
Boot Attestation: Secure Remote Reporting
with Off-The-Shelf IoT Sensors

Steffen Schulz1, André Schaller2, Florian Kohnhäuser2, and
Stefan Katzenbeisser2

1 Intel Labs
steffen.schulz@intel.com

2 Security Engineering Group, TU Darmstadt
lastname@seceng.informatik.tu-darmstadt.de

CYSEC, Mornewegstrasse 32, 64293 Darmstadt

Abstract. A major challenge in computer security is about establish-
ing the trustworthiness of remote platforms. Remote attestation is the
most common approach to this challenge. It allows a remote platform
to measure and report its system state in a secure way to a third party.
Unfortunately, existing attestation solutions either provide low security,
as they rely on unrealistic assumptions, or are not applicable to com-
modity low-cost and resource-constrained devices, as they require cus-
tom secure hardware extensions that are difficult to adopt across IoT
vendors. In this work, we propose a novel remote attestation scheme,
named Boot Attestation, that is particularly optimized for low-cost and
resource-constrained embedded devices. In Boot Attestation, software
integrity measurements are immediately committed to during boot, thus
relaxing the traditional requirement for secure storage and reporting.
Our scheme is very light on cryptographic requirements and storage, al-
lowing efficient implementations, even on the most low-end IoT platforms
available today. We also describe extensions for more flexible manage-
ment of ownership and third party (public-key) attestation that may be
desired in fully Internet-enabled devices. Our scheme is supported by
many existing off-the-shelf devices. To this end, we review the hardware
protection capabilities for a number of popular device types and present
implementation results for two such commercially available platforms.

1 Introduction

In the Internet-of-Things (IoT) low-cost and resource-constrained devices are
becoming the fundamental building blocks for many facets of life. Innovation in
this space is not only fueled by making devices ever more powerful, but also by a
steady stream of even smaller, cheaper, and less energy-consuming “things” that
enable new features and greater automation in home automation, transportation,
smart factories and cities.

Unfortunately, the novelty of this space combined with dominating market
forces to minimize cost and time-to-market also has a devastating impact on
security. While it may be tolerable that deployed firmware is not free of bugs [13]



and vendors have varying opinions about privacy and access control in this new
space [23, 37], an arguably critical requirement for survivable IoT infrastructures
is the capability to apply security patches and recover from compromises [16, 39].

The ability to recognize and establish trust in low-cost devices is becoming
relevant even in scenarios where devices are not connected to the Internet or
not intended to receive firmware updates at all. For instance, SD-cards and USB
sticks that are exchanged with third parties can be infected or replaced by ma-
licious hardware in order to attack the host [9, 31]. Bluetooth devices may offer
an even larger attack surface, since typically employed security mechanisms were
shown to be insufficient [36, 45]. Remote attestation is a key security capability
in this context, as it allows a third party to identify a remote device and verify
its software integrity.

Existing attestation schemes can be classified as timing-based or hardware-
based. Timing-based schemes require no secure hardware and thus are applicable
to a broad range of devices [22, 25, 44]. However, they rely on assumptions like
exact time measurements, time-optimal checksum functions, and a passive ad-
versary, which have been proven to be hard to achieve in practice [4, 11, 24].
In contrast, hardware-based attestation schemes provide much stronger security
guarantees by relying on secure hardware components. Recent works specifically
target the needs of embedded devices to perform remote attestation with a min-
imum set of secure hardware requirements [14, 15, 19, 32]. Unfortunately, these
hardware security features are currently not available in commodity embedded
devices. Another direction of research specifically focuses on a major use case of
attestation, which is verifying software integrity after firmware updates. These
works often target device classes that cannot be secured using hardware-based
attestation approaches, such as legacy and low-end devices [18, 20, 34, 41]. Nev-
ertheless, they only address a subset of attestation usage, suffer from the similar
limitations as software-based attestation approaches, or employ costly algorithms
that involve a high memory and computational overhead.

Contributions. We present a novel approach to remote attestation which is
based on load-time authentication. Our scheme is well-suited to increase the se-
curity for resource-constrained embedded devices (cf. Section 2). In more detail:

Boot Attestation concept: Instead of recording measurements in a secure environ-
ment, as in traditional TPM-like attestation, software integrity measurements
are immediately authenticated as the platform boots. We will argue in Section 3,
that for the very simple hardware and firmware configurations found in low-end
IoT devices, this construction can meet the key goals of remote attestation which
many prior works tried to tackle.

Provisioning and 3rd party verification: In Section 4 we describe two exten-
sions that further increase the practicality and completeness of Boot Attestation.
First, a key provisioning extension to take ownership of potentially untrustwor-
thy devices. Second, an extension to enable attestation towards untrustworthy
third-party verifiers. The latter is a capability that is missing in prior work, but
essential when applying a symmetric attestation scheme in the IoT use case.



Minimal HW/SW requirements: Our proposed attestation scheme offers a new
middle-ground between previously proposed timing-based and hardware-based
attestation approaches. Boot Attestation does not depend on timing or other
execution-side effects which turned out to be difficult to achieve in practice. As
we will discuss in Section 5, Boot Attestation side-steps hardware requirements
that were deemed essential for remote attestation until now [14].

Analysis and implementation: In Section 6, we examine hardware protection ca-
pabilities for a range of existing Commercial Off-the-Shelf Microcontroller Units
(COTS MCUs) and describe how they can be programmed to support Boot
Attestation today. We then describe two concrete implementations, highlighting
the practicality and efficiency of our design.

2 System Model and Goals

In this section, we specify our system model, discuss the adversaries’ capabilities
and describe the general procedure of remote attestation.

2.1 System Model

We consider a setting with two parties, a verifier V and a prover P. V is interested
in validating whether P is in a known-good software state3, and for this purpose
engages in a remote attestation protocol with P.

