, as soon as they
are all encodings of the same value.

Evaluation. The output of the PRF on a key K ∈ {0, 1}k and an input x ∈
{0, 1}n is

Fpp(K,x) = MM.Extract

 k∏
i=1

âi,Ki

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2

 .

We can re-write it as:

Fpp(K,x) = MM.Extract

 k∏
i=1

ai,Ki

n∏
j=1

cj,xi


U

 .

Extraction. As explained in Remark 4, the role of extraction (MM.Extract)
is dual. First, it ensures the correctness of the PRF, as in currently known
instantiations of multilinear maps [GGH13a,CLT13,GGH15,CLT15], a scalar
has many different encodings. Second, it is used in our proof of security under
non-interactive assumptions in Section 5, as in the security proof we change the
way the group element

k∏
i=1

âi,Ki

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2

is computed. We indeed recall that due to the fact that a scalar has many different
encodings, any group element (as the above one) leaks information on the exact
computation used to obtain it, instead of just depending on its discrete logarithm.
The usual way to solve this issue is to randomize the resulting group element
using encodings of zero. However, in this paper, we do not want to use any
encoding of zeros, hence the requirement for this extraction. For the proof in
the generic multilinear map model in Section 4, this is not an issue, and we just
ignore the extraction (see Remark 4).
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4 Security in the Generic Multilinear Map Model

In this section, we prove the security of our construction in the generic multilinear
map model. As already explained at the end of Section 3, we suppose in this section
that no extraction is performed. We actually even prove that no polynomial-
time adversary can construct a (non-trivial) encoding of zero, in any of the
two experiments RKPRFReal and RKPRFRand, with non-negligible probability.
This implies, in particular, that these two experiments cannot be distinguished
by a polynomial-time adversary, in the generic multilinear map model, as an
adversary only sees handles which only leak information when two of them
correspond to the same (top-level) element.

This section is mainly a warm-up to familiarize with the model, since the
fact that we prove our construction under some assumptions that are proven
secure in the generic multilinear map model and proven to not let an adversary
generate encodings of zero also implies the results below. However, it is very
simple to modify the proof below in order to prove the security of the simplified
construction proposed in Section 3.1, which is of independent interest.

We first need to formally define the notion of (non-trivial) encoding of zero.
We follow the definition of Badrinarayanan et al. [BMSZ16].

Definition 11 [(Non-trivial) encoding of zero] An adversary A in the generic
multilinear map model with multilinear map oracle M returns a (non-trivial)
encoding of zero if it returns a handle h (output by M ) such that h corresponds
to the element 0 in M ’s table and the polynomial corresponding to the handle is
not identically null.

Theorem 12 (Impossibility of constructing encodings of zero) In the
generic multilinear map model with oracle M , for any adversary A making
at most qM queries to the oracle M and qRKFn queries to the oracle RKFn, we
have:

Pr
[

PRFRealAFpp
⇒ an encoding of 0

]
≤ qM

(
qRKFn

2k + k + n

p

)
and

Pr
[

PRFRandA
Fpp
⇒ an encoding of 0

]
≤ qM

k + n

p
.

Proof (Theorem 12). We first introduce a technical lemma, whose proof is given
in Appendix B.

Lemma 13 Let k and n be two positive integers. Let U be the index defined in
Section 3. Let ẑi1,i2,b1,b2 = [1]BitFilli1,i2,b1,b2

for 1 ≤ i1 < i2 ≤ k and b1, b2 ∈ {0, 1}.
Let Z1 and Z2 be two subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2. If
t1 =

∏
(i1,i2,b1,b2)∈Z1

ẑi1,i2,b1,b2 and t2 =
∏

(i1,i2,b1,b2)∈Z2
ẑi1,i2,b1,b2 have the same

index set, then Z1 = Z2.
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We need to show that the adversary cannot generate a non-trivial encoding of
zero.
RKPRFRandA

Fpp
. We start by proving it in the game RKPRFRandA

Fpp
. In this

game, except for ẑi1,i2,b1,b2 , all the handles the adversary sees correspond to fresh
new formal variables, as the oracle RKFn only returns fresh new formal variables
(of index U ). The only polynomials the adversary can generate are therefore of
the form:

P =
L∑
`=1

Q`
∏

(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

where Q` are polynomials over all the elements except ẑi1,i2,b1,b2 , and Z` are
distinct subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2 (L might be exponential
in qM , but that does not matter for what follows).

Let us now show that if P is not the zero polynomial, then when replacing
ẑi1,i2,b1,b2 by 1, the resulting polynomial is still a non-zero polynomial. From
Lemma 13, one can assume that elements

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 all have
distinct indices. Therefore, the polynomials Q` all have distinct indices too. No
monomial in two different Q` of the sum

∑
`Q` (when forgetting the indices) can

therefore cancel out, otherwise this would mean that the adversary can construct
two equal monomials (without ẑi,b) with two different indices. This is impossible
as, except for ẑi,b, two distinct handles correspond to two fresh variables (or in
other words, all the handles except ẑi,b are encodings of scalars chosen uniformly
and independently at random).

We therefore simulate the oracle M as follows: we do everything as normal,
but we make the zero-testing oracle always output “non-zero” except when its
input corresponds to the zero polynomial. The Schwarz-Zippel lemma ensures
that any non-zero polynomial of degree at most k + n and whose variables are
fixed to uniformly random values in Zp does not evaluate to zero, except with
probability at most (k + n)/p. In other words, the zero-testing oracle outputs
“zero” on a non-zero polynomial with probability at most (k + n)/p, as this
polynomial remains non-zero and has degree at most (k + n), when we replace
ẑi1,i2,b1,b2 by 1. As we can suppose that the zero-testing oracle is queried with the
output of the adversary without loss of generality, using at most qM hybrid games
(replacing one-by-one every output of the zero-testing oracle with “non-zero”) we
get that:

Pr
[

PRFRandA
Fpp
⇒ an encoding of 0

]
≤ qM

k + n

p
.

