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Abstract. Optimal security reductions for unique signatures (Coron, Eurocrypt
2002) and their generalization, i.e., efficiently re-randomizable signatures (Hofheinz
et al., PKC 2012 & Bader et al., Eurocrypt 2016) have been well studied in the
literature. Particularly, it has been shown that under a non-interactive hard as-
sumption, any security reduction (with or without random oracles) for a unique
signature scheme or an efficiently re-randomizable signature scheme must loose
a factor of at least qs in the security model of existential unforgeability against
chosen-message attacks (EU-CMA), where qs denotes the number of signature
queries. Note that the number qs can be as large as 230 in practice. All unique sig-
nature schemes and efficiently re-randomizable signature schemes are concluded
to be accompanied with loose reductions from these impossibility results.

Somewhat surprisingly, in contrast to previous impossibility results (Coron, Eu-
rocrypt 2002; Hofheinz et al., PKC 2012; Bader et al., Eurocrypt 2016), in this
work we show that without changing the assumption type and security model, it
is not always the case that any security reduction must loose a factor of at least
qs. As a counterexample, we propose a unique signature scheme with a tight re-
duction in the EU-CMA security model under the Computational Diffie-Hellman
(CDH) assumption. Precisely, in the random oracle model, we can program a se-
curity reduction with a loss factor of at most nq1/n, where n can be any integer
independent of the security parameter for the scheme construction and q is the
number of hash queries to random oracles. The loss factor in our reduction can
be very small. Considering n = 25 and q = 250 as an example, the loss factor is
of at most nq1/n = 100 and therefore our security reduction is tight.

Notice that the previous impossibility results are derived from proofs via a so-
called meta-reduction technique. We stress that instead of indicating any flaw in
their meta-reduction proofs, our counterexample merely demonstrates that their
given meta-reduction proofs fail to capture all security reductions. More pre-
cisely, we adopt a reduction called query-based reduction, where the reduction
uses a hash query from the adversary to solve an underlying hard problem. We
show that the meta-reduction proofs break down in our query-based reduction.
The query-based reduction is not a new notion and it has been adopted for encryp-
tion proofs, but this work is the first seminal approach for applying query-based
reduction in digital signatures.



The given counterexample in this work is of an independent interest as it implies
a generic way of constructing a digital signature scheme (including unique signa-
tures) with a tight reduction in the random oracle model from a digital signature
scheme with a loose reduction. Although our proposed methodology is somewhat
impractical due to the inefficiency of signature length, it introduces a completely
new approach for tight proofs that is different from traditional approaches using
a random salt.
Keywords. Unique Signatures; Tight Reduction; Impossibility; Counterexample

1 Introduction

Security reduction is the fundamental method for proving provable security in cryp-
tosystems. In a security reduction, if there exists an efficient adversary who can break
a newly proposed scheme, we prove that a generally believed-to-be-hard mathematical
problem can be efficiently solvable with the help of this adversary. This, however, con-
tradicts with the hardness assumption and hence we conclude that the proposed scheme
is secure. Suppose the adversary can break a digital signature scheme in t polynomial
time with a non-negligible probability ε. Generally speaking, a security reduction will
solve an underlying hard problem in t+T time with probability ε

L . Here T refers to the
time cost of reduction while L refers to the loss factor (or security loss), which means
the success probability of reduction is 1

L only. When the loss factor is linear in the
number of signature queries denoted by qs from the adversary, the security reduction is
said to be a loose reduction because the number of signature queries can be as larger
as 230. When the loss factor L is constant and small, the security reduction is said to
be a tight reduction. In concrete security [4, 17], a tight reduction is essential for con-
structing an efficient scheme without increasing the security parameter to compensate
the loss factor.

A significant number of digital signature schemes have been proposed in the liter-
ature. Many of them, such as [17, 11, 9, 5, 19, 14, 2, 6], are provably secure with tight
reductions. In this work, a security reduction for a signature scheme refers to a reduc-
tion from a non-interactive computational hard problem under the security model of
existential unforgeability against chosen-message attacks (EU-CMA) [12]. In a secu-
rity reduction, we say a signature is simulatable if the signature can be simulated by
the simulator without knowing the corresponding secret (signing) key and a signature
is reducible if the signature can be reduced to solve a hard problem. The difficulty of
achieving a tight reduction in the literature is due to the fact that we need to program
the reduction with a high success probability without knowing which messages whose
signatures should be programmed as simulatable and which messages whose signatures
should be programmed as reducible. To overcome this difficulty, all known signature
schemes with tight reductions to date use a random salt (number) in the signature gen-
eration such that a signature of a given message can be either simulatable or reducible
depending on the choice of the random salt. The simulator relies on this functionality
to obtain a high success probability of reduction, especially without abortion during
signature queries.

Unique signatures are one special type of digital signatures which do not use any
random salt in the signature generation. The signature for each message therefore is
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unique. As a consequence, we cannot switch the functionality (simulatable or reducible)
of each unique signature in the security reduction. Therefore, it seems any security re-
duction for a unique signature scheme cannot be tight. In fact, optimal security reduc-
tions for unique signatures or their generalization have been studied in [10, 15, 3]. They
showed that it is impossible to program a better security reduction with a loss factor
of less than qs for a unique signature scheme or an efficiently re-randomizable signa-
ture scheme, where qs is the number of signature queries. To be precise, in Eurocrypt
2002, Coron [10] described a meta-reduction proof to prove the impossibility of tight
reductions for certain digital signatures including unique signatures. Coron claimed
the success probability of any security reduction for a unique signature scheme cannot
substantially exceed εF/(eqs). That is, the loss factor is of at least e · qs. Here e is
the base of the natural logarithm and εF is the adversary’s advantage (probability) of
forging a valid signature in the EU-CMA security model. Ten years later, in Eurocrypt
2012, Kakvi and Kiltz [16] found and fixed a subtle technical flaw in the Coron’s im-
possibility result. They showed the optimal security reduction for the RSA-FDH (Full
Domain Hash) signature scheme cannot be guaranteed, if public keys are not certified.
In PKC 2012, Hofheinz, Jager and Knapp [15] extended the meta-reduction proof for a
slightly more general signature notion, namely efficiently re-randomizable signatures.
They proved and claimed that any black-box security reduction for a signature scheme
with efficiently re-randomizable signatures must have a reduction loss of at leastΩ(qs);
otherwise, the underlying hardness assumption is false. In Eurocrypt 2016, Bader, Jager,
Li and Schäge [3] improved the impossibility result of [10, 16, 15] with simpler proofs
and bound, where the minimum loss factor is qs. Particularly, they introduced the no-
tion of efficiently re-randomizable relations to overcome the subtle issue discovered by
Kakvi and Kiltz [16] and further generalized the notion of efficiently re-randomizable
signatures [15].

In short, the aforementioned impossibility results (Coron, Eurocrypt 2002; Hofheinz
et al., PKC 2012; Bader et al., Eurocrypt 2016) have shown that any security reduction
for a unique signature scheme or an efficiently re-randomizable signature scheme must
loose a factor of qs, which is the number of signature queries. That is, in all correspond-
ing security reductions, the success probability of reduction is of at most 1

qs
.

Our Contributions. In contrast to previous impossibility results, in this work, we
show that not all security reductions for unique signature schemes or efficiently re-
randomizable signature schemes must loose a factor of qs. As a counterexample, we
construct a special unique signature scheme with a tight reduction under the Compu-
tational Diffie-Hellman (CDH) assumption in the EU-CMA security model. In our se-
curity proof with random oracles, we program the security reduction to solve the CDH
problem with a loss factor of at most nq

1
n . Here, n is an integer decided by the scheme

designer independent of the security parameter for the scheme construction and q is the
number of hash queries to the random oracle. Although our loss factor is associated
with q but it can be very small. Taking the example of n = 25, q = 250 and qs = 230,
the loss factor in our security reduction for the given counterexample is of nq

1
n = 100

only, which is significantly reduced compared to qs = 230. Hence, we claim that our se-
curity reduction is a tight reduction from a non-interactive computational hard problem
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in the standard EU-CMA security model. We note that our unique signature scheme is
the first real3 unique signature scheme with a tight reduction.

We stress that our counterexample does not indicate any flaw in the given proofs
[10, 15, 3]. Instead, we found their proofs fail to capture all security reductions. More
precisely, in the traditional security reduction for digital signatures, the reduction uses a
forged signature from the adversary that cannot be efficiently computed by the simulator
to solve a computational hard problem. We call this reduction forgery-based reduction.
The tight security reduction in our given example is completely different and we name
it as query-based reduction, where the reduction uses one of hash queries from the
adversary to solve a computational hard problem. We analyze the reason why there is a
gap in the proofs of impossibilities when using the query-based reduction in Section 1.4.
Notice that the query-based reduction is not a completely new notion because it has been
used in enabling provable security for encryption under computational hard problems in
the indistinguishability security model, such as the hashed ElGamal encryption scheme
[1]. However, this is the first time of applying query-based reduction in proving security
for digital signatures.