P is modeled as a commodity, low-cost IoT device as it may be found in
personal gadgets, or smart home and smart factory appliances. In order to mini-
mize manufacturing cost and power consumption, such devices tend to be single-
purpose MCUs with often just the minimum memory and compute capabilities
required to meet their intended application. Modern MCUs combine CPU, mem-
ory, basic peripherals, and selected communication interfaces on a single System
on Chip (SoC), as illustrated in Figure 1. Common on-DIE memory comprises
SRAM, flash memory, and EEPROM. Additional peripheral devices and bulk
memory are often connected externally.

On the software side, MCUs are often programmed bare-metal, with the SDK
building necessary drivers and libraries into a single application binary (firmware
image). The application is typically initialized by an immutable component, such
as a boot ROM or firmware boot loader, which reduces the risk of permanently
disabling a device (“bricking”). When programmed via low-level interfaces such
as JTAG, many devices allow to customize this early stage(s) of boot. We will
revisit this property when implementing our Root of Trust (RoT) in Section 6.

Note that in the IoT context, the attestation verifier V is typically the owner
of P (e.g., fitness trackers or USB thumb drives) or an operator who is responsible
for managing P on behalf of the owner (e.g., smart factory or smart city).

3 We use the terms software and firmware interchangeably in this work.



Fig. 1: Typical hardware configuration of a IoT MCU. We consider on-chip com-
ponents as secure against “simple” hardware attacks (SoC Security Boundary).

2.2 Adversary Model

The adversary A controls the communication between V and P and can compro-
mise the software application of P at will. In more detail, A is granted full control
over the communication channel (Dolev-Yao model) and thus can eavesdrop, in-
ject, modify, or delete any messages between V and P. A can also compromise
the higher-level firmware on P, i.e., the MCU application, whereupon A has full
control over the execution and can read from and write to any memory.

However, we assume that A is unable to bypass hardware protection mech-
anisms, such as reading data from memory regions that are explicitly protected
by hardware. We also exclude a comprehensive discussion of physical attacks
as these require an in-depth analysis of the particular hardware design and are
outside the scope of this work. Instead, we consider only a simple hardware ad-
versary who may attempt to access documented interfaces such as JTAG, and
replace or manipulate external SoC components like external memory or radios
(cf. Figure 1). We also assume that the verifier does not collaborate with A, in
particular, V will not disclose the attestation key to A. However, this assumption
is reduced when introducing third party verifiers in Section 4.

2.3 Remote Attestation Game

Remote Attestation is a security scheme where a verifier V wants to gain as-
surance that the software state of the prover P has not been subject to com-
promise by A. Following the common load-time attestation model [33], we de-
fine the software state of P as an ordered set of k binary measurements M =
(m1,m2, . . . ,mk) that are taken as P loads its software for execution. Since the
chain of measurements is started by the platform’s Root of Trust (RoT), it is
assumed that any modification to the software state is reliably reflected in at
least one measurement mx.

To gain assurance on the actual state M ′ of P, V and P engage in a challenge-
response protocol. This culminates in the construction of an attestation report



r ← attestAK(c,M ′) at P, where c is a random challenge and AK is an attestation
key agreed between P and V. V accepts P as trustworthy, i.e., not compromised,
if the response r is valid under chosen values (c,AK) and an expected known-
good state M (i.e., M ′ = M).

3 Boot Attestation

In this section, we introduce our Boot Attestation concept and protocol, extract
hardware requirements and analyze its security with regard to Section 2.3.

3.1 Implicit Chain of Trust

Traditional attestation schemes collect measurements in a secure environment,
such as a TPM or TEE, which can be queried at a later time to produce an
attestation report. They support complex software stacks comprising a large set
of measurements and allow a multitude of verifiers to request subsets of these
measurements, depending on privacy and validation requirements.

In contrast, our approach is to authenticate measurements mx of the next
software stage x immediately into an authenticated state Mx, before handing
control to the next software stage. This way, mx is protected from manipulations
by any subsequently loaded software. The new state Mx is generated pseudo-
randomly and the previous state Mx−1 is discarded. This prevents an adversary
from reconstructing prior or alternative measurement states. The final state
Mk, seen by the application, comprises an authenticated representation of the
complete measurement chain for reporting to V:

Mx ← PRFAK(Mx−1,mx)

As typically no secure hardware is available to protect AK in this usage,
we generate pseudo-random sub-keys AKx and again discard prior keys AKx−1
before initiating stage x:

AKx ← KDFAKx−1
(mx), with AK0 ← AK

Note that we can instantiate PRF and KDF using a single HMAC. The
measurement state Mx has become implicit in AKx and does not have to be
recorded separately.

The approach is limited in the sense that the boot flow at P dictates the
accumulation of measurements in one or more implicit trust chains M . However,
for the small, single-purpose IoT platforms we target here, there is typically no
need to attest subsets of the software state as it is possible with TPM PCRs.
The next section expands this idea into a full remote attestation protocol.



Fig. 2: Schematic overview of one possible instantiation of our Boot Attestation
scheme as part of a remote attestation protocol.

3.2 Remote Attestation Protocol

Figure 2 provides an overview of a possible remote attestation protocol utilizing
the implicit chain of trust and a symmetric shared attestation key AK. On the
right-hand side, the prover P builds its chain of trust from the Root of Trust
to a possible stage 1 (bootloader) and stage 2 (application). Once booted, the
prover may be challenged by V to report its software state by demonstrating
possession of the implicitly authenticated measurement state AK2.

The detailed protocol works as follows. The prover hardware starts execu-
tion at the platform Root of Trust (RoT). This “stage 0” has exclusive access
to the root attestation key AK0 ← AK and a boot nonce NB . It derives AK1

as HMACAK0
(NB ,m1), with m1 := (start1, size1, H1) defined as the binary

measurement of the software stage 1. Before launching stage 1, the RoT must
purge intermediate secrets from memory and lock AK against further access by
software. Execution then continues at stage 1 using the intermediate attestation
key AK1 and measurement log (H1, NB)4.

The scheme continues through other boot stages x ∈ {1, . . . , k} until the main
application/runtime has launched in stage k. In each stage, a measurement mx+1

of the next software stage is taken and extended into the measurement state as
AKx+1 ← HMACAKx

(mx+1). The prior attestation key AKx and intermediate
values of the HMAC() operation are purged from memory so that they cannot
be accessed by stage x + 1. Finally, the measurement log is extended to aid the
later reconstruction and verification of the software state at V.