RKPRFRealAFpp
. Let us now look at the game RKPRFRealAFpp

. The analysis is
more complicated as the adversary has access to new formal variables

ŷs,x = Fpp(K ⊕ s, x)

returned by queries RKFn(φs, x).
We use the same simulator as in the previous case. We need to show that if a

polynomial P produced by the adversary is not zero, it remains non-zero when
ẑi1,i2,b1,b2 is replaced by 1 and ŷs,x is replaced by its value.
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We first consider the case where P is not a top-level polynomial. In this case,
P cannot contain these new variables ŷs,x as these variables are top-level. Then,
as in RKPRFRandA

Fpp
, the zero-testing oracle outputs “non-zero” except with

probability at most (k + n)/p.
Let us now suppose that P is a top-level polynomial. This polynomial has

the form:

P =
L∑
`=1

Q`

k∏
i=1

âi,K′
`,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′`,i1
,K′

`,i2
+

q′∑
j=1

λj ŷsj ,xj
,

with L being a non-negative integer (possibly exponential in qM ), Q` being
non-zero polynomials in the formal variables ĉj,b, K ′` being distinct bitstrings
in {0, 1}k (chosen by the adversary), q′ an integer less or equal to qRKFn,
(s1, x1), . . . , (sq′ , xq′) queries to RKFn, and λj some scalar in Zp. Indeed, the
adversary can ask for an encoding of any polynomial of the form Q`

∏k
i=1 âi,K′`,i

,
and by definition of straddling set systems, the unique way to obtain a top-
level encoding from such a polynomial is by multiplying it with an encoding of∏k
i1=1

∏k
i2=i1+1 ẑi1,i2,K′`,i1

,K′
`,i2

.
Let us suppose that P is not zero but becomes zero when ẑi1,i2,b1,b2 is replaced

by 1 and ŷs,x is replaced by its value. In this case, in particular, the first monomial
(for any order) of the term

Q1

k∏
i=1

âi,K′1,i

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,K′1,i1
,K′1,i2

necessarily needs to be canceled out by some ŷsj ,xj
. The probability over K $←

{0, 1}k that this happens is at most:

Pr [ ∃j′ ∈ {1, . . . , q′}, K ′1 = K ⊕ sj′ ] ≤
q′

2k ≤
qRKFn

2k .

As before, thanks to the Schwarz-Zippel lemma, we get that the zero-testing
oracle outputs “zero”, on input a non-zero polynomial, with probability at most:

qRKFn
2k + k + n

p
.

This concludes the proof of Theorem 12. ut

Remark 14 We never use the properties of the straddling set system S0 in
this proof. These properties are only used in our proof under non-interactive
assumptions in Section 5.

We obtain the following immediate corollary.

Corollary 15 (Security in the generic multilinear map model) Let A
be an adversary in the generic multilinear map model with oracle M against the
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XOR-RKA security of the PRF F defined in Section 3. If A makes at most qM
queries to the oracle M and qRKFn queries to the oracle RKFn, then:

Advprf-rka
Φ⊕,Fpp

(A ) ≤ qM qRKFn
2k + 2qM (k + n)

p
.

Proof (Corollary 15). We just consider an intermediate game where we simulate
everything as before except the zero-testing oracle which always outputs “non-
zero” unless its input is zero, as a polynomial. This game is indistinguishable
from both RKPRFRealAFpp

and RKPRFRandA
Fpp

according to Theorem 12 (up to
the bounds in this lemma). Corollary 15 follows. ut

5 Security Under Non-Interactive Assumptions

In this section, we show that our construction is an XOR-RKA PRF under two
non-interactive assumptions defined below.

5.1 Assumptions

We use two assumptions that we call the (k, n,X, Y )-XY-DDH assumption,
which is roughly a generalization of the standard DDH assumption, and the
(k, n)-Sel-Prod assumption. We show in Appendices C and D that both these
assumptions are secure in the generic multilinear map model, and even that
an adversary against these assumptions cannot generate encodings of zero. As
explained in the “concrete instantiations” paragraph of Section 1, contrary to
most assumptions considered on multilinear maps (e.g., classical DDH-like as-
sumptions and the multilinear subgroup assumption [GLW14,GLSW15]), these
assumptions are therefore plausible at least with two current instantiations of
multilinear maps [CLT13,GGH15].

To ensure the impossibility of generating encodings of zero, in these two
assumptions, we restrict the adversary’s capabilities as follows: it is only provided
parameters mm.pp, so it can only run MM.Add,MM.Mult and MM.ZeroTest (and
of course use the elements generated by the assumption), but we do not allow the
adversary to generate new encodings of a chosen scalar. In particular, this forces us
to let the assumption contain the group elements ẑi1,i2,b1,b2 . It is straightforward
to get rid of these additional elements by allowing the adversary to generate any
element of the multilinear map, at the cost of getting an implausible assumption
under current instantiations of multilinear maps.

Finally, our assumption implicitly contains a list L of a polynomial number
of encodings of independent uniform random values at non-zero index, index
being implicit parameters of the assumption. We could avoid this artifact with
the previous proposition as well, or by giving a sufficient number of encodings of
0 and 1, but once again, in that case, the assumption would most likely not hold
with currently known multilinear maps instantiations. We believe this is a small
price to pay to get plausible assumptions, as the resulting assumptions are still
non-interactive.
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We insist on the fact that the encodings in L are encodings of independent
uniformly random scalars. At least in the generic multilinear group model, our
assumptions hold whatever the list of indices of these encodings is. We do not
have any constraint on this list of indices.

Definition 16 [(k, n,X, Y )-XY-DDH] Let k and n be two positive integers. Let
X and Y be two non-empty and disjoint indices in the index set U of our con-
struction in Section 3. The advantage of an adversary D against the (k, n,X, Y )-
XY-DDH problem is:

Adv(k,n,X,Y )-XY-DDH(D) = Pr
[

(k, n,X, Y )-XY-DDH-LD ⇒ 1
]
−

Pr
[

(k, n,X, Y )-XY-DDH-RD ⇒ 1
]
,

where the games (k, n,X, Y )-XY-DDH-LD and (k, n,X, Y )-XY-DDH-RD are de-
fined in Fig. 2. The (n, k,X, Y )-XY-DDH assumption holds when this advantage
is negligible for any polynomial-time adversary D .

This assumption is very close to the classical DDH assumption with indices,
with two main differences: the presence of elements ẑi1,i2,b1,b2 which are necessary
to prove our construction and the implicit presence of encodings of random
values at non-zero indices (list L described previously) instead of a polynomial
number of encodings of 0 and 1. Without the elements ẑi1,i2,b1,b2 , the proof
of this assumption in the generic multilinear map model would be completely
straightforward. The difficulty of the proof is to deal with these elements.

In the security proof of our construction, this assumption is used in a similar
way as the DDH assumption in the proof of the Naor-Reingold PRF.