The given counterexample is of an independent interest in terms of exploring generic
approaches for signature scheme constructions with tight reductions. It implies a method-
ology of constructing a digital signature scheme including unique signatures with a tight
reduction in the random oracle model from a digital signature scheme with a loose re-
duction. Our proposed methodology has to increase the signature length by n times and
hence it is somewhat impractical even taking the loss factor into account. However, we
stress that our idea is theoretically interesting as it, for the first time, introduces how
to obtain a tight proof for digital signatures without the use of a random salt in the
signature generation.

Remark 1 The authors in [10, 15, 3] claimed that the impossibility of tight reductions
holds for any security reduction. From what they have proved (i.e., given theorems), we
found that their “security reduction” refers to the following two types.

– Any security reduction without the use of random oracles for a signature scheme.
– Any security reduction with random oracles for a hash-and-sign signature scheme

[10], such as a full domain hash signature scheme.

We note that our query-based reduction with random oracles is proposed to prove a
unique signature scheme, whose structure is different from the hash-and-sign signature
defined in [10]. Our signature scheme can be seen as a hash-and-sign structure re-
peated for n times. Therefore, our given example is not included in the above two types
of reductions.

3 Kakvi and Kiltz in [16] proposed a conceptual level FDH (Full Domain Hash) unique signa-
ture scheme with a tight reduction. The proposed RSA-FDH scheme is a unique signature,
while the reduction uses a fake but indistinguishable public key in the simulation such that the
simulated RSA-FDH signatures are no longer unique. We note that both real signature scheme
and simulated signature scheme in our counterexample are unique signatures.
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1.1 Overview of Our Counterexample and Security Reduction

In this section, we propose a simplified counterexample with n = 2 and show how to
program the reduction with a loss factor of at most 2q

1
2 under the CDH assumption in

the EU-CMA security model. Here, q is the number of hash queries to the random oracle
made by the adversary4. The given scheme and reduction can be naturally extended to a
full scheme with a loss factor of nq

1
n , where each signature in the full signature scheme

contains n + 1 group elements. We admit that the proposed scheme is less efficient
compared to other unique signature schemes such as [7] especially with the growth
of n. We emphasize that the proposed scheme is merely for demonstrating that there
indeed exists a unique signature scheme with a tight reduction.

Our unique signature scheme is constructed over a pairing group PG = (G,GT ,
p, e, g) with a bilinear map e : G×G→ GT , where p is the group order of G,GT
and g is the generator of G. The simplified scheme is described as follows.
SysGen: The system generation algorithm takes as input a security parameter λ, it
chooses a pairing group PG = (G,GT , p, e, g) and a cryptographic hash function
H : {0, 1}∗ → G that will be viewed as a random oracle in the security proof. The
system parameters are composed of PG and H .

KeyGen: The key generation algorithm randomly chooses α ∈ Zp and computes
h = gα. The algorithm returns a public/secret key pair (pk, sk) = (h, α).

Sign: The signing algorithm takes as input the system parameters, a message m ∈
{0, 1}∗ and the secret key sk. It returns the signature Σm on m as

Σm = (σ1, σ2, σ3) =
(
H(m)α, H(m||Σ1

m)α, H(m||Σ2
m)α

)
,

where Σi
m = (σ1, σ2, · · · , σi). The final signature Σm is equivalent to Σ3

m.
Verify: The verification algorithm takes as input the system parameters, a signed
message (m,Σm) and the public key pk. It accepts the signature if and only if

e(σ1, g) = e(H(m), h), and
e(σ2, g) = e(H(m||Σ1

m), h), and
e(σ3, g) = e(H(m||Σ2

m), h).

The structure of our unique signature is similar to the blockchain [8, 18]. Each com-
ponent σi in our signature scheme is a block signature of a given message m to be
signed together with all previous block signatures. The block signature is generated us-
ing the BLS signature [7]. In this simplified scheme, each signature Σm is composed of
three block signatures (σ1, σ2, σ3). The full unique signature scheme will be composed

4 For easy understanding, we assume q
1
2 and q

1
n are both integers for the query number q and

the given number n in discussions.
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of n+1 block signatures. We note that the block signature does not have to use the BLS
signature and can be instantiated using a different unique signature from other schemes
such as [20]5. Our proposed signature scheme can also be seen as a variant of the BLS
signature scheme towards a tight reduction.

For the security proof of the simplified unique signature scheme, we will program
the security reduction in the random oracle model, where H is set as the random ora-
cle. The reduction is an interaction between an adversary who can break the proposed
scheme and a simulator who simulates both the real scheme and the random oracle
for the adversary. Different from the forgery-based security reduction, the constructed
simulator in our reduction will use one of hash queries generated by the adversary in-
stead of a forged signature from the adversary to solve the CDH problem. Therefore,
the random oracle plays the most important role in this type of reduction. The reduction
is much more complex compared to that for the BLS signature scheme especially in
the simulation of the random oracle. Before showing how to program the reduction, we
give three preliminaries to help understanding the core of this security reduction.

In this paper, we say an adversary makes a hash query H(x) to the random oracle
meaning that the adversary sends x to the random oracle in order to know what H(x)
is. Without querying H(x) to the random oracle, H(x) is random and unknown to the
adversary, such that the adversary has no advantage in computing H(x)α even it knows
α. In our simplified scheme, due to the “chain” structure, the adversary who does not
know the signatureΣm of a messagemmust first queryH(m), then queryH(m||Σ1

m),
and finally query H(m||Σ2

m) to the random oracle. This sequence is essential because
Σ1
m contains the block signature H(m)α requiring to know H(m) first, and Σ2

m con-
tains the block signature H(m||Σ1

m)α requiring to know H(m||Σ1
m) first. Therefore,

each signature generation is required to make three hash queries to the random oracle
and these three hash queries must be made sequentially. This is the first preliminary
about sequential hash queries on the same message without having its signature.

The adversary could launch hash queries associated with the same messagem in the
following four cases before querying its signature or without its signature query.

– In the first case, the adversary never queries H(m), H(m||Σ1
m), H(m||Σ2

m) to the
random oracle.

– In the second case, the adversary queries H(m) only to the random oracle. That is,
the adversary never queries H(m||Σ1

m), H(m||Σ2
m) to the random oracle.

– In the third case, the adversary queriesH(m) andH(m||Σ1
m) to the random oracle.

That is, the adversary never queries H(m||Σ2
m) to the random oracle.

– In the fourth case, the adversary queries all H(m), H(m||Σ1
m), H(m||Σ2

m) to the
random oracle. Hash queries associated with the message m∗ to be forged by the
adversary falls into this case. Otherwise, at least one hash value is random and
unknown to the adversary, such that it cannot forge a valid signature of m∗ with a
non-negligible advantage.

5 We emphasize that the corresponding security reduction is different when the adopted block
signature is changed. In particular, how to simulate a block signature and how to solve a hard
problem are dependent on the block signature. However, the reduction method with a tight
reduction is the same.
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Table 1. Classification of hash queries from the adversary into four cases. Each column refers to
the input structure of each query, which will be used in the introduction of the third preliminary.

Type 0 Type 1 Type 2
Case 1 – – –
Case 2 H(m) – –
Case 3 H(m) H(m||Σ1

m) –
Case 4 H(m) H(m||Σ1

m) H(m||Σ2
m)

These four cases are also summarized in Table 1. We stress that as an example, if
the adversary first queriesH(m) to the random oracle, then queries the signatureΣm of
m to the simulator, and thereafter queriesH(m||Σ1

m), H(m||Σ2
m) to the random oracle

for signature verification, we have the message m belongs to the second case not the
fourth case. For a message m belonging to the third case, we note that the adversary
must compute Σ1

m first before the hash query H(m||Σ1
m). For a message m belonging

to the fourth case, the adversary must computeΣ1
m andΣ2

m first before the hash queries
H(m||Σ1

m), H(m||Σ2
m). To forge a valid signature, the adversary must compute Σ1

m∗

and Σ2
m∗ for hash queries H(m∗), H(m∗||Σ1

m∗), H(m∗||Σ2
m∗) in order to forge the

signature Σm∗ of m∗. Therefore, there must exist one message belonging to the fourth
case. Notice that the adversary could make hash queries associated with other messages
belonging to the third case or the fourth case. In our reduction, the simulator shall
use these special hash queries for reduction and these queries require the adversary to
compute block signatures first. When one of block signatures is reducible, the simulator
can then use the corresponding block signature to solve a computational hard problem.
This is the second preliminary explaining how our query-based reduction works.