Once P has launched the final stage k, it may accept challenges c← NA by a
remote verifier to attest its software state. For P, this simply involves computing
a proof of knowledge r ← HMACAKk

(NA) and sending it to V together with the
measurement log. Using this response, the verifier V can reconstruct the state
M ′ = (m′1, . . . ,m

′
k) claimed by P and the associated AKk. V can then validate

and accept P if M ′ = M and r = HMACAKk
(NA).

Note that for the devices we target, k tends to be very low. Typical MCUs
load only one or two stages of firmware, which helps keeping the validation effort
at V manageable even for large amounts of valid entities (AK,M).

4 We consider (startx, sizex) as well-known parameters here, since the individual mx

would typically encompass the complete firmware image at a particular stage.



We emphasize that the protocol described here only considers the core attes-
tation scheme. A complete solution should also consider authorizing V towards
P, protecting the confidentiality of the attestation report and linking the at-
testation to a session or otherwise exchanged data. As part of an authorized
attestation challenge c′, V may also include a command to update NB and re-
boot P to refresh all AKx. However, while the implications of managing NB are
discussed in Section 3.3, the detailed choices and goals are application-dependent
and outside the scope of this work.

3.3 Security Analysis

In the following, we analyze the security of Boot Attestation based on the attes-
tation game, defined in Section 2.3, and the adversary, specified in Section 2.2.
We will show that Boot Attestation is able to provide the same security as all
load-time attestation approaches, such as TPM-based attestation schemes [30].
For this purpose, we consider the relevant attack surface in terms of network,
physical/side-channel as well as load-time and runtime compromise attacks.

Network Attacks. The considered adversary A is able eavesdrop, synthesize,
manipulate, and drop any network data. Boot Attestation, however, relies on a
challenge-response protocol, involving the shared key AK, which is a standard
defense against network attacks. More specifically, any manipulation of assets
exposed on the network, including H1, H2, NA or the attestation response r, is
detected by V, when reconstructing AKk and validating r = HMACAKk

(NA).
Replay is mitigated using a fresh nonce NA in each attestation. Dropping mes-
sages only results in a generic DoS, such that V will not accept P. Furthermore,
since AK is a device-specific secret, the intermediate keys AKx and final response
r are uniquely bound to each individual device. This allows Boot Attestation to
function seamlessly with emerging swarm-attestation schemes, where the same
nonce NA is used to attest many devices at once [1, 6, 10].

Physical and Side-Channel Attacks. A may also attempt simple hardware
attacks on P. In particular, A may use SoC-external interfaces, such as power
supply and debug interfaces, to gain information on intermediate attestation
keys AKx, or manipulate SoC-external memory and I/O. The extent of hardware
attack resilience mostly depends on the SoC implementation and is out of scope.
Boot Attestation assumes basic hardware mechanisms to protect debug ports
and prevent leakage of intermediate computation states (cf. Section 5).

In addition, A could still try to perform software side-channel attacks, such
as cache, data remanence, or time attacks. Yet, since each stage i cleans any data
besides N, Hi+1,AKi+1, there is no confidential data that a malware could extract
from cache, RAM, or flash. Furthermore, the risk of timing side-channels is
drastically reduced as root keys are only used initially by the RoT. Implementing
a constant-time HMAC operation in the typically non-paged, tightly coupled
SRAM employed in the RoT is straightforward.

Load-time Compromise. A may compromise the software stage a of P before
it is loaded and, hence, measured. In this case, A can access all intermediate



measurements (m1, . . . ,mk), the nonces (NB , NA), and any subsequent attes-
tation keys (AKa, . . . ,AKk). Note that compromising the RoT (i.e., the initial
stage) is outside the capabilities of A, which is a reasonable assumption due to
RoT’s hardware protection (see Section 5) and its miniscule code complexity
(see Table 2).

Compromising the intermediate measurement state and keys allows A to
build alternative measurement states M ′a+n and associated attestation keys AK′a+n

for positive integers n. However, A cannot recover the attestation keys of prior
stages a−n, as they have been wiped from memory prior to invoking stage a. In
particular, A cannot access the root attestation key AK, which can only be ac-
cessed by the RoT. As a result, A can only construct attestation responses that
extend on the measurement state M ′a and the associated attestation key AKa.
Moreover, load-time attestation assumes that the measurement chain is appro-
priately setup to record the compromise, so that (M ′a,AK

′
a) already reflect the

compromise performed by A and cannot be expanded to spoof a valid software
state Mk anymore.

In practice, successfully recording M ′a will typically require a persistent ma-
nipulation or explicit code loading action by the adversary. However, this is a
well-known limitation of load-time attestation and also affects the TPM and
other load-time attestation schemes.

Following a software patch to return stage a into a well-known, trustworthy
component, a new measurement and associated key chain is produced starting
at stage a. A is unable to forsee this renewed key chain, as this would require
access to at least AKa−1.

Runtime Compromise. A may also compromise the software in stage a at
runtime after is is measured, e.g., by exploiting a software vulnerability that
leads to anarbitrary code execution. In this case, A has access to the correct
(unmodified) attestation key AKa, is able to bypass the chain of trust, and thus
is able to win the attestation game. We would like to point out that all load-time
attestation schemes, e.g. the TPM [30], are vulnerable to such runtime attacks.
Even if P performs a reboot, measures the compromised software in stage a,
and thus reconstructs an uncorrect (modified) attestation key AK′a, our scheme
is still broken. This is because A may record AKa somewhere and reuse it after
reboot to win any attestation game.

Nevertheless, V is able to patch the attestation keys AK1, . . . ,AKk secure
again by setting a new boot nonce NB , as introduced in Section 3.2, and reboot-
ing the device. This way, completely new attestation keys are valid, such that
the compromised AKa becomes invalid. Note that NB may also be implemented
as a timestamp coming from a write-protected real-time clock (RTC) that can
only be set by V. Even more security provides the attestation key provisioning
approach, described in Section 4.1, which additionally patches AK0 secure again.
Another option is to store and develop AKx in a hardware crypto accelerator,
such that it cannot be accessed directly by software. However, although this is
a standard component only a small minority of COTS MCUs support hardware
crypto acceleration today.