Definition 17 [(k, n)-Sel-Prod] Let k and n be two positive integers. The ad-
vantage of an adversary D against the (k, n,X, Y )-Sel-Prod problem is:

Adv(k,n)-Sel-Prod(D) = Pr
[

(k, n)-Sel-Prod-LD ⇒ 1
]
−

Pr
[

(k, n)-Sel-Prod-RD ⇒ 1
]
,

where the games (k, n)-Sel-Prod-LD and (k, n)-Sel-Prod-RD are defined in Fig. 2.
The (n, k)-Sel-Prod assumption holds when this advantage is negligible for any
polynomial-time adversary D .

Intuitively, this assumption states that, given a low-level encodings of ai,0
and ai,1 at indices S0,i from the first partition of the straddling set S , where
i ∈ {1, . . . , k}, then it is hard to distinguish low-level encodings of γi,0 = ai,Ki

and γi,1 = ai,1−Ki
(where Ki is a random bit) at indices S1,i from encodings

of fresh random values (at the same index). The hardness of this assumption
crucially relies on two facts: First, one can only compare top-level encodings, and
thus, the only way to compare elements whose index is in the first partition of
S with elements whose index is in the second partition is to combine k such
elements to reach the same index. Second, the latter can be hard only if k, the
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(k, n,X, Y )-XY-DDH-LD (k, n,X, Y )-XY-DDH-RD

proc Initialize
(mm.sp,mm.pp) $← MM.Setup(1κ,U )
d0, d1, e

$← Zp
d̂0 ← [d0]X ; d̂1 ← [d1]X
ê0 ← [ed0]XY ; ê1 ← [ed1]XY
For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}

ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2
Return (L,mm.pp, d̂0, d̂1, ê0, ê1,

(ẑi1,i2,b1,b2 ))
proc Finalize(b)
Return b

proc Initialize
(mm.sp,mm.pp) $← MM.Setup(1κ,U )
d0, d1, e0, e1

$← Zp
d̂0 ← [d0]X ; d̂1 ← [d1]X
ê0 ← [e0]XY ; ê1 ← [e1]XY
For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}

ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2
Return (L,mm.pp, d̂0, d̂1, ê0, ê1,

(ẑi1,i2,b1,b2 ))
proc Finalize(b)
Return b

(k, n)-Sel-Prod-LD (k, n)-Sel-Prod-RD

proc Initialize
(mm.sp,mm.pp) $← MM.Setup(1κ,U )
K

$← {0, 1}k
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp; γi,Ki⊕b ← ai,b

âi,b ← [ai,b]S0,0,iBitCommiti,b

γ̂i,Ki⊕b ← [γi,Ki⊕b]S0,1,iBitCommiti,Ki⊕b

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

Return (L,mm.pp, (âi,b), (γ̂i,b),
(ẑi1,i2,b1,b2 ))

proc Finalize(b)
Return b

proc Initialize
(mm.sp,mm.pp) $← MM.Setup(1κ,U )

For i ∈ {1, . . . , k} and b ∈ {0, 1}
ai,b

$← Zp; γi,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b

γ̂i,b ← [γi,b]S0,1,iBitCommiti,b

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

Return (L,mm.pp, (âi,b), (γ̂i,b),
(ẑi1,i2,b1,b2 ))

proc Finalize(b)
Return b

Fig. 2. Games defining the advantage of an adversary D against the XY-DDH and
Sel-Prod problems.
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size of the partitions, is big. Indeed, assume k = 2, then one can just guess
K1 and K2 and check if the relation carries on between encodings of ai,b and
encodings of γi,b. Therefore, we show that if k is big enough, this assumption
holds in the generic multilinear map model.

As explained in Section 3.1, this assumption is used to switch from the key K
to a private independent key represented by the encodings γi,b. More precisely,
under this assumption, we can replace the encodings âi,Ki⊕si at index from the
first partition of the straddling set S0, used in the computation of the output
with relation s, to encodings of uniformly random scalars at index from the
second partition of S0. In particular, doing this change, we no longer need to
know the key K to simulate correctly the output, but only the relations s for
each query.

Remark 18 For the sake of simplicity, we do not explicitly specify the noise
level in our assumptions. It can easily be made to work with our proof.

5.2 Security of our Construction

In this whole section, we set S =
∏k
i=0 Si and S ′ =

∏k
i=1 Si, so S = S0 ·S ′.

Please refer to Section 3 for notation.

Theorem 19 (Security under non-interactive assumptions) Let A be a
polynomial-time adversary against the XOR-RKA security of the PRF F defined
in Section 3. We suppose that A makes at most qRKFn queries to the oracle
RKFn. We can define an adversary D against the (k, n)-Sel-Prod problem, (k −
1) adversaries Bi′ against the (k, n,S ′

∏i′−1
i=1 S0,1,i, S0,1,i′)-XY-DDH problem

for i′ ∈ {2, . . . , k}, and n adversaries Cj′ against the (k, n,S
∏j′−1
j=1 Xj , Xj′)-

XY-DDH problem for j′ ∈ {1, . . . , n}, such that:

Advprf-rka
Φ⊕,Fpp

(A ) ≤ Adv(k,n)-Sel-Prod(D)+
k∑

i′=2
qRKFn ·Adv(k,n,S ′

∏i′−1
i=1

S0,1,i,S0,1,i′ )-XY-DDH(Bi′)+

n∑
j′=1

qRKFn ·Adv(k,n,S
∏j′−1

j=1
Xj ,Xj′ )-XY-DDH(Cj′) .

Furthermore, all these adversaries run in polynomial time (their running time is
approximately the same as A ).

Below, we provide a sketch of the proof. The full proof is given in Appendix E.
Sketch of proof. The proof follows a sequence of hybrid games. The first
hybrid corresponds exactly to RKPRFRealAF , while the last game corresponds to
RKPRFRandA

F . Here is how we proceed. First, instead of computing the output
using encodings âi,b of ai,b with index S0,0,iBitCommiti,b, we use encodings γ̂i,b
of ai,Ki⊕b with index S0,1,iBitCommiti,Ki⊕b. That is, we use the second partition
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S0,1 of the straddling set S0 instead of the first one (S0,0) to reach top-level
index (which contains S0). Also, we now compute the output using only the
relation s instead of the key K. More precisely, the output on a query (s, x) is
computed as:

MM.Extract

 k∏
i=1

γ̂i,si

n∏
j=1

ĉj,xj

k∏
i1=1

k∏
i2=i1+1

ẑi1,i2,Ki1 ,Ki2

 ,

which can be computed without knowing K. This does not change anything
regarding the output (thanks to the extraction), so these two games are indistin-
guishable.