In the query-based reduction, we need to identify who (either the adversary or the
simulator) first time submits a query to the random oracle. We note that the above four
cases are only those queries first time generated and submitted by the adversary to the
random oracle. Besides these hash queries, the simulator could add some other hash
queries to the random oracle. Considering the above example where the adversary first
queries H(m) to the random oracle and then queries the signature Σm to the simulator.
The simulator has to program hash queries H(m||Σ1

m) and H(m||Σ2
m) before the sig-

nature simulation on m, where these two queries could be made by the adversary again
for the signature verification purpose. These two queries therefore are first time made
by the simulator and the simulator should be able to compute Σ1

m and Σ2
m. Notice that

the simulator cannot solve the underlying hard problem using one hash query first time
submitted to the random oracle by itself. Otherwise, the simulator can solve the hard
problem without the adversary. It is therefore important to identify who first time makes
a query to the random oracle and we focus on those queries first time generated by the
adversary. This is the supplementary of the second preliminary.

The query input to the random oracle can be any arbitrary string adaptively chosen
by the adversary. In this work, we assume the concatenation notation “||” will not appear
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within messages6, such that it is easy for the simulator to distinguish the input structure
of each query denoted by x. Furthermore, the simulator can run the pairing computation
to verify the correctness of each block signature. Therefore, for each query x first time
generated by the adversary, we define

– x is a query belonging to Type 0 if x is equal to m without the notation “||”.
– x is a query belonging to Type 1 if x is equal to m||Σ1

m with one block signature.
– x is a query belonging to Type 2 if x is equal to m||Σ2

m with two block signatures.
– x is a query belonging to Type D if x is different from the above three types. For

example, x is equal to a message concatenated with invalid block signatures or
more than two block signatures.

We define three message sets M0,M1,M2 during the random oracle simulation
as follows to include all messages in those queries generated by the adversary and
belonging to Type 0, Type 1 or Type 2. We are not interested in queries belonging
to Type D because they are not used for signature generations. Before the adversary
starts making hash queries to the random oracle, these three message sets are initialized
with empty sets. These three message sets are managed by the simulator and it adds
messages into them when a query from the adversary satisfies the following conditions.

– If x is a query belonging to Type 0, the message m in x will be added into the
message setM0. LetM0 = {m0,1,m0,2, · · · ,m0,q0} where |M0| = q0.

– If x is a query belonging to Type 1, the message m in x will be added into the
message setM1. LetM1 = {m1,1,m1,2, · · · ,m1,q1} where |M1| = q1.

– If x is a query belonging to Type 2, the message m in x will be added into the
message setM2. LetM2 = {m2,1,m2,2, · · · ,m2,q2} where |M2| = q2.

For easy understanding, all messages in the message sets are added sequentially. That
is, mi,1 is first added to the message setMi followed by the message mi,2.

Suppose the total number of hash queries made by the adversary is q and the ad-
versary ever queriesH(m∗), H(m∗||Σ1

m∗), H(m∗||Σ2
m∗) for a messagem∗ in order to

forge its signature. According to the first preliminary and Table 1, we have the following
important observation

M2 ⊆M1 ⊆M0, 1 ≤ q2 ≤ q1 ≤ q0 < q.

The above relationship is always correct and independent of what messages are selected
for hash queries, what messages are selected for signature queries and which message
is selected for signature forgery. This is the third preliminary about the relationship of
messages in those hash queries generated by the adversary.

6 This can be done via encoding to make surem does not contain the concatenation notation. For
example, each bit X ∈ {0, 1} of message and block signatures will be encoded into “0X” and
the concatenation notation is represented using “11” such that the whole bit string as input to
the hash function looks like ‘0X10X20X3110X40X5”, where X1X2X3 is the message and
X4X5 is the block signature. We can force the scheme to use this encoding before hashing
and signature generation. In the security proof, if a query made by the adversary does not use
this encoding, this query is a query with an invalid structure and the simulator will randomly
respond on the hash query because it will not be used in signature query or signature forgery.
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Now, we are ready to describe how to program the security reduction for the simpli-
fied scheme. Suppose there exists an adversary who can break the signature scheme in
the EU-CMA security model. The simulator programs the simulation as follows. Given
a random instance of the CDH problem (g, ga, gb) under a pairing group PG, the simu-
lator sets PG as the system parameters and h = ga in the public key simulation, where
the secret key α = a is unknown to the simulator. The simulator simulates the random
oracle for H instead of giving the hash function to the adversary. During the random
oracle simulation, the simulator programs the instance gb in one of H(x) such that
H(x)α contains7 the CDH solution gab. For all other queries, the simulator computes
H(y) in the way that H(y)α is computable by the simulator. The core of oracle simula-
tion is which query should be responded using gb. We name this query as target query
and the corresponding message as target message denoted by m̂. In our simulation, the
simulator firstly chooses a random integer c∗ ∈ {0, 1} and then it works as follows.

– If c∗ = 0, it randomly chooses another integer k∗ ∈ [1, q1−
c∗
2 ], where the range

is equal to [1, q]. In this case, the target query is the one whose message will be
the k∗-th message added into the message setM0, if such a message exists in the
message set. Otherwise, aborts. That is, the target query is

mc∗,k∗ = m̂.

We have H(m̂) contains gb. When the message m̂ ∈ M0 also appears in the mes-
sage set M1, it means the adversary ever submitted the following query to the
random oracle

m̂||Σ1
m̂,

where the block signature σ1 in Σm̂ is equal to H(m̂)α containing the solution gab

to the hard problem. That is, the simulator embeds gb in the response to one of
Type 0 queries and will use a Type 1 query to solve the underlying hard problem.

– If c∗ = 1, it randomly chooses another integer k∗ ∈ [1, q1−
c∗
2 ] (Note: this range

is different from the first case), where the range is equal to [1, q
1
2 ]. In this case, the

target query is the query whose message will be the k∗-th message added into the
message set M1, if such a message exists in the message set. Otherwise, aborts.
That is, the target query is

mc∗,k∗ ||Σ1
mc∗,k∗

= m̂||Σ1
m̂.

We have H(m̂||Σ1
m̂) contains gb. When the message m̂ ∈ M1 also appears in the

message setM2, it means the adversary ever submitted the following query to the
random oracle

m̂||Σ2
m̂,

where the second block signature σ2 in Σ2
m̂ is equal to H(m̂||Σ1

m̂)α containing the
solution gab to the hard problem. That is, the simulator embeds gb in the response

7 The word “contain” here means that a group element can be extracted from another group
element. For example, H(x) = (gb)z where z ∈ Z∗

p is a random number chosen by the
simulator. Then, we have gab can be extracted from H(x)α by computing (H(x)α)

1
z .
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to one of Type 1 queries and will use a Type 2 query to solve the underlying hard
problem.

We emphasize that the target message m̂ does not have to be equal to the message m∗

for the signature forgery. This is the main reason why our security reduction has a small
loss factor. This completes the core of our simulation.

Now, we analyze the loss factor of our reduction. Let Pr[Success] be the suc-
cess probability of reduction when the adversary can successfully forge a valid sig-
nature. According to the simulation setting, the reduction is successful when one of
hash queries contains the solution to the hard problem. We claim the loss factor is of at
most 2q

1
2 . A compact probability analysis is given as follows.

First, since c∗ ∈ {0, 1} is randomly chosen, we have

Pr[Success]

= Pr[Success|c∗ = 0]Pr[c∗ = 0] + Pr[Success|c∗ = 1]Pr[c∗ = 1]

=
1

2

(
Pr[Success|c∗ = 0] + Pr[Success|c∗ = 1]

)
.

We calculate one of conditional probabilities only, which is decided by q1 as follows.

– If q1 ≥ q
1
2 , we calculate Pr[Success|c∗ = 0] only where

q0 < q = q1−
0
2 and q1 ≥ q

1
2 = q1−

1
2 .

– Otherwise, q1 < q
1
2 , we calculate Pr[Success|c∗ = 1] only where

q1 < q
1
2 = q1−

1
2 and q2 ≥ 1 = q1−

2
2 .

One can note that no matter q1 ≥ q
1
2 or q1 < q

1
2 , there exists an integer i∗ ∈ [0, 1] (i.e.

i∗ ∈ {0, 1}) such that

qi∗ < q1−
i∗
2 and qi∗+1 ≥ q1−

i∗+1
2 .