4 Extensions for Real-World Use

In the following, we discuss extensions to our attestation scheme that are com-
monly not considered in prior work, but which are fundamental for real-world
application in IoT. The first extension provides support for provisioning an attes-
tation key and requires a slight extension of our HW requirements. The second
extension is a software-only solution to support verification of attestation reports
by untrusted third parties.

4.1 Attestation Key Provisioning

In many cases, it is desirable to provision a new root attestation key AK to a
possibly compromised platform. Examples include a user taking ownership of
a new or second-hand device, or issuing a fresh AK after compromise of the
verifier. To realize this, we follow the TCG concept of provisioning a device-
unique endorsement key EK as part of manufacturing of P. EK is a symmetric
key shared between P and the manufacturer M. This allows M to authorize
AK key provisioning requests from V to P, while at the same time ensuring the
authenticity of the provisioning target P to V.

Provisioning AK based on EK can be realized with a number of key exchange
or key transport protocols implemented in RoT. We omit a detailed instantiation
here due to the lack of space. However, we like to call out the slightly extended
key protection requirement for supporting such a scheme. In particular, AK pro-
visioning requires the AK storage to be writable by RoT but read/write-locked
for subsequent FW stages (see Section 5).

4.2 Third-Party Verification

In many IoT usages, MCUs operate not just with a single trusted device owner
or manager, but can establish a variety of interactions with user platforms,
infrastructure components and cloud backends.

However, as the final attestation key AKk is a critical asset during attestation,
sharing it with all possible verifiers would significantly reduce the confidence
into the scheme. To tackle this issue, which is shared by all existing symmetric
attestation schemes [14, 32], we extend Boot Attestation to allow for potentially
untrusted third-party verifiers.

For this purpose, we turn the original verifier V into a Certification Authority
(CA). CA and P do not use AKk directly, but instead generate a key pair based
on the pseudo-random input AKk. In order to attest P by third-party verifies
V ′, only the public key computed from AKk must be distributed.

In practice, one would store AK in a secure environment at the owner or
manufactuer and only distribute and use valid public keys based on expected
firmware measurements. The detailed protocol works as follows:

Initially, P and CA share a common secret AK and that P was initialized ac-
cording to Section 3.1, i.e. has derived the correct key AKk. This time, P uses AKk

as pseudo-random input to generate a key pair (AKprv,AKpub)← KeyGen(AKk).



Fig. 3: Third-party verification using a trusted CA. The optional boot attestation
phase is depicted with dashed arrows.

This can be done deterministically for example using ECC key generation. Sub-
sequently, CA receives (H1, . . . ,Hk,N, r = HMACAKk

(c)) from P. Using the
intermediate hashes (H1, . . . ,Hk) and AK, CA can reproduce AKk and P’s pub-
lic key AKpub and publish a certificate certCA→P ← SignCAprv

(AKpub).
The third party V ′ initiates attestation by querying CA for P’s signed public

key certCA→P . Subsequently V ′ challenges (the valid) prover P for a fresh signa-
ture, using a nonce NA. In turn, P creates a signature s of NA s← SignAKprv

(NA)
and sends s to V ′. The third party is now able to infer statements about P’s
identity and software state. At the same time AKk is kept secret from V ′. An
overview of the scheme is shown in Figure 3.

5 Hardware Requirements

We are now ready to describe the detailed hardware requirements of the boot
attestation scheme. We formulate these as results here and not as system as-
sumptions in Section 2.1, since the exploration of alternative remote attestation
schemes with minimal hardware requirements has been a major research chal-
lenge in recent years [14, 15, 19, 32]. In particular, remote attestation schemes
proposed so far still require a secure co-processor or custom hardware security
extensions in order to support the secure recording and signing of measurements.
Alternative approaches using a software-only root of trust still require strong as-
sumptions on the operating environment and implementation correctness, which
has precluded them as a generic attestation solution for IoT [11, 24].

Leveraging the implicit chain of trust, our Boot Attestation scheme avoids
the requirement for a hardware-isolated attestation runtime. Specifically, we only
require the following hardware security features:
[I] RoT Integrity The RoT is critical to initializing the chain of trust and
protecting fundamental platform assets such as AK. Our scheme requires RoT
integrity in the sense that it must be impossible for the adversary A to manip-
ulate the RoT firmware, and that the RoT must be reliably and consistently
executed at platform reset. In practice, this requires hardware access control
on the RoT code and data region, but also hardware logic to consistently reset



the SoC’s caches, DMA engines and other interrupt-capable devices in order to
reliably execute RoT on power-cycle, soft-reset, deep sleep, and similar events.
While RoT integrity is well-understood in terms of supporting secure boot or
firmware management, we know of no COTS MCU which natively supports a
RoT for attestation. To realize Boot Attestation on COTS MCUs we therefore
require an extension of the RoT integrity requirement: The device owner must
be able to customize or extend the initial boot phase to implement an attestation
RoT, and then lock or otherwise protect it from any further manipulation. As
we will show, many COTS MCUs actually offer this level of customization prior
to enabling production use.

[II] AK Protection: Boot attestation requires that the root attestation key AK
is exclusively available to the RoT. This typically requires the RoT to initialize
some form of memory access control and then lock it down, such that it cannot be
disabled by subsequent firmware stages. While such lock-able key storage is not
a standard feature, we found that most COTS MCUs offer some kind of memory
locking or hiding that can be used to meet this requirement (cf. Section 3.3).

[II∗] AK Provisioning: Provisioning of a new attestation key AKnew involves
replacement of its previous instance, conducted by the RoT (cf. Section 4.1).
Hence, in order to support provisioning, AK must further be writable by the
RoT exclusively. However, this procedure is preceded by the secure negotiation
of AKnew. During this process the endorsement key EK is used to provide au-
thorization and confidentiality of the new attestation key AKnew. Thus, during
key provisioning the RoT must read EK and then lock it against read attempts
by latter firmware stages, basically resembling requirement [II].