However, using the (k, n)-Sel-Prod assumption, we can now switch the encod-
ings γ̂i,b to encodings of fresh random scalars γi,b ∈ Zp. The rest of the proof
is very similar to the proof of the Naor-Reingold pseudorandom function. We
do k + n hybrid games, where in the j-th hybrid, we just switch products of
encodings

∏j
i=1 γ̂i,si

to encodings of uniformly fresh random values using the
XY-DDH assumption with the proper indices. These modifications are done in a
lazy fashion to obtain a polynomial-time reduction.
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A Construction of Straddling Set Systems

Construction 20 [Constructions of Straddling Set Systems [BGK+14]]. Let k
be a fixed integer and let S = {1, . . . , 2k − 1}. Then, the following partitions
form a k-straddling set system over S :

S0 = (S0,1, . . . , S0,k) = ({1}, {2, 3}, {4, 5}, . . . , {2k − 4, 2k − 3}, {2k − 2, 2k − 1})
S1 = (S1,1, . . . , S1,k) = ({1, 2}, {3, 4}, . . . , {2k − 3, 2k − 2}, {2k − 1}) .

This construction naturally extends to any set with 2k − 1 elements.

S

S0

S1

Fig. 3. Construction of 5-straddling set systems

B Proof of Lemma 13

Proof (Lemma 13). Let T denote the index set of t1 and t2. For i = 1, . . . , k,
one can intersect T with Si. As T cannot contain Si (since it cannot contain
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Si,b,i for any b ∈ {0, 1} as it is not contained in any index set of any ẑi1,i2,b1,b2),
we have T ∩ Si 6= Si. Therefore, for any (i1, i2, b1, b2) ∈ Z1 with i1 < i2, as
Si1,b1,i2 is in the index set of t1 and T ∩Si1 6= Si1 , there exists b′ such that
Si1,b1,i2,b′ is in Z2 (so that Si1,b1,i2 is in the index set of t2), by definition of
a straddling set system. Then, there are two possibilities: either b′ = b2 and
(i1, i2, b1, b2) ∈ Z2, or b′ = 1− b2. In the latter case, this means that Si2,b2,i1 is
contained in the index set of t1 and Si2,1−b2,i1 is contained in the index set of t2.
As T ∩Si2 6= Si2 , this contradicts the fact that t1 and t2 have the same index
set. Lemma 13 immediately follows. ut

C Security of the XY-DDH Assumption in the Generic
Multilinear Map Model

Theorem 21 (Impossibility of constructing encodings of zero) Let k, n
be two positive integers. Let X and Y be two non-empty and disjoint indices from
the index set U of our construction in Section 3. In the generic multilinear map
model with oracle M , for any adversary D making at most qM queries to the
oracle M , we have:

Pr
[

(k, n,X, Y )-XY-DDH-LD ⇒ an encoding of 0
]
≤ qM

|U |
p

and

Pr
[

(k, n,X, Y )-XY-DDH-RD ⇒ an encoding of 0
]
≤ qM

|U |
p

.

Proof (Theorem 21). We consider the two cases separately.
(k, n,X, Y )-XY-DDH-RD . Except for ẑi1,i2,b1,b2 , all the handles the adversary sees
corresponds to fresh variables: d̂0, d̂1, ê0, ê1, in addition to the ones it can generate
using the list L. We can therefore conclude exactly as in the case RKPRFRandA

F

of the proof of Theorem 12. The only difference is that the maximum degree of
the polynomials the adversary can create is at most |U | (instead of k + n), as
the adversary does not have access to elements of index ∅ (i.e., scalars).
(k, n,X, Y )-XY-DDH-LD . Similarly to the case RKPRFRealAF of the proof of
Theorem 12, we just need to prove that any non-zero polynomial P remains
non-zero when it remains non-zero when ẑi1,i2,b1,b2 is replaced by 1 and ê0 and
ê1 are replaced respectively by ed0 and ed1 (where e is a fresh formal variable).

Such a non-zero polynomial P can be written Q0d̂0 +Q1d̂1 +Q2ê0 +Q3ê1,
where Q0, Q1, Q2, Q3 are four polynomials over all the formal variables except
d̂0, d̂1, ê0, ê1, because indices prevent the multiplication of two of the variables
d̂0, d̂1, ê0, ê1. Furthemore at least one of the polynomials Q0, Q1, Q2, Q3 is non-
zero, and it remains non-zero when ẑi1,i2,b1,b2 is replaced by 1 (with a proof
similar to the one of the case RKPRFRandA

F of the proof of Theorem 12, using
Lemma 13). Thus, even when replacing ẑi1,i2,b1,b2 by 1 and (ê0, ê1) by (ed0, ed1),
P remains non-zero.

This concludes the proof. ut
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Similarly to Corollary 15, we have the following corollary.

Corollary 22 (Security in the generic multilinear map model) Let k, n
be two positive integers. Let X and Y be two non-empty and disjoint indices in
the index set U of our construction in Section 3. In the generic multilinear map
model with oracle M , for any adversary D making at most qM queries to the
oracle M , we have:

Adv(k,n,X,Y )-XY-DDH(D) ≤ 2qM
|U |
p

.

Proof (Corollary 22). We just consider an intermediate game where we simulate
everything as before except the zero-testing oracle which always outputs “non-
zero” unless its input is zero, as a polynomial. Corollary 22 easily follows. ut

D Security of the Sel-Prod Assumption in the Generic
Multilinear Map Model

The proof of the Sel-Prod assumption is subtle and first requires the introduction
of the notion of profiles and some lemmata. As mentioned in the body of the
paper, for this part, we will consider that the straddling set systems used in the
construction are strong straddling set systems.

D.1 Proof Ingredient: Index Sets and Profiles

We adapt the proof in [Zim15, Section 3.4] to our case. In the whole section,
monomials and polynomials are over the formal variables âi,b, γ̂i,b, ĉj,b, ẑi1,i2,b1,b2 ,
for i, i1, i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, b, b1, b2 ∈ {0, 1}. Furthermore, we use the
index set U defined in Section 3. We also write â0

i,b = âi,b and â1
i,b = γ̂i,b, for

i ∈ {1, . . . , k} and b ∈ {0, 1}.

Definition 23 [Profile of a monomial] Let t be a monomial. For any i ∈
{1, . . . , k} and any bit b ∈ {0, 1}, t incorporates b as its i-th bit if and only if t con-
tains one of the following formal variables: âb′i,b, ẑi,i′,b,b′ , ẑi′,i,b′,b for i′ ∈ {1, . . . , k}
and b′ ∈ {0, 1}. The profile of t is the tuple prof(t) = ((prof(t))1, . . . , (prof(t))k) ∈
{0, 1, ∗}k such that prof(t)i = bi = b if t incorporates b as its i-th bit, and
prof(t)i = bi = ∗ if t does not incorporate 0 nor 1 as its i-th bit.