Then, we prove Pr[Success|c∗ = i∗] ≥ 1/q
1
2 . The target query is associated with a

target message from the message setMc∗ , where the target message is mc∗,k∗ denoted
by m̂. When c∗ = i∗, we have

|Mc∗ | = qc∗ = qi∗ < q1−
i∗
2 and k∗ ∈ [1, q1−

i∗
2 ],

such that each message inMc∗ will be chosen as the target message m̂ with probability
1/q1−

i∗
2 . Furthermore, we have

Mc∗+1 ⊆Mc∗ and |Mc∗+1| = qi∗+1 ≥ q1−
i∗+1

2

such that

Pr[Success|c∗ = i∗] = Pr[m̂ ∈Mc∗ ∩Mc∗+1] =
qi∗+1

q1−
i∗
2

.
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Finally, we have

Pr[Success] = Pr[Success|c∗ = 0]Pr[c∗ = 0] + Pr[Success|c∗ = 1]Pr[c∗ = 1]

≥ Pr[Success|c∗ = i∗] Pr[c∗ = i∗]

=
1

2
· Pr[m̂ ∈Mc∗ ∩Mc∗+1]

=
1

2
· qi

∗+1

q1−
i∗
2

≥ 1

2
· q

1− i∗+1
2

q1−
i∗
2

=
1

2q
1
2

.

This completes the high level description of our security reduction for the simplified
unique signature scheme where n = 2.

1.2 Examples

We give four simple examples to verify the success probability. In these examples,
suppose q = 9 and the message chosen by the adversary for signature forgery is m∗ =
m3. No matter what the adversary has queried to the random oracle, we must have all
queried messages satisfy m3 ∈M2 ⊆M1 ⊆M0. According to our simulation result,
we should have that the loss factor is of at most 2 · 9 1

2 = 6. That is, we should have

Pr[Success] ≥ 1

2q
1
2

=
1

6
.

Recall that messages in all message sets are in sequence and they are added according
to their orders. For instance, the second and the third messages added into the message
setM1 in the Example 2 are m4 and m1, respectively. Furthermore,

– A messagem is added to the message setM0 meaning that the adversary generated
and submitted the Type 0 query x = m to the random oracle.

– A messagem is added to the message setM1 meaning that the adversary generated
and submitted the Type 1 query x = m||Σ1

m to the random oracle.
– A messagem is added to the message setM2 meaning that the adversary generated

and submitted the Type 2 query x = m||Σ2
m to the random oracle.

If the message m under Type 0 and Type 1 is queried and gb is embedded in the re-
sponse to the Type 0 query m, we can use the Type 1 query m||Σ1

m to solve the under-
lying hard problem because Σ1

m is equal to H(m)α. Similarly, if the message m under
Type 1 and Type 2 is queried and gb is embedded in the response to the Type 1 query
m||Σ1

m, we can use the Type 2 query m||Σ2
m to solve the underlying hard problem

because σ2 in Σ2
m is equal to H(m||Σ1

m)α.
According to the setting of (c∗, k∗), the k∗-th message in the message setMc∗ is

chosen as the target message m̂ = mc∗,k∗ , where gb will be embedded in the element

11



Table 2. The given four examples where q = 9.

(a) Example 1

M0 = { m1,m2,m3 }
M1 = {m1,m2,m3}
M2 = {m1,m2,m3}

(b) Example 2

M0 = { m1,m2,m3,m4 }
M1 = {m2,m4,m1,m3}
M2 = {m3}

(c) Example 3

M0 = {m1,m2,m3,m4,m5}
M1 = { m3,m5 }
M2 = {m5,m3}

(d) Example 4

M0 = {m1,m2,m3,m4,m5,m6,m7}
M1 = { m3 }
M2 = {m3}

H(mc∗,k∗ ||Σc∗

mc∗,k∗
). Notice that the integer k∗ is randomly chosen from [1, 9] when

c∗ = 0 and randomly chosen from [1, 3] when c∗ = 1. In the following examples, we
only need to consider one case (c∗ = 0 or c∗ = 1), whose success probability is at least
1/9

1
2 = 1/3.

1. In the first example, the adversary makes the hash queries H(m), H(m||Σ1
m),

H(m||Σ2
m) for messages {m1,m2,m3}. When c∗ = 0, k∗ is randomly chosen

from [1, 9]. According to the queried messages, we have the reduction is successful
if c∗ = 0 and k∗ ∈ {1, 2, 3}, because the message mc∗,k∗ under Type 0 and Type
1 will be both queried. Since k∗ is randomly chosen from [1, 9], we therefore have

Pr[Success] ≥ Pr[k∗ ∈ {1, 2, 3}] · Pr[c∗ = 0] =
3

9
· 1
2
=

1

6
.

2. In the second example, the adversary makes the hash query H(m) for messages
{m1,m2,m3,m4}, the hash query H(m||Σ1

m) for messages {m2,m4,m1,m3}
and the hash query H(m||Σ2

m) for the message m3 only. When c∗ = 0, k∗ is
randomly chosen from [1, 9]. According to the queried messages, we have the re-
duction is successful if c∗ = 0 and k∗ ∈ {1, 2, 3, 4}, because the message mc∗,k∗

under Type 0 and Type 1 will be both queried. Since k∗ is randomly chosen from
[1, 9], we therefore have

Pr[Success] ≥ Pr[k∗ ∈ {1, 2, 3, 4}] · Pr[c∗ = 0] =
4

9
· 1
2
≥ 1

6
.

3. In the third example, the adversary makes the hash query H(m) for messages
{m1,m2,m3,m4,m5}, the hash queriesH(m||Σ1

m), H(m||Σ2
m) for messages {m3,

m5} only. When c∗ = 1, k∗ is randomly chosen from [1, 3]. According to the
queried messages, we have the reduction is successful if c∗ = 1 and k∗ ∈ {1, 2},
because the message mc∗,k∗ under Type 1 and Type 2 will be both queried. Since
k∗ is randomly chosen from [1, 3], we therefore have

Pr[Success] ≥ Pr[k∗ ∈ {1, 2}] · Pr[c∗ = 1] =
2

3
· 1
2
≥ 1

6
.
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4. In the fourth example, the adversary makes the hash query H(m) for messages
{m1,m2,m3,m4,m5,m6,m7}, the hash queries H(m||Σ1

m), H(m||Σ2
m) for the

message m3 only. When c∗ = 1, k∗ is randomly chosen from [1, 3]. According to
the queried messages, we have the reduction is successful if c∗ = 1 and k∗ = 1,
because the message mc∗,k∗ under Type 1 and Type 2 will be both queried. Since
k∗ is randomly chosen from [1, 3], we therefore have

Pr[Success] ≥ Pr[k∗ = 1] · Pr[c∗ = 1] =
1

3
· 1
2
=

1

6
.

1.3 Security Reduction for the Full Scheme and Other Discussions
The above reduction is programmed for the simplified unique signature scheme, where
each signature is composed of three block signatures only. The reduction for the full
unique signature scheme with n+1 block signatures is more complex but similar, which
is given in Section 5. In the corresponding reduction, n+1 message setsM0,M1,M2,
· · · ,Mn will be defined which also satisfy

Mn ⊆Mn−1 ⊆ · · · ⊆ M1 ⊆M0.

Similarly, we prove there exists an integer i∗ ∈ [0, n− 1] such that

|Mi∗ | < q1−
i∗
n and |Mi∗+1| ≥ q1−

i∗+1
n .

In the corresponding simulation, the random values (c∗, k∗) will be chosen from the
following ranges

c∗ ∈ [0, n− 1], k∗ ∈ [1, q1−
c∗
n ].

When gb is programmed in the response to the target query m̂||Σi∗

m̂ for the message
m̂ ∈ Mi∗ and the target message m̂ also appears in the message setMi∗+1 (i.e. the
adversary also submits the hash query m̂||Σi∗+1

m̂ to the random oracle), we have the
hash query m̂||Σi∗+1

m̂ contains the solution to the CDH problem. The success reduction
requires that c∗ happens to be equal to i∗ mentioned above. Since |Mi∗ | < q1−

i∗
n and

k∗ ∈ [1, q1−
i∗
n ] , we have H(m||Σi∗

m) for any message m in Mi∗ will be responded
using gb with probability 1/q1−

i∗
n . Furthermore, sinceMi∗+1 ⊆Mi∗ and |Mi∗+1| =

qi∗+1 ≥ q1−
i∗+1

n , m̂ can be any one of qi∗+1 messages withinMi∗+1. Therefore, we
have the success probability

Pr[Success] =

n−1∑
i=0

Pr[Success|c∗ = i] Pr[c∗ = i]

≥ Pr[Success|c∗ = i∗] Pr[c∗ = i∗]

=
1

n
· qi

∗+1

q1−
i∗
n

≥ 1

n
· q

1− i∗+1
n

q1−
i∗
n

=
1

nq
1
n

.
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This completes the overview of our counterexample with a tight reduction.

Our proposed scheme can select other signature schemes to generate block signa-
tures. The security reduction is still tight as long as only the block signature of the
message mc∗,k∗ ∈ Mc∗ is reducible and the block signatures of other messages are
simulatable. The proposed signature structure and the reduction method towards a tight
reduction are independent of the block signatures and hence are universal.

Comparison of reductions. For easy understanding of the query-based reduction,
we compare it with the traditional forgery-based reduction according to the above re-
duction as follows.