[III] State Protection: When calculating measurements mx and attestation
keys AKx, the respective firmware stage must be able to operate in a secure
memory that cannot be accessed by later firmware stages or other unautho-
rized platform components. This includes protecting intermediate values of the
HMAC calculation as well as the stack. In practice, this requirement breaks down
to operating in memory that is shielded against simple hardware attacks (cf. Sec-
tion 2.2), such as the SoC on-DIE SRAM, and clearing sensitive intermediate
values from memory before handing control to the respective next stage.

[IV] Debug Protection: Once programmed and provisioned, the device should
reject unauthorized access via external interfaces such as UART consoles, JTAG
or SWD debug interfaces [12]. Strictly speaking this requirement is sufficiently
addressed if the above integrity and confidentiality requirements are met. How-
ever, we list it here as separate requirement since debug access and re-programming
protections are typically implemented and enabled separately from the above
general implementation requirements.

Overall, we can see that Boot Attestation side-steps requirements for pro-
tecting the initial call into the secure environment and inhibiting interrupts
during execution - including resets - which are not achievable with established
hardware protection mechanisms and therefore also not feasible on commod-
ity COTS MCUs [14, 15]. Based on these hardware requirements, we will now
discuss possible implementation options and present evaluation results.



Table 1: List of COTS MCUs and how they meet our hardware requirements.
Device Type CPU SRAM (kB) /

Flash (kB) /
EEPROM (B)

RoT
Integrity

AK
Protection

EK
Protection

Debug
Protection

ATmega328P AVR 2 / 32 / 1024 Flash Flash Flash/PUF 3

PIC16F1825 PIC16 1 / 8 / 256 Flash Flash/EEPROM Flash/EEPROM 3

MSP430F5308 MSP430 6 / 16 / – Flash Flash Flash 3

LPC1200 Cortex-M0 4–8 / 32–128 / – Flash 7 7 3

STM32F100Rx Cortex-M3 8 / 64–128 / – Flash 7 PUF 7

Stellaris LM4F120 Cortex-M4F 32 / 256 / 2048 Flash Flash Flash/EEPROM 3

Quark MCU D2000 Quark D2000 8 / 44 / – Flash Flash (main) Flash (OTP) 3

Arduino/Genuino101 Quark SE C1000 80 / 392 / – Flash Flash Flash 3

6 Proof of Concept Implementation

We reviewed specifications for a range of popular COTS MCUs with regard to
meeting the hardware requirements of Boot Attestation, including support for
AK Provisioning (req. [II∗]).

All of the platforms we investigated support executing firmware completely
within the confines of the SoC, ensuring confidentiality and integrity against
external HW manipulation (req. [III]). Most of the chips also offer one or more
lock bits to disable debug access for production use ([IV]). Differences could be
observed mainly in the memory access control facilities, with a large variety in
the number, granularity and permissions available per physical memory block.
In contrast, all of the investigated devices support customization and subsequent
locking of the boot “ROM”, allowing developers to customize and then integrity-
protect the platform Root of Trust in one way or another (req. [I]).

An overview of the results is provided in Table 1. Apart from [I] RoT Integrity
and [IV] Debug Protection, we also list the respective options for protecting
AK and EK in the AK Provisioning scenario (req. [II∗])5. As can be seen, Boot
Attestation is potentially supported by a wide range of devices. Naturally, a
full implementation and validation is required to ensure the respective platform
controls are accurately documented and sufficient in practice.

We selected two rather different device types, the Stellaris LM4F120 and
the Quark D2000, to evaluate different implementation options and provide an
overview of the associated costs. In both cases, the implementation of our scheme
comprised extending the RoT for measuring the FW application image and
deriving an attestation key, as well as initializing the hardware key protection
for AK and EK. Note also that there is no intermediate bootloader stage on
these devices as the application image is directly executed by RoT. An overview
of the implementation footprint is provided in Table 2.

5 Note that if no AK provisioning is desired, EK protection support is sufficient to
store the root attestation key (requirement [II]).



6.1 Prototype I: TI Stellaris LaunchPad

The TI Stellaris Launchpad [47] implements an ARM Cortex-M4F operating at
80 MHz6, 32 kB SRAM, 32 kB flash memory and 2 kB EEPROM. The platform
is typically used in industrial automation, point of sale terminals and network
appliances. We use FreeRTOS [35] as a software stack, as it is freely available,
pre-configured for the Stellaris and as it exhibits a small memory footprint.

Integrity Protected RoT. The Stellaris supports RoT code integrity by en-
abling execute-only protection to those flash blocks that store the boot loader.
In particular, by setting register values of FMPPEn and FMPREn to ‘0’, read and
write access to the bootloader section is disabled while keeping it executable.

Protection of AK & EK. Although the Stellaris provides memory protection
for flash [5, 46], we decide not to use it for secure key storage. Despite the fact
that individual blocks of flash memory can be read-protected, it is yet possible
to execute said blocks. This could allow an attacker A to extract bits of AK or
EK. A can try to execute respective memory regions and infer information by
interpreting resulting execution errors. Instead, we securely store AK and EK on
the internal EEPROM module. The Stellaris platform provides register EEHIDE

that allows for hiding individual 32 B EEPROM blocks until subsequent reset.

PUF-based Storage of EK. It is also possible to securely store EK using a
fraction of the on-chip SRAM as a PUF. Previous work supports the use of
SRAM as PUFs for key storage [29, 40]. Indeed, the SRAM-based PUF instance
of the Stellaris has already been characterized in [21]. Using PUFs as a key
storage significantly increases the level of protection, as PUF-based keys are
existent only for a limited period [3]. Especially for long-term keys, such as
EK, this is a desirable property, which is otherwise hard to achieve on low-cost
devices. To evaluate this option, we implemented a Fuzzy Extractor construction
based on [7]. On start-up of the device, a fraction of the SRAM start-up values are
used as a (noisy) PUF measurement X. Using X and public Helper Data W that
was created during a prior enrollment phase, the Fuzzy Extractor can reconstruct
EK. For details on the the interaction with SRAM-based PUFs, we refer to [38].
Assuming a conservative noise level of 15 % in the PUF measurements X, which
is a common value used in literature [7], and applying a (15, 1, 15) repetition
code as part of the Fuzzy Extractor, we achieve an error probability of 10−9.