Please note that since we use strong straddling set systems, t cannot incorpo-
rate both 0 and 1 as its i-th bit.

Definition 24 [Partial profile, conflict, and merge] Let t1 and t2 be two mono-
mials. We say that:

– the profile prof(t1) is partial if prof(t1)i = ∗ for some i ∈ {1, . . . , k};
– the profiles prof(t1) and prof(t2) conflict if there exists i ∈ {1, . . . , k} such

that prof(t1)i, prof(t2)i ∈ {0, 1} and prof(t1)i 6= prof(t2)i.
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We also define the merge of two non-conflicting profiles prof(t1) and prof(t2) as
the tuple (b1, . . . , bn) such that:

bi =


prof(t1)i if prof(t1)i ∈ {0, 1}
prof(t2)i if prof(t2)i ∈ {0, 1}
∗ otherwise.

Definition 25 [Profile of a polynomial] Let P be a polynomial. The profile of a
polynomial P is the set {prof(t) | t is in the formal expansion of P}.

Let us now characterize the polynomials that appears in Sel-Prod.

Lemma 26 (Characterization of polynomials in Sel-Prod) Let A denote
an adversary in the generic multilinear map model, making at most q queries to
the multilinear map oracle M , and returning a handle h corresponding to some
polynomial P . Then, P satisfies one of these two conditions:
1. prof(P ) is a singleton:

(a) if the index of P does not contain S0, there exists a polynomial Q
in the formal variables ĉi,b for i ∈ {1, . . . , n} and b ∈ {0, 1}, together
with some bit β ∈ {0, 1}, some tuple K ′ ∈ {0, 1, ∗}k, and some set
Z ⊆ {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2 such that:

P = Q ·
k∏
i=1
K′i 6=∗

âβi,K′
i
·

∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 ;

(b) if the index of P does contain S0, there exist two polynomials Q0 and Q1
in the formal variables ĉi,b for i ∈ {1, . . . , n} and b ∈ {0, 1}, some tuple
K ′ ∈ {0, 1}k, and some set Z ⊆ {(i1, i2) | 1 ≤ i1 < i2 ≤ k}×{0, 1}2 such
that:

P =
(
Q0 ·

k∏
i=1

â0
i,K′

i
+Q1 ·

k∏
i=1

â1
i,K′

i

)
·

∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 .

2. prof(P ) is a set containing at least 2 and at most q non-partial profiles
prof(P ) = {K ′1, . . . ,K ′q′}, with q′ ≤ q:
(a) if the index of P does not contain S0, there exist polynomials Q1, . . . , Qq′ ,

q′ ≥ 2, I ⊆ {1, . . . , k}, sets Z1, . . . , Zq′ , and a bit β such that:

P =
q′∑
`=1

Q` ·
∏
i∈I

âβi,K′
`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ;

(b) if the index of P does contain S0, there exist polynomials Q1,0, Q1,1, . . . ,
Qq′,0, Qq′,1 in the formal variables ĉi,b for i ∈ {1, . . . , n}, sets Z1, . . . , Zq′ ,
and b ∈ {0, 1}, such that:

P =
q′∑
`=1

(
Q`,0 ·

k∏
i=1

â0
i,K′

`,i
+Q`,1 ·

k∏
i=1

â1
i,K′

`,i

)
·

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 .
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In addition, when the index set of P does not contain any Si for i ≥ 1, then
necessarily q′ = 1.

Furthermore prof(P ) and the above decompositions of P can be efficiently com-
puted (i.e., in a time polynomial in κ and q).

The proof is by induction over the expression of the polynomials formed by
the adversary. We first need to introduce some intermediate lemmata.

Lemma 27 (Impossibility to add partial terms) Let t1, t2 be two monomi-
als. If prof(t1) or prof(t2) is partial and prof(t1) 6= prof(t2), then t1 and t2 do not
have the same index set.

Proof (Lemma 27). We can assume without loss of generality that, for a fixed
bit b ∈ {0, 1} and some i ∈ {1, . . . , k}, prof(t1)i = b and prof(t2)i 6= b. Hence, as
prof(t2)i 6= b and as prof(t2) 6= ⊥, t2 cannot contain a factor of âb′i,b, ẑi,i′,b,b′ or
ẑi′,i,b′,b for any i′ ∈ {1, . . . , k} and b, b′ ∈ {0, 1}. We now prove Lemma 27 by
contradiction. The possible cases are the following:

– Suppose t1 contains a factor of âb′i,b. Then its index set was formed using
BitCommiti,b = Si,b,i. Since t2 does not contain a factor of âb′i,b, its index
set was not formed using BitCommiti,b = Si,b,i. Therefore, if t1 and t2 have
the same index set, by definition of a straddling set, this index set has to
contain the whole set Si. However, for every i′ ∈ {1, . . . , k} with i 6= i′,
the only encodings that contain Si,b,i′ , for any b ∈ {0, 1}, are ẑi,i′,b,b′ and
ẑi′,i,b′,b for some b′ ∈ {0, 1}. This implies that t1 contains a factor of ẑi,i′,b,b′
or ẑi′,i,b′,b for some b′ ∈ {0, 1}, for every i′ ∈ {1, . . . , k} and similarly, that t2
contains a factor of ẑi,i′,1−b,b′ or ẑi′,i,b′,1−b for some b′ ∈ {0, 1} and for every
i′ ∈ {1, . . . , k}. This contradicts the fact that at least one of the two profiles
is partial.

– Suppose t1 does not contain any factor of âb′i,b but does contain a factor
of ẑi,i′,b,b′ or ẑi′,i,b′,b for some i′ ∈ {1, . . . , k} and some b ∈ {0, 1}. Then,
its index set was formed using BitFilli,i′,b,b′ = Si,b,i′Si′,b′,i or BitFilli′,i,b′,b =
Si′,b′,iSi,b,i′ , so in particular using Si,b,i′ . Then, one can apply the same
argument than in the previous case to exclude this case.