– The forgery-based reduction utilizes a forged signature from the adversary to solve
an underlying hard problem, while the query-based reduction utilizes one of hash
queries from the adversary to solve an underlying hard problem.

– In the forgery-based reduction, the solution must be associated with the message of
forged signature. While in the query-based reduction, the solution does not have to
be related to the message for signature forgery.

– In the forgery-based reduction, the simulator cannot stop the simulation before it
receives a forged signature from the adversary. While in the query-based reduction,
the simulator can stop the simulation immediately after receiving a query contain-
ing the solution to the underlying hard problem.

– In the forgery-based reduction, the simulator cannot compute the forged signature
from the adversary. While in the query-based reduction, the simulator can compute
signatures on all messages as long as the adversary’s hash queries have already
contained the solution to the underlying hard problem.

– The forgery-based reduction can be with or without random oracles, while the
query-based reduction must be with random oracles.

Remark 2 In our given signature scheme, each signature comprises of three block sig-
natures in the simplified scheme and n+1 block signatures in the full signature scheme.
The last block signature is not used in our security reduction, except forcing the adver-
sary to make at least a Type 2 query or a Type n query (full scheme). We note that
the number of block signatures can be reduced by one if we partially adopt the forgery-
based reduction. Taking the simplified scheme as an example. It will be composed of
two block signatures instead of three, such that there is no Type 2 query. When c∗ = 1,
gb is programmed in the response to a Type 1 query. That is, the target query is

mc∗,k∗ ||Σ1
mc∗,k∗

= m̂||Σ1
m̂.

We have that H(m̂||Σ1
m̂) contains gb. When the message m̂ ∈ M1 is chosen as the

message m∗ to be forged, we have the second block signature in the forged signature
is H(m̂||Σ1

m̂)α which contains the solution to the CDH problem. That is, we use the
forged signature to solve the underlying hard problem. We stress that this reduction is
also correct. However, we do not adopt this method because it is relatively simpler to
use only query-based reduction in the security proof.
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1.4 The Gap in The Proofs of Impossibilities

We explain why our query-based reduction for the counterexample cannot be captured
by the meta-reduction proofs [10, 15, 3]. Specifically, we would like to clarify the gap
in the existing proofs for the impossibilities of tight reductions. We start with briefly
recalling the notion of meta-reduction, which is the main technique adopted to derive
their impossibility results. It is worth mentioning that Bader et al. [3] proposed a differ-
ent meta-reduction to derive more generalized impossibility results. However, we note
that they have the same principle. We provide more details as follows.

The meta-reduction proof for impossibilities. Roughly speaking, a meta-reduction is
associated with the following three entities.

– The reducer R who can reduce a forged signature to solving an underlying hard
problem. Let εR be the success probability of solving the underlying hard problem.

– The real forger (adversary) F who is able to forge a valid signature. Let εF be the
advantage (probability) of forging a valid signature.

– The simulated forger F who cannot forge a valid signature and aims to solve an
underlying hard problem with the help ofR but without the help of F .

In the traditional security reduction, the interaction is between R and F , while in
the meta-reduction, the interaction is between F and R only without the real forger.
Specifically, in the meta-reduction, a simulated forger F is constructed to solve a hard
problem with the help of the reducer R. Precisely, F firstly asks R to sign a num-
ber of messages and then rewinds R to the state before signature queries and re-starts
the security game with R. Finally, it forges a valid signature using one of the signed
message/signature pairs (say (m∗, Σm∗ ) ) obtained before the rewinding. When the
simulated forger F is indistinguishable from the real forger F , the reducer R should
be able to output a solution to the underlying hard problem with a certain probability. It
has been proved in [10] that through the above meta-reduction, F can obtain a solution
to the underlying hard problem from the reducerR with a success probability at least

εF = εR −
εF

Ω(qs)
,

for qs number of signature queries to the reducerR.
If εF is positive and non-negligible, it means we can efficiently solve a hard problem

using the simulated forger F without the help of the real forger. This would contradict
with the underlying hardness assumption. It therefore implies that εR must be no more
than εF/Ω(qs) for all security reductions. Hence, the loss factor in any security reduc-
tion is of at least qs.

The central argument in the meta-reduction requires that the simulated forger F is
indistinguishable from the real forger F . To achieve this, the forged signature generated
by the simulated forger must be indistinguishable from the forged signature generated
by the real forger, such that R is convinced that it is interacting with a real forger and
thus outputs a solution to the hard problem. In the literature, unique signatures [10]
and efficiently re-randomizable signatures [15, 3] are shown to be able to capture this
indistinguishability.
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The gap in the proofs. One could note that the existing work [10, 15, 3] implicitly
claimed that the aforementioned meta-reduction works as long as the simulated forger
F outputs a correctly distributed signature (and hence indistinguishable from a real
forged signature) to convince R that it is a real forger. In fact, this is the central ar-
gument for the existing meta-reductions in proving the impossibility results for unique
signatures and their generalization. Let Σ(pk,m) be the set of signatures Σm with re-
gards to the message m and the public key pk under the system parameters. During the
proofs [10, 15, 3], they are silently assumed that this signature setΣ(pk,m) in the simu-
lation is determined by pk,m and possibly by additional random oracle queries that are
assumed to be efficiently computable. However, this assumption does not necessarily
hold in all security reductions. In our example, each useful hash query except Type 0 re-
quires to compute a block signature that is not efficiently computable without knowing
the signing key. Any successful (real) forger F must make some non-efficiently com-
putable hash queries to the random oracle. This is the reason why the meta-reduction
requiring that all hash queries are efficiently computable will fail to simulate the forger.

More precisely, as shown in our query-based reduction for the simplified scheme, a
successful reduction essentially relies on the fact that the real forger must at least gen-
erate hash queries to random oracle satisfying q2 ≥ 1 (or qn ≥ 1 in the full scheme).
This is guaranteed by the assumption that the real forger is able to forge a valid signa-
ture. Suppose the aforementioned meta-reduction utilizes our constructed reducer R′.
We stress that the simulated forger F is not able to generate hash queries satisfying
q2 ≥ 1. Otherwise, it will be the real forger. During the first round before rewinding,
the simulated forger F should make some hash queries and signature queries. When the
simulated forger F rewinds the interaction, it is worth noting that F must rewind R′
to the state after the hash queries. This is because if it rewinds R′ to the state before
the hash queries, all hash values before and after the rewinding will be completely dif-
ferent in the random oracle model and hence the simulated forger F cannot use one of
queried signatures to derive the forged signature. That is, all previous hash queries are
not changed and the simulated forger F could query more. Finally, even the simulated
forger F returns a valid signature indistinguishable from the one generated by the real
forger, we still have that the hash queries do not satisfy the requirement of q2 ≥ 1. In
this case, the reducer R′ fails and the meta-reduction breaks down, because the simu-
lated forger F cannot solve an underlying hard problem.

2 Preliminaries

2.1 Definition of Digital Signatures

A digital signature scheme Sig = (SysGen,KeyGen,Sig,Verify) consists of the follow-
ing four algorithms:

SysGen(1λ). Taking as input a security parameter 1λ, this system generation algorithm
returns the system parameters params.

KeyGen(params). Taking as input the system parameters params, this key generation
algorithm returns a public/secret key pair (pk, sk).
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Sign(params, sk,m). Taking as input the system parameters params, a secret key sk
and a message m, this signing algorithm returns a signature of m denoted by Σm.
Verify(params, pk,Σm,m). Taking as input the system parameters params, a public
key pk, a signature Σm and a message m, this verification algorithm outputs 0 (reject)
or 1 (accept).

We say that a signature is valid if Verify(params, pk,Σm,m) = 1 for all gen-
erated system parameters params, public key pk and any message m. In the rest of
paper, we omit the input of the system parameters params in the signing algorithm and
the verification algorithm unless otherwise stated explicitly.

2.2 Definition of Unique Signatures and Efficiently Re-Randomizable Signatures

Given a public key pk and a message m, we denote

Σ(pk,m) =
{
Σm : Verify(pk,Σm,m) = 1

}
as the set of signatures Σm with regards to the message m and the public key pk under
the system parameters params. In particular, this signature set could be associated with
specific instantiations of hash functions adopted as part of system parameters. This no-
tion was introduced in [3] to define unique signatures and re-randomizable signatures.

Definition 1 (Unique Signatures). A signature scheme is unique if∣∣∣Σ(pk,m)
∣∣∣ = 1

holds for all public keys under the system parameters params and all messages.

Definition 2 (Efficiently Re-Randomizable Signatures). A signature scheme is effi-
ciently re-randomizable with t-re-randomizable, if there exists an efficient algorithm
ReRand running in polynomial time at most t, such that for all (pk,Σm,m) under the
system parameters params with Verify(pk,Σm,m) = 1 holds that the output distri-
bution of

ReRand(pk,Σm,m)

is identical to the uniform distribution over Σ(pk,m).