Debug Protection. The bootloader is further protected from attempts to re-
place it by malicious code by disabling access to JTAG pins. For this purpose
bits DBG0, DBG1 and NW, part of register BOOTCFG are set to ‘0’. This leaves a
subset of standard IEEE instructions intact (such as boundary scan operations),
but blocks any access to the processor and peripherals.

6 In our experiments we set the operating frequency to 50 MHz to allow for better
comparison with the Intel MCU.



6.2 Prototype II: Intel Quark D2000

The Intel Quark Microcontroller D2000 employs an x86 Quark CPU operating
at 32 MHz, 8 kB SRAM, 32 kB main flash memory, as well as two regions (4 kB
and 4 kB) of One-Time-Programmable (OTP) flash memory. The Intel D2000 is
tailored towards IoT scenarios, where low energy consumption is required. We
use the Intel Quark Microcontroller Software Interface (QMSI) [27] and Zephyr
RTOS [28] as the standard software stack.

Integrity Protected RoT & Debug Protection. The D2000 boots directly
from an 8 kB OTP flash partition. An hardware-enforced OTP lock permanently
disables write accesses to the OTP partition of the flash memory. It further
deactivates mass erase capability of the OPT partition and at the same time
disables JTAG debug access. Locking the OTP partition is done by setting bit
‘0’ at offset 0x0 of the flash memory region to ‘0’.

Protection of AK & EK. We store AK in main flash to support updates via
key provisioning. One of the D2000 flash protection regions (FPR) is setup and
locked by the RoT to prevent read access by later firmware stages. In order to
store the long-term key EK, we use the OTP flash region of the D2000. The 8 kB
OTP supports read-locking of the upper and lower 4 kB regions of OTP flash. As
this read protection also inhibits execute access, we store EK at the upper end
of OTP memory and set the read-lock just at the very end of RoT execution.
The read-lock for the lower and upper OTP region is activated by programming
bits ROM RD DIS L and ROM RD DIS U of the CTRL register.

6.3 Performance Evaluation

In the following, we present evaluation results for both device types, with focus
on memory footprint and runtime. Numbers are given for the RoT and key pro-
tection logic. Values for the RoT are further separated with respect to RoT base
logic (memory management, setup of data structures) and the HMAC implemen-
tation. runtime results of the HMAC functionality are given for a memory range
of 256 bit, i.e., a single HMAC data block, and a 32 kB region that reflects larger
firmware measurements. For both, memory footprint and runtime, we further
provide numbers with respect to two different compile time optimizations. The
detailed results are given in Table 2.

Memory. For memory consumption we consider static code segments (.text)
and read-only data (.rodata) segments of the firmware image. Table 2 lists
results for compile optimizations towards size (-Os) and runtime (-O1). Using
the most memory-efficient setting, the scheme requires a total of ≈ 3.1 kB on
the Stellaris. This may seem large compared to the the 700 B footprint of the
base ROM image (i.e., excluding the application), but is only 1.22 % of the total
available flash. On Intel D2000, our RoT extension consumes 2.6 kB on top of
the QMSI stock ROM of 2 kB. This fits well within the total 8 KB available for
boot loader code. The application flash is left for use by applications, except for
the small part reserved for AK storage.



Size (Bytes) Runtime (ms)

ARM x86 ARM x86

Component -Os -O1 -Os -O1 -Os -O1 -Os -O1

Base ROM 702 712 1955 2115 0.79 0.63 6.11 5.93

Root of Trust (RoT)
Base Logic 336 340 168 193 < 0.01 < 0.01 < 0.01 < 0.01
HMAC-SHA2 (256 bit) 1828 1836 1819 2061 3.04 3.04 1.54 1.44
HMAC-SHA2 (32 kB) 1828 1836 1819 2061 312.26 312.26 148.23 145.37

AK Protection
Flash — — 295 337 — — 0.02 0.02
EEPROM 516 580 — — 0.01 < 0.01 — —

EK Protection
Flash — — 378 448 — — < 0.01 0.002
EEPROM 516 580 — — 0.01 < 0.01 — —
SRAM PUF 1662 1980 — — 46.44 46.42 — —

Table 2: Implementation overhead with respect to runtime in milliseconds (left)
and memory overhead in Bytes (right) for the TI Stellaris (ARM) and the Intel
D2000 (x86), with optimizations for size (-Os) and runtime (-O1).

Runtime. Additional runtime introduced by our scheme mainly results from
HMAC operations in order to compute attestation measurements, with the key
protection logic introducing only little overhead. The right hand side of Table 2
lists runtime overhead of our implementation. As to be expected, the main over-
head is caused by the HMAC function which depends on the concrete size of the
next stage to be measured. We give 256 B and 32 kB as reference points to esti-
mate the cost hashing the KDF output and a larger firmware, respectively. The
D2000 is more than two times faster in computing authenticated measurements
over various memory regions, which is much likely due to faster flash access. In
particular, the D2000 requires only 145 ms for hashing 32 kB, whereas the Stel-
laris takes 312 ms. In contrast, the key protection logic adds negligible runtime
for both device types. It takes less than 0.02 ms on the Stellaris and 0.04 ms on
the Intel D2000, in the worst-case. Lastly, the SRAM PUF is by far the slowest
key storage solution for EK on the Stellaris, taking almost half a second. This
is due to costly error correction of the PUF measurements. As a reference, the
unmodified base ROM, without our extension, takes on average 0.7 ms on the
Stellaris and 6 ms on the Intel D2000.

7 Related Work

Previous work on attestation addresses hardware-based or timing-based attesta-
tion, scalable attestation for groups of devices, and secure code updates.