Lemma 27 immediately follows. ut

Lemma 28 Let Q1, Q2 be two polynomials in the formal variables ĉi,b, for i ∈
{1, . . . , n} and b ∈ {0, 1}, β1, β2 two bits, K ′1,K ′2 two tuples in {0, 1, ∗}k, and
Z1, Z2 two subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2. Let P1 and P2 be the
two polynomials defined by

P` = Q`

k∏
i=1

K′`,i 6=∗

âβ`

i,K′
`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,
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for ` ∈ {1, 2}. If the index of P1 and P2 is the same but does not contain S0 nor
any Si for i ≥ 1, then K ′1 = K ′2 and Z1 = Z2. The latter condition (on the index
not containing any Si for i ≥ 1) is in particular satisfied when the profile of P1
(and so of P2 too) contains a partial profile.

Proof (Lemma 28). The proof is similar to that of Lemma 27. The fact that the
index of P1 (and P2) does not contain S0 guarantees that there exists i such
that K ′1,i = ∗. Thanks to the definition of a straddling set, this means that both
polynomials contain exactly the same sets from the two partitions {S0,0,i}i and
{S0,1,i}i of S0 and then, thanks to Lemma 9 K ′1,i 6= ∗ if and only if K ′2,i 6= ∗
and β1 = β2. Moreover, for any i such that K ′1,i 6= ∗, assume K ′1,i = b. Then the
index set of P1 is formed using Si,b,i, but since Si is not contained in it, we have
immediately K ′2,i = b. Therefore, K ′1 = K ′2. Similarly, we must have Z1 = Z2,
and Lemma 28 immediately follows. ut

Lemma 29 Let Q1,0, Q1,1, Q2,0, Q2,1 be four polynomials in the formal variables
ĉi,b, for i ∈ {1, . . . , k} and b ∈ {0, 1}, K ′1,K ′2 two tuples in {0, 1, ∗}k, and Z1, Z2
two subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2. Let P1 and P2 be the two
polynomials defined by

P` =

Q`,0 k∏
i=1

K′`,i 6=∗

â0
i,K′

`,i
+Q`,1

k∏
i=1

K′`,i 6=∗

â1
i,K′

`,i

 · ∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

for ` ∈ {1, 2}. If the index of P1 and P2 is the same but does not contain any Si

for i ≥ 1, then K1 = K2 and Z1 = Z2. The latter condition (on the index not
containing any Si for i ≥ 1) is in particular satisfied when the profile of P1 (and
so of P2 too) contains a partial profile.

Proof (Lemma 29). This lemma is almost the same as the proof of the previous
lemma. Please note that since terms â0

i,b and â1
i,b have an index containing S0,0,i

and S0,1,i respectively, the only way the above polynomials are well-defined is
if either their index contains the whole S0 (and thus K ′` ∈ {0, 1}k) or nothing
from S0 (and thus K ′` = ∗k). The rest of the proof is exactly the same as the
previous proof. ut

We now have every tool to prove Lemma 26.

Proof (Lemma 26). In this proof, the integers i, i1, i2 are in {1, . . . , k} and b is a
bit. We set S ′ =

∏k
i=1 Si. Furthermore:

– Q and Q` always denote polynomials in the formal variables ĉi,b,
– β and β` always denot bit strings in {0, 1}k,
– K ′ and K ′` always denote tuples in {0, 1, ∗}k, and
– Z and Z` always denote subsets of {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × {0, 1}2.
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We prove the Lemma 29 by induction on the sequence of formal polynomials
P formed by the adversary A via oracle queries. Let P denote a newly formed
polynomial. We consider the following cases:

– Suppose P = t with t being a monomial: clearly, prof(P ) is a singleton
containing either a partial profile or a non-partial profile. Moreover, as a
monomial, it is straightforward that it has the expected form detailed in the
statement of Lemma 26.

– Suppose P = P1 +P2 with P1, P2 some polynomials already formed. We have
two possible cases:
1. prof(P1) or prof(P2) is a singleton containing one partial profile. We have

necessarily prof(P1) = prof(P2), otherwise P1 and P2 cannot be added via
Lemma 27, since there must exist two monomials t1 and t2 in the formal
expansion of P1 and P2 respectively such that prof(t1) 6= prof(t2) and with
prof(t1) or prof(t2) being partial. Then prof(P ) = prof(P1) = prof(P2)
and we conclude by applying lemmata 28 or 29 that P remains of the
form described in cases 1a or 1b of Lemma 26.

2. Both prof(P1) and prof(P2) are sets containing at least 2 non-partial
profiles. Then prof(P ) = prof(P1) ∪ prof(P2) and does not contain any
partial profile. Furthermore, if the index of P (which is the same as the
one of P1 and P2) contains Si for some i ≥ 1, it is straightforward that
P has the expected form, with q′ = |prof(P )| ≤ |prof(P1)|+ |prof(P2)|.
It remains to show that if the index of P does not contain any Si for
i ≥ 1, P has the expected form with q′ = 1. By hypothesis induction, as
the indexes of P1 and P2 do not contain any Si for i ≥ 1, then depending
on whether these indexes do or do not contain S0, either there exist two
polynomials Q1 and Q2, two tuples K ′1 and K ′2, a bit β, and two sets Z1
and Z2, such that prof(P1) = {K ′1} and prof(P2) = {K ′2}, such that:

P` = Q`

k∏
i=1

K′`,i 6=∗

âβi,K′
`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

for ` ∈ {1, 2}, or there exist four polynomials Q1,0, Q1,1, Q2,0 and Q2,1,
two tuplesK ′1 andK ′2, and two sets Z1 and Z2, such that prof(P1) = {K ′1}
and prof(P2) = {K ′2}, such that:

P` =

Q`,0 k∏
i=1

K′`,i 6=∗

â0
i,K′

`,i
+Q`,1

k∏
i=1

K′`,i 6=∗

â1
i,K′

`,i

 · ∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ,

for ` ∈ {1, 2}. According to Lemma 28 or Lemma 29 respectively, this
implies that K ′1 = K ′2 and Z1 = Z2 and this clearly implies that P =
P1 + P2 has the expected form.

– Suppose P = P1 · P2 with P1, P2 some formal polynomials already formed.
Once again, we have two possible cases:
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1. prof(P1) or prof(P2) is a singleton. Without loss of generality, let us
assume that prof(P1) is a singleton. Then, prof(P ) is the set containing
the merge of the profiles of P2 with the profile of P1 and P has the
expected form.