Unique signatures are a particular case of efficiently re-randomizable signatures
where

ReRand(pk,Σm,m) = Σm.

Therefore, the efficiently re-randomizable signatures can be seen as the generalization
of unique signatures. An important requirement of efficiently re-randomizable signa-
tures is the uniform distribution over Σ(pk,m). Generally speaking, efficiently re-
randomizable signatures are signatures whose random salts used in signature genera-
tions can be changed uniformly without the knowledge of the secret key, such that we
cannot use a random salt to switch signatures between simulatable and reducible. That
is, all signatures on the same message must be either simulatable or reducible. There-
fore, all efficiently re-randomizable signatures are believed to have optimal security
reductions with a loss factor of at least qs, same as unique signatures.
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2.3 Security Model

We recall the notion of existential unforgeability against chosen message attacks (EU-
CMA) played between a challenger and an adversary A.
Setup: The challenger runs the SysGen algorithm to generate the system parameters
params and runs the KeyGen algorithm to generate a key pair (pk, sk). The system
parameters and the public key pk are sent to the adversary.
Signature-Query: The adversary sequentially asks the signature of any message that is
adaptively chosen by the adversary. To query the signature ofm,A submits the message
m to the challenger. The challenger runs the Sign algorithm and returns a signatureΣm
of m to the adversary.
Forgery: The adversary outputs a message m∗ and the corresponding signature Σm∗ .
It wins the game if Σm∗ is a valid signature of m∗ and m∗ has never been queried for
its signature.

We refer to such adversary as an EU-CMA adversary and define the advantage of
A in winning the above game as

Pr
[
EU-CMAFSig

(
1λ
)
→ 1

]
= ε.

Definition 3. We say that a signature scheme Sig is (t, qs, ε)-secure in the EU-CMA
security model if any PPT adversary A who runs in t polynomial time and makes at
most qs signature queries has advantage at most ε in winning the game, where ε is
negligible function of the input security parameter.

2.4 Complexity Assumption

Let PG = (G,GT , p, e, g) be a pairing group where p is the order of the groups G,GT ,
e : G × G → GT is the bilinear map and g is a generator of G. Our proposed unique
signature scheme is based on the BLS signature scheme in the symmetric pairing stated
in PG. The underlying hard assumption for our scheme is the Computational Diffie-
Hellman (CDH) assumption, which says it is hard to compute gab from a given instance
(g, ga, gb) in the pairing group PG, where a, b are unknown and uniformly chosen from
the space Zp. The formal definition of the CDH assumption is omitted here.

3 The Full Counterexample of Unique Signature Scheme

Our full unique signature scheme is described as follows.
SysGen: The system generation algorithm takes as input a security parameter 1λ and a
small integer n. It chooses a pairing group PG = (G,GT , p, e, g) and a cryptographic
hash function H : {0, 1}∗ → G that will be viewed as a random oracle in the security
proof. The system parameters params are composed of (PG, H , n). A signature will
be composed of n+ 1 block signatures.

KeyGen: The key generation algorithm randomly chooses α ∈ Zp and computes h =
gα. The algorithm returns a public/secret key pair (pk, sk) = (h, α).
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Sign: The signing algorithm takes as input the system parameters params, a message
m ∈ {0, 1}∗ and the secret key sk. It returns the signature Σm on m as

Σm =
(
σ1, σ2, σ3, · · · , σn, σn+1

)
=
(
H(m)α, H(m||Σ1

m)α, H(m||Σ2
m)α, · · · , H(m||Σn−1

m )α, H(m||Σn
m)α

)
,

where Σi
m = (σ1, σ1, · · · , σi) and the final signature Σm is equivalent to Σn+1

m .

Verify: The verification algorithm takes as input the system parameters params, a
signed message (m,Σm) and the public key pk. It accepts the signature if and only
if the n + 1 pairing computations are correct. That is, e(σ1, g) = e(H(m), h) and
e(σi+1, g) = e(H(m||Σi

m), h) holds for all i = 1, 2, · · · , n.

4 Two Essential Lemmas for Security Reduction

Let m ∈ {0, 1}∗ be a message and M0,M1,M2, · · · ,Mn be n + 1 message sets
defined as follows.

– The message setMi+1 is a subset ofMi for all i = 0, 1, 2, · · · , n− 1.

Mn ⊆Mn−1 ⊆Mn−2 ⊆ · · · ⊆ M1 ⊆M0.

– The setMi has qi distinct messages and is composed of {mi,1,mi,2, · · · ,mi,qi}.

M0 = {m0,1 , m0,2 , m0,3 , · · · , · · · , · · · , · · · , m0,q0 }
M1 = {m1,1 , m1,2 , m1,3 , · · · , · · · , · · · , m1,q1 }
M2 = {m2,1 , m2,2 , m2,3 , · · · , · · · , m2,q2 }

· · ·
Mn = {mn,1, mn,2 , mn,3 , · · · , mn,qn }

We have the following two essential lemmas based on the above message set defi-
nitions for our security reduction. The first lemma is proposed for proving the second
lemma.

Lemma 1 (Range Lemma). Suppose q0 < q and qn ≥ 1. There exists an integer
i∗ ∈ [0, n− 1] satisfying

qi∗ < q1−
i∗
n and qi∗+1 ≥ q1−

i∗+1
n .

Proof of Lemma 1. We use a proof via contradiction to prove the existence of i∗. If the
integer i∗ does not exist, it means

qi ≥ q1−
i
n or qi+1 < q1−

i+1
n

holds for all i = 0, 1, 2, 3, · · · , n− 1.
For any integer j ∈ [1, n− 1], we have
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– When i = j − 1, it means

qj−1 ≥ q1−
j−1
n or qj < q1−

j
n .

– When i = j, it means

qj ≥ q1−
j
n or qj+1 < q1−

j+1
n .

That is, we have(
qj−1 ≥ q1−

j−1
n

∨
qj < q1−

j
n

)∧(
qj ≥ q1−

j
n

∨
qj+1 < q1−

j+1
n

)
.

It indicates that

If qj ≥ q1−
j
n then qj−1 ≥ q1−

j−1
n for j = n− 1, n− 2, n− 3, · · · , 2, 1.

When i = n− 1, we also have

qn−1 ≥ q1−
n−1
n or qn < q1−

n
n .

Since qn < q1−
n
n = 1 contradicts with the assumption qn ≥ 1, we therefore have

qn−1 ≥ q1−
n−1
n and deduct

qn−2 ≥ q1−
n−2
n , qn−3 ≥ q1−

n−3
n , · · · q2 ≥ q1−

2
n q1 ≥ q1−

1
n q0 ≥ q1−

0
n .

The deduction q0 ≥ q1−
0
n = q contradicts with the assumption q0 < q. Therefore, the

assumption at the beginning of the proof is wrong and hence the integer i∗ ∈ [0, n− 1]
exists. This completes the proof. �

Lemma 2 (Probability Lemma). Suppose q0 < q and qn ≥ 1. If we randomly choose
two integers (c∗, k∗) satisfying c∗ ∈ [0, n − 1] and k∗ ∈ [1, q1−

c∗
n ], then the target

messagemc∗,k∗ ∈Mc∗ will appear in the message setMc∗+1 with probability at least

1

n
· 1

q
1
n

for any n+1 defined message setsM0,M1,M2, · · · ,Mn. Here, if the chosen message
mc∗,k∗ /∈Mc∗ (the size of message set is less than k∗), we define mc∗,k∗ /∈Mc∗+1.

Proof of Lemma 2. Let Pr[Success] be the success probability that the chosen message
mc∗,k∗ ∈Mc∗ also appears in the message setMi∗+1. We are going to prove

Pr[Success] ≥ 1

n
· 1

q
1
n

.

The success probability is associated with the choice of (c∗, k∗), where c∗ is randomly
chosen from [0, n−1]. Hence, we have Pr[c∗ = i] = 1

n for any i ∈ [0, n−1]. According
to the setting, we have

Pr[Success] =

n−1∑
i=0

Pr[Success|c∗ = i] Pr[c∗ = i] ≥ 1

n
· Pr[Success|c∗ = i∗],
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where i∗ is the integer defined in Lemma 1.
According to Lemma 1, we have

|Mi∗ | = qi∗ < q1−
i∗
n and |Mi∗+1| = qi∗+1 ≥ q1−

i∗+1
n .

When c∗ = i∗, the target message mc∗,k∗ is chosen from the k∗-th message of the
message setMi∗ . Since |Mi∗ | < q1−

i∗
n and k∗ is randomly chosen from [1, q1−

i∗
n ],

any message inMi∗ will be selected as the target message with probability 1/q1−
i∗
n .