Hardware-based attestation schemes rely on secure hardware, such as In-
tel SGX or a Trusted Platform Module (TPM) [2, 30], that is installed on the
prover. Since such secure hardware is typically too expensive and complex to
be integrated in low-cost embedded devices, recent works focused on the ad-
vancement of new minimalist security architectures [14, 17, 19, 32, 15], which



enable hardware-based remote attestation capabilities for small embedded de-
vices. However, these lightweight architectures have not yet reached the market,
and hence are not available in commodity low-end embedded devices. Further-
more, even when they are available, there is still the need to secure old systems.

By contrast, timing-based attestation schemes do not require secure hardware
and thus are applicable to legacy systems [22, 26, 42, 43]. However, they rely on
assumptions that have proven to be hard to achieve in practice [4, 11, 24]. Such
assumptions include an optimal implementation and execution of the protocol,
exact time measurements, and an adversary who is passive during attestation.

Recent works address a scalable attestation of groups of devices (so-called
device swarms) that are interconnected in large mesh networks [1, 6, 10]. The
basic idea is that neighboring devices mutually attest each other in order to
distribute the attestation burden across the entire network. Since these works
rely on hardware-based attestation schemes, such as [8, 14, 19], they could
leverage our Boot Attestation scheme to be applicable to a broader range of
embedded devices.

Secure code updates specifically addresses a subset of remote attestation,
namely, verifying the integrity of software after it is updated. Initial approaches
build upon software-based attestation techniques to perform secure code up-
dates [41]. Accordingly, they inherit both the good and bad qualities of software-
based techniques, i.e., being theoretically applicable to any device-class but
relying on unrealistic timing assumptions (see last paragraph). Later on, the
notion of Proofs of Secure Erasure (PoSE) was introduced to secure code up-
dates [18, 34]. PoSE-based approaches neither rely on tight timing assumptions
nor on secure hardware. Instead, they apply a challenge-response protocol that
requires the prover to fill its entire memory with data, such that any malicious
code is overwritten. PoSE-based approaches can be applied to many devices, as
they only require a small amount of read-only memory (ROM) on the prover.
However, they assume an adversary who is present in the network to be able to
only communicate with the verifier and not the prover device, which is a strong
limitation. Recently, another secure code update scheme was proposed, which
focuses on scalable updates in large mesh networks [20]. In contrast to our work,
it imposes the use of asymmetric cryptography, involving heavy computational
overhead and a large memory footprint.

8 Conclusions and Future Work

In this work, we explored a novel lightweight remote attestation scheme for low-
cost COTS MCUs. We showed that it is possible to narrow down hardware
requirements of the targeted MCUs and even to enable the extension of already
deployed devices. We demonstrated feasibility and efficiency of our scheme on
commercial hardware and proposed extensions for usage in real-world scenarios.

For future work, we will investigate support of additional device types, to
widen to scope of applicability. A second effort will be taken to refine existing
and develop further protocol extensions, such as symmetric sealing of assets (i.e,



sensor values, etc.), establishment of trusted channels or means to log provenance
of such assets, especially if they are computed on flash-based media that employ
or scheme.

9 Acknowledgments

This work has been partly funded by the DFG as part of project P3 within the
CRC 1119 CROSSING and the LOEWE initiative (Hessen, Germany) within
the NICER project.

References

1. M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and M. Schunter.
SANA: Secure and Scalable Aggregate Network Attestation. In Conference on
Computer & Communications Security, pages 731–742, 2016.

2. I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for cpu
based attestation and sealing. In Proceedings of the 2nd international workshop on
hardware and architectural support for security and privacy, volume 13, 2013.

3. F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and P. Tuyls. Memory
leakage-resilient encryption based on physically unclonable functions. In Towards
Hardware-Intrinsic Security, pages 135–164. 2010.

4. F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann. A security framework
for the analysis and design of software attestation. In Conference on Computer &
Communications Security, pages 1–12, 2013.

5. Ashish Ahuja. SPMA044A – Using Execute, Write, and Erase-Only Flash Protec-
tion on Stellaris Microcontrollers Using Code Composer Studio.

6. N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter, G. Tsudik, and
C. Wachsmann. Seda: Scalable embedded device attestation. In Conference on
Computer & Communications Security, pages 964–975, 2015.

7. C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls. Efficient helper
data key extractor on FPGAs. In Cryptographic Hardware and Embedded Systems,
pages 181–197. 2008.

8. F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl. Tytan:
tiny trust anchor for tiny devices. In Design Automation Conference (DAC), 2015
52nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2015.

9. bunnie and xobs at 30C3. SD Card Hacking. http://www.bunniefoo.com/bunnie/
sdcard-30c3-pub.pdf. Last accessed 19th April 2017.

10. X. Carpent, K. ElDefrawy, N. Rattanavipanon, and G. Tsudik. Lightweight Swarm
Attestation: A Tale of Two LISA-s. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 86–100, 2017.

11. C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty of
software-based attestation of embedded devices. In Conference on Computer &
Communications Security, pages 400–409, 2009.

12. W. Chen, J. Bhadra, and L.-C. Wang. SoC Security and Debug. In Fundamentals
of IP and SoC Security, pages 29–48. Springer, 2017.

13. A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A Large-Scale Analysis of
the Security of Embedded Firmwares. In USENIX Security, pages 95–110, 2014.

http://www.bunniefoo.com/bunnie/sdcard-30c3-pub.pdf
http://www.bunniefoo.com/bunnie/sdcard-30c3-pub.pdf


14. K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito. SMART: Secure and Mini-
mal Architecture for (Establishing Dynamic) Root of Trust. In NDSS, volume 12,
pages 1–15, 2012.

15. A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. A Minimalist Ap-
proach to Remote Attestation. In Design, Automation & Test in Europe, 2014.

16. A. Hern. Chinese webcam maker recalls devices after cyberattack link.
https://www.theguardian.com/technology/2016/oct/24/chinese-webcam-

maker-recalls-devices-cyberattack-ddos-internet-of-things-xiongmai,
Oct. 2016. Last accessed 19th April 2017.

17. G. Hunt, G. Letey, and E. Nightingale. The seven properties of highly secure
devices. Technical report, March 2017.

18. G. O. Karame and W. Li. Secure Erasure and Code Update in Legacy Sensors. In
Trust and Trustworthy Computing, pages 283–299. 2015.