2. Assume now that both profiles are sets containing at least 2 non-partial
profiles. Thanks to the definition of strong straddling set systems, P1 can
only contain monomials whose index sets complement those of monomials
contained in P2, and the claim follows.

ut

D.2 Security of the Sel-Prod Assumption

Theorem 30 (Impossibility of constructing encodings of zero) Let k, n
be two positive integers. In the generic multilinear map model with oracle M , for
any adversary D making at most qM queries to the oracle M , we have:

Pr
[

(k, n)-Sel-Prod-LD ⇒ an encoding of 0
]
≤ qM

(
qM
2k + k + n

p

)
and

Pr
[

(k, n)-Sel-Prod-RD ⇒ an encoding of 0
]
≤ q2

M

2k + 2qM (k + n)
p

.

Proof (Theorem 30). Once again, we consider the two cases separately.

(k, n)-Sel-ProdD . The proof is similar to the case RKPRFRandA
F of the proof of

Theorem 12 and to the case (k, n,X, Y )-XY-DDH-RD of the proof of Theorem 21.

(k, n)-Sel-ProdD . Similarly to the case RKPRFRealAF of the proof of Theorem 12,
we just need to prove that any non-zero polynomial P remains non-zero when
ẑi1,i2,b1,b2 is replaced by 1 and γ̂i,b = â1

i,b is replaced by ai,Ki⊕b where K is a
random bit string in {0, 1}. We call this replacement: the partial evaluation.

According to Lemma 26, we have four possible cases (we use the notation of
this lemma):

– P has the following form:

P = Q ·
k∏
i=1
K′i 6=∗

âβi,K′
i
·

∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 .

In this case, the polynomial clearly remains non-zero after the partial evalua-
tion.

– P has the following form:

P =
(
Q0 ·

k∏
i=1

â0
i,K′

i
+Q1 ·

k∏
i=1

â1
i,K′

i

)
·

∏
(i1,i2,b1,b2)∈Z

ẑi1,i2,b1,b2 .
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In this case, if this polynomial P is zero after the partial evaluation, then
for any i ∈ {1, . . . , k}, ai,K′

i
= ai,Ki⊕K′i , i.e., K

′ = K ⊕K ′, or in other words
K = 0. This happens with probability 1/2k.

– P has the following form:

P =
q′∑
`=1

Q` ·
∏
i∈I

âβi,K′
`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 ;

Once again, it is clear that this polynomial remains non-zero after the partial
evaluation.

– P has the following form:

P =
q′∑
`=1

(
Q`,0 ·

k∏
i=1

â0
i,K′

`,i
+Q`,1 ·

k∏
i=1

â1
i,K′

`,i

)
·

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 .

Let us suppose that P becomes the zero polynomial after the partial evalua-
tion. The first (for any order) monomial of the term

Q1,0 ·
k∏
i=1

â0
i,K′1,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2

needs to be canceled by one of the monomials of the terms for some `:

Q`,1 ·
k∏
i=1

â1
i,K′

`,i

∏
(i1,i2,b1,b2)∈Z`

ẑi1,i2,b1,b2 .

This implies that for some ` ∈ {1, . . . , q′}, K ′1 = K ⊕K ′`. This happens with
probability at most q′/2k.

Therefore the probability that a non-zero polynomial P generated by the adversary
D remains non-zero when ẑi1,i2,b1,b2 is replaced by 1 and γ̂i,b is replaced by ai,Ki⊕b
where K is a random bit string in {0, 1}, is at most q2

M/2k (as the adversary D
generates at most qM polynomials). We conclude as usual using the Schwarz-
Zippel lemma and a hybrid argument. ut

Similarly to Corollary 15 and Corollary 31, we have the following corollary.

Corollary 31 (Security in the generic multilinear map model) Let k, n
be two positive integers. In the generic multilinear map model with oracle M , for
any adversary D making at most qM queries to the oracle M , we have:

Adv(k,n)-Sel-Prod(D) ≤ 2qM
|U |
p

.

Proof (Corollary 31). We just consider an intermediate game where we simulate
everything as before except the zero-testing oracle which always outputs “non-
zero” unless its input is zero, as a polynomial. Corollary 31 easily follows. ut
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E Security of Our Construction Under Non-Interactive
Assumptions (Theorem 19)

Proof (Theorem 19). The proof is based on the games in Fig. 4 and Fig. 5. We
consider the games in this order:

G0,G1,G2,G3,G4,2, . . . ,G4,k,G5,1, . . . ,G5,n .

For the sake of simplicity, and as already mentioned in Remark 18, we assume
that the multilinear map is clean and the representation is unique. In particular,
these assumptions allow us to avoid using an extractor and to assume that
two equivalent games are perfectly indistinguishable (and not only statistically
indistinguishable). Our proof could be easily adapted to avoid this assumption.
Game G0. This game exactly corresponds to RKPRFRealAF :

Pr
[

RKPRFRealAF ⇒ 1
]

= Pr [G0 ⇒ 1 ] .

Game G1. In this game, outputs of RKFn(φs, x) are generated using γ̂i,si

instead of âi,Ki⊕si , where:

âi,b = [ai,b]S0,0,iBitCommiti,b

γ̂i,b = [ai,Ki⊕b]S0,1,iBitCommiti,b
.

This game is perfectly indistinguishable from the previous one, so:

Pr [G0 ⇒ 1 ] = Pr [G1 ⇒ 1 ] .

Game G2. In this game, γ̂i,b are now chosen uniformly at random and indepen-
dently of the public parameters âi,b. It is immediate to see that games G1 and
G2 are indistinguishable under the (k, n)-Sel-Prod assumption. More precisely,
we can construct an adversary D running in time similar to A such that:

Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ] ≤ Adv(k,n)-Sel-Prod(D) .

Game G3. In this game, we just slightly change the indices of γ̂1,0 and γ̂1,1,
so that combining elements γ̂i,b and ĉj,xj

directly leads to a top-level encoding
(without any need of the ẑi1,i2,b1,b2 ’s). As elements γ̂1,0 and γ̂1,1 are never directly
revealed to the adversary, this game is perfectly indistinguishable from the
previous one, so:

Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ] .

We also call this game: Game G4,0.