Furthermore, since Mi∗+1 ⊆ Mi∗ , the success event will happen when mc∗,k∗ also
appears inMi∗+1. There are qi∗+1 messages inMi∗+1 and hence we have the success
probability

Pr[Success] =

n−1∑
i=0

Pr[Success|c∗ = i] Pr[c∗ = i]

≥ 1

n
· Pr[Success|c∗ = i∗]

=
1

n
· Pr[mc∗,k∗ ∈Mi∗ ∩Mi∗+1]

=
1

n
· qi

∗+1

q1−
i∗
n

≥ 1

n
· q

1− i∗+1
n

q1−
i∗
n

=
1

nq
1
n

.

This completes the proof. �

5 Security Proof With A Tight Reduction

In this section, we prove the proposed full unique signature scheme is secure under the
CDH assumption in the EU-CMA security model with a tight reduction, where H is set
as a random oracle in the security proof.

Theorem 1. Let H be a random oracle and q be the number of queries to the random
oracle. If the proposed full signature scheme can be broken with (t, qs, ε) in the EU-
CMA model, the CDH problem is solvable with(

t+O(qsn),
ε

nq1/n

)
.

Proof. Suppose there exists an adversary A who can break the signature scheme in the
EU-CMA model. We construct a simulator B that uses one of hash queries generated by
the adversary to solve the CDH problem. Given as input the instance (g, ga, gb) in the
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pairing group PG, the simulator aims to compute gab. B interacts with the adversary as
follows.

Setup: The system parameters are the pairing group PG and the integer n, where H
is set as a random oracle controlled by the simulator. For the key pair, the simulator
sets α = a and hence the public key h = gα = ga is available from the instance. The
system parameters and the public key are sent to the adversary.

Hash-Query: We state how to simulate the random oracle here. The adversary can
access the random oracle any time, such as after the signature query. We note that the
random oracle simulation is the core of our proof for having a tight reduction.

Before simulating the random oracle, the simulator firstly chooses a random integer
c∗ ∈ [0, n− 1] and then chooses another random value k∗ from the range[

1, q1−
c∗
n

]
.

In particular, we have the range is [1, q] when c∗ = 0 and the range is [1, q
1
n ] when

c∗ = n− 1. The size of range for k∗ is dependent on the integer c∗.

Let L be the list which records all queries and responses. Each query and its re-
sponse are stored in a tuple. For each tuple, the format is

(x, Ix, Tx, Ox, Ux, zx),

which is explained as follows.
x refers to the query input.
Ix refers to the identity either the adversary A or the simulator B.
Tx refers to the type of the hash query.
Ox refers to the order index of the query within the same type.
Ux refers to the response to x, i.e., Ux = H(x).
zx refers to the secret for computing Ux.

For a query on x, if there already has a tuple (x, Ix, Tx, Ox, Ux, zx) in the list,
the simulator responds with Ux. Otherwise, the simulator responds on this new query
as follows.

Response of object Ix. The object Ix is to identify who first time generates and
submits x to the random oracle. For easy understanding, we comprehend the query
in the way that both the adversary and the simulator can query to the random oracle,
although the random oracle is controlled by the simulator. If a query on x is first time
generated and submitted by the adversary, we say this query is made by the adversary
and set Ix = A. Otherwise, we set Ix = B.

Taking a new message m as the example. Suppose the adversary firstly queries
H(m), H(m||Σ1

m), H(m||Σ2
m) to the random oracle and then queries the signature of

m to the simulator. Notice that the signature generation on the message m requires to
know all the following values

H(m), H(m||Σ1
m), H(m||Σ2

m), H(m||Σ3
m), · · · , H(m||Σn

m).
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The hash list does not record how to respond on hash queries H(m||Σi
m) for all i =

3, 4, · · · , n. Therefore, the simulator must add all these hash queries to the random
oracle first before generating its signature. Notice that the hash queriesH(m||Σ3

m), · · · ,
H(m||Σn

m) could be made by the adversary again for signature verification, but they
are first time generated and made by the simulator. Hence, we define

– For any x ∈ {m, m||Σ1
m, m||Σ2

m}, the corresponding Ix for x is Ix = A.

– For any x ∈ {m||Σ3
m, · · · ,m||Σn

m}, the corresponding Ix for x is Ix = B.

Response of object Tx. We assume “||” is a concatenation notation that will never
appear within messages after encoding (See the footnote in the introduction section to
know how to achieve it.). The simulator can also run the verification algorithm to verify
whether each block signature is correct or not. Therefore, it is easy to distinguish the
input structure of all hash queries. We define n+2 types of hash queries to the random
oracle.

Type i. x = m||Σi
m. Here, Σi

m denotes the first i block signatures of m and i refers to
any integer i ∈ [0, n]. We assume m||Σ0

m = m without “||” in x for easy analysis.
Type D. x is a query different from the previous n+1 types. For example, x = m||Rm

but Rm 6= Σi
m for any i ∈ [1, n], or x = m||Σi′

m for any i′ ≥ n+ 1.

The object Tx is set as follows.

– If Ix = B, then Tx = ⊥.
– Otherwise, suppose Ix = A. Then, the simulator can run the verification algorithm

to know which type x belongs to and set

Tx =

{
i if x belongs to Type i for any i ∈ [0, n]
⊥ otherwise x belongs to Type D .

We emphasize that Tx and Ox are used to mark “valid” queries generated by the ad-
versary only, which will be used in signature generation. We define Type D is to match
the truth that the adversary can generate any arbitrary string as a query to the random
oracle. Notice that the last type of queries will never be used in signature generation or
signature forgery.

Response of object Ox. The object Ox is set as follows.

– If Tx = ⊥, then Ox = ⊥.
– Otherwise, suppose Tx = c. Then, Ox = k if x is the k-th new query added into

the list L in those queries where Tx = c.

To calculate the integer k for the new query x, the simulator must count how many
queries have been added in L, where only those queries with the same Tx will be
counted. We emphasize that the setting of Ox needs to know the value Tx first.

For the objects Ix, Tx and Ox on the query x, there are only three cases in all tuples
in the list.

(Ix, Tx, Ox) = (A, c, k), (Ix, Tx, Ox) = (A,⊥,⊥), (Ix, Tx, Ox) = (B,⊥,⊥),
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where c ∈ [0, n] and k ∈ [1, q].

Response of objects (Ux, zx). Let (Ix, Tx, Ox) be the response to the query x ac-
cording to the above description. The simulator randomly chooses zx ∈ Zp and sets the
response Ux to x according to the chosen (c∗, k∗) as follows.

Ux = H(x) =

{
(gb)zx if (Tx, Ox) = (c∗, k∗)
gzx otherwise .

We use zx to denote the secret for response to x. In the following, if the query x needs
to be written as x = m||Σi

m, the corresponding secret will be rewritten as zim.
Finally, the simulator adds the defined tuple (x, Ix, Tx, Ox, Ux, zx) for the new

query x to the list. This completes the description of the hash query and its response.

For the tuple (x, Ix, Tx, Ox, Ux, zx), we haveH(x)α = Uax = (ga)zx is computable
by the simulator for any query x as long as (Tx, Ox) 6= (c∗, k∗). Notice that when
(Tx, Ox) = (c∗, k∗), we have

H(x)α = Uax = gabzx = (gab)zx .

For the tuple (x, Ix, Tx, Ox, Ux, zx), we usemi,j to denote the message in the query
input x if (Tx, Ox) = (i, j). We define

Mi = {mi,1,mi,2, · · · ,mi,qi}

to be the message set with qi messages, whereMi contains all messages in those tu-
ples with Tx = i. According to the setting of oracle response, for those hash queries
belonging to Type i for all i ∈ [0, n], there have n + 1 message setsM0, M1, M2,
· · · , Mn at most to capture all messages in these queries.

Without knowing the signature Σm of m, the adversary must make hash queries
H(m),H(m||Σ1

m), H(m||Σ2
m), · · · , H(m||Σn

m) in sequence becauseΣi
m in the query

m||Σi
m contains

H(m)α, H(m||Σ1
m)α, · · · , H(m||Σi−1

m )α.

For a message before its signature query, the adversary could not query all n + 1 hash
queries for this message. Therefore, we have the following inequality and subset rela-
tionship hold.

qn ≤ qn−1 ≤ · · · ≤ q2 ≤ q1 ≤ q0, Mn ⊆Mn−1 ⊆ · · · ⊆ M2 ⊆M1 ⊆M0.

All queried messages mentioned above can be described in Table 3. Suppose the adver-
sary can finally forge a valid signature on a message m∗. The adversary must at least
make the hash query H(m∗||Σn

m∗) in order to compute H(m∗||Σn
m∗)

α, which guar-
antees qn ≥ 1. Since the number of hash queries is of at most q, we have q0 < q.