19. P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. TrustLite: A Security
Architecture for Tiny Embedded Devices. In European Conference on Computer
Systems, pages 10:1–10:14, 2014.

20. F. Kohnhäuser and S. Katzenbeisser. Secure Code Updates for Mesh Networked
Commodity Low-End Embedded Devices. In European Symposium on Research in
Computer Security, pages 320–338, 2016.

21. F. Kohnhäuser, A. Schaller, and S. Katzenbeisser. PUF-Based Software Protection
for Low-End Embedded Devices. In Trust and Trustworthy Computing. 2015.

22. X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. Butterworth.
New results for timing-based attestation. In Security & Privacy, 2012.

23. B. Krebs. Who Makes the IoT Things Under Attack? https://krebsonsecurity.

com/2016/10/who-makes-the-iot-things-under-attack/, Oct. 2016. Last ac-
cessed 19th April 2017.

24. Y. Li, Y. Cheng, V. Gligor, and A. Perrig. Establishing software-only root of trust
on embedded systems: Facts and fiction. In International Workshop on Security
Protocols, pages 50–68. Springer, 2015.

25. Y. Li, J. M. McCune, and A. Perrig. SBAP: Software-Based Attestation for Pe-
ripherals. In Trust and Trustworthy Computing, pages 16–29, 2010.

26. Y. Li, J. M. McCune, and A. Perrig. VIPER: verifying the integrity of PERipherals’
firmware. In Conference on Computer & Communications Security, 2011.

27. Linux Foundation. Intel Quark Microcontroller Software Interface. Last accessed
19th April 2017.

28. Linux Foundation. Zephyr Project. https://www.zephyrproject.org/. Last ac-
cessed 19th April 2017.

29. Maes, Roel and Tuyls, Pim and Verbauwhede, Ingrid. Low-overhead implementa-
tion of a soft decision helper data algorithm for SRAM PUFs. In Cryptographic
Hardware and Embedded Systems, pages 332–347. 2009.

30. Trusted Computing Group. TPM Main Specification. http://www.

trustedcomputinggroup.org/resources/tpm_main_specification. Last ac-
cessed 19th April 2017.

31. K. Nohl, S. Kriler, and J. Lell. BadUSB – On accessories that turn evil. https:

//opensource.srlabs.de/projects/badusb, 2014. Last accessed 19th April 2017.
32. J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens,

B. Preneel, I. Verbauwhede, and F. Piessens. Sancus: Low-cost Trustworthy Ex-
tensible Networked Devices with a Zero-software Trusted Computing Base. In
USENIX Security, pages 479–494, 2013.

33. B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in Modern Computers.
Springer, August 2011.

https://www.theguardian.com/technology/2016/oct/24/chinese-webcam-maker-recalls-devices-cyberattack-ddos-internet-of-things-xiongmai
https://www.theguardian.com/technology/2016/oct/24/chinese-webcam-maker-recalls-devices-cyberattack-ddos-internet-of-things-xiongmai
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://www.zephyrproject.org/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://opensource.srlabs.de/projects/badusb
https://opensource.srlabs.de/projects/badusb


34. D. Perito and G. Tsudik. Secure Code Update for Embedded Devices via Proofs
of Secure Erasure. In ESORICS, volume 6345, pages 643–662. Springer, 2010.

35. Real Time Engineers Ltd. FreeRTOS Website. Last accessed 9th December 2015.
36. M. Ryan. Bluetooth: With Low Energy Comes Low Security. In WOOT, 2013.
37. T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno. Devices that tell

on you: Privacy trends in consumer ubiquitous computing. In USENIX Security,
pages 5:1–5:16. USENIX, 2007.

38. A. Schaller, T. Arul, V. van der Leest, and S. Katzenbeisser. Lightweight Anti-
counterfeiting Solution for Low-End Commodity Hardware Using Inherent PUFs.
In Trust and Trustworthy Computing, pages 83–100. Springer, 2014.

39. B. Schneier. The Internet of Things Is Wildly InsecureAnd Often Unpatchable.
Wired, Jan, 2014.

40. G.-J. Schrijen and V. van der Leest. Comparative analysis of SRAM memories
used as PUF primitives. In Conference on Design, Automation and Test in Europe,
pages 1319–1324. EDA Consortium, 2012.

41. A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba: Secure code
update by attestation in sensor networks. In ACM workshop on Wireless security,
pages 85–94. ACM, 2006.

42. A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: ver-
ifying code integrity and enforcing untampered code execution on legacy systems.
Operating Systems Review, 39(5):1–16, 2005.

43. A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. Swatt: Software-based attes-
tation for embedded devices. In Security & Privacy, pages 272–282. IEEE, 2004.

44. A. Seshadri, A. Perrig, L. van Doorn, and P. K. Khosla. SWATT: software-based
attestation for embedded devices. In Security and Privacy, page 272. IEEE, 2004.

45. Y. Shaked and A. Wool. Cracking the Bluetooth PIN. In Mobile systems, applica-
tions, and services, pages 39–50. ACM, 2005.

46. Texas Instruments. Stellaris LM3S9B96 Microcontroller – Data Sheet.
47. Texas Instruments. Stellaris LM4F120 LaunchPad Evaluation Kit. http://www.

ti.com/tool/ek-lm4f120xl. Last accessed 19th April 2017.

http://www.ti.com/tool/ek-lm4f120xl
http://www.ti.com/tool/ek-lm4f120xl

	Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors
	Introduction
	System Model and Goals
	System Model
	Adversary Model
	Remote Attestation Game

	Boot Attestation
	Implicit Chain of Trust
	Remote Attestation Protocol
	Security Analysis

	Extensions for Real-World Use
	Attestation Key Provisioning
	Third-Party Verification

	Hardware Requirements
	Proof of Concept Implementation
	Prototype I: TI Stellaris LaunchPad
	Prototype II: Intel Quark D2000
	Performance Evaluation

	Related Work
	Conclusions and Future Work
	Acknowledgments