Game G4,i′ . In this game,
∏i′

i=1 γ̂i,si
are replaced by independent random

elements for each tuple (s1, . . . , si′) ∈ {0, 1}i
′ queried by the adversary (so

only for polynomially many such tuples). Game G4,i′ is indistinguishable from
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proc Initialize // G0

(mm.sp,mm.pp) $← MM.Setup(1κ,U )
K

$← {0, 1}k
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2 ))
Return pp
proc RKFn(φs, x) // G0

ŷ′ ←
∏k

i=1 âi,Ki⊕si

∏n

j=1 ĉj,xj

ŷ ← ŷ′
∏k

i1=1

∏k

i2=i1+1 ẑi1,i2,Ki1⊕si1 ,Ki2⊕si2
Return MM.Extract(ŷ)
proc Finalize(b) // All games
Return b

proc Initialize // G1

(mm.sp,mm.pp) $← MM.Setup(1κ,U )
K

$← {0, 1}k
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b

γi,Ki⊕b ← ai,b
γ̂i,Ki⊕b ← [γi,Ki⊕b]S0,1,iBitCommiti,Ki⊕b

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2 ))
Return pp
proc RKFn(φs, x) // G1

ŷ′ ←
∏k

i=1 γ̂i,si

∏n

j=1 ĉj,xj

ŷ ← ŷ′
∏k

i1=1

∏k

i2=i1+1 ẑi1,i2,si1 ,si2
Return MM.Extract(ŷ)

proc Initialize // G2

(mm.sp,mm.pp) $← MM.Setup(1κ,U )
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b

γi,b
$← Zp

γ̂i,b ← [γi,b]S0,1,iBitCommiti,b

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2 ))
Return pp
proc RKFn(φs, x) // G2

ŷ′ ←
∏k

i=1 γ̂i,si

∏n

j=1 ĉj,xj

ŷ ← ŷ′
∏k

i1=1

∏k

i2=i1+1 ẑi1,i2,si1 ,si2
Return MM.Extract(ŷ)

proc Initialize // G3

(mm.sp,mm.pp) $← MM.Setup(1κ,U )
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b

γi,b
$← Zp

If i = 1
γ̂i,b ← [γi,b]S0,1,iS ′

Else
γ̂i,b ← [γi,b]S0,1,i

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2 ))
Return pp
proc RKFn(φs, x) // G3

ŷ ←
∏k

i=1 γ̂i,si

∏n

j=1 ĉj,xj

Return MM.Extract(ŷ)

Fig. 4. Games G0,G1,G2,G3 used in the proof of Theorem 19
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Game G4,i′−1, under the (k, n,S ′
∏i′−1
i=1 S0,1,i, S0,1,i′)-XY-DDH assumption. More

precisely, we can construct an adversary Bi′ running in time similar to A such
that:

Pr [G4,i′−1 ⇒ 1 ]− Pr [G2 ⇒ 1 ]

≤ qRKFn ·Adv(k,n,S ′
∏i′−1

i=1
S0,1,i,S0,1,i′ )-XY-DDH(Bi′) . (1)

The reduction is immediate from the definition of the (k, n,S ′
∏i′−1
i=1 S0,1,i, S0,1,i′)-

XY-DDH assumption. We also call Game G4,k, Game G5,0.

Game G5,j′ . In this game,
∏k
i=1 γ̂i,si

∏j′

j=1 b̂i,xi
are also replaced by independent

random elements for each tuple (s1, . . . , sk, x1, . . . , xj′) ∈ {0, 1}k+j′ queried
by the adversary (so only for polynomially many such tuples). Game G5,j′ is
indistinguishable from Game G5,j′−1, under the (k, n,S

∏j′−1
j=1 Xj , Xj′)-XY-DDH

assumption. More precisely, we can construct an adversary Cj′ running in time
similar to A such that:

Pr [G4,i′−1 ⇒ 1 ]−Pr [G2 ⇒ 1 ] ≤ qRKFn ·Adv(k,n,S
∏j′−1

j=1
Xj ,Xj′ )-XY-DDH(Cj′) .

Once again, the proof is immediate from the definition of the (k, n,S
∏j′−1
j=1 Xj ,

Xj′)-XY-DDH assumption.
Finally, we remark that Game G5,n is exactly RKPRFRandA

F and therefore:

Pr [G5,n ⇒ 1 ] = Pr
[

RKPRFRandA
F ⇒ 1

]
.

By summing all the previous bounds, we obtain the following bound:

Advprf-rka
Φ⊕,Fpp

(A ) ≤ Adv(k,n)-Sel-Prod(D)+
k∑

i′=2
qRKFn ·Adv(k,n,S ′

∏i′−1
i=1

S0,1,i,S0,1,i′ )-XY-DDH(Bi′)+

n∑
j′=1

qRKFn ·Adv(k,n,S
∏j′−1

j=1
Xj ,Xj′ )-XY-DDH(Cj′) ,

where the running time of every adversary is approximately the same as the
running time of A . Theorem 19 immediately follows. ut
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proc Initialize // G4,i′

(mm.sp,mm.pp) $← MM.Setup(1κ,U )
T ← empty table
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b

γi,b
$← Zp

If i = 1
γ̂i,b ← [γi,b]S0,1,iS ′

Else
γ̂i,b ← [γi,b]S0,1,i

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2 ))
Return pp
proc RKFn(φs, x) // G4,i′

If T [(s1, . . . , si′−1)] 6=⊥
r

$← Zp
T [(s1, . . . , si′−1)]← [r]

S ′
∏i′−1

i=1
S0,1,i

ŷ ← T [(s1, . . . , si′−1)] ·
∏k

i=i′ γ̂i,si

∏n

j=1 ĉj,xj

Return MM.Extract(ŷ)

proc Initialize // G5,j′

(mm.sp,mm.pp) $← MM.Setup(1κ,U )
T ← empty table
For i ∈ {1, . . . , k} and b ∈ {0, 1}

ai,b
$← Zp

âi,b ← [ai,b]S0,0,iBitCommiti,b

γi,b
$← Zp

If i = 1
γ̂i,b ← [γi,b]S0,1,iS ′

Else
γ̂i,b ← [γi,b]S0,1,i

For j ∈ {1, . . . , n} and b ∈ {0, 1}
cj,b

$← Zp
ĉj,b ← [ci,b]Xi

For i1, i2 ∈ {1, . . . , k} and b1, b2 ∈ {0, 1}
ẑi1,i2,b1,b2 ← [1]BitFilli1,i2,b1,b2

pp← (mm.pp, (âi,b), (ĉj,b), (ẑi1,i2,b1,b2 ))
Return pp
proc RKFn(φs, x) // G5,j′

If T [(s, x1, . . . , xj′−1)] 6=⊥
r

$← Zp
T [(s, x1, . . . , xj′−1)]← [r]

S
∏j′−1

j=1
Xj

ŷ ← T [(s, x1, . . . , xj′−1)] ·
∏n

j=j′ ĉj,xj

Return MM.Extract(ŷ)

Fig. 5. Games G4,i′ ,G5,j′ used in the proof of Theorem 19 (when T is a table, T [x] is
the value of T at index x if this value exists, or ⊥ otherwise)
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