The queried messages in n + 1 message sets fulfill the message set description in
Section 4. Since qn ≥ 1 and q0 < q, we have the Range Lemma and the Probability
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Table 3. Messages queried by the adversary where Tx 6= ⊥.

M0 = {m0,1 , m0,2 , m0,3 , · · · , · · · , · · · , · · · , m0,q0 }
M1 = {m1,1 , m1,2 , m1,3 , · · · , · · · , · · · , m1,q1 }
M2 = {m2,1 , m2,2 , m2,3 , · · · , · · · , m2,q2 }

· · ·
Mn = {mn,1, mn,2 , mn,3 , · · · , mn,qn }

Lemma can also be applied to the above message sets, even these message sets are
adaptively generated by the adversary.

Signature-Query: For a signature query on the message m that is adaptively chosen
by the adversary, the simulation is described as follows.

If m is never queried to the random oracle, the simulator works as follows from
i = 1 to i = n+ 1, where i is increased by one for each time.

– Add a query on m||Σi−1
m to the list (We define m||Σ0

m = m). According to the
setting of the random oracle simulation, we have the corresponding tuple is

(m||Σi−1
m , B, ⊥, ⊥, gz

i−1
m , zi−1m ).

– Compute the block signature σi as

σi = H(m||Σi−1
m )α = (ga)z

i−1
m .

Notice that σi for all i are computable by the simulator and the signature of Σm is
equal to Σn+1

m = (σ0, σ1, · · · , σn+1). Therefore, the signature of m is computable by
the simulator.

Suppose the messagem is ever queried to the random oracle by the adversary, where
the following queries associated with the message m are made by the adversary

m||Σ0
m, m||Σ1

m, m||Σ2
m, · · · , m||Σrm

m : rm ∈ [0, n].

Here, the integer rm is adaptively decided by the adversary. Let (x, Ix, Tx, Ox, Ux, zx)
be the tuple for x = m||Σrm

m . That is, Tx = rm.

– If (Tx, Ox) = (c∗, k∗), the simulator aborts because

H(m||Σrm
m ) = gbzx , σrm+1 = H(m||Σrm

m )α = Uax = (gbzx)a = (gab)zx ,

which cannot be computed by the simulator and hence the simulator fails in simu-
lating the signature for the adversary, especially the block signature σrm+1.

– Otherwise, (Tx, Ox) 6= (c∗, k∗). Then, σrm+1 is computable by the simulator be-
cause

H(m||Σrm
m ) = gzx , σrm+1 = H(m||Σrm

m )α = (ga)zx .

25



Similarly to the case that m is never queried to the random oracle, the simulator
can generate and make hash queries

H(m||Σrm+1
m ), H(m||Σrm+2

m ), · · · , H(m||Σn
m)

to the random oracle. Finally, it computes the signature Σm for the adversary.

This completes the description of signature simulation. Once the simulator gener-
ates the signature of m, it forwards the signature to the adversary. It is easy to verify
that the computed signature is a valid signature.

Forgery: The adversary outputs a valid signature Σm∗ on a message m∗ that is not
asked for a signature. Since the adversary cannot make a signature query on m∗, we
have the following queries to the random oracle were made by the adversary

m∗||Σ0
m∗ , m

∗||Σ1
m∗ , m

∗||Σ2
m∗ , · · · , m∗||Σn

m∗ .

The solution to the hard problem does not have to be associated with the forged
message m∗. The simulator solves the hard problem as follows.

– The simulator searches L to find the first tuple (x, Ix, Tx, Ox, Ux, zx) satisfying

(Tx, Ox) = (c∗, k∗).

If this tuple does not exist, abort. Otherwise, let the message mc∗,k∗ in this tuple be
denoted by m̂ for short. That is, mc∗,k∗ = m̂ and we have m̂ ∈Mc∗ . We note that
m̂ could be different from m∗. This tuple therefore is equivalent to

(x, Ix, Tx, Ox, Ux, zx) =
(
m̂||Σc∗

m̂ , A, c∗, k∗, gbz
c∗
m̂ , zc

∗

m̂

)
.

That is H(m̂||Σc∗

m̂ ) = gbz
c∗
m̂ contains the instance gb.

– The simulator searchesL to find the second tuple (x′, Ix′ , Tx′ , Ox′ , Ux′ , zx′), where
x′ is the query about the message m̂ and Tx′ = c∗ + 1. If this tuple does not exist,
abort. Otherwise, we have m̂ ∈Mc∗+1 and

x′ = m̂||Σc∗+1
m̂ ,

where Σc∗+1
m̂ contains σc∗+1 = H(m||Σc∗

m )α.
– The simulator computes and outputs(

H(m̂||Σc∗

m̂ )α
) 1

zc
∗

m̂ =
(
gabz

c∗
m̂

) 1

zc
∗

m̂ = gab

as the solution to the CDH problem.

Analysis. This completes the description of simulation and solution. The scheme
simulation is indistinguishable from the real scheme because the signing key α is simu-
lated using the random exponent a in the instance and there is no random number in the
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signature simulation. The random oracle response is correct because the response Ux to
each query x is computed using a random integer zx, independent of other integers.

According to the assumption, the adversary will break the signature scheme with
advantage ε. We have the adversary will make the hash query H(m∗||Σn

m∗) with prob-
ability at least ε,8 such that m∗ ∈ Mn and hence qn ≥ 1. The number of hash query is
q. Since q0 + q1 + q2 + · · ·+ qn = q, we have q0 < q. Therefore, the conditions of the
Probability Lemma hold with success probability ε in our reduction.

The reduction is successful when the simulator does not abort in the query phase
and the forgery phase. According to the setting of the simulation, we found

– The simulator aborts in the query phase whenmc∗,k∗ ∈Mc∗ butmc∗,k∗ /∈Mc∗+1,
because the simulator cannot compute the queried signature on the messagemc∗,k∗ .

– The simulator aborts in the forgery phase when mc∗,k∗ /∈ Mc∗ because the simu-
lator cannot embed gb in the response to the query mc∗,k∗ under Type c∗, or when
mc∗,k∗ /∈ Mc∗+1 because the solution to the CDH problem does not exist in the
hash list.

Therefore, we have the reduction is successful when mc∗,k∗ ∈ Mc∗ and mc∗,k∗ ∈
Mc∗+1. According to the Probability Lemma, if q0 < q and qn ≥ 1, we have m̂ =
mc∗,k∗ ∈ Mc∗ ∩ Mc∗+1 holds with probability 1/(nq

1
n ). Therefore, the reduction

is successful and the simulator can solve the hard problem with success probability at
least ε/(nq

1
n ).

The simulation time is mainly dominated by the signature simulation, where all
signature computations cost O(n · qs) point multiplications. Notice that the simulation
time does not consider the time cost of oracle responses. This completes the proof. �

Very recently, the work of [13] showed how to find a correct solution to a com-
putational hard problem from hash queries for encryption schemes under the indistin-
guishability model. The loss factor is also nq

1
n with a similar chain-like structure in

hash queries. However, we stress that the approaches towards tight reductions are to-
tally different.

Remark 3 In the above probability analysis, we use the condition that the adversary
can forge a valid signature to guarantee qn ≥ 1, which is a desired condition in the
Probability Lemma. We note that this condition is sufficient but not necessary in our
reduction as long as qn ≥ 1 holds.

6 Conclusion

Optimal security reductions with impossibility results of tight reductions for unique
signatures and efficiently re-randomizable signatures have been well studied in the lit-
erature (Coron, Eurocrypt 2002; Hofheinz et al., PKC 2012; Bader et al., Eurocrypt

8 The adversary can forge a valid signature via randomly choosing group elements as the forged
signature without making the corresponding hash queries. However, the success probability is
less than 1/p. The actual probability of making such a hash query is ε − 1/p. Since 1/p is
negligible compared to ε, we simplify the probability ε− 1/p into ε.
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2016 ). It has been proved and claimed that any security reduction for a unique sig-
nature scheme or an efficiently re-randomizable signature scheme must loose a factor
of at least qs for qs number of signature queries under a non-interactive assumption in
the EU-CMA security model. In this work, we pointed out that their optimal security
reductions cannot cover all security reductions and proposed a counterexample with
a tight reduction in the random oracle model. We can program the security reduction
with a very small loss factor, e.g., 100, for 250 hash queries to random oracles under
the CDH assumption in the EU-CMA security model. We stress that our counterexam-
ple just bypasses the given proofs of optimal security reduction, because the proofs via
meta-reduction break down in our query-based reduction. The given counterexample
implies a new way of constructing a signature scheme with a tight reduction in the ran-
dom oracle model from a signature scheme with a loose reduction. This transformation
is universal and also applicable for unique signatures. This transformation method is
somewhat impractical because of inefficiency due to the growth of signature length by
n times. Nevertheless, this is the first method for enabling a tight proof without the use
of a random salt in the signature generation.
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